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CLIFFORD ALGEBRAS AND NEW SINGULAR RIEMANNIAN
FOLIATIONS IN SPHERES

Marco Radeschi

Abstract. Using representations of Clifford algebras we construct indecompos-
able singular Riemannian foliations on round spheres, most of which are non-
homogeneous. This generalises the construction of non-homogeneous isoparametric
hypersurfaces due to by Ferus, Karcher and Münzner.

A singular Riemannian foliation on a Riemannian manifold M is, roughly speak-
ing, a partition of M into connected complete submanifold, not necessarily of the
same dimension, that locally stay at a constant distance from each other. Singu-
lar Riemannian foliations on round spheres provide local models of general singular
Riemannian foliations around a point.

An example of singular Riemannian foliation on round spheres is given by the
decomposition into the orbits of an isometric group action, and such a foliation is
called homogeneous.

A different family of singular Riemannian foliations on spheres is induced by
isoparametric hypersurfaces. A hypersurfaces of S

n is called isoparametric if it has
constant principal curvatures. Isoparametric hypersurfaces were first studied by Car-
tan who classified those with g ≤ 3 distinct principal curvatures, and a lot of progress
has been made (cf. for example the surveys [Cec08,Tho00]), even though the com-
plete classification is still an important open problem. Every isoparametric hyper-
surface partitions the sphere into parallel hypersurfaces, which are isoparametric
as well, and this partition is a special example of a singular Riemannian foliation.
For a long time all the known codimension 1 singular Riemannian foliations from
isoparametric hypersurfaces appeared to be orbits of some isometric group action
on S

n, so much so that Cartan asked [Car39] whether every isoparametric hyper-
surface arised in this way. The question was answered in the negative by Ozeki and
Takeuchi [OT75,OT76], who found infinite families of non homogeneous isoparamet-
ric foliations with 4 distinct principal curvatures defined in terms of representations
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of Clifford algebras. These examples were then extended to a larger class of nonho-
mogeneous isoparametric foliations by Ferus, Karcher and Münzner [FKM81], again
using Clifford algebras. We call these axemples the FKM examples. It has been
proven that every foliation in round spheres by isoparametric hypersurfaces with 4
principal curvatures is either homogeneous or of FKM type, except possibly for a
finite number of isolated cases (cf. [Imm08]).

As in the isoparametric case, classifying non-homogeneous singular Riemannian
foliations seems a very complex problem. A trivial way to obtain new foliations
from old ones is called spherical join. Given singular Riemannian foliations (Sni , Fi),
i = 1, 2, the spherical join gives a new foliation (Sn1+n2+1, F1�F2). Any foliation that
cannot be written as a spherical join is called indecomposable, and every foliation can
be written in an essentially unique way as a spherical join of indecomposable ones.
Because of this, our main interest lies in finding non-homogeneous, indecomposable
singular Riemannian foliations.

The only known indecomposable non-homogeneous singular Riemannian folia-
tion, other than the FKM examples mentioned above, is the foliation in S

15 given
by the fibers of the Hopf fibration S

15 → S
8. Recently A. Lytchak and B. Wilk-

ing proved, using a previous result of Wilking [Wil01] and Grove-Gromoll [GG88],
that this is the only non-homogeneous regular foliation, i.e., with leaves of the same
dimension [LW00].

In this paper, as in [FKM81], we use Clifford systems to produce a large class
of indecomposable, non-homogeneous singular Riemannian foliations of arbitrary
codimension, which in particular include all the previously known examples. Before
we state the result, recall that a Clifford system can be thought of as a family
C = (P0, . . . Pm) of symmetric matrices in (R2l, 〈 , 〉) such that P 2

i = Id for all
i = 0, . . . m and PiPj = −PjPi for i �= j. We define the map

πC : S
2l−1 −→ R

m+1

x �−→
(
〈P0x, x〉, . . . 〈Pmx, x〉

)
.

Theorem A. Let C = (P0, . . . Pm) be a Clifford system on R
2l. Then the image

of πC is contained in the unit disk DC around the origin in R
m+1, and the following

hold:

(1) The preimages of πC are connected if l �= m + 1 and in this case they define
a singular Riemannian foliation (S2l−1, FC) whose leaf space is either the m-
sphere SC = ∂DC (if l = m) or the disk DC (if l > m + 1). In either case the
induced metric on the quotient is a round metric of constant sectional curvature
4.

(2) The foliation (S2l−1, FC) is homogeneous if and only if m = 1, 2 or m = 4 and
P0 · P1 · P2 · P3 · P4 = ±Id, in which cases it is spanned by the orbits of the
diagonal action of SO(k) on R

k × R
k (m = 1), SU(k) on C

k × C
k (m = 2) or

Sp(k) on H
k × H

k (m=4).
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When the leaf space is a sphere one recovers the Hopf fibrations πC : S
2m−1 → S

m,
m = 2, 4, 8. When the leaf space is DC with the round metric (also hemisphere
metric) the πC-preimages in S

2l−1 of the concentric spheres in DC give rise to the
FKM family associated to the Clifford system C.

A singular Riemannian foliation F0 on the m-sphere SC = ∂DC ⊆ R
m+1 extends

by homotheties to a singular Riemannian foliation Fh
0 on DC (with the hemisphere

metric) and the πC-preimages of the leaves of Fh
0 define a new foliation F0 ◦ FC .

This is a special case of a more general construction of Lytchak [Lyt00, Sect. 2.5].

Theorem B. Let C a Clifford system on R
2l and let (S2l−1, FC) be the associated

Clifford foliation.

(1) If F0 is any singular Riemannian foliation on SC , then the foliation (S2l−1, F0 ◦
FC) is a singular Riemannian foliation as well.

(2) Let C8,1 and C9,1 denote, respectively, the unique Clifford systems (P0, . . . P8)
on R

16 and (P0, . . . P9) on R
32. If C �= C8,1, C9,1 then (S2l−1, F0 ◦FC) is homo-

geneous if and only if both F0 and FC are homogeneous. If C = C9,1 and
(S31, F0 ◦ FC) is homogeneous, then F0 is homogeneous.

Statement (2) of Theorem B fails in the case of C = C8,1 or C = C9,1, as there are
examples of (homogeneous) foliations (Sm, F0) such that F0 ◦ FC is homogeneous,
while C itself is not. It would be interesting to have a complete characterization of
the homogeneous foliations of type F0 ◦ FC in these last two cases.

We call the foliations FC described above Clifford foliations, and the foliations
F0 ◦ FC composed foliations. Notice that in a Clifford foliation the set of singular
leaves is a connected, smooth, non totally geodesic submanifold of S

2l−1. This can
never happen for decomposable foliations, and therefore every Clifford foliation is
indecomposable.

Example 1. If F0 is a trivial foliation whose leaves consist of points, F0 ◦ FC =
FC and in particular every Clifford foliation is a composed foliation as well. If F0

is the trivial foliation consisting of one leaf, F0 ◦ FC is the codimension 1 FKM
examples corresponding to the Clifford system C. Since the foliation induced by
the Hopf fibration S

15 → S
8 is of the form FC , all previously known examples of

indecomposable, non-homogeneous foliations are of the form F0◦FC , with F0 trivial.

