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The J/y — E°Z° process and subsequent decays are investigated using (10087 4 44) x 10° J /y events

collected at the BESIIT experiment. The decay parameters of Z° and Z° are simultaneously measured to be
az =—0.3750£0.0034+0.0016, a= = 0.3790 £ 0.0034 £ 0.0021, ¢p= = 0.0051 £ 0.0096 £ 0.0018 rad,
¢= = —0.0053 £ 0.0097 £ 0.0019 rad with unprecedented accuracies, where the first and the second
uncertainties are statistical and systematic, respectively. The most precise values for CP asymmetry
observables of E° decay are obtained to be AZ, = (=5.4 £6.5+£3.1) x 1073 and AgZ, = (-0.1 £ 6.9 £
0.9) x 1073 rad. For the first time, the weak and strong phase differences are determined to be &p — &g =
(0.0£1.740.2) x 1072 rad and 6p — 85 = (—=1.3 4+ 1.7 £0.4) x 1072 rad, which are the most precise
results for any weakly decaying baryon. These results will play important roles in the studies of the CP
violations and polarizations for the strange, charmed, and beauty baryons.

DOI: 10.1103/PhysRevD.108.L031106

At present, there is no satisfactory explanation for why
our Universe is matter dominated. Following Sakharov [1],
generation of a matter-antimatter imbalance requires the
fulfillment of three criteria. One of these is the existence of
processes that violate charge conjugation and parity (CP).
Note that CP violation (CPV) is accommodated in the
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Standard Model of particle physics through the Cabbibo-
Kobayashi-Maskawa (CKM) mechanism and is experi-
mentally established in the meson sector [2-5]. However,
the observed CPV in meson decays can only generate a
matter-antimatter asymmetry that is 8 orders of magnitude
smaller than that in our Universe [6,7]. The advent of high-
intensity facilities producing hyperons and antihyperons in
abundance opens up a new possibility: the search for CPV
in hyperon decays [8—11].

Hyperon decays are valuable since they can provide a
way to measure AS =1 CP nonconservation, which is
complementary to kaon decays in which the AS = 2 effects
are dominant. The observed CPV from the AS = 2 con-
tributions in kaon decays can be well described by the
CKM mechanism. However, in the CKM mechanism,
AS =1 effects can also be produced through a penguin
diagram [12,13], which generates a nonzero value of the
kaon decay parameter ¢’. The penguin diagram could
produce CP-odd effects at order 20¢’ in hyperon decays;
therefore, hyperons have more potential to discover these
effects. The Weinberg-Higgs model [14,15] and left-right—
symmetric model [16-18] also predict the AS =1 CPV.
Therefore, it is crucial to search for CPV in hyperon
decays, and it has been demonstrated in several measure-
ments by the BESIII Collaboration, where analyses of
polarized and entangled pairs of single-strange A [19,20]
and X1 [21] hyperons resulted in the most precise CP tests
so far for baryons. Sequential decays of double-strange =
hyperons are more intriguing since they allow the separa-
tion of strong and weak phase differences, as demonstrated
by the measurements of E~ [22,23]. Its isospin partner, i.e.,
the Z° hyperon, provides independent measurements of the
s — u transition and the weak and strong phase differences.
In many previous experiments, the CP tests rely on the
products of weak and strong phase differences. In this way,
it is difficult to distinguish the contributions of weak
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interactions from that of strong interactions. In = hyperon
sequential decays, the separation of weak and strong phase
differences allows us to directly determine the CPV sources
from the Standard Model and beyond [9,24].

The decay amplitude of a spin-1/2 hyperon into a lighter
spin-1/2 baryon and a pseudoscalar meson has a parity-
violating S-wave component and a parity-conserving
P-wave component. Hence, it can be completely described
by the two independent decay parameters a and ¢ [8,9,25].
The decay parameters az(ay), gz, @=(@,), p= of EO(A)
and Z°(A) hyperons can be determined from the sequential
decays Z° - A(— pr7)n® and E° - A(-> pat)al.
Precise measurements of the E° decay parameters are
important for studies of spin polarization and decay
parameters of many other baryon (Q7,A.,E. E,, etc.)
decays into final states involving Z° [26-28].

In this Letter, we present measurements of Z° and Z°
decay parameters and CP asymmetries with a nine-
dimensional fit to the full angular distributions of the
quantum-entangled Z° — Z° sequential decays.

