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Abstract

We ported to the GPU with CUDA the Astrometric Verification Unit–Global Sphere Reconstruction (AVU–GSR)
Parallel Solver developed for the ESA Gaia mission, by optimizing a previous OpenACC porting of this
application. The code aims to find, with a [10, 100] μarcsec precision, the astrometric parameters of ∼108 stars, the
attitude and instrumental settings of the Gaia satellite, and the global parameter γ of the parametrized Post-
Newtonian formalism, by solving a system of linear equations, A× x= b, with the LSQR iterative algorithm. The
coefficient matrix A of the final Gaia data set is large, with ∼1011× 108 elements, and sparse, reaching a size of
∼10–100 TB, typical for the Big Data analysis, which requires an efficient parallelization to obtain scientific results
in reasonable timescales. The speedup of the CUDA code over the original AVU–GSR solver, parallelized on the
CPU with MPI + OpenMP, increases with the system size and the number of resources, reaching a maximum of
∼14×, >9× over the OpenACC application. This result is obtained by comparing the two codes on the
CINECA cluster Marconi100, with 4 V100 GPUs per node. After verifying the agreement between the solutions
of a set of systems with different sizes computed with the CUDA and the OpenMP codes and that the solutions
showed the required precision, the CUDA code was put in production on Marconi100, essential for an optimal
AVU–GSR pipeline and the successive Gaia Data Releases. This analysis represents a first step to understand
the (pre-)Exascale behavior of a class of applications that follow the same structure of this code. In the next
months, we plan to run this code on the pre-Exascale platform Leonardo of CINECA, with 4 next-generation
A200 GPUs per node, toward a porting on this infrastructure, where we expect to obtain even higher
performances.

Unified Astronomy Thesaurus concepts: Astronomy software (1855); Astrometry (80); Computational methods
(1965); Galaxy kinematics (602)

Online material: color figures

1. Introduction

In this epoch of technological evolution, the size of the
problems to solve in several contexts is rapidly increasing and
can also require up to ∼10–100 PB of storage. To allow the
analysis of these Big Data, novel parallelization techniques
have to be continuously defined to find solutions in human-size
timescales. The architecture of the infrastructures is also
consequently changing, becoming increasingly heterogeneous

(Carpenter et al. 2022), to accomplish the necessity of optimally
computing data of these sizes, going toward the (pre-)Exascale
era. The supercomputers will require an increasing number of
computational nodes, which will have, in turn, a RAM memory
organized in a multi-levels hierarchy of nonvolatile memories
and hosts less performant than the accelerators (such as GPUs or
FPGAs) that will be increasingly employed for calculations and
will have an increasing memory and number of streaming
multiprocessors. This configuration will also be likely to achieve
the target of Green Computing, namely to process this amount of
Big Data without excessively increasing the energy consumption
while obtaining a high performance. Moreover, the infrastruc-
tures will need increasingly faster bridges between the CPU and
the accelerators, to reduce the host-to-device (H2D) and the
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device-to-host (D2H) data transfers bottleneck in the applica-
tions, and storage areas defined with parallel filesystems to
guarantee a faster access to the data (Carpenter et al. 2022).
Computer clusters such as Marconi100 (M100) of CINECA7 and
JUWELS of Forschungszentrum Jülich8 are already going in this
direction but a turning point will be provided by next-generation
pre-Exascale infrastructures, such as the CINECA platform
Leonardo,9 which started to be operative last November.

A typical science case that might involve a large amount of
data is the inverse problem, that consists in estimating the
parameters of a model from a set of observational measure-
ments. Two possible approaches for this task are the frequentist
and the bayesian ones. Concerning the former approach, one of
the exploited computational techniques is the LSQR iterative
algorithm, to solve large, ill-posed, overdetermined, and possibly
sparse systems of equations (Paige & Saunders 1982a, 1982b).
This algorithm is employed in several contexts, such as medicine
(Bin et al. 2020; Guo et al. 2021), geophysics (Joulidehsar et al.
2018; Liang et al. 2019a, 2019b), geodesy (Baur & Austen 2005),
industry (Jaffri et al. 2020), and astronomy (Borriello et al. 1986;
Van der Marel 1988; Becciani et al. 2014; Naghibzadeh & van
der Veen 2017; Cesare et al. 2021, 2022a, 2022b, 2022c). For a
more in-depth discussion about the LSQR algorithm and other
LSQR-based applications and libraries, see Section 2 of Cesare
et al. (2022c).

As an example, in the astronomy context, this algorithm is
employed by the Gaia Astrometric Verification Unit–Global
Sphere Reconstruction (AVU–GSR) Parallel Solver. This code
was developed for the ESA Gaia mission (Gaia Collaboration
et al. 2022) under the Data Processing and Analysis Consortium
(DPAC) (Mignard & Drimmel 2007), i.e., the scientific
community of the mission, funded by the national space agencies,
in charge of the definition of the data reduction pipelines
(Vecchiato et al. 2018). The code has been in production since
2014 on M100 cluster according to an agreement between Istituto
Nazionale di Astrofisica (INAF) and CINECA, with the support
of the Italian Space Agency (ASI).

The Gaia AVU–GSR code solves with the LSQR algorithm
an overdetermined system of linear equations (Becciani et al.
2014; Cesare et al. 2022c),

( )´ =x bA , 1

where A is the coefficient matrix, and b and x are the arrays of
the known terms and of the solution, respectively. The matrix
A is sparse and it might contain ∼1011× 108 elements for the
expected final data set of Gaia. Even only considering its non-
zero coefficients, it will occupy a large amount of memory
(∼10–100 TB).

By solving this system, the AVU–GSR code finds, with
an accuracy in the range of 10–100 μarcsec and of
10–100 μarcsec yr−1, the astrometric parameters (parallaxes, R.
A., decl., and proper motions along these two directions) of ∼108

stars in the Milky Way, the so-called primary stars (Vecchiato
et al. 2018). The Gaia AVU–GSR code is a verification module of
the same solution found with the software Astrometric Global
Iterative Solution (AGIS; O’Mullane et al. 2011; Lindegren et al.
2012) adopting a different algorithm, to make the determination
of the astrometric parameters more robust. Besides the astrometric
parameters, the Gaia AVU–GSR solver finds the attitude and
instrumental specifications of the Gaia satellite, and the global
parameter γ of the Parametrized Post-Newtonian (PPN) formal-
ism, with the same precision around [10, 100] μarcsec. The high
accuracy of these parameters is essential to properly investigate
the formation and the evolution of the Milky Way (e.g.,
Giammaria et al. 2021; Krolikowski et al. 2021) and to test
Einstein’s theory of General Relativity (e.g., Vecchiato et al.
2003; Hees et al. 2018; Crosta et al. 2020; Butkevich et al. 2022).
The LSQR algorithm is the bulk of the AVU–GSR solver

and it works by calculating, at each iteration, the iterative
estimates of the known terms and of the solution arrays with
the aprod 1 and aprod 2 functions:

( )+ = ´ -b xA , 2i i 1

and

( )+ = ´x bA , 3i T i

which are the most computational demanding parts of the
LSQR procedure, representing more than 90% of the entire
calculation.
The last official in-production version of the Gaia AVU–

GSR code was entirely parallelized on the CPU with a hybrid
MPI + OpenMP approach. In Cesare et al. (2022c), we
explored the feasibility of a GPU porting of the application
by adopting a preliminary approach, where we replaced the
OpenMP directives with the OpenACC ones. With this
porting, the speedup of the OpenACC code over the OpenMP
code, both run on M100, was of ∼1.5. In this paper, we
present an optimization of the GPU parallelization of the
code starting from the results of our first porting, where we
replace the high-level parallelization approach, using Open-
ACC, with a low-level one, using CUDA (Cesare et al.
2022a). This implied a reorganization of several parts of the
code but a substantial performance boost of ∼14× over the
OpenMP version, as tested on M100. This speedup might
further improve on Leonardo, with GPUs having a larger
memory and number of streaming multiprocessors than on
M100, which is an optimistic estimate in perspective of a
future porting on this platform. The CUDA code also showed
to achieve a great numerical stability and to obtain
parameters with the required accuracy, reasons for which it
was put in production on M100.

7 https://www.hpc.cineca.it/hardware/marconi100
8 https://fz-juelich.de/ias/jsc/EN/Expertise/Supercomputers/JUWELS/
JUWELS_node.html
9 https://www.cineca.it/temi-caldi/Leonardo
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The paper develops across the following sections. Section 2
summarizes the general structure of the Gaia AVU–GSR
code, Section 3 describes the previous versions of the code,
i.e., the MPI + OpenMP (Section 3.1) and the MPI +
OpenACC (Section 3.2) ones, and Section 4 details the
CUDA porting of the Gaia AVU–GSR code. A performance
comparison with the OpenACC porting is presented through-
out Section 4. Section 5 compares the performance of the MPI
+ CUDA and the MPI + OpenMP codes on M100 for a set of
systems with increasing size and Section 6 compares the
solutions of these systems to verify their consistency and
quantify the accuracy of the obtained solutions. At last,
Section 7 discuss the main results of the paper and presents
the future analyses to be developed.

2. The Structure of the Gaia AVU–GSR Code

The black part of Algorithm 1 summarizes the general
structure of the Gaia AVU–GSR code, which is common to the
OpenMP, OpenACC, and CUDA versions. The preparatory
phase consists in importing from binary files the quantities
necessary to solve the system (e.g., the coefficient matrix and
the known terms; line 1). To accelerate the convergence speed
of the iterative procedure, the system is preconditioned before
the starting of the LSQR algorithm. Specifically, we normal-
ized the parameters of each column by the norm of the column
itself (lines 2–3). The normalization factors of all the columns
are stored in a 1D array, p. The solution is re-multiplied by p
after the end of the LSQR algorithm (line 27). Then, the initial
guess of the solution to be iteratively found with the LSQR
algorithm is computed through the aprod 2 function (see
Equation (3); line 13). Each MPI process calculates a part of
the solution that is then reduced among all the MPI processes
(line 15).

After these passages, the LSQR procedure starts. The
LSQR algorithm is a while loop (lines 17–26) that iterates the
solution up to a convergence condition or until a maximum
number of iterations set at runtime is reached. At each
iteration, the two main steps are the execution of the aprod
function in the modes 1 and 2 (lines 18 and 22). The aprod 1
(Equation (2)) provides the iterative estimate of the known
terms b for each equation of the system and for a set of
constraints equations (Vecchiato et al. 2018), required since
the system is overdetermined. After the calculation of the
aprod 1, the b array is reduced among the MPI processes.
Then, the aprod 2 (Equation (3)) provides the iterative
estimate of the solution array x. Also for this step, the
constraints equations are defined and the solution is reduced
among the MPI processes. At the end of each iteration, the
errors (variances) on the unknowns and the covariances
between the different couples of unknowns are calculated
(line 26). The convergence condition is achieved in the least-
squares sense, when the residuals r i= b i− A× x i, estimated

at the ith iteration, go below a given tolerance, set to the
machine precision (∼10−16 on M100).
The coefficient matrix of the system A is large and has a high

sparsity degree. Specifically, for the expected final data set of
Gaia, the matrix might contain ∼1011× 108 elements (see
Section 1). The rows of A, i.e., the equations of the system,
represent the observations of the Milky Way stars, where each
star is observed NObsperstar∼ 103 times, besides the constraints
equations. The number of the columns of A is instead the
number of unknowns to solve.
For each row, the coefficients are divided in their

astrometric, attitude, instrumental, and global sections. The
astrometric part of A contains NAstro×NStars coefficients per
row. NStars is the number of stars considered in the system, in
the range of [106, 108], and 0� NAstro� 5 is the number of
astrometric coefficients per star and the number of non-zero
astrometric coefficients per row. The total number of non-zero
astrometric parameters is of NObsperstar× NAstro× NStarsä [109,
1012] and they represent the ∼90% of the coefficient matrix A,
where they follow a block-diagonal structure of NStars blocks.
The NObsperstar rows of each block are the astrometric
parameters observed for the same star and the number of
columns of each block is equal to NAstro. In our current
modelization, the attitude part has NAtt= 12 nonzero coeffi-
cients per row, organized in NAxes= 3 blocks of NParAxis= 4
elements separated by NDFA zeros, where NAxes= 3 is the
number of axes of the satellite attitude, NParAxis= 4 is the
number of nonzero coefficients per axis, and NDFA is the
number of degrees of freedom of each axis. In the instrumental
part, we have  N0 6Instr nonzero coefficients per row,
distributed without a particular scheme. So far, we have
considered in the global part only NGlob= 1 coefficient, the γ

parameter of the PPN formalism, or we have run without
computing a global part.
To operate in human-size timescales, the calculations are

performed with a dense coefficient matrix Ad that only contains
the nonzero coefficients of A for each section. Therefore, the
number of coefficients per row passes from ∼108 to a
maximum of Npar= 24, in our current modelization, and the
total number of elements of Ad is of ∼1011× 101. The indexes
that the astrometric, the attitude, and the instrumental
coefficients of Ad had in the original matrix A are stored in
two one-dimensional integer arrays, Mi (for the astrometric and
attitude parts) and Ic (for the instrumental part), to map the
correct positions of these parameters in the matrix A. For
further details about the structure of the coefficient matrix, see
Sections 3 and 4 of Cesare et al. (2022c).
The system of equations is parallelized over the MPI

processes such that different subsets of the total number of
observations, n, are assigned to each MPI process. The one-
dimensional integer array N[nproc] stores the number of
observations assigned to each MPI process, where nproc is the
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number of MPI processes defined at runtime. Figure 1
represents the system of equations parallelized on four MPI
processes in one node of a computer cluster, where different
colors refer to diverse MPI processes.