Example 2. Let (S15, FC) be the Clifford foliation with quotient S
8 ⊆ R

9. The
group SO(3) × SO(3) acts on R

9 = R
3 ⊗ R

3 via the tensor product representa-
tion, and the restriction of this action on the unit sphere induces a (homogeneous)
foliation (S8, F0) whose quotient space is a spherical triangle of curvature 1 with
angles π/3, π/3, π/2. The composed foliation F0 ◦ FC is thus a singular Riemannian
foliation on S

15 whose quotient is isometric to a spherical triangle of curvature 4,
with angles π/3, π/3, π/2. Such a quotient does not appear as a quotient of an iso-
metric group action of cohomogeneity 2 (see Straume classification [Str94, Table
II]) and therefore F0 ◦ FC is non-homogeneous. Moreover, such a triangle does not
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admit submetries onto a segment and therefore F0 ◦ FC is not contained in any
codimension 1 foliation. To our knowledge, this is the only known singular Rie-
mannian foliation of codimension 2 with this property. In the homogeneous case,
by contrast, it is known that every action of cohomogeneity 2 on a round sphere is
contained in a larger action of cohomogeneity 1 (see for example [GL00, Theorem
1.1]).

Example 3. Let C be a Clifford system on R
2l, and (SC , F0) be a singular Rie-

mannian foliation without 0-dimensional leaves. Then the leaf space SC/F0 has
diameter ≤ π

2 , and the composed foliation (S2l−1, F0 ◦ FC) has quotient of diame-
ter π/4, which in particular is strictly smaller than π/2. Such foliations are called
irreducible, because in the homogeneous setting the representations with quotient
of diameter < π/2 are precisely the irreducible ones. Since decomposable foliations
have quotient with diameter ≥ π/2, it follows in particular that these examples are
indecomposable.

Unlike the FKM examples, inequivalent Clifford system give rise to different
Clifford foliations, see Proposition 4.2. Moreover, Clifford foliations can be geomet-
rically characterized as the only singular Riemannian foliations on spheres whose
quotient is a sphere or a hemisphere of curvature 4. More precisely, let G the class
of singular Riemannian foliations on a round sphere, whose quotient is a sphere or
a hemisphere of curvature 4 and let A be the class of Clifford systems. Then the
following holds.

Theorem C. The assignment C �→ FC determines a bijection

A/{geometric equivalence} �−→ G/{congruence}
This is somewhat surprising, since it establishes an equivalence between purely

algebraic and purely geometric objects.
The paper is structured as follows. After preliminary Sect. 1 we provide the con-

struction of the Clifford foliations in Sect. 2 and that of composed foliations in Sect.
3. In Sect. 3 we also prove that both Clifford and composed foliations are singular
Riemannian foliations, thereby finishing the proofs of the first statements of Theo-
rems A and B. In Sect. 4 we prove Theorem C and finally in Sect. 5 we prove the
homogeneity statements in Theorems A and B. In Sect. 6 we extend the construction
of Clifford and composed foliations to the case of complex and quaternionic projec-
tive spaces, and the Cayley plane. The last Sect. 7 is devoted to pointing out some
properties that make Clifford and composed foliations very different from homoge-
neous ones. With the exception of the Hopf fibration S

15 → S
8, the quotient of every

other previously known indecomposable foliation was isometric to the orbit space
of a group action, and therefore shared many properties of homogeneous foliations.
The main goal of this last section is thus to provide evidence that homogeneous
foliations are indeed very special.
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1 Preliminaries

1.1 Singular Riemannian foliations

Definition 1.1. Let M be a Riemannian manifold, and F a partition of M into
complete, connected, injectively immersed submanifolds, called leaves. The pair
(M, F) is called:

• a singular foliation if there is a family of smooth vector fields {Xi} that span
the tangent space of the leaves at each point.

• a transnormal system if any geodesic starting perpendicular to a leaf, stays per-
pendicular to all the leaves it meets. Such geodesics are called horizontal geodes-
ics.

• a singular Riemannian foliation if it is both a singular foliation and a transnormal
system.

Given a singular foliation (M, F), the space of leaves, denoted by M/F , is the
set of leaves of F endowed with the topology induced by the canonical projection
π : M → M/F that sends a point p ∈ M to the leaf Lp ∈ F containing it.

On a singular Riemannian foliation (M, F) it is possible to define a stratifica-
tion, as follows. For each nonnegative integer r define Σr to be the union of leaves of
dimension r. The connected components of each Σr are (possibly noncomplete) sub-
manifolds, and such connected components are called strata of (M, F). We denote
by dimF the maximum dimension of the leaves in F , and call regular leaf a leaf of
maximal dimension and regular point a point in a regular leaf. The set of regular
leaves Σdim F is open, dense and connected, and therefore it defines a stratum which
we call the regular stratum.

A singular Riemannian foliation (M, F) is called closed if all the leaves of F are
closed. If (M, F) is a closed foliation then all the leaves are at a constant distance
from each other, and the space of leaves M/F has the structure of a Hausdorff metric
space. Moreover, the strata Σ project to orbifolds in M/F , and the restriction of
π : M → M/F to Σ is a Riemannian submersion. In particular, M/F is stratified
by orbifolds Σ/F , and the regular stratum Σdim F/F is open and dense in M/F .

A typical example of singular Riemannian foliation is provided by the orbit
decomposition of a Riemannian manifold M into the orbits of an isometric actions
of a connected Lie group. Such foliations are called homogeneous.

Finally, we define two singular Riemannian foliations (M, F), (M ′, F ′) congruent
if there is an isometry of M → M ′ that takes leaves of F isometrically onto leaves
of F ′.

1.2 Clifford algebras and Clifford systems. In this section we recall the
basic definitions and results on Clifford algebras and Clifford systems, which we will
need later on, see reference [FKM81, Section 3].

The Clifford algebra C�m(R) = C�(V ) is constructed from a (real) vector space
V of dimension m with a positive definite inner product 〈, 〉 and is defined by the
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quotient of the tensor algebra T (V ) by the ideal x ⊗ y + y ⊗ x − 2〈x, y〉1, where 1
is the unit element in T (V ). The vector space V naturally embeds in C�(V ), and
every x, y ∈ V satisfy the relation

x · y + y · x = 2〈x, y〉1.

A representation of a Clifford algebra C�m(R), or Clifford module, is an algebra
homomorphism ρ : C�m(R) → End(Rn). Two representations ρ, ρ′ are said to be
equivalent if there is an isomorphism A ∈ GL(Rn) such that ρ′ = A−1 ◦ ρ ◦ A. The
restriction

ρ|V : V → End(Rn)

will be called Clifford system on R
n, and denoted by C. We will also denote by

RC the image ρ(V ), and call dim(V ) the rank of C. Given an orthonormal basis
x0, . . . xm−1 of V , the images Pi = ρ(xi) ∈ RC are matrices that satisfy the relations
P 2

i = Id and PiPj = −PjPi for i �= j. For every Clifford system C it is possible to
find an inner product 〈 , 〉 on R

n such that RC consists of symmetric matrices, and
from now on we will fix one such inner product. If one endows Sym2(Rn) with the
inner product 〈A, B〉 = 1

ntr(AB), the map C : V → RC ⊆ Sym2(Rn) is an isometry,
i.e., 〈C(x), C(y)〉 = 〈x, y〉.