Three CP asymmetry observables AZ,, ApZ,, and A,
are defined by the following equations:

AZp = (ag + az)/(az — az), (1)

ApZp = (= + #=)/2, (2)

Agp = (an +ay)/(an = @n), (3)

since CP conservation implies ag = —Hc'rE, ¢z = —¢=, and
ap = —ay. According to Ref. [10], A¢p is proportional to

the product of the weak phase difference (¢p — &) and the
strong phase difference (5p — §g) of the final state inter-
action. Hence, for the case of a tiny strong phase difference,
A%, would vanish even if the weak phase difference is
nonzero. However, A¢Z, does not have this problem [10]
and is more sensitive than AZ, for detecting CPV.
The weak and strong phase differences can be determined
from [9,24]

V1 —adsings +

1 — @ sin ¢z

tan(ép — &) = o =@
tan(ép—és):\/1_aésmﬁf:&\il_aésmqﬁ? 5)

This analysis is based on the sample of (10087 + 44) x
10° J/y events [29] collected with the BESIII detector at
the BEPCII collider. Details about BEPCII and BESIII can
be found in Refs. [30-33]. A J/yw Monte Carlo (MC)
simulation is used to determine the detector efficiency,
optimize the event selection, and estimate the background.
The simulation is performed by GEANT4-based [34] soft-
ware [35], which includes the geometric description of the

BESIII detector and the detector response. The simulation
models the beam energy spread and initial state radiation
(ISR) in the eTe™ annihilations with the generator
KKMC [36]. The known decay modes of J/y are modeled
with EvtGen [37], and the remaining unknown decays are
modeled with LUNDCHARM [38]. For the signal process,
J/w — B'Z0, 50 - A(—> pr)n®, E° - A(—= pat)a°,
7° — yy, two different MC samples are used. One is
generated according to a phase space model (PHSP MC)
for determination of the parameters, and the other is
generated according to the joint angular distribution with
the parameters obtained by this analysis (signal MC).

The A and A hyperons are reconstructed from their
dominant hadronic decay mode, A(A) = pz~(px*). The
charged tracks are detected in the multilayer drift chamber
(MDC) under the requirement that |cos 8| < 0.93, where 6
is the angle between the momentum of the charged track
and the axis of the detector. Events with at least four
charged tracks are retained. Tracks with momentum larger
than 0.3 GeV/c are considered as proton candidates, and
otherwise as pion candidates. There are no further particle
identification requirements. Vertex fits [39] are performed
using all combinations with oppositely charged proton and
pion candidates, constraining them to a common vertex.
The combinations which pass the vertex fit and have
invariant masses within the range [1.111,1.120] GeV/c?
are regarded as A and A candidates.

The photons used for reconstructing the z° candidates
are detected in the electromagnetic calorimeter (EMC).
Each photon is required to have an EMC energy deposit
of more than 25 MeV in the barrel region (|cos 8| < 0.80)
or more than 50 MeV in the end-cap region (0.86 <
|cos 0] < 0.92). To suppress electronic noise and showers
unrelated to the event, the difference between the EMC
time and the event start time is required to be within
(0, 700) ns. The z° candidates require at least one photon to
come from the barrel region and invariant mass within the
range [0.098,0.165] GeV/c?. A kinematic fit [40] con-
straining the yy invariant mass to the known z° mass [41] is
performed, and the resulting y*> must be smaller than 200.

Events with at least one A candidate, one A candidate,
and two 7° candidates are considered for further analysis. A
four-constraint (4C) kinematic fit is performed on the
AAn°7° hypothesis, constraining the total reconstructed
four-momentum to that of the initial J/y. If there is more
than one combination of AAz%7°, the one with the smallest
x* of the 4C fit (y3,) is selected, and x5~ < 100 is required.
Since there are two z° candidates (70, z9) per event, there
will be two possible combinations of A(A) and z°.
The combination which minimizes the quantity (m A~

2 _ 2 .