Concerning the rows of A, whereas the observation
equations are distributed among the MPI processes throught
the N array, the constraints equations, placed at the bottom of

the system, are replicated on each MPI process. For this reason,
after the execution of the aprod 1 function, the only part of the
known terms array b that has to be reduced among the MPI
processes is the one related to the constraints equations. Given
that the constraints equations represent a negligible fraction of
the total number of equations, their replica was more
convenient compared to their distribution among the MPI

Algorithm 1
Structure of the entire Gaia AVU–GSR application in CUDA

4
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processes, which would have implied a rearrangement of
the code.

Concerning the columns of A, the astrometric part is
distributed among the MPI processes whereas the other three
parts are replicated on them. Therefore, after the execution of
the aprod 2 function, only the attitude + instrumental + global
parts of the solution array x are reduced among the MPI
processes. The regular block-diagonal structure of the astro-
metric parameters made their distribution among the MPI
processes more intuitive. Instead, the other three sections do
not follow a regular pattern, which would have made
their distribution on the MPI processes less trivial. Since, the
attitude + instrumental + global parts only represent the 10%
of the total system, their replica does not imply a substantial
slowdown of the code.

3. Previous Parallelizations: MPI + OpenMP and
MPI + OpenACC

3.1. The OpenMP Parallelization

In the in-production code, the observations assigned to each
MPI process are further parallelized over the OpenMP threads.
The left panels of Algorithms 2 and 3 highlights in boldface the
regions of the code parallelized with OpenMP, namely the
aprod 1 and 2 functions. In the aprod 1, we parallelized the for

loop that iterates on the number of observations in each MPI
process, N[pid], with the #pragma omp for directive, where
pid identifies the rank of the MPI process. Instead, in the aprod
2 the most external for loop iterates from Nt[tid][0] to
Nt[tid][1], where tid is the ID number of the OpenMP thread,
that goes from 0 to nth, the total number of threads, and Nt is a
one-dimensional integer array that contains the observations
computed by each thread tid. Specifically, Nt[tid][0] and
Nt[tid][1] are the first and the last observation computed by the
thread tid.

3.2. The OpenACC Parallelization

In our preliminary porting to a GPU environment, the
OpenMP parallelization model is replaced by OpenACC
(Cesare et al. 2021, 2022a, 2022c). The middle panels of
Algorithms 2 and 3 highlights in boldface the correspondent
parts of the left panels, parallelized with OpenACC instead of
OpenMP. For reasons of optimization, we divided the aprod 1
function in four parallel regions, one for each section of the
system, and we organized the aprod 2 in a single parallel
region. Each parallel region is enclosed within a #pragma
acc parallel directive, which starts a parallel execution on
the current device. In the aprod 1, the variable sum is defined
within the private clause (lines 4, 14, 27, and 37 of
Algorithm 2), which ensures each GPU thread to have a local

Figure 1. Parallelization scheme of the system of equations (Equation (1)) on four MPI processes in a single node of a computer cluster. Left panel: coefficient matrix
A. Middle panel: unknowns array x. Right panel: known terms array b. Different colors (yellow, light green, dark green, and blue) refer to different MPI processes or
processing elements (PE). The block-diagonal part in the left side of the coefficient matrix illustrates its nonzero astrometric section. In the middle panel, the four
square blocks diagonally placed, and labeled as “Astrometric” represent the astrometric part of the solution array, distributed among the MPI processes. Instead, the
four dark gray aligned blocks, labeled as “Att+Instr+Glob”, represent the attitude, instrumental, and global portions of the solution array, replicated on each MPI
process, as written above. At the end of each iteration i, a reduction of the replicated portions of x is performed.
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Algorithm 2
aprod 1 with OpenMP, OpenACC, and CUDA.
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Algorithm 3
aprod 2 with OpenMP, OpenACC, and CUDA.
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copy of it. In both aprod 1 and aprod 2, we parallelized the
most external for loop in each parallel region with the
#pragma acc loop directive (lines 6, 16, 29, and 39, in
Algorithm 2, and line 6, in Algorithm 3). These for loops iterate
on the observations related to each MPI process from 0 to N
[pid], also in the aprod 2 function, where the array Nt[ is no
more needed since we do not use any longer the OpenMP
threads. In the aprod 2, the #pragma acc atomic directive
(lines 10, 17, 21, and 25, of Algorithm 3) prevents the GPU
threads to simultaneously overwrite the same elements of the
array x, i.e., it avoids a data race condition.

We tested the performance of the MPI + OpenACC code
on M100, with 4 NVIDIA Volta V100 GPUs per node
having 16 GB of memory each. Figure 2(a) shows the output
of the NVIDIA Nsight System profiler10 correspondent to

one iteration of the LSQR algorithm, highlighted with a
large transparent light green box, for a system occupying
50 GB of memory. The system was run on four MPI
processes in one node of M100 and the shown profiler
output refers to one of the four processes. The timescale at
the top of the panel shows the absolute time from the
beginning of the program execution and the small yellow
rectangle at the bottom-right corner of the light green box
shows the iteration time, equal to 1.347 s. Within the light
green box, the profiler shows the code regions parallelized
on the GPU (blue), dedicated to data transfers (green and
purple, for the H2D and D2H directions), and to calculation
on the CPU (blank spaces between different regions). The
blue regions labeled as “b_plus...” and as
“x_plus...” show the aprod 1 and 2 functions, respe-
citvely. The time fractions of one iteration due to GPU
computation is ∼70%, whereas the ones due to data transfers

Figure 2. Result of the NVIDIA Nsight Systems profiler for a run of the OpenACC code (Figure 2(a)) and of the CUDA code (Figure 2(b)) parallelized on 4 MPI
processes in one node of M100, for a system that occupies 50 GB of memory. The two outputs show a zoom-in of a single iteration of the LSQR algorithm, better
highlighted with a large transparent light green box, and refer to one of the 4 MPI processes. Within the light green box of each panel, the blue regions represent the
sections of the code parallelized on the GPU, the green and the purple/red regions illustrate the H2D and D2H data movements (very small in panel 2(b)), and the
blank gaps between different regions are related to the sections of code still running on the CPU. The timescale above each panel shows the absolute time from the
beginning of the programs execution and the small yellow rectangles at the bottom-right corner of each transparent light green box shows the iteration time (1.347 s
and 0.289359 s for the OpenACC and the CUDA codes, respectively).

10 https://developer.nvidia.com/nsight-systems
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and CPU computation are of ∼15%. This shows that the
code is compute bound, namely data copies are subdominant
compared to computation. This is essential for a GPU-ported
application that, if data movements are not properly
managed, can result in an even worse performance than
the correspondent CPU version.

With this parallelization, the OpenACC code accelerates of
∼1.5× over the OpenMP version. Specifically, the speedup is
due to the porting of the aprod 2 region, that accelerates of
∼3.6×, whereas the aprod 1 region looses in performance of
∼0.8× (Cesare et al. 2022c). Further optimizations are
possible, as better detailed in the following sections.

