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Abstract: The interactions between the neuronal and vascular sides of the retina during diabetic
retinopathy (DR) have gained increasing attention. Microglia is responsible for the immune response
to inflammation inside the retina, which could be mediated by paracrine signals carried by extracellu-
lar vesicles (EVs). We aimed to characterize EVs released from immortalized human microglial cells in
inflammation and investigate their effects on the retinal microvasculature and the anti-inflammatory
potential of thiamine in this context. M1 pro-inflammatory polarization in microglia was induced
through a cytokine cocktail. EVs were isolated from the supernatants, characterized, and used to
stimulate human retinal endothelial cells (HRECs) and pericytes (HRPs). Microvascular cell func-
tions and their release of pro-inflammatory/angiogenic factors were assessed. M1-derived EVs
showed increased content of miR-21, miR-155, CCL2, MMP2, and MMP9, and enhanced apoptosis,
proliferation, migration, and ROS production in HRPs and HRECs. IL-1β, IL-6, MMP9, CCL2, and
VEGF release increased in HRPs exposed to M1-derived EVs, while HRECs showed augmented
IL-6, Ang2, VEGF, and PDFG-B. Addition of thiamine to M1-microglial cultures reverted most of
these effects. In conclusion, M1-derived EVs stimulate functional changes and secretion of pro-
inflammatory/angiogenic molecules in microvascular cells, exacerbating inflammatory damage and
retinopathy features. Thiamine added to microglia exerts anti-inflammatory effects.

Keywords: angiogenesis; diabetic retinopathy; endothelial cells; extracellular vesicles; inflammation;
microglia; pericytes; thiamine

1. Introduction

Diabetic retinopathy (DR) affects about one-third of patients with diabetes. Major risk
factors for its development and progression are the diabetes duration and the degree of
glycometabolic control maintained over the years. Although its annual incidence appears
to have decreased in recent years, the rocketing rise of its underlying cause, diabetes, makes
this complication an increasing health challenge worldwide [1].

DR has long been considered a microvascular disease; however, in recent years the role
of the neuroretina in the earlier stages of this complication has gained major consideration
and, nowadays, DR is described as a neurovascular disease [2]. In this context, several
different types of cells and their reciprocal interactions are involved.

As regards the microvascular component of the neurovascular unit, retinal endothelial
cells (ECs) and pericytes constitute the main actors [3]. The inner blood–retinal barrier
is very similar to the blood–brain barrier, with tight junctions limiting the free passage
of solutes and a high ratio of ECs to pericytes (1:1). Thus, pericytes play a major role in
controlling EC proliferation and in the interchange and filtration of stimulating/inhibiting
factors from the blood to the neuroretina and vice versa. When, in the earlier phases of DR,
pericytes are lost, ECs proliferate abnormally, leading to microaneurysms and, ultimately,
proliferative DR [3]. Microglial cells are the main cells responsible for the modulation of
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the immune response to inflammatory stimuli inside the diabetic retina [4]. They respond
to inflammation by activating and switching to their M1 pro-inflammatory phenotype,
and secreting immune mediators to restore homeostasis [5,6]. Diabetes and DR involve
a chronic inflammation status, in which the microglia remains constantly activated (M1
phenotype) and continues to secrete damaging molecules [5], which, in turn, induce the
secretion of inflammatory and apoptotic factors by pericytes [7] in a sort of vicious circle. In
addition, in DR, the perivascular accumulation of activated microglia is linked to increased
vascular permeability [8]. Thus, ECs, pericytes, and microglia are all together involved in a
complex interplay.

Extracellular vesicles (EVs) carry several molecules (miRNAs, mRNAs, proteins) and
are known to exert a paracrine function in the transmission of signals between neighboring
tissues [9–11]. Several authors postulated a role for them in the pathogenesis of diabetes and
its complications [11–15] and indicated EVs as putative biomarkers of the disease [13,15,16].
Retinal microglia releases EVs that are able to enhance neuroinflammation [17]. We hypoth-
esize that the paracrine signaling between microglia and pericytes/ECs may be mediated
by EVs released by microglial cells and carrying pro-inflammatory molecules, which may
exacerbate DR.