Mzo)* + (m And — Mzo)* is kept,_where Mg and mjyq are
the invariant masses of Az and Az, respectively, and Mo
is the known mass of Z° [41]. The requirements suppress
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FIG. 1. Distribution of m Ar) VEISUS M0, where the red short-

dashed-line box indicates the signal reglon and the black and
yellow long-dashed-line boxes are the sideband regions.

the amount of miscombinations to approximately 0.7%. To
reduce background from sources with the same final states,
e.g., J/y—2%(1385)2°(1385),2°(1385) — A(— pr~ )",
29(1385) = A(— pat)a°, 2° — yy, the mq0 and mzqo are
required to be within [1.299,1.328] GeV/c?. Figure 1
shows the two-dimensional distribution of the recon-
structed Z° mass versus the reconstructed Z° mass. After
applying all the event selection criteria, we obtain a sample
of 327,305 events.

An inclusive MC sample of 10 billion J/y events is used
for studying potential backgrounds. After applying the
same selection criteria as for data, the main background
contribution is found to be from the decay J/y —
>0(1385)%°(1385). A dedicated simulation of the process
J/w — 2°(1385)2°(1385) according to the measured
angular distribution by Ref. [42] is carried out, and the
corresponding number of background events from this
channel in data is estimated to be 1697 &+ 139. All other
background contributions are estimated from the sideband
regions of the two-dimensional distribution of m Ax VEISUS

mjq- The sideband regions are defined by [m .o (mz.0) —

Mzo| € [0.0285,0.0575] GeV/c? and shown as black and
yellow long-dashed-line boxes in Fig. 1. The events in the
yellow sideband box are mainly from £°(1385) and are
excluded when evaluating the other background contribu-
tions. Since there are also contributions from X°(1385) in
the black box regions, the number of background events
other than X0(1385) is estimated by (N&t — N (1389 /3
where N&@ and N, bla(cfgs) are the numbers of events in the
black boxes from data and the MC simulated X°(1385)
sample, respectively. Finally, the number of background
events other than £°(1385) in the signal region is estimated
to be 4641 £ 138. The final selected data sample has a high
signal purity of (98.1 £0.2)%.

E° rest frame
0

FIG. 2. Definitions of the helicity angles. The polar angle 6z
is the angle between the Z° momentum and the et beam
direction in the e*e™ center-of-mass system (c.m.), where the 2
axis is defined along the ¢t momentum. Note that 8, and ¢,
are the polar and azimuthal angles of the A momentum
direction in the Z° rest frame, where %z is defined along the

=% momentum direction in the e*e™ c.m., and $zo is defined by

2 X Zgo. The angles 6, and ¢, are the polar and azimuthal
angles of the proton momentum direction in the A rest frame,
where 2, is defined along the A momentum in the Z° rest frame,
and y, is along Zzo X Z,.

Following the formulation in Refs. [43-46], the joint
angular distribution of the full decay chain is obtained,

denoted as WW(@; ), and the final expression is identical to
the one developed by the helicity frame [22,47]. Here, &
represents the eight parameters of interest, a;/,, A®, ag,
@z, ¢z, ¢=, ay, and a,, where @y, and A® are related to
the psionic form factors [48] and govern the scattering

angle distribution and the polarization of the E; . ¢ stands
for nine angle variables, 0z, 05, @, 03, ¢, 0,, ,, 05, and
@p- These helicity angles are constructed as illustrated in
Fig. 2, and the corresponding angles of the antiparticle
decay sequence are obtained analogously. Detailed infor-
mation about this formalism can be found in Ref. [22].

A nine-dimensional maximum likelihood fit is per-
formed on the joint angular distribution from data to
determine the eight @ parameters, similar to that in
Ref. [20]. In the fit, the events from the data sideband
regions and the X°(1385) MC sample are included with a
negative weight to subtract the background effects, where
the likelihood function of background events is the same as
the signal events. The results are summarized in Table I,
together with previous measurements [20,42,49]. In this
table, we also present the averaged values of the decay
parameters, which are defined as (az) = (az — @z)/2,
(P=) = (9= — ¢=)/2, (ap) = (ax —ay)/2.

The E° polarization can be illustrated through the
moment y, defined as

Nk

1
uk(cos =) kz (sin @) sing), +sin 0% singf),  (6)
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TABLE 1. The J/y — 2°Z° angular distribution parameter a;,,; the relative phase A® of the psionic form
factors; the decay parameters for 20 — Az%(az, ¢=), Z° - An’(az, ¢=), A = pat(ay), and A — pat(ay,); the
CP asymmetries AZp, A¢Z,, and A2 p; and the averages (az), (¢=), and (@, ). The first and second uncertainties are

statistical and systematic, respectively.