4. The CUDA Porting of the Gaia AVU–GSR Code

To further improve the performance of the Gaia AVU–GSR
solver, we decided to change the parallelization approach.
Instead of optimizing the high-level OpenACC parallelization,
which might be possible, for example by manually defining the
grid of the GPU threads on which each parallel region is run
rather than leaving this task to the compiler, we decided to
adopt a low-level model, that is the NVDIA native language
CUDA. This choice was driven by the fact that, in future
further optimizations, this approach will better lead us to
manually tune some parameters directly related to the device.
In the CUDA code, we manually allocated the GPU threads
where to run each parallel region in a grid of threads blocks,
each one customized to match the GPU architecture and the
topology of the problem to solve.

Whereas the high-level OpenACC porting implied a minimal
re-design of the application, ideal for beginner users (Cesare
et al. 2020; Aldinucci et al. 2021), at the expense of a possible
performance loss, the low-level parallelization with CUDA
required a substantial re-engineering of the code structure. This
can be seen from the left, middle, and right columns of
Algorithms 2 and 3, that represent the parallelization of the
aprod 1 and 2 functions with OpenMP, OpenACC, and CUDA,
respectively. Comparing the left and the middle columns, we
can see that the structure of the OpenMP and of the OpenACC
aprod 1 and 2 functions, both parallelized through high-level
directives, are very similar, whereas the right columns of the
same algorithms show that the structure of the CUDA aprod
functions is different.

In the below sections, we detail the parallelization of the
CUDA code on multiple GPUs (Section 4.1), the definition of
the CUDA kernels for the aprod 1 and 2 functions
(Section 4.2), the GPU porting of regions that in the OpenACC
code were still running on the CPU (Section 4.3), the
management of the data-transfers between the host and the
device (Section 4.4), and the compilation of the application
(Section 4.5).

4.1. Multi-GPU parallelization

As the OpenACC code (Cesare et al. 20221, 2022a, 2022c),
the CUDA code runs on multiple GPUs, according to the
number of MPI processes set at runtime. Specifically, the MPI
processes are scheduled on the GPUs of the node in a round-
robin fashion. This operation is performed with the commands
at lines 4 and 5 of Algorithm 1 highlighted in gray. The optimal
configuration to run the code is to set the number of MPI
processes per node to the number of the GPUs of the node (4
on M100), since it allows to obtain the best performance by
exploiting all the GPUs of the node and simultaneously
employing the minimal number of MPI resources, as also
shown in Section 7.1 of Cesare et al. (2022c).

4.2. CUDA Kernels Definition in aprod 1 and aprod 2
Functions

The right columns of Algorithms 2 and 3 show, in boldface,
the definition of the CUDA kernels for the astrometric, the
attitude, the instrumental, and the global sections of the aprod 1
and 2 functions (lines c.1–55, in Algorithm 2, and lines c.1–41,
in Algorithm 3) and their call in the main scope of the program
(lines c.63–68, in Algorithm 2, and lines c.51–59, in
Algorithm 3). The index i= blockIdx.x ∗ blockDim.x
+ threadIdx.x defined within the kernels, is the global
index of the GPU thread within the grid of blocks of threads,
where blockIdx.x is the index of the block inside the grid,
blockDim.x is the size of the block in threads unit, and
threadIdx.x is the thread index local to each block. The
arrays involved in the calculations in the GPU kernels, such as
the dense system matrix Ad, the solution array x, and the
known terms array b, have to be first allocated and then copied
on the GPU. In Algorithm 1, only the device allocation of Ad is
highlighted gray, as an example (line 6), whereas all the H2D
and D2H copies are reported in gray. The arrays allocated on
the device are identified with the “dev” subscript, as we can see
in the kernels in the left columns of Algorithms 2 and 3.
Comparing the right and the middle columns of

Algorithms 2 and 3, we can see that the content of the CUDA
kernels that compute the different sections of the system,
except for the global part of the aprod 2 function, are
equivalent to the correspondent parts in the OpenACC code,
which are directly defined in the main scope of the program
within the for loops iterating on the number of observations
assigned to each MPI process pid, parallelized with the
#pragma acc loop directive.
To parallelize the for loops iterating on the observations

assigned to each MPI process, from observation 0 to
observation N[pid], in each section of the system, the index
of the GPU thread was directly mapped to the index of the
observation. In this way, each thread can independently
perform the product b=Ad× x, in the aprod 1 kernels, and
= ´x A bd

T , in the aprod 2 kernels. In these CUDA kernels,
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the for loop syntax disappears and it is replaced by the if-
condition i< N[pid] (lines c.4, c.17, c.34, and c.46 of
Algorithm 2, and lines c.4, c15, and c.30 of Algorithm 3), to
avoid the thread index i to point to a memory address beyond
the size of the product arrays.

It is essential to define, in each kernel, the hierarchy of the
GPU threads to best match the GPU architecture and the
topology of the problem to solve, which implies an efficient
exploitation of the hardware of the device and results in an
optimal performance. In our case, the topology of the problem
is one-dimensional, since the product arrays are 1D. The grid of
threads can be defined in a Cartesian coordinate space set by
the x, y, and z axes. The three directions are not equivalent to
each other: specifically, along the x direction it is possible to
allocate more threads than along the y and the z directions. In
particular, on a V100 GPU we can allocate ∼2× 109 threads
along the x direction and ∼6.5× 104 threads along the y and z
directions. We thus defined the grids of threads along the x
direction, as identified by the .x specification (lines c.3, c.16,
c.33, and c.45 of Algorithm 2, and lines c.3, c.14, and c.29 of
Algorithm 3).

As in the OpenACC code, in the aprod 2 kernels the
operations x += ´A bd

T are performed atomically. In CUDA,
the atomic operation is performed with the atomicAdd
function, that takes as first argument the memory address of the
element of the x array where the result is cumulated and as
second argument the quantity that has to be cumulated (lines
c.8, c.20, and c.34 of Algorithm 3).

Performing different tests, we verified that defining more
kernels allows to save the ∼10%–30% of the computation time
compared to perform more operations in the same kernel. For
this reason, we parallelized the four sections of the system both
in the aprod 1 and in the aprod 2 on more kernels, differently
from the aprod 2 in the OpenACC code, which was defined
within a single parallel region. Moreover, we also split the
calculation of the attitude section, both in the aprod 1 and 2
regions, in three kernels, one for each attitude axis. In
Algorithms 2 and 3, we only report the attitude kernel for
axis 0 since the kernels for the other two axes are equivalent.

The parallelization of the global part of the aprod 2 was less
trivial than the other three parts. Looking at the OpenACC
column of Algorithm 3, at line a.26, we can see that the index
of the element of the x array where the result of the atomic
operation is cumulated does not depend on the index of the
observation i, differently from the other three sections
(lines a.11, a.18, a.22, c.8, c.20, and c.34 of Algorithm 3).
This might cause a bottleneck in this point of the code since
there is no parallelism over the GPU threads, whereas, in the
astrometric, attitude, and instrumental parts of the aprod 2, the
access to the element of the x array where the result is
cumulated occurs in parallel for each thread i matched to the
observation i.