Let SC denote the unit sphere in RC . For any P ∈ SC , P 2 = Id and therefore P
has eigenvalues ±1, with eigenspaces E±(P ). If Q ⊥ P , PQ = −QP and therefore
Q takes the positive eigenspace E+(P ) isomorphically into the negative eigenspace
E−(P ), and vice versa. In particular, dimE+(P ) = dim E−(P ) and since R

n splits
as a sum E+(P ) ⊕ E−(P ), n is always even dimensional, and we will write n = 2l.

Given two Clifford systems C : V → Sym2(R2l), C ′ : V → Sym2(R2r) on the
same Clifford algebra C�(V ), one can produce a new Clifford system C ⊕ C ′ : V →
Sym2(R2(l+r)) by letting (C ⊕ C ′)(x) = (C(x), C ′(x)). We call C ⊕ C ′ a reducible
Clifford system. Any Clifford system that cannot be written as a non trivial sum is
called irreducible. If C is an irreducible Clifford system of rank m + 1 on R

2l then
l = δ(m), where the function δ(m) is given as follows

m 1 2 3 4 5 6 7 8 8 + n

δ(m) 1 2 4 4 8 8 8 8 16δ(n)
. (1.1)

Two Clifford systems C, C ′ : V → Sym2(Rn) are algebraically equivalent if there
is an isometry A ∈ O(Rn) such that C ′ = A−1 ◦ C ◦ A, and geometrically equivalent
if there is an isometry A ∈ O(Rn) such that RC′ = RA−1◦C◦A. If m �≡ 0(mod 4)
there is a unique irreducible Clifford system on R

n up to algebraic equivalence,
and in particular geometric equivalence. For m ≡ 0(mod 4), there are two algebraic
equivalence classes of Clifford systems, such that if (P0, P1, . . . Pm) is the basis for
one such class then the other can be identified with (−P0, P1, . . . , Pm). In particular,
there is one geometric class of irreducible Clifford systems for m ≡ 0(mod 4) as well.
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Any Clifford system is algebraically equivalent to a direct sum of irreducible
ones. In particular if C is a Clifford system of rank m + 1 on R

2l then l = kδ(m) for
some k > 0 and if m �≡ 0(mod 4) there is only one algebraic equivalence of Clifford
systems for each k. For m ≡ 0(mod 4), however, a Clifford system of rank m + 1
on R

2l, l = kδ(m) can be obtained by taking combinations of the two algebraically
distinct irreducible Clifford systems, resulting in �k

2� +1 geometrically distinct Clif-
ford systems. These can be told apart by the invariant |tr(P0 · P1 · . . . · Pm)|, where
(P0, . . . Pm) is a basis of C, which takes exactly the �k

2� + 1 dinstinct values k − 2j,
2j ≤ k.

We will use the notation Cm,k to denote a Clifford system of rank m + 1 on
R

2kδ(m). By the discussion above, when m �≡ 0(mod 4) or k = 1 the notation Cm,k

uniquely determines the Clifford system up to geometric equivalence.
Finally, we recall that if C is a Clifford system and P, Q are elements in RC , then

〈Px, Qx〉 = 〈P, Q〉‖x‖2.

1.3 The construction of the FKM examples. In [FKM81], the authors use
Clifford system to produce new examples of isoparametric hypersurfaces in spheres
with 4 principal curvatures. In the following we will refer to them as the FKM
examples. Given a Clifford system C of rank m + 1 on R

2l, l = kδ(m) and fixing a
basis P0, . . . Pm of C, they define a polynomial F : R

2l → R by

F (x) = 〈x, x〉 − 2
m∑

i=0

〈Pix, x〉2.

This polynomial restricts to a map F0 : S
2l−1 → [−1, 1], such that the preimages of

the level sets are smooth, closed submanifolds of S
2l−1. These submanifolds depend

on the values of m and l.

• If l > m + 1, F0 is surjective, and the level sets are connected. The regular level
sets form a family of isoparametric submanifolds, while the preimages M± =
F−1

0 (±1) are the focal submanifolds.
• If l = m + 1 (which can only happen for (m, k) ∈ {(1, 2), (3, 1), (7, 1)}) then F0

is still surjective, but the fibers of F0 are disconnected except for M−, which is
a hypersurface.

• If l = m (which can only happen for (m, k) ∈ {(2, 1), (4, 1), (8, 1)}) then F0 ≡ −1,
and M− = S

2l−1.

The map F0 restricts to a submersion in the regular part S
2l−1 \ (M+ ∪ M−). This

map is not a Riemannian submersion, nevertheless it can be modified to become
one, and its qutiotient is an interval of length π/4.

Restricting to the generic case l > m+1, most of these examples are non homoge-
neous. More specifically, given a Clifford system C of rank m + 1 on R

2l, l = kδ(m),
the corresponding FKM example is homogeneous only for the following values of
(m, k) (cf. [FKM81, Section 4.4], [GWZ08, Table F]):
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(m, k) (1, k) (2, k) (4, k) (9, 1)
condition k ≥ 2 k ≥ 1 k ≥ 1, P0P1P2P3P4 = ±Id − (1.2)

where (P0, . . . , P4) is a basis of C.

2 The construction

We now proceed to define the new examples of singular Riemannian foliations of
higher codimension. Let C be a Clifford system of rank m + 1 on R

2l, l = kδ(m).
On the unit sphere S

2l−1 ⊆ R
2l (endowed with the canonical inner product which

we also denote by 〈·, ·〉), consider the function

πC : S
2l−1 −→ RC = R

m+1

that takes x ∈ S
2l−1 to the unique element πC(x) ∈ RC defined by the property

〈πC(x), P 〉 = 〈Px, x〉 ∀P ∈ RC . (2.1)

Fixing an orthonormal basis (P0, . . . , Pm) of RC , the map πC can be rewritten as

πC(x) =
(
〈P0x, x〉, . . . 〈Pmx, x〉

)
.

Lemma 2.1. The image of πC is contained in the unit disk DC of RC .

Proof. Let x0 ∈ S
2l−1 and P = πC(x0). It is enough to show that ‖P‖ ≤ 1. By the

defining Eq. (2.1) we have

‖P‖2 = 〈P, P 〉 = 〈Px0, x0〉 ≤ ‖P‖ · ‖x0‖2 = ‖P‖. (2.2)

Hence ‖P‖ ≤ 1 as we wanted. ��
The relation with the polynomial F0 of Ferus, Karcher, Munzner is explicit, as

F0 factors through πC as F0 = f ◦ πC , where f : RC → R is the polynomial

f (P ) = 1 − 2‖P‖2. (2.3)

We endow DC with a hemisphere metric of constant sectional curvature 4, so that
the boundary SC = ∂DC is totally geodesic. From now on, we will always assume
that the metric on DC is the round one.

Remark 2.2. By Eq. (2.3), the preimages under πC of the concentric spheres in DC

give back the FKM family associated to the Clifford system C. In particular the
preimage of the origin is the focal manifold M+ and the preimage of the boundary
is M−.