Thiamine has been described as an antioxidant and anti-inflammatory molecule,
with high relevance in counteracting the hyperglycemia-induced metabolic damage in
diabetes [18,19]. In murine models, microglial activation was correlated with a deficit
in thiamine [20], and its analogue benfotiamine was able to decrease the release of pro-
inflammatory factors, while increasing anti-inflammatory mediators in activated microglia [21].

In the present study, we characterized EVs obtained by M1 microglia and verified
if they induced functional modifications in retinal microvascular cells, comparing these
putative effects to those of the direct stimulation of ECs/pericytes with the same M1
cocktail used to induce the activation of microglia. In addition, we assessed the release of
inflammatory/angiogenic molecules by pericytes and ECs stimulated with EVs derived
from M1 microglia, and the anti-inflammatory potential of thiamine in DR.

Our hypothesis, subsequently confirmed by the data we obtained with the present
work, was that EVs released by M1-activated microglial cells play a pivotal role in the
paracrine signaling between microglia and the microvascular cells. These EVs are pre-
sumed to carry pro-inflammatory molecules that contribute to the progression of DR.
Furthermore, we propose that thiamine, known for its antioxidant and anti-inflammatory
properties, has the potential to neutralize the release of inflammatory mediators when
added to the M1 cocktail during the stimulation of microglial cells. Our study aims to char-
acterize the EVs obtained from M1 microglia, assess their impact on retinal microvascular
cells, and investigate the anti-inflammatory effects of thiamine in the context of DR as a
neurovascular disease.

2. Results
2.1. EV Characterization

According to the Minimal Information for Studies of Extracellular Vesicles (MISEV)
guidelines for EV characterization [22], we measured EV size and concentration via
NanoSight, and their protein content via Western blotting, choosing markers from the
different groups (see Table 3 in [22]). As shown in Table 1, EVs isolated from the su-
pernatants of microglial cells exposed to different treatments showed no difference in
size, while a decrease in their supernatant concentrations was observed after the addition
of thiamine.

In addition, all EVs expressed the EV markers CD63, CD81 (associated with the EV
plasma membrane), and ALIX (a cytosolic EV marker). Apolipoprotein A1 (ApoA1), a
lipid contaminant, was not detected, while GM130, which is associated with the secretory
pathway, which is not present in EVs, showed a very low expression (see Supplementary
Materials, Figure S1).
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Table 1. Size (nm) and concentration (number × 1011/mL) (mean ± SD of 5 independent measures)
of EVs derived from human microglia exposed to different stimuli. ctrl = EVs extracted from the
supernatants of microglial cells cultured in physiological conditions; M1 = EVs extracted from the
supernatants of M1-activated microglial cells; T = EV extracted from the supernatants of microglial
cells cultured in the presence of thiamine; M1+T = EVs extracted from the supernatants microglial
cells cultured in M1 conditions plus thiamine. * p < 0.05 vs. ctrl and M1.

ctrl M1 T M1+T

Size (nm) 181.53 ± 13.23 175.48 ± 15.05 177.83 ± 9.43 183.08 ± 11.67
Concentration (U × 1011/mL) 3.04 ± 0.22 3.73 ± 0.41 2.71 ± 0.39 * 2.74 ± 0.51 *