So far, for scientific purposes of the current production, we
did not derive the γ PPN parameter and, thus, this section does
not represent a bottleneck. However, the γ parameter will be
calculated in upcoming runs to test General Relativity, and we
cannot exclude that future astrometric models will have more
global parameters, which makes necessary to properly
parallelize this region of code. To verify how leaving the
atomic operation in the aprod 2 global part would affect the
performance of the code, we ran a 6 GB and a 50 GB system
with 1 and 5 global parameters. Even with one global
parameter, the computation of the aprod 2 global section
dominates over the other sections. We, thus, decided to
rearrange the parallelization of this part. We removed the
atomic operation and we implemented in CUDA the sum at
line a.26 of Algorithm 3 with a parallel reduction, which also
exploits the GPU shared memory. This reduce sum is organized
in two kernels, the former parallelized on a certain number of
blocks, each of which computes a partial sum saved in the array
xdev,sum (line c.37, Algorithm 3), and the latter parallelized on a
single block of threads, which combines all the partial results in
xdev (line c.39, Algorithm 3). Adopting this new implementa-
tion, we obtain a ∼20× speedup for the global part of the
aprod 2 function and a speedup of [1.5, 3]x for the entire aprod
2 region. A deeper description of this implementation for the
aprod 2 global part will be object of a future work.
The grid of threads on which the kernels are parallelized,

except for the aprod 2 global kernels, are set through the
gridDim and blockDim vectors, defined with the dim3
integer vector type. The gridDim vector contains three
elements, i.e., the number of blocks of threads in the grid along
the x, y, and z directions. Since we defined a 1D grid, we have 1
block along the y and z directions. Instead, the blockDim
vector contains the number of threads in each block again along
the x, y, and z directions. As in gridDim, the second and the
third element of blockDim are set to 1.
On a V100 GPU, the maximum number of threads per block

is 1024. We set the number of threads per block, TW, to 1024,
since it allows to obtain the best performance. Since the regions
that we parallelized with the CUDA kernels correspond to the
for loops that iterate from observation 0 to observation N[pid]
and that the index i of the observation is directly mapped to the
index i of the GPU thread, the number of blocks should be N
[pid]/TW to properly fit the problem. If N[pid] were an exact
multiple of TW, this would result in a grid of N[pid] threads.
Yet, this is not necessary the case, and to avoid defining a grid
with less threads than required, the number of blocks is set to
Nbl= (N[pid]− 1)/TW+ 1. Since the total number of threads
Nth= Nbl× TW=N[pid]+ TW− 1>N[pid], the control con-
dition ifi< n defined in the kernels (lines c.4, c.17, c.34, and
c.46 of Algorithm 2 and lines c.4, c.15, and c.30 of
Algorithm 3) is necessary to avoid memory overflows. The
scalar n coincides with N[pid], as specified by the parameter N
[pid] passed to the kernel at lines c.63–c.68 of Algorithm 2 and
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at lines c.51–c.55 of Algorithm 3. For the aprod 2 global
kernels, we defined a different grid (lines c.43 and c.44 of
Algorithm 3), where the number of threads per block is always
set to 1024 and the number of blocks employed for the
reduction operation is 24× 16, empirically obtained such that it
provided the best performance.

In the kernels call within the main scope of the program, the
parameters passed in the angle brackets are the number of
blocks and of threads per block. In the aprod 2, two additional
arguments are passed within the angle brackets of the
astrometric, the attitude, and the instrumental kernels. The
third parameter sets the amount of the GPU shared memory to
be used by the kernel, in this case 0 bytes, and the fourth
argument is the identifier of the execution queue, called stream,
on the GPU. This allows to execute these kernels asynchro-
nously, which is possible without imparing the code correct-
ness due to the atomic operations. The overlapping execution
regions between the different aprod 2 kernels represent a very
minor fraction of the kernels execution, since the number of
threads that can concurrently run on the GPU is limited to the
number of GPU cores, much smaller than the number of
threads in the grid. Yet, the asyncronous computation is useful
to reduce the latencies between the successive kernels calls,
essential when a large number of iterations is required to reach
the convergence of the LSQR algorithm.

After the call of all the CUDA kernels of the aprod 1 and
aprod 2 regions, a cudaDeviceSynchronize() barrier is
set to wait all the kernels to end their computation (line c.70 of
Algorithm 2 and line c.60 of Algorithm 3). This is necessary
since, as soon as a CUDA kernel is called, the control returns
immediately to the host and the CPU operations defined
immediately after the kernels calls, i.e., the MPI reduction
operations that combine the partial results obtained from the
aprod 1 and aprod 2 (line c.71 of Algorithm 2 and line c.61 of
Algorithm 3), would run concurrently to the calculations
performed by the kernels.

Figure 2(b) shows the output of the NVIDIA Nsight System
profiler for a 50 GB run of the CUDA code correspondent to
the one of Figure 2(a) for the OpenACC code, i.e., parallelized
on 4 MPI processes in one node of M100. As for Figure 2(a),
the top timescale refers to the absolute time from the start of the
program execution and the value in the yellow rectangle shows
the time for the illustrated iteration (0.289359 s). Comparing
the outputs of Figures 2(a) and (b), the aprod 1 and 2 regions
computed with the CUDA code present a 6.4× and 1.6×
speedup over the same sections computed with the OpenACC
application, respectively, correspondent to a speedup of 5.1×
and 5.8× over the OpenMP code for an analogous run (Cesare
et al. 2022c, 2022a). Considering one entire iteration, the
CUDA code accelerates of ∼5× over the OpenACC code and
of ∼7× over the OpenMP code. However, the speedup
increases with the memory occupied by the system and with the

resources employed for the parallelization, as better illustrated
in Section 5.

4.3. GPU Porting of the CPU Regions of the Code

Besides optimizing the parallelization of the aprod 1 and
aprod 2 regions, we also ported to the GPU other sections of
code that in the OpenACC version were running on the CPU.
Looking at Figure 2(a), we can clearly see that many code
regions were still running on the CPU (blank gaps).
First of all, we ported to the GPU the computation of the

constraints equations both for the aprod 1 and the aprod 2
functions. With this porting, the computation time of these
regions remains basically unaffected, since their calculation
was already very fast (∼10−4 s) on the CPU. However, porting
these regions is essential to reduce the H2D and D2H data
copies, since it avoids to entirely copy the b and the x arrays
back to the host to perform the same calculations on the CPU.
Second of all, we ported to the GPU the calculation of the

quantity to be compared with the tolerance of 10−16 that
determines the convergence of the LSQR algorithm. This
quantity depends on the norms, β and α, of the b and the x
arrays. In the AVU–GSR code, the norm of these two arrays is
calculated, in each MPI process, by square summing the array
elements divided by the array maximum local to the MPI
process and by multiplying this normalized squared sum by this
maximum:
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where a is either b or x. Then, the global norm of the array, |a|,
is reduced among the MPI processes and sent back to each MPI
process.
This method to compute the norm is adopted not to loose in

numerical precision. In the MPI + OpenMP and MPI +
OpenACC codes, this norm is computed on the CPU with the
cblas_dnrm2 function of the cblas libraries (Galassi et al.
2018).11 In the MPI + CUDA version, we ported to the GPU
the calculation of this norm by computing the local maximum
and the squared and scaled sum of the array elements with a
parallel reduce operation. With this porting, the computation of
β and α accelerates of ∼35× over the CPU implementation.
By porting these calculations to the GPU, the time fraction of

one iteration due to CPU computation reduces from ∼15% (see
Section 3.2), to ∼3%, and the time fraction due to GPU
computation increases from ∼70% (see Section 3.2) to ∼90%.
This can be visually seen from Figure 2(b), where the blank
regions of the profiler are drastically reduced compared to
Figure 2(a).