Remark 2.3. If C and C ′ are algebraically equivalent Clifford systems, by definition
there exists an orthogonal map A ∈ O(R2l) such that πC′ = πC ◦ A. In particular,
up to orthogonal transformation πC only depends on the algebraic equivalence class
of C. We will see in Sect. 4.2 that the converse is also true, namely the geometric
equivalence class of C is uniquely determined by πC .
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Proposition 2.4. Given a Clifford system C of rank m + 1 on R
2l, l = kδ(m), the

corresponding map
πC : S

2l−1 → DC (2.4)

satisfies:

(1) The preimage of P ∈ SC = ∂DC is the unit sphere E1
+(P ) in the positive

eigenspace E+(P ). Moreover, the restriction π|M− : M− → SC is a submersion.
(2) If l = m, the image of πC is SC .
(3) If l ≥ m+1, the map πC is surjective onto DC and its restriction to the regular

part is a submersion.
(4) If l > m + 1, the fibers of πC are connected.
(5) If l = m+1, C can be extended to a Clfford system C ′ of rank m+2, the image

of πC′ is SC′ = S
m+1 and πC factors as πC = Pr ◦ πC′ , where Pr : SC′ → DC

is given by

Pr(x1, . . . xm, xm+1) = (x1, . . . xm).

In particular, the fibers of πC are not connected.

Proof. (1) Let x0 ∈ S
2l−1 and P = πC(x0). P lies in SC is and only if ‖P‖ = 1. The

inequality (2.2) is then an equality, and in particular 〈Px0, x0〉 = ‖Px0‖·‖x0‖, which
implies that x0 is an eigenvector for P . Since P has eigenvalues ±1, Px0 = ±x0,
and again from 〈Px0, x0〉 = 1 is must be Px0 = x0.

On the other hand, if x0 ∈ E1
+(P ) for some x0 ∈ S

2l−1, by (2.1)

〈P, πC(x0)〉 = 〈Px0, x0〉 = 1

and therefore P = πC(x0). Thus the whole unit sphere E1
+(P ) projects to P . In

particular, M− embeds in S
2l−1 × SC as M− = {(x, P ) ∈ S

2l−1 × SC |Px = x} and
πC is just the projection onto the second factor, which can easily be checked to be
a submersion.

(2) Fix an orthonormal basis (P0, . . . Pm) of RC . Given x ∈ S
2m−1, let x =

ax+ + bx− where x± ∈ E±(P0) are unit vectors, and a2 + b2 = 1. We want to prove
that

m∑
i=0

〈Pix, x〉2 = 1.

For i = 0 we have 〈P0x, x〉 = a2 − b2, while for i = 1, . . . m we compute

〈Pix, x〉 = a2〈Pix+, x+〉 + b2〈Pix−, x−〉 + 2ab〈Pix+, x−〉.
On the one hand, since Pix± ∈ E∓(P0) for i = 1, . . . m, the equation above simplifies
as 〈Pix, x〉 = 2ab〈Pix+, x−〉. On the other hand, since m = l = dimE−(P0), the
vectors P1x+, . . . Pmx+ form an orthonormal basis of E−(P0) and thus

m∑
i=1

〈Pix, x〉2 = 4a2b2
m∑

i=1

〈Pix+, x−〉2 = 4a2b2.
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Therefore
m∑

i=0

〈Pix, x〉2 = 〈P0x, x〉2 +
m∑

i=1

〈Pix, x〉2 = (a2 − b2)2 + 4a2b2 = 1

as we wanted. Moreover, since the preimage of any P ∈ SC consists of the unit
sphere in E+(P ), it is non empty and thus the image of πC is SC .

(3) Fix an orthonormal basis (P0, . . . Pm) of RC and let x+ ∈ E1
+(P0). As P0

anticommutes with Pi, i > 1, we have Pix+ ∈ E−(P0). If l ≥ m + 1 there is a
unit vector x− ∈ E−(P0) which is perpendicular to P1x+, . . . Pmx+, and let x =√

2
2 (x+ +x−) ∈ S

2l−1. It is easy to check that πC(x) = 0, and therefore the preimage
of the origin (which is the manifold M+ as observed in Remark 2.2) is nonempty in
this case. Moreover, the set

M(Q,t) = {cos(t)x + sin(t)Qx, x ∈ M+}, Q ∈ SC , t ∈ [0, π/4]

is contained in (and by dimensional reasons it coincides with) the preimage of the
point sin(2t)Q. Since any point in DC can be written in this way, it follows that
πC is surjective onto DC . Moreover for any P ∈ SC the gradient of x �→ 〈Px, x〉
in S

2l−1 is XP (x) = 2Px − 2〈Px, x〉x. If x projects to the interior of DC , the set{
XP0(x), . . . XPm

(x)
}

is linearly independent and it spans a m + 1-dimensional sub-
space of TxS

2l−1 orthogonal to the fibers of πC , thus projecting onto Tπ
C

(x)DC .
Therefore πC is a submersion.

(4) Fix an orthonormal basis (P0, . . . Pm) of RC and take x+ ∈ E1
+(P0). On

E−(P0), consider the orthogonal complement Vx+ of span(P1x, . . . Pmx), and take
its unit sphere V 1

x+
∈ S

2l−1. The dimension of V 1
x+

is l−m−1 and for every x− ∈ V 1
x+

the element x =
√

2
2 (x+ +x−) ∈ S

2l−1 satisfies πC(x) = 0 and thus x belongs to M+.
Taking the union of all V 1

x as x varies in E1
+(P0), we obtain a sphere bundle

V 1 → E1
+(P0) whose fiber has dimension l − m − 1. In particular, if l > m + 1 the

fiber is connected, and so is V 1. As we have a surjective map V 1 → M+ sending
y ∈ V 1

x to
√

2
2 (x + y), M+ is connected as well. Finally, since all the fibers of points

in the interior of DC are homeomorphic to each other (and, in particular, to M+),
every fiber is connected.

(5) If l = m + 1, by table 1.1 it follows that m = 1, 3, 7 and for all cases m
is not a multimple of 4. Given a Clifford system C ′ of rank m + 2 in R

2l, by the
uniqueness of Clifford systems for m �≡ 0(mod 4) it follows that C is algebraically
equivalent to a sub-Clifford system of C ′. We can thus find an orthonormal basis
(P0, . . . Pm+1) of RC′ such that (P0, . . . Pm) is a basis for RC . Since we can express
πC(x) as (〈P0x, x〉, . . . 〈Pmx, x〉) and similarly for πC′ , πC factors as πC = Pr ◦ πC′ ,
where Pr : SC → DC is given by (x0, . . . , xm, xm+1) �→ (x0, . . . , xm). ��

Remark 2.5. Since we are interested in having connected fibers, we will not consider
from now on the Clifford systems with l = m + 1.



1670 M. RADESCHI GAFA

Proposition 2.6. Let C be a Clifford system of rank m + 1 on R
2l. The fibers of

πC define a transnormal system on S
2l−1, whose leaf space is DC (if l > m + 1) or

SC (if l = m) with a round metric of curvature 4.

Proof. We prove the proposition when the quotient is DC , the other case follows
in a similar fashion. In order to prove the proposition, we consider the family F of
geodesics in S

2l−1 given by

F = {γ(t) = cos(t)x− + sin(t)x+| P ∈ SC , x± ∈ E1
±(P )}

and we show that the following properties hold:

(1) Every geodesic in F is orthogonal to the fibers of πC at all points.
(2) For every point x ∈ S

2l−1 and vector z normal to the fiber of πC through x,
there is a geodesic in F passing through x and tangent to z.

(3) Every geodesic in F projects to a unit speed geodesic in DC .