2.2. EV Expression of Pro-Inflammatory mRNAs and miRNAs

We then studied via RT-PCR the expression of specific mRNAs encoding for pro-
inflammatory/pro-angiogenic proteins, whose choice was guided by extensive research
in the literature (as detailed in Section 3), and our previous research findings [23,24]. We
found increased expression of the chemokine (C-C motif) ligand 2 (CCL2), the matrix
metalloproteinase-2 (MMP2), and the matrix metalloproteinase-9 (MMP9) in EVs derived
from M1-stimulated microglia (Figure 1a), and no variations in vascular cell adhesion
molecule-1 (VCAM-1). CCL2 showed a 3.6-fold increase in comparison with EVs derived
from unstimulated microglia (ctrl) (p < 0.05), MMP2 showed a 1.9-fold increase (p < 0.05),
and MMP9 showed a 2.6-fold increase (p = 0.005). In all cases, the addition of thiamine
to the M1 cocktail resulted in a significant reduction in their expression (p < 0.05 vs. M1-
EVs). In the context of miRNA analysis, we considered our prior results on M1-activated
microglia [24] and circulating extracellular vesicles from diabetic patients with diabetic
retinopathy [16], in order to identify three miRNAs closely associated with inflammation
and angiogenesis (mir21, miR146a, and miR155). We evaluated their expression in EVs,
finding 10.5-fold increased concentrations of miR21 (p < 0.001 vs. ctrl) and 2.9-fold aug-
mented miR155 (p < 0.05) in M1-EVs, and normalization by the addition of thiamine to M1
in microglial cultures (Figure 1b). miR146a did not vary among cases.
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from the supernatants of microglial cells cultured in physiological conditions (ctrl); red bars: EVs 
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Figure 1. EV expression of pro-inflammatory mRNAs (a) and miRNAs (b). Blue bars: EVs extracted
from the supernatants of microglial cells cultured in physiological conditions (ctrl); red bars: EVs
extracted from the supernatants of M1-activated microglial cells (M1); green bars: EVs extracted
from the supernatants of microglial cells cultured in the presence of thiamine (T); purple bars: EVs
extracted from the supernatants of microglial cells cultured in M1 conditions plus thiamine (M1+T).
Mean ± SD of 5 independent experiments. * = p < 0.05 vs. ctrl and M1+T; £ = p <0.005 vs. ctrl and
M1+T; $ = p < 0.001 vs. ctrl and M1+T.

2.3. Functional Changes in Retinal Microvascular Cells Exposed to Microglia-Derived EVs

To evaluate the possible effects of M1-EVs on retinal microvascular cell function, we
exposed HRPs and HRECs to EVs extracted from microglial cultures in the four different
culture conditions. We found around +20% increased proliferation in both cell types
(p < 0.05 vs. ctrl, i.e., cells exposed to EVs derived from physiological microglia), +44.8%
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HRP (p < 0.05) and +130% HREC (p < 0.005) apoptosis, +50.3% HRP and +37.6% HREC
migration (p < 0.05 in both cell types), and +8.1 HRP and +11.6 HREC reactive oxygen
species (ROS) production (both p < 0.005 vs. ctrl). The addition of thiamine to the M1
cocktail in stimulating microglia made it possible to normalize all these parameters. By
contrast, the direct exposure of HRPs and HRECs to the M1 cocktail resulted in a null
influence on apoptosis, proliferation, and ROS production, while slightly increasing HRP
migration (Figure 2), thus ruling out the possibility that those changes were due to a direct
stimulation of the pro-inflammatory cocktail, rather than a mediation by EVs.
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Figure 2. Functional changes in HRPs and HRECs exposed to microglia-derived EVs: (a) HRP and
(b) HREC proliferation; (c) HRP and (d) HREC apoptosis; (e) HRP and (f) HREC migration: (g) HRP
and (h) HREC ROS production. Blue bars: cells exposed to EVs extracted from the supernatants
of microglial cells cultured in physiological conditions (EV-mediated bars) or directly cultured
in physiological conditions (M1-direct bars); red bars: cells exposed to EVs extracted from the
supernatants of M1-activated microglial cells (EV-mediated bars) or directly cultured in the presence
of the M1 cocktail (M1-direct); green bars: cells exposed to EVs extracted from the supernatants
of microglial cells cultured with thiamine (EV-mediated bars) or directly cultured with thiamine
(M1-direct bars); purple bars: cells exposed to EVs extracted from the supernatants of microglial cells
cultured in M1 plus thiamine (EV-mediates bars) or directly with M1 plus thiamine (M1-direct bars).
Mean ± SD of 5 independent experiments. * = p < 0.05 vs. ctrl and M1+T; $ = p < 0.005 vs. ctrl and
M1+T; # = p < 0.05 vs. ctrl and M1.
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2.4. Release of Pro-Inflammatory/Pro-Angiogenic Factors by HRPs/HRECs following Exposure to
Microglia-Derived EVs