11 http://www.gnu.org/software/gsl/
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4.4. H2D and D2H Data Transfers

In the OpenACC code, we copied, at each iteration, both the
entire b and x arrays, from the host to the device before the
beginning of the aprod 1 and aprod 2 functions, and from the
device to the host, after the end of the same functions. The b
and the x arrays only represent the 5% of the total memory
occupied by the system of equations (Cesare et al. 2022c) and
consequently the time fraction of one iteration due to data
copies was anyway subdominant compared to the time fraction
due to GPU computation (see Section 3.2 and Figure 2(a)).
However, some of these copies were unnecessary and they
could be further reduced.

In the CUDA code, the first copy of the entire b and x arrays
on the device is performed before the beginning of the LSQR
cycle (lines 11 and 16 of Algorithm 1). Since the aprod 1 only
modifies the b array, we only copy back to the host this array
after the execution of the aprod 1, necessary operation since the
b array has to be reduced among the MPI processes. In fact,
only the constraints part of the b array has to be reduced among
the MPI processes (see Section 2). For this reason, we only
copy back to the host the final portion of the b array
correspondent to the constraints part (see “length(bConstraints)”
in the cudaMemcpy commands at lines 19 and 21 of
Algorithm 1), which represents a minor fraction of the entire
array. The same portion of the b array is again copied to the
device after the reduction operation.

For the same reason, since the aprod 2 only modifies the x
array, the x array alone is copied back to the host after the
execution of the aprod 2. After the copy, the x array is reduced
among the MPI processed on the host and then is again copied
to the device.

Rearranging the data copies in this way, the time fraction of
one iteration due to data copies reduces from ∼15%, in the
OpenACC code, to ∼3%, in the CUDA code (see Section 3.2
and Figure 2). The data copies in the CUDA code are
highlighted in bold gray in Algorithm 1.

4.5. Compilation

To compile the MPI + CUDA code, written both in C and C
++, we wrote a Makefile and we employed the nvcc CUDA
compiler driver for the CUDA release 11.3 and the version
21.5–0 of the nvc++ compiler. We compile with the
-arch= sm_70 option to target the Volta architecture of the
GPU, present on M100.

5. Performance Tests

The MPI + OpenMP code has been in production since 2014
and it has run on all the Tier0 systems of CINECA. It is
currently running on M100, which has 980 compute nodes
having the following features:

1. 2 sockets of 16 physical cores each, of the type IBM
POWER9 AC922, with a processor speed of 3.1 GHz.
Each physical core corresponds to 4 virtual cores, with a
total of 128 (2×16×4) virtual cores per node;

2. 4 GPUs of the type NVIDIA Volta V100, with a memory
of 16 GB each, connected with Nvlink 2.0;

3. 256 GB of RAM.

As shown by different runs, such as the performance tests
illustrated in Cesare et al. (2022c), the MPI + OpenMP code
runs in its optimal configuration when parallelized on 16 MPI
processes per node and 2 OpenMP threads per MPI process.
For a typical run for the production occupying a memory of
340 GB, parallelized on 2 nodes on 16 MPI processes + 2
OpenMP threads per node, and with a number of observa-
tions and of stars equal to Nobs= 1.8× 109 and
Nstars= 8.4× 106, respectively, we achieve a convergence
after ∼141,000 iterations with an iteration time of ∼4.23 s,
which results in a total elapsed time of te,OMP; 166 hours,
namely about one week. However, this elapsed time is
obtained for a system having a number of observations ∼2
orders of magnitude smaller than the number of observations
expected for the final Gaia data set (∼1011). When we will
have to deal with such a large data set, that will occupy
∼10–100 TB of memory, the time-to-solution would become
∼30–300 times larger, which will result in a far from optimal
production. To manage these data sizes, a properly acceler-
ated code is needed. For this purpose, we compared the
performance of the MPI + CUDA and of the MPI + OpenMP
codes on M100 for a set of systems with increasing size,
measuring the acceleration factor of the CUDA code over the
OpenMP code to verify whether the CUDA code was worth
to be put in production.
We ran the OpenMP and the CUDA applications for

different input data sets provided by the Data Processing
Center of Turin (DPCT), which is supervised by the Aerospace
Logistics Technology Engineering Company (ALTEC) in
collaboration with the Astrophysics Observatory of Turin
(INAF-OATO). These inputs are real Gaia data sets and they
are employed for the production of the OpenMP code. The data
sets have different sizes, occupying a memory of 40, 100, 300,
and 350 GB, and each of them only computes some sections of
the complete model. The 40 GB and 300 GB systems solve the
attitude and the instrumental parts, the 100 GB system solves
the astrometric part, and the 350 GB system solves the
astrometric, the attitude, and the instrumental parts. As
anticipated in Section 4, no system solves the global part.
Figure 3 shows the ratio between the average times of one

LSQR iteration of the OpenMP and the CUDA codes, as a
function of the system size. We ran the OpenMP and the
CUDA codes in their optimal configurations (16 MPI processes
+ 2 OpenMP threads per node, for the OpenMP code, and 4
MPI processes per node for the CUDA code, see Section 4.1).
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We report below each point in Figure 3 the number of GPUs
employed by the CUDA code, coincident with the number of
MPI tasks, and of physical cores employed by the OpenMP
code. Each code runs on the minimum number of nodes
needed. For the same amount of memory, the CUDA code
might require more nodes than the OpenMP code, since the
memory of the four GPUs in each node is smaller than the
RAM memory of the node (64 GB versus 256 GB). For
example, the 100 GB system is paralleliized on 8 GPUs, i.e., 2
nodes, for the CUDA code, and on 32 cores, i.e., 1 node, for the
OpenMP code.