(1) If x ∈ S
2l−1 projects to a point in the interior of DC , the normal space of the

fiber through x is spanned by the vectors XPi
(x) = Pix − 〈Pix, x〉x. On the other

hand, if x projects to P ∈ ∂DC then the fiber through x is E1
+(P ) and its normal

space is just E−(P ). Any geodesic γ ∈ F, γ(t) = cos(t)x− + sin(t)x+ for some
x± ∈ E±(P ) is by definition perpendicular in x+, x− to the corresponding fibers.
For t ∈ (0, π/2) we have Pγ(t) = − cos(t)x− + sin(t)x+, 〈Pγ(t), γ(t)〉 = − cos(2t)
and it is just matter of computations to show that γ′(t) = 1

sin(2t) · XP (γ(t)):

XP (γ(t)) = Pγ(t) − 〈Pγ(t), γ(t)〉γ(t) (2.5)
= (− cos(t)x− + sin(t)x+) + cos(2t)(cos(t)x− + sin(t)x+)
= − cos(t)x− + sin(t)x+ + cos(2t)(cos(t)x− + sin(t)x+)
= sin(2t)(− sin(t)x− + cos(t)x+)
= sin(2t)γ′(t).

(2) If x ∈ S
2l−1 projects to P ∈ ∂DC , then it belongs to the positive eigenspace

E1
+(P ) and, if z is perpendicular to the fiber through x, then it belongs to E−(P ).

Therefore, γ(t) = cos(t)x + sin(t)z belongs to F and it satisfies γ(0) = x, γ′(0) = z.
If x projects to a point in the interior of DC , any vector z normal to the fiber
through x is of the form z = XP (x) for some P ∈ SC . Such a P gives a splitting
R

2l = E+(P ) ⊕ E−(P ), and x can be written as x = cos(t0)x− + sin(t0)x+ for
some x± ∈ E±(P ). Equation (2.5) says that z is parallel to γ′(t0), where γ(t) =
cos(t)x− + sin(t)x+ is in F.

(3) Notice first that the unit speed geodesics in DC with the round metric of
constant curvature 4 are of the form cos(2t)P + sin(2t)Q where P, Q ∈ DC satisfy
〈P, Q〉 = 0. Given γ(x) = cos(t)x− + sin(t)x+ for some x± ∈ E1±(P ), P ∈ SC , let
Q =

∑〈Pix+, x−〉Pi. Again it is just a computation to check that ‖Q‖2 ≤ 1 and thus
Q ∈ DC , 〈−P, Q〉 = 0, and πC(γ(t)) = − cos(2t)P + sin(2t)Q. Therefore πC(γ(t)) is
a geodesic in DC , as we wanted to show. ��
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Definition 2.7. Given a Clifford system C of rank m + 1 in R
2l, with l �= m + 1,

we define the Clifford foliation FC to be the foliation on S
2l−1 given by the fibers of

πC .

Remark 2.8. By Proposition 2.6, any Clifford foliation FC is a transnormal system.
In fact, we will prove that FC is a singular Riemannian foliation. This requires
proving the existence of smooth vector fields spanning the leaves of the foliation.
We will prove this in Proposition 3.1 for a larger class of foliations that includes the
Clifford foliations.

Corollary 2.9. If C is a Clifford system of rank m + 1 on R
2l and l = m, πC :

S
2m−1 → SC is a Hopf fibration.

Proof. In this particular case πC is a submersion, and by Proposition 2.6 it is Rie-
mannian. By the work of Grove and Gromoll [GG88] and Wilking [Wil01], the sub-
mersion πC must be in fact a Hopf fibration. ��
2.1 Symmetries of the Clifford foliations. We discuss here some natural
symmetries of the Clifford foliations (S2l−1, FC). Let P be an element of SC . For
any x, y ∈ S

2l−1, we have 〈Px, Py〉 = 〈P 2x, y〉 = 〈x, y〉 and therefore the elements
of SC are also orthogonal maps on R

2l. Moreover, by definition of πC we have

〈πC(Px), Q〉 = 〈QPx, Px〉 ∀Q ∈ SC .

Since QP = −PQ + 2〈P, Q〉Id, the equation before becomes

〈πC(Px), Q〉 = −〈PQx, Px〉 + 2〈P, Q〉〈x, Px〉
= −〈πC(x), Q〉 + 2〈P, Q〉〈πC(x), P 〉
= 〈−πC(x) + 2〈πC(x), P 〉P, Q〉.

Therefore, πC(Px) = −πC(x) + 2〈πC(x), P 〉P and therefore there is a commutative
diagram

where ρP is the reflection of DC along the segment through P . The subgroup of
O(2l) generated by the elements P ∈ SC is usually denoted Pin(m+1). Its subgroup
generated by the products PQ, P, Q ∈ SC , is Spin(m+1). Since any element P ∈ SC

can be thought as a foliated isometry of (S2l−1, FC), there is a map η : Spin(m+1) →
SO(2l) whose induced action on DC is isometric and has cohomogeneity 1. The origin
πC(M+) is the only singular orbit of this action, the boundary πC(M−) consists of
one orbit, and the quotient DC/Spin(m + 1) is isometric to [0, π/4] = S

2l−1/F ′
C ,

where F ′
C is the FKM example corresponding to the Clifford system C.
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3 Composed foliations

The goal of this section is to employ this method, introduced by A. Lytchak, to
produce new singular Riemannian foliations on spheres out of the Clifford foliations.

Fix a Clifford system C of rank m+1 on R
2l. From Proposition 2.6 we know that

the leaf space of a Clifford foliation is isometric to either 1
2SC (i.e., SC with a metric

of constant curvature 4) or DC with a hemisphere metric of curvature 4. With such
a metric, DC can be described metrically as a spherical join 1

2(SC � {pt}), where the
factor 1

2 in front denotes a rescaling of the metric by a factor 1
2 .

Let (SC , F0) be a closed transnormal system on SC , with leaf space Δ and pro-
jection π0 : SC → Δ. If l = m the composition π0 ◦πC gives a submetry S

2l−1 → 1
2Δ.

If l > m + 1, the submetry π0 : SC → Δ induces a submetry

π̂0 : 1
2(SC � {pt}) → 1

2(Δ � {pt}).

Composing π̂0 with πC : S
2l−1 → 1

2(SC � {pt}), we again obtain a submetry π̂0 ◦πC :
S

2l−1 → 1
2(Δ � {pt}).

In either case, we obtain a submetry S
2l−1 → Δ, where Δ = 1

2Δ or 1
2(Δ � {pt}),

and the fibers of this submetry are by construction the leaves of a transnormal
system on S

2l−1, which we denote by F0 ◦ FC .
The goal of this section is to prove the following result.

Proposition 3.1. If (S2l−1, FC) is a Clifford foliation and (SC , F0) is a singular
Riemannian foliation, then F0 ◦ FC is a singular Riemannian foliation as well.

Once again we prove the result in the case where the quotient is DC , the other
case being essentially contained in this one.

The foliation F0 ◦ FC can be described in the following equivalent way. The
singular Riemannian foliation (SC , F0) can be extended to a singular Riemannian
foliation Fh

0 on DC , by defining the leaf LtP through tP as t ·LP , where P ∈ SC and
t ∈ [0, 1]. The foliation F0◦FC is then given by the preimages under πC : S

2l−1 → DC

of the leaves in Fh
0 .