Finally, using ELISA, we investigated the release of a panel of pro-inflammatory
and/or pro-angiogenic factors by HRPs and HRECs, when exposed to the different types
of microglia-derived EVs. We found an increased release of interleukin-1β (IL-1β) (+20.2%,
p < 0.05 vs. ctrl), interleukin-6 (IL-6) (+10.9%, p < 0.05), MMP9 (+21.5%, p < 0.05), CCL2
(+15.7%, p < 0.05), and vascular endothelial growth factor (VEGF) (+25.4, p < 0.05) in HRPs
exposed to M1-derived EVs. Tumor necrosis factor α (TNF-α) and angiopoietin-2 (Ang2)
were not modified, while platelet-derived growth factor-B (PDGF-B) was undetectable
in both supernatants and lysates (Figure 3a). In HRECs, IL-6 showed a + 24.6% release
(p < 0.05), angiopoietin-2 (Ang2) a +14.1% release (p < 0.005), VEGF a +45.5% release
(p < 0.05), and PDFG-B a +26.1% release in supernatants (p = 0.000) and a +38.0% expression
increase in lysates (p < 0.005) (Figure 3b). The addition of thiamine to M1-microglial cultures
reverted most of these effects.
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Figure 3. Release of pro-inflammatory/pro-angiogenic factors by (a) HRPs and (b) HRECs following
exposure to microglia-derived EVs. Blue bars: cells exposed to EVs extracted from the supernatants
of microglial cells cultured in physiological conditions (ctrl); red bars: cells exposed to EVs extracted
from the supernatants of M1-activated microglial cells (M1); green bars: cells exposed to EVs extracted
from the supernatants of microglial cells cultured in the presence of thiamine (T); purple bars: cells
exposed to EVs extracted from the supernatants of microglial cells cultured in M1 conditions plus
thiamine (M1+T). Mean ± SD of 5 independent experiments. * = p < 0.05 vs. ctrl and M1+T; $ = p < 0.005
vs. ctrl and M1+T; # = p < 0.05 vs. ctrl.

3. Discussion

In this study, we demonstrate that the EVs released by activated microglia contain
pro-inflammatory and angiogenic mRNAs and miRNAs and induce functional changes
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in retinal microvascular cells, which, in response, produce and release inflammatory and
angiogenic mediators.

Inflammation and abnormal angiogenesis, together with hypoxia, constitute the main
players in the cascade of events characteristic of DR. In the earlier phases of the disease,
the death and migration of retinal pericytes and the thickening of the basement membrane
result in a loss of control of EC proliferation, and in subsequent microvascular abnormalities
(microaneurysms) [3]. Later, chronic hypoxia due to an impaired HIF function, together
with the increased production of angiogenic molecules, leads to proliferative DR and
eventually blindness [25]. In the nervous system and the retina, inflammation is mainly
mediated by resident microglia, which can switch between two phenotypes: M2, the
resting state, and M1, the activated one, when, in response to damaging stimuli, it acquires
mobility and releases pro-inflammatory molecules [26,27]. Once the damaging stimuli
are inactivated, the microglia reverts to its M2 phenotype [6]. In the course of DR, the
accumulation of harmful metabolites inside the retina causes microglia to remain constantly
in its M1-activated state [5], releasing inflammatory cytokines that, in turn, may affect
microvascular cells. Pericytes, the first to come in contact with them, in turn release
pro-inflammatory and apoptotic mediators [7].

Most studies addressing the microglial potential to modulate DR used rodent cells.
However, an immortalized human microglial line, tested for its susceptibility to inflamma-
tion, is now available and represents a potential tool to investigate the pathophysiology of
the inflammatory component of diabetic retinopathy in species-specific models [24]. We
have demonstrated previously that these human microglial cells present major differences
from rodent cells in their response to several inflammatory stimuli [24].

EVs are small membrane particles released by most cell types, which may function
as carriers of numerous types of molecules (proteins, lipids, mRNAs, miRNAs) through
paracrine signaling, thus potentially exerting either a positive or a negative impact on
target tissues [9,10,12,15]. In the latest years, they have come into focus as potential
biomarkers of several diseases [11,13], including diabetes and DR [14,16], as well as a
healing strategy [9–11,14,15]. Microglia in the retina releases EVs carrying molecules that
are able to exacerbate neuroinflammation [17,28]. Among the many factors stocked inside
EVs, miRNAs, small non-coding nucleotide sequences, have particular importance, as they
couple with complementary target mRNAs and inhibit their translation into proteins [29].
Freely circulating miRNAs are easily degraded by enzymes, while those carried by EVs are
protected by the EV membrane. miRNA concentrations are related to the disease severity,
and, like EVs, they are studied as possible biomarkers of cancer and chronic diseases, such
as diabetes [30,31] and diabetic retinopathy [16,32].