Parameter This work Previous result
ayry 0.514 £ 0.006 £ 0.015 0.66 £ 0.06 [42]
Ad(rad) 1.168 £0.019 £ 0.018

as —0.3750 £ 0.0034 + 0.0016 —0.358 £0.044 [49]
as 0.3790 4 0.0034 4+ 0.0021 0.363 £ 0.043 [49]
¢=(rad) 0.0051 4 0.0096 4+ 0.0018 0.03 £0.12 [49]
P=(rad) —0.0053 + 0.0097 + 0.0019 —0.19 £ 0.13 [49]

an 0.7551 4+ 0.0052 4+ 0.0023 0.7519 4+ 0.0043 [20]
an —0.7448 £ 0.0052 + 0.0017 —0.7559 £ 0.0047 [20]
Ep — Eg(rad) (0.0£1.740.2) x 1072

5p — Sg(rad) (-1.3+£1.7+£04)x 1072

A;—’:P (=5.44+65+3.1)x 1073 (—0.7 £ 8.5) x 1072 [49]
Azp%,,(rad) (0.1 £6.9£0.9) x 10-3 (=7.9+8.3) x 1072 [49]
A’C‘P (6.9 +£58+1.8) x 1073 (—2.5+4.38) x 1073 [20]
(az) —0.3770 £ 0.0024 + 0.0014

(¢p=)(rad) 0.0052 4 0.0069 4 0.0016 e

(ap) 0.7499 4+ 0.0029 4+ 0.0013 0.7542 4+ 0.0026 [20]

where N* is the number of events in the kth cos Oz bin and i
is the ith event in that bin. The expected angular depend-
ence of the moment for the acceptance-corrected data is
given by

ag —ag 1 + ay, cos® Oz
2 3—|—a1/l’,

where  Py(0z) = (/1 —aj), sin(A®) cos Oz sin =/ (1 +

a;, cos? Oz) is the polarization of Z°. Comparing the data
to the PHSP MC sample, as shown in Fig. 3, there is a
significant polarization of the Z° hyperons produced in
J/w — BE%Z% decays, manifested in the relative phase
A® = 1.168 £ 0.019, & 0.018, radians.

The systematic uncertainties can be separated into two
categories: (1) the differences between data and simulation
and (2) the uncertainties associated with the fit procedure.

The systematic uncertainties from A/A reconstruction,
7° reconstruction, and the kinematic fit are studied with
control samples. A control sample of J/y — pK~A + c.c.
is used to estimate the uncertainties from the A/A
reconstruction. The systematic uncertainties from 7°
reconstruction and the 4C kinematic fit are investigated
by a control sample of J/y — E°(— Az®)Z%(— AxP).
The efficiency differences between data and MC for the
control samples are used to reweight the PHSP MC sample.
The differences between the fitting results with corrections

u(cosbz) = Py(0z), (7)

and the nominal fitting are taken as the systematic
uncertainties.

The mass window of Z°/=° is 43¢ around the known =
mass, where o = 4.8 MeV/ ¢? is the resolution of the
reconstructed Z°/=° mass. We change it to 426 or 40
to study the systematic uncertainties from the Z°/Z° mass
window. The fit is repeated, and the largest deviations from
the nominal values are taken as the signal mass window
systematic uncertainties.

0

cos 62

FIG. 3. Distribution of the moment y(cos6z) versus cos6xz.
The points with error bars are data, the red solid lines are from the
signal MC, and the blue dashed line represents the distribution
without polarization from the PHSP MC sample.
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TABLE II. Absolute systematic uncertainties for the measured parameters.
B $p=&s Op—0ds AdZp