The speedup of the CUDA code over the OpenMP code
increases with both the system size and the number of
employed GPU resources. From the first to the second point,
correspondent to the 40 GB and the 100 GB systems, the
speedup doubles, passing from ∼5 to ∼10. This might be
explained by the fact that whereas the OpenMP code is always
parallelized on the same amount of resources, in the CUDA
code the number of resources doubles in the second run
compared to the first run. Instead, considering the last two
points, correspondent to the 300 GB and the 350 GB systems,
the speedup does not substantially increase, passing from ∼12
to ∼14. In this case, the two systems are always parallelized on
the same amount of resources. The slighly increase of the
speedup might be justified by an increase of the GPU
occupancy in the 350 GB system compared to the 300 GB

system. In the 300 GB system, the memory assigned per MPI
process, and thus per GPU, is of ∼9.5 GB, which implies a
GPU occupancy of ∼60%. Instead, in the 350 GB system, the
memory assigned per MPI process is of ∼13 GB, which
implies a GPU occupancy of ∼80%.
Cesare et al. (2022c) show in Figures 4(b) and 5(a) a strong

scaling test for the OpenMP code up to 16 nodes: the strong
scaling curve already departs from the ideal linear speedup,
tending to a plateau, after ∼3 nodes (96 physical cores). This
means that, for a fixed amount of memory, the performance of
the OpenMP code does not substantially improve if we
continue to increase the number of physical cores on which it
runs. The same figures show that the OpenACC strong scaling
behavior is similar to the OpenMP one and that the ratio
between the OpenMP and OpenACC mean iteration times is
nearly constant and around 1.4. Given that in the CUDA code,
as in the OpenACC code, the MPI tasks are assigned to the
GPUs of the node in a round-robin fashion, we expect the
strong scaling curve to be also similar for the CUDA code.
Furthermore, the CUDA code is much more performant than
the OpenACC code and, thus, we expect it to accelerate over
the OpenMP code even if the latter is run on a larger amount of
physical cores.
The maximum speedup of ∼14× is obtained for the 350 GB

system. With this speedup, the CUDA code is more than 9x
faster than the OpenACC code. Given the trend observed in
Figure 3, we expect the speedup to continue to increase for
systems of larger sizes. This is a remarkable result in
perspective of the final data set of Gaia which makes this
implementation of the CUDA code a good candidate to be put
in production. However, before proceeding, we performed a
further test, detailed in the following section, to verify whether
the rearrangement of the code required for the CUDA
parallelization had impaired the correctness of the application.

6. Numerical Stability

To check if the CUDA parallelization was correctly
implemented, we compared the solutions of the systems of
equations considered in the previous section and the errors on
the solutions, obtained with the OpenMP and the CUDA codes.
Figure 4(a) plots the solution of the astrometric section of the
350 GB system found with the CUDA code against the solution
of the same system found with the OpenMP code. Figure 4(b)
shows the same for the errors on the solutions. The one-to-one
relation (black dashed line) is shown as a reference. We do not
illustrate the analogous plots for the other sections of the same
system and for the other systems, since they show equivalent
outputs.
The scatter plots in Figure 4 show that the CUDA and the

OpenMP solutions and errors tightly distribute along the one-
to-one relation, which suggests an agreement between the two
couples of quantities. However, the figures only show a

Figure 3. Speedup of the CUDA code over the OpenMP code as a function of
the memory occupied by the system. For every point, the number of GPUs
employed by the CUDA code and the number of physical cores employed by
the OpenMP code is indicated.
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qualitative result, deduced by a visual inspection. To better
quantify the consistency between the solutions and the errors
found from the two codes, we calculate the average and the
standard deviation of their differences, as reported in Table 1.
Table 1 also reports the same quantities for the attitude and
instrumental sections of the 350 GB system and for the other
systems. We can see that the average differences, both for the

solutions (dx) and for the errors (dσ), are very close to 0,
spanning a range, in absolute value, from 3.1× 10−23 rad12 to
1.5× 10−20 rad, for the solutions, and from 3.1× 10−14 rad to

Table 1
Comparison between the CUDA and OpenMP solutions and errors on the solutions for the four considered systems of equations

Memory Section Mean(dx) ± StDev(dx) Mean(dσ) ± StDev(dσ)
(GB) (rad) (rad)
(1) (2) (3) (4)

40 Attitude 3.1 × 10−20 ± 7.4 × 10−17 −3.2 × 10−10 ± 1.5 × 10−8

Instrumental 7.3 × 10−23 ± 4.1 × 10−20 −4.5 × 10−11 ± 1.5 × 10−10

100 Astrometric −1.5 × 10−20 ± 4.7 × 10−17 3.1 × 10−14 ± 2.2 × 10−12

300 Attitude 1.7 × 10−21 ± 3.7 × 10−17 6.9 × 10−11 ± 1.2 × 10−8

Instrumental −7.6 × 10−23 ± 1.5 × 10−20 −1.9 × 10−12 ± 6.4 × 10−12

350 Astrometric −3.9 × 10−22 ± 2.2 × 10−17 −4.0 × 10−13 ± 8.1 × 10−10

Attitude 1.2 × 10−21 ± 1.4 × 10−21 −7.2 × 10−13 ± 5.7 × 10−11

Instrumental 3.1 × 10−23 ± 3.4 × 10−20 1.2 × 10−13 ± 7.4 × 10−13

Note. Column 1: Memory occupied by the system of equations; column 2: section solved for the considered system; column 3: mean and standard deviation of the
differences between the solutions of the systems of equations found from the CUDA and the OpenMP codes; column 4: mean and standard deviation of the differences
between the errors on the solutions found from the CUDA and the OpenMP codes. The quantities dx and dσ refer to the differences between a CUDA and an OpenMP
quantity.

(a) (b)

Figure 4. Solution (Figure 4(a)) of the astrometric section of the 350 GB system and its error (Figure 4(b)) computed with the CUDA code against the solution and the
error of the same system computed with the OpenMP code. The one-to-one relation is shown as a black dashed line, for comparison.

12 To simplify, from this point on we always write “rad” and “arcsec” and we
do not distinguish between “rad” and “rad yr−1

” and between “arcsec” and
“arcsec yr−1.”
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3.2× 10−10 rad, for the standard errors. The standard
deviations of the differences are, in every case, larger than
the averages, which implies the agreement of the differences
with zero. Moreover, the average differences, for both the
solutions and the errors, are sometimes positive and sometimes
negative, which suggests the absence of systematic errors.

To better evaluate the agreement between the CUDA and the
OpenMP solutions of every system, we also compared their
differences with their errors. For each solution and error point,
we computed the ratio:
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where xi,CUDA and xi,OpenMP are the solution points found from
the CUDA and the OpenMP codes, and σi,CUDA and σi,OpenMP

are their errors. For every section of all the systems, the ratio q
is smaller than 1, which means that the solutions found from
the two codes are always consistent within 1σ. These results
show that the CUDA and the OpenMP solutions and errors are
in agreement with each other for systems of increasing size and
prove the numerical stability of the CUDA code.

Besides checking the consistency between the results
obtained with the two codes, we also wanted to verify if the
solutions were obtained with the accuracy required by the Gaia
mission (∼[10, 100] μarcsec for the parallaxes and the
positions and ∼[10, 100] μarcsec yr−1 for the proper motions,
see Section 1) to achieve a high precision astrometry, in order
to properly investigate, e.g., the kinematics and the dynamics
of the Galaxy. We converted the uncertainties on the solutions
(σ) from radians to arcseconds with the relation:
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In the 100 GB and 350 GB runs, which compute the astrometric
section of the system, the average uncertainties on the
astrometric parameters along with their standard deviations
are of σ= (4.0× 10−5± 5.5× 10−3) arcsec and σ= (2.1×
10−5± 2.1× 10−4) arcsec, both for the OpenMP and the
CUDA codes, in agreement with the needed precision. For the
100 GB run, nearly 80% of the astrometric solution points have
uncertainties below 10 μarcsec, and more than 97% and 99% of
the astrometric solution points have uncertainties below
100 μarcsec and 500 μarcsec. For the astrometric part of the
350 GB run, the ∼99% of the solution points already have
uncertainties below 100 μarcsec. Also the attitude and instru-
mental parameters are generally obtained with a compatible
accuracy.