In our four experimental conditions, EVs released by microglia presented no differ-
ences in size, while their concentration was decreased by the addition of thiamine. They
all expressed characteristic EV markers, such as CD63, CD81, and ALIX [22]. No contami-
nation with ApoA1 was found, even though collected microglia supernatants contained
EV-free bovine serum. A low presence of GM130 accounts for the presence of a small
fraction of larger EVs (>200 nm) [22].

EVs derived from M1-stimulated microglia showed an increased expression of pro-
inflammatory CCL2, MMP2, and MMP9, reflecting in part the content of activated human
microglial cells, for which we previously described increments in CCL2, MMP2, and
VCAM-1, but not MMP9 [24]. Increased expressions of MMP2 and MMP9 were described
in both in vitro models of DR [23] and in the vitreous of patients with proliferative DR [33].
Activated microglia rely on MMPs to facilitate their migration towards the perivascular
region, thus increasing vascular leakage [33–35], possibly through the detachment of peri-
cytes from the basement membrane, which is in turn enhanced by MMP2 and MMP9 [36].
A high expression of CCL2 is characteristic of neuroinflammation, its release being ascribed
to ECs, astrocytes [37], resident microglial cells [38], and pericytes [39]. CCL2 is involved
in monocyte and T-cell recruitment, microglia migration, and blood–brain barrier dysfunc-
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tion [38]. High levels of CCL2 are present in diabetic patients with proliferative DR [40]
and macular oedema [41].

In addition, inside M1-derived EVs, we found an increased expression of miR21 and
miR155, which are both involved in angiogenesis and inflammation. miR21 is expressed in
almost all human cells, particularly in macrophages, monocytes, and dendritic cells [42,43].
In DR, it may modulate inflammation through the downregulation of the peroxisome
proliferator-activated receptor alpha (PPARα) and the consequent release of inflammatory
factors such as VCAM-1 and CCL2 [44], as well as angiogenesis through the upregulation
of MMP9 and HIF-1α, which in turn induces the release of VEGF [44]. We have previ-
ously reported increased miR21 in EVs extracted from the plasma of patients with DR
and hypothesized a role for it as a potential biomarker of the disease [16,45]. Our present
finding may therefore provide further support for a link between the pro-inflammatory
and pro-angiogenetic potentials of miR21. The NF-kB-dependent miR155 induction [46]
can downregulate the expression of inhibitory proteins of inflammation in microglia activa-
tion [47], thus controlling the propagation of inflammation itself [47]. There is evidence
that circulating miR155 levels are positively correlated with the severity of DR in diabetic
patients [48]. Our findings of increased miR155 expression in M1-EVs are in accordance
with those obtained exploring M1 microglia content [24]. By contrast, we did not find an
increased expression of miR146a as shown in activated microglial cells [24].

Several studies have assessed the role of thiamine as an antioxidant and anti-inflammatory
factor, which assumes particular importance in the prevention of metabolic damages caused
by hyperglycaemia during diabetes [18,19]. Diabetic subjects often show a relative thiamine
deficiency, due in part to renal loss [49]. Reduced thiamine availability is responsible
for the increased production of reactive oxygen species (ROS) [19]. Thiamine, and its
lipophilic derivative benfotiamine, counteract high glucose-induced damage, reducing
ROS production in cell and animal studies, and the progression of DR and nephropathy in
diabetic animals and humans [18,50]. Together with its antioxidant properties, a role for
thiamine as an anti-inflammatory mediator has been recently hypothesized. A correlation
between the progression of microglial activation and thiamine deficiency was observed
in a murine model [20], and benfotiamine decreased the expression of inflammatory me-
diators and increased the production of anti-inflammatory factors in activated murine
microglia [21]. We hypothesized that the addition of thiamine to the M1 cocktail when
stimulating microglial cells could result in a protection of the vitamin from the release
of damaging molecules. Our results show that EVs collected from the supernatants of
microglia exposed to the M1 cocktail with the addition of thiamine showed expressions
of pro-inflammatory and angiogenic mRNAs/miRNAs superimposable on those of EVs
derived from control cultures.