Let D̊C denote the interior of DC . Since (D̊C , Fh
0 ) is a singular Riemannian foli-

ation and πC : S
2l−1 \ M− → D̊C is a Riemannian submersion, in particular F0 ◦ FC

is a singular Riemannian foliation on S
2l−1 \ M−. Similarly, since (SC , F0) is a sin-

gular Riemannian foliation and πC |M− : M− → SC is a Riemannian submersion, the
restriction (M−, (F0 ◦ FC)

∣∣
M−

) is again a singular Riemannian foliation.
What we are left to prove, is that for every point x ∈ M− there exists a neigh-

bourhood of x in S
2l−1 in which the restriction of F = F0 ◦FC is a singular foliation.

Proposition 3.2. Consider a neighborhood U ⊆ M− of a point x ∈ M−, small
enough that ν(M−)|U admits an orthonormal frame {ξ1, . . . ξr}, r = codim(M−).
Then the trivialization

ρ : U × D
r(ε) −→ Tubε(U)

(x, (a1, . . . ar)) �−→ expx

(∑
aiξi(x)

)
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is a diffeomorphism, and ρ∗(F|Tubε(U)) = F|U × FDr , where (Dr(ε), FDr) is the foli-
ation by concentric spheres around the origin. In particular, F|Tubε(U) is a singular
foliation around M−.

Proof. It is clear that ρ is a diffeomorphism. We will now show that ρ induces a
bijection among the leaf spaces.

Consider U × [0, ε], together with the foliation F|U × {pts}. The map

(id, r) : (U × D
r(ε), F|U × FDr) −→ (U × [0, ε], F|U × {pts})

(u, v) −→ (u, ‖v‖)

clearly induces a bijection among leaf spaces. Moreover, let p : Tubε(U) → U denote
the metric projection, and consider the map

(p, dU ) : (Tubε(U), F) −→ (U × [0, ε], F|U × {pts})
x −→ (p(x), dist(x, U)).

This map takes the leaf M([P ],t) = {cos(t)x + sin(t)Qx| x ∈ M+, Q ∈ LP } of F to
the leaf LP × {π/4 − t}. Since every leaf of F in Tubε(U) is uniquely determined
by [P ] ∈ U/F|U and t ∈ [π/4 − ε, π/4], it follows that (p, dU ) induces a bijection
between the leaf spaces as well.

Finally, we claim that (p, dU ) ◦ ρ = (id, r).

(p, dU )
(
ρ
(
u, (a1, . . . ar)

))
= (p, dU )

(
expu

∑
aiξi(u)

)

=
(
p

(
expu

∑
aiξi(u)

)
, dist

(
expu

∑
aiξi(u), U

))

=
(
u, ‖(a1, . . . ar)‖

)
.

In particular, ρ induces a bijection between the leaf spaces as well, and this finishes
the proof. ��
Remark 3.3. If F0 is a trivial foliation whose leaves consist of points, F0◦FC = FC

and in particular, FC is a singular Riemannian foliation. Moreover, when C is a
Clifford system of rank m + 1 on R

2l and l = m + 1, the foliation FC given by the
(non connected) fibers of πC is a singular Riemannian foliation with disconnected
fibers as defined in [AR00, Sect. 3].

4 Rigidity of Clifford foliations

In the FKM families, the map that associates an isoparametric foliation to each
(geometric equivalence class of) Clifford system is neither injective, nor surjective.
In fact, on the one hand there are examples of geometrically distinct Clifford sys-
tems giving rise to the same isoparametric foliation. On the other hand, there are
isoparametric foliations that do not come from a Clifford algebra, whose quotient is
isometric to that of the FKM examples.
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The goal of this section is to prove that in our case, the map C �→ FC described
in the previous sections does determine a bijection between the geometric equiva-
lence classes of Clifford system, and the congruence classes of singular Riemannian
foliations in spheres whose quotient is a sphere or hemisphere of curvature 4. We
will prove this in the next two propositions.

Proposition 4.1. Suppose (Sn, F) is a singular Riemannian foliation such that the
quotient space is a hemisphere 1

2D
m+1 of constant curvature 4. Then F = FC for

some Clifford system C.

Proof. Consider the boundary 1
2S

m of 1
2D

m+1. Take an orthonormal basis of 1
2S

m,
i.e. m + 1 points p0, . . . pm ∈ 1

2S
m mutually at distance π/4. Given a point pi, the

partition of 1
2D

m+1 into the distance spheres around pi and −pi lifts via π : S
n →

1
2D

m+1 to a codimension 1 foliation F∗ of S
n whose quotient is an interval of length

π/2. By Cartan’s classification of such foliations, it follows that the singular leaves
of F∗, i.e. the leaves of F corresponding to ±pi, are totally geodesic subspheres of
S

n, and since they lie on the same stratum they must have the same dimension, call
it l. In particular, n = 2l − 1 and R

n+1 = R
2l splits orthogonally as V+(pi)⊕V−(pi),

where V±(pi) is the space containing the great sphere π−1(±pi). Define a linear map
Pi ∈ Sym2(R2l) by

Pi|V+(pi) = id, Pi|V−(pi) = −id.

Notice that by definition P 2
i = id and E±(Pi) = V±(pi). This produces maps

(P0, . . . , Pm) ∈ Sym2(R2l). In order to conclude the proof, it will be enough to
prove that PiPj = −PjPi for i �= j, or equivalently, that Pi(E±(Pj)) = E∓(Pj).

It is enough to show that P0(E+(P1)) = E−(P1). Take a point x ∈ E+(P0) in
the preimage of p0, and take a horizontal geodesic γ starting at x and tangent to
the singular stratum, such that π(γ) passes through p1. Since π(γ)(π/2) = −p0,
the point y = γ(π/2) belongs to E−(P0) and we can write γ(t) = cos(t)x + sin(t)y.
Moreover, w = γ(π/4) =

√
2

2 x +
√

2
2 y belongs to E+(P1) by construction of γ. Then

P0(w) = P0

(√
2

2
x +

√
2

2
y

)
=

√
2

2
x −

√
2

2
y = γ(−π/4).

But π(γ)(−π/4) = −p1, that means P0(w) ∈ E−(P1).
Since any w ∈ E1

+(P0) can be written as γ(π/4) for some horizontal geodesic
γ from E1

+(P0) and E1−(P0), we obtain that P0(E+(P1)) ⊆ E−(P1). Since P0 is
nonsingular, by dimensional reasons it must be P0(E+(P0)) = E−(P0) and this
finishes the proof. ��
Proposition 4.2. The Clifford foliations (S2l−1, FC) distinguish the geometric
equivalence classes of Clifford systems. In other words, if C and C ′ are geomet-
rically inequivalent Clifford systems on R

2l and R
2l′ respectively, then there are no

foliated isometries between (S2l−1, FC) and (S2l′−1, FC′).
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Proof. Let (P0, . . . Pm) be an orthonormal basis of RC and (Q0, . . . Qm′) an ortho-
normal basis of RC′ . Since the leaf spaces of FC , FC′ have dimension m + 1, m′ + 1
respectively, it follows immediately that FC �= FC′ unless m = m′. If m = m′, we
have l = kδ(m), l′ = k′δ(m′) = k′δ(m) and therefore FC �= FC′ unless k = k′ as
well.