Given these results, we put the CUDA code in production in
Q2 2022. The CUDA solver was also put on a proprietary
GitLab repository of CINECA and its copyright is held
by INAF.

7. Conclusions and Future Works

We ported to a GPU environment with the CUDA
programming language the AVU–GSR parallel solver, devel-
oped for the ESA Gaia mission and originally parallelized on
the CPU with a hybrid MPI + OpenMP model. The code
solves a system of linear equations with the iterative LSQR
algorithm to find the astrometric parameters of ∼108 stars in
the Milky Way, the attitude and the instrumental settings of the
Gaia spacecraft, and the global parameter γ of the PPN
formalism. To iteratively find the solution up to the
convergence of the algorithm defined in the least square sense,
the LSQR calls, at each step, the aprod function in its modes 1
and 2, which provide an iterative estimate for the known terms
and the solution arrays, respectively.
The porting presented in this paper is the result of an

optimization of a previous GPU porting of this application,
performed with the high-level language OpenACC. The
OpenACC code showed a moderate speedup of ∼1.5× over
the OpenMP code. As already pointed out at the beginning of
Section 4, further speedups might as well have been obtained
with a better optimization of the usage of the OpenACC
language. Indeed, the speedup of ∼1.5× refers to a quite basic
parallelization with OpenACC, where the OpenMP directives
were basically replaced by the OpenACC correspondent ones.
However, we preferred to adopt the low-level language CUDA
for the new porting since it allows to better match the
architecture of the device and, thus, to possibly achieve larger
performances. On the other hand, this reduces the code
portability, since the CUDA parallelization is architecture-
dependent. However, since the Gaia mission is expected to end
in the following years and only a further porting of this code on
Leonardo supercomputer is expected, we aimed to improve the
performance rather than to obtain a larger code portability.
With the CUDA porting, we reorganized the structure of the

Gaia AVU–GSR solver, by defining the kernels to parallelize
different regions of the code, such as the aprod 1 and 2
functions. In each of the kernels, we manually defined the
hierarchy of the grid of threads to match as better as possible
the GPU architecture and the topology of the problem to solve.
We also ported with CUDA other regions of code that in the
OpenACC application were still running on the CPU and we
reduced the H2D and D2H data copies with respect to the
OpenACC code. With these optimizations, the time fraction of
one LSQR iteration due to GPU computation rises from ∼70%
to ∼90%, and the time fractions due to CPU calculations and
data transfers reduces from ∼15% to ∼3%.
Running the CUDA and the OpenMP applications on M100,

the CUDA code presents a speedup over the OpenMP code
increasing with the system size and with the employed GPU
resources. The speedup reaches a maximum of ∼14 for a system
occupying 350GB of memory and is expected to increase for
systems of larger sizes and by running the codes on next-
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generation platforms with GPUs having more memory and
streaming multiprocessors, such as the CINECA supercomputer
Leonardo. Indeed, the A200 GPUs of Leonardo have 4× more
memory and more streaming multiprocessors than the V100
GPUs of M100, which allows to execute more concurrent threads.
Since both M100 and Leonardo have 4 GPUs per node, the GPU
memory per node on Leonardo is quadrupled with respect to
M100. We plan to perform the first tests of the AVU–GSR code
on Leonardo in the first half of 2023.

The CUDA code showed great numerical stability, since it
provided solutions and uncertainties on the solutions fully
consistent within 1σ with the correspondent ones found with
the OpenMP code for a set of systems. Moreover, the solutions
are obtained with the accuracy of [10, 100] μarcsec, as required
by the Gaia mission. Given these results, the MPI + CUDA
AVU–GSR solver was put in production on M100. This is a
fundamental achievement since it provides an optimal produc-
tion for the AVU–GSR pipeline, allowing to obtain important
data for scientific analyses, such as the study of the Milky Way
formation and evolution, in reduced timescales.

The increasing trend of the speedup with the system size is a
very important result toward the scientific purposes of the
upcoming Data Releases of the Gaia mission, from which TBs
of data will be produced up to an expected final data set of
∼10–100 TB. In perspective of these pre-Exascale data
products, we will continue the optimization process of the
AVU–GSR code, for example by porting to the GPU further
sections of code, and the consequent investigation of the
performance, scaling, and numerical stability of the code, for
systems with an increasing size, up to the sizes expected for the
final Gaia data set. These are some of the targets of a two-years
project already underway and funded by INAF, an INAF Mini
Grant, of which the author VC is the PI and which is performed
in collaboration with Prof. Marco Aldinucci of the University
of Turin. For this future analysis, we will use Leonardo, to
better investigate the behavior of the AVU–GSR code on a
next-generation pre-Exascale infrastructure and in perspective
of a final porting of this code on Leonardo.

Besides allowing a better performance, this novel arrange-
ment of the hardware, with hosts less performant than the
accelerators and GPUs with a larger memory and number of
streaming multiprocessors, such as on Leonardo, will imply a
low energy consumption for the size of the problems that will
need to be computed by HPC GPU-oriented applications.
When a code such as the AVU–GSR solver is ported to the
GPU resulting in a 14× speedup over the CPU version,
besides obtaining results in a minor time, we also expect to
save a substantial amount of energy. This is not obvious, since
H2D and D2H data transfers, not present in the CPU
application, might be rather energy consuming, but this might
be compensated by the high speedup. In a future work, we aim
to compare the energy consumption of the CUDA and the
OpenMP codes by running systems of increasing size, up to

∼10–100 TB, both on M100 and on Leonardo, to verify
whether the CUDA code is in fact “greener” than the OpenMP
code and whether running on Leonardo allows to save even
more energy than on M100. Since the GPU memory per node
on Leonardo is 4× the GPU memory per node on M100, a
quarter of the resources could be required on Leonardo with
respect to M100 to run a system of equal size. This might imply
a minor energy consumption on Leonardo compared to M100.
Also this analysis is a target of the Mini Grant project.
This research activity has important repercussions in the

developement, toward a (pre-)Exascale calculation, of other
LSQR-based applications involving the solutions of systems with
a high sparsity degree, similarly to the Gaia AVU–GSR solver.
The parallelization techniques employed in this code could be
adapted and exploited in different contexts that adopt the LSQR,
such as the reconstruction of images in radioastronomy
(Naghibzadeh & van der Veen 2017), geophysics (Joulidehsar
et al. 2018; Liang et al. 2019a, 2019b), geodesy (Baur &
Austen 2005), medicine (Bin et al. 2020; Guo et al. 2021), and
industry (Jaffri et al. 2020) (see Section 1). In conclusion, the
continue developement of efficient parallelization techiques is
essential to face the increasingly faster production of data in
contexts of different nature, going toward the Big Data era.
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