Subsequently, we investigated the effects of these EVs on microvascular cell function
and compared them to those obtained with the direct stimulation of pericytes and ECs with
the same M1 cocktail. All parameters we considered (proliferation, apoptosis, migration,
and ROS production) were increased in both HRPs and HRECs exposed to M1-EVs, while
direct stimulation with the M1 cocktail had no effect, apart from increased HRP migration
(even though to a lesser extent) also in the presence of M1 stimulation. This stands for a
pro-inflammatory and angiogenic paracrine effect mediated by microglia-released EVs,
rather than a direct effect of inflammatory mediators. A counterintuitive result was the
simultaneous increment of both proliferation and apoptosis. Evidence in the literature,
however, demonstrates that apoptotic cells may induce proliferation of neighboring cells
through caspases signaling, with important implications for tissue regeneration and wound
healing, but also cancer. This is described as “compensatory proliferation” or “apoptosis-
induced proliferation” [51,52]. A similar effect was described in vascular smooth muscle
cells, due to the differential activation of members of the MAPK family in cell subtypes [53].
The addition of thiamine to the M1 stimulus made the microglial cultures produce EVs that
did not affect the microvascular cell functions, demonstrating that, once again, thiamine is
a potent inhibitor of damaging effects in these cell types.
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Finally, our results show that pericytes and ECs release pro-inflammatory and angio-
genic mediators in the supernatants when stimulated by M1-EVs, and that thiamine inhibits
this effect when added to M1, confirming the anti-inflammatory potential of this vitamin.
Pericytes can react to local neuroinflammation in two different ways: they can release
neuroprotective molecules, in an attempt to counteract the damaging insult, or secrete pro-
inflammatory factors in a sort of vicious circle, which exacerbates local inflammation [39].
In our experimental setting, HRPs showed increased release in the supernatants of IL-1β,
IL-6, CCL2, VEGF, and MMP9, when exposed to M1-EVs. IL-1β is a well-known mediator
of inflammation in the retina, secreted mostly by immune cells and generally used to induce
a secondary response in pericytes, with the subsequent release of CCL2 and MMPs [39].
Here, we demonstrate that pericytes may respond to the EV-mediated IL-1β+TNFα+IFNγ

insult by releasing this cytokine. Our finding of an increased secretion of IL-6, another
important mediator of neuroinflammation, by HRPs is confirmed by evidence that pericytes
release IL-6 in response to TNFα stimulation to a greater extent than microglia themselves,
leading to microglia activation [54]. As already stated, MMP9 increases the permeability of
the blood–retinal barrier by degrading the basement membrane and releasing pericytes.
Detached pericytes secrete several cito- and chemokines, including CCL2, which facilitates
the recruitment of microglial cells in the parenchyma, leading to vascular leakage [39].
At the same time, MMP9 is released by pericytes in inflammatory conditions [39,55], en-
hancing immune cell infiltration and oedema. The role of VEGF in DR is widely known
(reviewed in [56]), and anti-VEGF strategies to block the abnormal retinal capillary leakage
and angiogenesis in patients with DR have been extensively studied (reviewed in [57]).
An increased VEGF release by HRPs, as a consequence of stimulation with M1-EVs, may
therefore worsen DR, together with the enhanced production of Ang2 by HRECs, which
induces both pericyte apoptosis [58] and proteolytic degradation of the basement mem-
brane with the release of pericytes [59]. On the other hand, HRECs exposed to M1-EVs
show an increased expression and release of PDGF-B, which is usually involved in pericyte
recruitment and vascular stabilization [3]. In the very early phases of acute events like
ischemia, pericytes may exert a neuroprotective effect via the PDGF-B/PDGFBR axis, by
stabilizing new vessels that colonize the necrotic areas [39,60]. Hence, we hypothesize that,
in DR, ECs may increment the PDGF release to either counteract the inflammatory insult or
stabilize the newly sprouted microvessels. The protective effects of thiamine towards the
inflammatory damage, when added to microglia cultures together with the M1 cocktail,
is once again confirmed by the findings of no increases in cytokine release by HRPs and
HRECs exposed to EVs derived from these cultures.