Assume now that m = m′ and k = k′. As we recalled in Sect. 1.2, if m �≡ 0(mod 4)
there is only one geometric class of Clifford systems for each k, and therefore FC =
FC′ . If m ≡ 0(mod 4) then the geometric class of C is uniquely determined by the
non-negative integer |tr(P0 · . . . · Pm)|. Therefore the last thing remained to prove is
that FC and FC′ are not congruent unless |tr(P0 · . . . ·Pm)| = |tr(Q0 · . . . ·Qm)|. This
was already established in [FKM81, page 486], as they showed that the invariant
|tr(P0 · . . . · Pm)| represents a characteristic number of the vector bundle E → SC

whose sphere bundle is πC |M− : M− → SC . ��

5 Homogeneous foliations

In this section we investigate the Clifford and composed foliations that are homoge-
neous.

5.1 Clifford foliations. When S
2l−1/FC is a sphere 1

2S
m, it is known that the

foliation is homogeneous if and only if m = 2 or 4. Therefore we can restrict our
attention to the case where the quotient is a hemisphere. Our first result restricts
the list of possible homogeneous Clifford foliations.

Proposition 5.1. Let C be a Clifford system of rank m + 1 on R
2l such that l >

m+1. On S
2l−1 consider the Clifford foliation FC and the FKM isoparametric family

F ′
C associated to C. If FC is homogeneous, then F ′

C is homogeneous as well.

Proof. Suppose that (S2l−1, FC) is given by an isometric action of some Lie group
H ⊆ SO(2l). Let G ⊆ SO(2l) be the closure of the group generated by H and
the image of the spin representation η : Spin(m + 1) → SO(2l) defined in Sect.
2.1. Since both H and Spin(m + 1) act by foliated isometries on (S2l−1, FC), so
does G. Moreover, the G action descends to a cohomogeneity 1 action on DC . In
particular, the G-orbits in S

2l−1 correspond to the leaves of F ′
C , and therefore F ′

C

is homogeneous. ��
From Proposition 5.1 above and the table in Sect. 1.3 it follows that the only

possible homogeneous Clifford foliations with l > m + 1 come from Clifford systems
with (m, k) = (1, k), (2, k), (9, 1), or m = 4 and P1 · . . . · P4 = ±Id.

Proposition 5.2. Let C be a Clifford system of rank m + 1 on R
2l, l = kδ(m).

Then:

• If m = 1, FC is given by the orbits of the diagonal SO(k)-action on S
2k−1 ⊆

R
k ⊕ R

k.



1676 M. RADESCHI GAFA

• If m = 2, FC is given by the orbits of the diagonal SU(k)-action on S
4k−1 ⊆

C
k ⊕ C

k.
• If m = 4 and P0 ·P1 ·P2 ·P3 ·P4 = ±Id, FC is given by the orbits of the diagonal

Sp(k)-action on S
8k−1 ⊆ H

k ⊕ H
k.

Proof. This proof is essentially a version of [FKM81, Theorem 6.1], adapted to our
situation. The Clifford systems with m = 1, 2 or m = 4 and P0 ·P1 ·P2 ·P3 ·P4 = ±Id
can be obtained in the following way: let F ∈ {R, C, H} be the division algebra
such that dimR F = m, and let j1, . . . jm−1 the canonical imaginary units of F. For
q = q0 + q1j1 + . . . qm−1jm−1 ∈ F, qi ∈ R, we define the real part of q by �(q) = q0

and the r-th imaginary part of q by �r(q) = qr = �(q · jr), r = 1, . . . m − 1.
On R

2δ(m) = F
k × F

k, let C = (P0, . . . Pm) be the Clifford system given by

P0(u, v) = (u, −v), P1(u, v) = (v, u), Pr+1(u, v) = (−jr · v, jr · u)
r ∈ {1, m − 1}

where u, v ∈ F
k, u = (u1, . . . uk), v = (v1, . . . vk). The projection πC is determined

by the functions
⎧
⎨
⎩

〈P0(u, v), (u, v)〉 = ‖u‖2 − ‖v‖2

〈P1(u, v), (u, v)〉 = 2�(
∑

i ui · v̄i)
〈Pr+1(u, v), (u, v)〉 = 2�(

∑
i ui · v̄i · jr) = 2�r(

∑
i ui · v̄i)

and thus we can write

πC(u, v) = (‖u‖2 − ‖v‖2, 2
∑

i

ui · v̄i) ∈ R ⊕ F.

The group U(F, k) defined by U(F, k) = SO(k), SU(k) or Sp(k) according to whether
F = R, C or H respectively, acts transitively on S

mk−1 ⊆ F
k and its diagonal action

on F
k × F

k preserves the functions fi, i = 0, . . . m. In particular, the orbits of such
action are contained in the fibers of πC , and therefore in the leaves of FC . Moreover,
any point (u, v) ∈ S

2mk−1 ⊆ F
k × F

k can be moved by the U(F, k)-action to a point
of the form

(u1e1, v1e1 + v2e2)

where e1, e2 are elements of the canonical basis on F
k, v1 ∈ F, u1, v2 ∈ R≥0 and

u2
1 + |v1|2 + v2

2 = 1. It is easy to see that such u1, v1, v2 are uniquely determined
by the functions fi, and therefore there is only one such point for each fiber of πC .
In particular, every point in a fiber of πC can be moved to a specific point via the
action of U(F, k), and therefore the orbits of U(F, k) coincide with the leaves of FC .

��
On the other hand, the remaining foliation FC , C = C9,1 on R

32, is not homoge-
neous.
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Proposition 5.3. The Clifford foliation induced by the Clifford system C = C9,1

on R
32 is not homogeneous.

Proof. Suppose (S31, FC) is homogeneous, given by the orbits of a group G ⊆ SO(32).
First of all, we prove that the principal isotropy group H must be trivial. If

not, consider the subsphere S
h = Fix(H), and take G′ = N(H)/H, where N(H)

is the normalizer of H in G. The identity component G′
0 of G′ acts on S

h with
trivial principal groups and there is an orbifold cover S

h/G′
0 → S

31/G, where S
31/G

is isometric to the hemisphere 1
2S

10
+ . The quotient S

h/G′
0 cannot be 1

2S
10 (the only

spheres that can arise as such quotient must have dimension 2, 4 or 8, see for example
the introduction of [LW00]) and since πorb

1 (1
2S

10
+ ) = Z/2Z, it must be S

h/G′
0 = 1

2S
10
+ .

By Proposition 4.1 it follows that (Sh, G′
0) is itself a Clifford foliation, with respect

to some Clifford system (Q0, . . . Q9). In particular h ≥ 31, and therefore it must be
S

h = S
31 and H = {1}.

Since the leaf E1
+(P0) is a totally geodesic sphere of dimension 15, G acts tran-

sitively on S
15 by isometries. On the other hand, since the G- action has trivial

principal isotropy groups, it must have dimG = 21, and this gives a contradiction
since there are no groups of dimension 21 that act transitively on S

15 (see for example
[GWZ08, Table C]). ��

Finally, we determine the homogeneity of a big fraction of the composed foliations
F0 ◦ FC , in terms of the homogeneity of F0 and and FC .

Proposition 5.4. Let C, FC , F ′
C be defined as in proposition 5.1, and let (SC , F0)

be a singular Riemannian foliation. If the leaf space of FC is a hemisphere and the
composed foliation F0 ◦ FC is homogeneous, then F0 and F ′

C are homogeneous. On
the other hand, if FC and F0 are homogeneous, so is F0 ◦ FC .