Source (1073) ay, A®@rad) az @z Pe(rad) Pz(rad) a, @, (rad) (rad) A%, (rad) A}, (az) (P=z)(rad) (a,)
A/A reconstruction 9 8 0.1 1.8 06 0.1 1.0 0.8 1 1 23 03 01 038 0.3 0.8
79 reconstruction 2 6 05 04 1.2 1.1 0.0 0.0 0 3 0.1 0.1 0.0 05 1.1 0.1
4C Kinematic fit 7 8 0.9 03 0.8 0.8 0.8 0.3 2 0 1.7 0.8 03 03 0.0 0.5
=9/2% mass window 3 7 0.5 0.0 0.0 0.0 0.0 0.0 0 0 0.0 0.0 0.0 04 0.0 0.0
Background estimation 0 1 0.1 02 0.3 0.5 05 0.8 0 1 0.2 0.3 03 0.1 0.3 0.5
cos @z inconsistency 8 9 09 1.0 0.6 0.5 0.7 0.8 0 2 0.1 0.1 0.0 09 0.5 0.7
Fit method 3 6 06 02 07 1.1 1.7 09 1 2 .1 02 17 02 0.9 0.4
Total 15 18 1.6 2.1 1.8 1.9 23 1.7 2 4 3.1 0.9 1.8 1.4 1.6 1.3

The systematic uncertainties from the background
estimation are studied by varying the estimated back-
ground yields by 1 standard deviation or changing the
sideband regions from |m0(mz.) — M=o| € [0.0285,
0.0575] GeV/c2 to ‘mAﬂo(m]\”o) - MEO| € [0.0235,
0.0525] GeV/c?. The biggest differences between the
results with the modified background yields and nominal
ones are taken as the systematic uncertainties.

On the left and right sides (|cos 0=| > 0.85) of the cos 0=
distribution, the number of events in data is observed to be
smaller than that in the MC simulations, where the total
number of events of the MC sample is normalized to data.
To estimate their effect on the final results, the ratios of
ni../nic are obtained in different cos 0z bins, where n'),,,
and n},. are the number of events in the ith cos 6= bin from
the data and MC sample, respectively. The ratios are then
used to reweight the MC sample, and the differences
between the results after weighting and the nominal results
are taken as systematic uncertainties.

All the above systematic uncertainties belong to category
(1); here, we consider category (2), the uncertainties caused
by the fit method. This source of systematic uncertainties is
estimated by analyzing the signal MC sample which is
approximately 100 times our nominal data sample. The
differences between the obtained parameter values and
the ones we used to generate the signal MC sample are
regarded as systematic uncertainties.

The absolute systematic uncertainties for various sources
are summarized in Table II. The total systematic uncer-
tainties of various parameters are obtained by summing the
individual contributions in quadrature.

In summary, this Letter presents the most precise
determination of all 2° — Az%/Z° — Az® decay parame-
ters, which are improved by more than 1 order of
magnitude over the previous measurements [49], as shown
in Table I. The averaged values of the Z° decay parameters
are determined to be (az) = —0.3770 £ 0.0024, +
0.00144 and (¢z) = 0.0052 % 0.0069, & 0.0016y
for the first time, which will be valuable inputs for many
other baryon studies involving Z° decay. A clear transverse
polarization of Z° from J/y decay is observed for the first

time, and the relative phase of the psionic form factors is
determined to be A® = 1.168 & 0.019, + 0.018,, rad.
This result is significantly different from the w(3686) —
E9Z0 decay [49], AD,,(3636) =—0.050£0.1504, +0.0204y,
where no polarization was found. These observations will
provide a key probe of the decay dynamics on the
charmonium decays to hyperon pairs. The CP asymmetry

=

observables are measured to be Agp = (=5.4 £ 6.5, +
3.14yg) X 107 and Aggp = (—0.1£6.94, £0.955) X 1073
with the highest precision to date. We find CP symmetry is
conserved in the Z° decay with an accuracy of 1073, which
is in agreement with the Standard Model predictions [24].
Furthermore, the weak and strong phase differences in Z°
decay, &p —Eg = (0.0 £ 1.7, £0.25) X 1072 and 5p— 55 =
(—1.3j:1.7statj:0.4syst)x10‘2, are directly measured for
the first time. These are the most precise results for any
weakly decaying baryon, and they are crucial for
understanding CP violation sources beyond the Standard
Model. At the same time, the decay parameters and CP
asymmetry observable of the decay A — pz~ /A — prt
are determined. The parameter a, is found to be in
excellent agreement with the determinations from
J/w = AA and J/y — E"ET samples [20,22] but in
3.5¢ tension with the CLAS result, 0.721 £ 0.006,, =
0.0054y5 [50]. With the properties of the quantum-
entangled hyperon-antihyperon, the proposed, future, super
tau-charm factories [51,52] may have the potential to
discover CPV in the baryon sector.
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