4. Materials and Methods
4.1. Cell Cultures

Immortalized human microglial cells and human retinal endothelial cells (HRECs)
were purchased from Innoprot (Bizkaia, Spain), and cultured according to the manufac-
turer’s instructions in microglia medium (Innoprot) or endothelial cell medium (Innoprot),
respectively. Human retinal pericytes (HRPs) were immortalized and characterized by our
group [61]. They were cultured in DMEM (Thermo Fisher Scientific, Waltman, MA, USA),
with 10% added fetal bovine serum.

4.2. EV Production and Collection

Human microglial cells were exposed to a cocktail composed by 10 ng/mL TNF-α +
20 ng/mL IL-1β + 50 ng/mL IFN-γ (ThermoFisher), which was demonstrated to be able to
induce M1 activation [24]. At the same time, other wells were cultured in physiological
conditions (ctrl), 50 µM thiamine (T), or M1+T. The thiamine concentration we used was
determined by former dose–response experiments [62,63], and it is acknowledged as the
lowest effective dosage in counteracting metabolic abnormalities in diabetic complica-
tions [18,50]. After 24 h of exposure, supernatants were discarded and all cultures were
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kept for a further 24 h in DMEM with 10% fetal bovine serum added, which was fully
deprived of EVs by ultracentrifugation.

Supernatants were centrifuged at 3000× g for 30 min to remove debris and apoptotic
bodies, followed by ultracentrifugation at 100,000× g for 3 h at 4 ◦C of the cell-free super-
natants (ultracentrifuge: Optima L-100K, Beckman Coulter, Brea, CA, USA; rotor: 90 Ti,
90,000 rpm, fixed angle, Beckman Coulter). EVs were either used immediately or stored at
−80 ◦C in DMEM + 5% dimethyl-sulfoxide. The EV size and concentration were measured
through a NanoSight LM10 (NanoSight Ltd., Minton Park, UK) running the Nanoparticle
Tracking Analysis 2.3 software. For further experiments, we used an EV concentration
similar to the one measured in peripheral blood of healthy subjects (8 × 108 EV/mL) [45].

4.3. Protein-Content EV Characterization

Protein-content EV characterization was performed in accordance with the MISEV
guidelines [17] using Western blotting, choosing markers from the different groups. To
extract total proteins, EVs were lysed using M-PER mammalian protein extraction reagent
(ThermoFisher) added with a 10 µL/mL protease inhibitor cocktail kit (ThermoFisher).
Extracts were kept ice-cold and cleared by centrifugation at 20,000× g for 15 min at 4 ◦C.
Protein concentration was determined using the Bradford method. A total of 30 µg of
proteins were loaded on pre-cast gels (4–15% Mini-PROTEAN® TGX™ Precast Gel, Biorad,
Irvine, CA, USA), separated by electrophoresis, and transferred to nitrocellulose mem-
branes. Specific antibodies to human CD63, CD81, ALIX, ApoA1, and GM130 (Abcam)
were used for the immunoblotting of membranes. For specifications of the antibodies and
dilutions see Supplementary Materials, Figure S1. The enhanced chemiluminescence (ECL)
Western blotting protocol (Merck–Millipore, Burlington, MA, USA) was used to visualize
the bands. Each characterization was repeated 3 times.

4.4. mRNA Expression

Total RNA was extracted from EVs using the HighPure RNA Isolation kit (Merck).
A total of 200 ng of RNA were reverse-transcribed using a High Capacity cDNA Reverse
Transcription Kit (Thermo Fisher Scientific). qRT-PCR was performed using a 48-well
StepOne Real Time System (Applied Biosystems, Waltham, MA, USA) using a Power
SYBR™ Green PCR Master Mix (Thermo Fisher Scientific). Relative gene expression was
determined using the 2−∆∆CT method and normalized against β-actin. The primers used
are listed in the Supplementary Materials, Table S1.

4.5. miRNA Expression

Total RNA was extracted from EVs using the mirVana RNA isolation kit (Thermo
Fisher Scientific), which also allows for the isolation of small RNAs. RNA was quantified
spectrophotometrically (Nanodrop ND-1000, ThermoFisher), and 200 ng of RNA were
reverse-transcribed using the miScript Reverse Transcription Kit (Qiagen, Hilden, Ger-
many). qRT-PCR was performed using a 48-well StepOne Real-Time System (Applied
Biosystems), using a miScript SYBR Green PCR Kit (Qiagen). Specific primers to miR21,
miR146a, and miR155 (Supplementary Materials, Table S2) were used. miRNA expression
was normalized against the small nuclear RNA RNU6B.

4.6. Cell Function Experiments

HRPs and HRECs were exposed for 24 h to the four types of EVs isolated from
microglial cultures, as previously described. Other microvascular cells were cultured in
parallel for 24 h in the presence of the M1 cocktail, with or without the addition of thiamine.

Proliferation was assessed using the Cell Proliferation ELISA BrdU kit (Merck), and
apoptosis was assessed using the Cell Death Detection ELISAPLUS kit (Merck), according to
the manufacturer’s instructions.

Cell migration was measured using the colorimetric QCM Chemotaxis Cell Migration
Assay (Merck): cells were seeded inside 8 µm pore polycarbonate membranes and exposed
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to EVs for 24 h. Subsequently, cells still inside the insert were mechanically removed and
those that migrated through the membrane were stained. The dye was then extracted, and
colorimetric reading was performed spectrophotometrically at 560 nm.

ROS production was assessed by exposing cells in 96 well/plates for 45 min at 37 ◦C to
25 µmol/L H2DCFDA (Invitrogen–ThermoFisher, Waltham, MA, USA) in medium without
red phenol and FCS. Wells were then washed and fresh medium was added. Fluorescence
was measured at 490 nm excitation/520 nm emission at different time points.

4.7. Release of Pro-Inflammatory/Pro-Angiogenic Factors

The release of pro-inflammatory or angiogenic molecules in the supernatants/lysates
of HRP/HREC cultures exposed to microglia-derived EVs was measured via ELISA, accord-
ing to instructions. A list of the kits is detailed in the Supplementary Materials, Table S3.

4.8. Statistical Analysis

Results are intended as mean ± SD of 5 independent experiments, normalized against a
control (EVs obtained from microglia cultured in physiological conditions, or HRPs/HRECs
exposed to physiological EVs, or HRPs/HRECs in physiological conditions, as appropriate),
unless otherwise stated. Statistical comparisons were carried out using one-way ANOVA
with Bonferroni post hoc correction. Results were considered significant for p ≤ 0.05. SPSS
software version 26.0 (IBM, Armonk, NY, USA) was used for statistical analysis.

5. Conclusions

This study addresses the complexity of retinal structures affected by DR, focusing not
only on the study of a single cell type or a single district (microvessels vs. neuroretina),
but on the interplay between vascular and neuroretinal components. Notably, our model
employs exclusively human cells, deviating from the common use of murine cells in
microglia studies related to DR. A key aspect of our findings revolves around EVs, which,
while serving as informative indicators of cellular health or pathology, present a potential
cell-free approach for vessel repair. Our results highlight a concerning feedback loop,
where retinal microvascular cells exposed to EVs from M1-activated microglia release in
turn pro-inflammatory and angiogenic molecules, intensifying inflammatory damage and
contributing to retinopathy progression. The damage induced in microvascular cells by
inflammation in our model is mainly due to the paracrine effects of EVs, rather than the
direct stimulus of pro-inflammatory molecules.

We also propose thiamine as a promising, non-invasive, and cost-effective therapeu-
tic option. Given the persistent lack of non-invasive therapies for DR—one of diabetes’
most prevalent debilitating complications—thiamine emerges as a potential solution. Its
established antioxidant properties offer protection against glucose-induced microvascular
damage, and our study further supports its anti-inflammatory potential in the context
of DR development. This suggests a compelling avenue for future research, exploring
thiamine’s role in preventing or treating this widespread complication.
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