Proof. Suppose first that (S2l−1, F0 ◦ FC) is homogeneous, given by the orbits of
a G-action. Remember that M+ is a leaf for both FC and F0 ◦ FC . For any point
x ∈ M+, the unit normal sphere of M+ at x, ν1

xM+, is diffeomorphic to S
m via

πC ◦ exp⊥
x . Moreover (the identity component of) the isotropy group Gx acts on

ν1
xM+ via the slice representation, whose orbits get mapped to the leaves of F0 via

the same map πC ◦ exp⊥
x and therefore F0 is homogeneous as well. Moreover, as in

Proposition 5.1 above, we can consider the group G′ ⊆ SO(2l) generated by G and
η(Spin(m+1)), and the orbits of G′ are, once again, the leaves of F ′

C , which is then
homogeneous.

Suppose now that (Sm, F0) is homogeneous and it is given by the orbits of a
representation ρ : H → SO(m + 1). Up to a double cover H ′ → H we can lift ρ to
ρ′ : H ′ → Spin(m + 1), and via the embedding η : Spin(m + 1) → SO(2l) defined in
Sect. 2.1 we have a representation ρ′′ : H ′ → SO(2l). By the way we defined η it is
clear that the ρ′′(H ′)-orbits on S

2l−1 get projected, via πC , to ρ(H)-orbits on DC . In
particular, if FC is homogeneous given by some K-action, the (closure of the) group
K ′ ⊆ SO(2l) generated by K and ρ′′(H ′) acts on S

2l−1 isometrically and the orbits
are precisely the leaves of F0 ◦ FC . ��
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Corollary 5.5. If (S2l−1, FC) is a Clifford foliation with quotient S
2 or S

4, then
for every singular Riemannian foliation (SC , F0) the composed foliation F0 ◦ FC is
homogeneous.

Proof. In this case F0 is a singular Riemannian foliation on S
2 or S

4, and therefore
either dim F0 ≤ 3 or F0 is the trivial foliation in S

4 consisting of one leaf. In the
first case, F0 is homogeneous by [Rad12], in the second it is trivially homogeneous.
Since FC itself is homogeneous, F0 ◦ FC is homogeneous by Proposition 5.4. ��

The results of this sections allow us to prove the second part of Theorem B

Proposition 5.6. Let C be a Clifford system on R
2l and (SC , F0) a singular Rie-

mannian foliation. If C �= C8,1, C9,1 then (S2l−1, F0 ◦FC) is homogeneous if and only
if F0 and FC are homogeneous. If C = C9,1 then (S2l−1, F0 ◦ FC) is homogeneous
only if F0 is homogeneous.

Proof. If FC and F0 are homogeneous, then F0◦FC is homogeneous by 5.4. If F0◦FC

is homogeneous then there are two cases to consider:

• If the leaf space of FC is SC , then C = C2,1 or C4,1. In both cases FC is homo-
geneous by Proposition 5.2, and F0 is homogeneous by Corollary 5.5.

• If the leaf space of FC is DC , then by Proposition 5.4 both FC , F ′
C are homoge-

neous. Moreover, if C �= C9,1 then FC is homogeneous as well by table (1.2) and
Proposition 5.2. ��

6 Clifford foliations on compact rank 1 symmetric spaces

The construction of Clifford and composed foliations can be used to produce new
foliations on the other simply connected, compact, rank one symmetric spaces.

6.1 Complex projective spaces. Let C be a Clifford algebra of rank m + 1
on R

2l with m ≥ 1 and let (S2l−1, FC) be the associated Clifford foliation. If we
define i = P0P1 ∈ so(2l), the flow of i defines an isometric S

1 action on S
2l−1. This

action preserves FC , and thus it induces an isometric action on the quotient 1
2SC

or DC = 1
2(SC � {pt}) that acts transitively on the circle containing P0, P1 while

fixing the other elements P2, . . . Pm. Therefore, the foliation (S2l−1, FC) projects to
a foliation FC

C on S
2l−1/S

1 = CP
l−1 with quotient isometric to either 1

2(Sm−2 �{pt})
(a hemisphere of 1

2S
m−1) or 1

2(Sm−2 � [0, π/2]) (a half hemisphere of 1
2S

m). As in the
spherical case, given a singular Riemannian foliation F0 on S

m−2 we can define new
foliations (CP

l−1, F0 ◦ FC

C ).

6.2 Quaternionic projective spaces. The case of HP
n closely follows the

construction on CP
n. Let C be a Clifford algebra of rank m + 1 on R

2l with m ≥ 1
and let (S2l−1, FC) be the associated Clifford foliation. The Lie algebra generated
by {i = P0P1, j = P1P2, k = P0P2} ⊆ so(2l) corresponds to a subgroup S

3 ⊆
SO(2l) which acts on S

2l−1. This action preserves FC , and it induces an isometric
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action on the quotient 1
2S

m or DC = 1
2(Sm � {pt}), that acts transitively on the

2-sphere containing P0, P1, P2 while fixing the other elements P3, . . . Pm. Therefore,
FC projects to a foliation FH

C on S
2l−1/S

3 = HP
l/2−1 whose quotient is isometric to

either 1
2(Sm−3�{pt}) (a hemisphere of 1

2S
m−2) or 1

2(Sm−3�[0, π/2]) (a half hemisphere
of 1

2S
m−1). Given a singular Riemannian foliation F0 on S

m−3 we can define new
foliations (HP

l/2−1, F0 ◦ FH

C ).

6.3 Cayley projective space. Let C ′ = Cm,k be a Clifford system on R
16

with m ∈ {3, 5, 6}. Since m does not divide 4, the algebraic equivalence class of C ′ is
uniquely determined by m and therefore C is equivalent to the subsystem (P0, . . . Pm)
of C8,1 = (P0, . . . P8). In particular, the projection πC′ : S

15 → DC′ factors through
1
2SC8,1 = 1

2S
8 and the leaves of FC′ contain the fibers of the Hopf fibration S

15 → 1
2S

8.
This means in particular that (S15, FC′) is obtained by pulling back a foliation on
1
2S

8 via the Hopf map and the same can be said about any composed foliation
(S15, F0 ◦ FC′), for every singular foliation F0 on SC′ . By shrinking the fibers of the
Hopf fibration to a factor t ∈ (0, 1), we get a family of metrics gt on S

15 for which
(S15, gt) → 1

2S
8 is still a Riemannian submersion, and in particular FC′ is still a

singular Riemannian foliation on (S15, gt).
Consider now the Cayley plane CaP

2 with its canonical metric. Fixing a point p0,
the cut locus of p0 is the sphere of distance π/2. Moreover, for r < π/2 the distance
sphere of radius r around p0 is isometric to (S15, gcos r) while the distance sphere of
radius π/2 is isometric to 1

2S
8. Given a singular Riemannian foliation F0 ◦ FC on

S
15 = T 1

p0
CaP

2, we induce a foliation F on CaP
2 by exponentiating the leaves. In

other words, we define the leaf through q = expp0
rv, ‖v‖ = 1, as

Lq = {q′ = expp0
rv′ | v′ ∈ Lv}.

Clearly the restriction of F to every distance sphere around p0 is a singular Rie-
mannian foliation. Moreover, the set of regular leaves is open and dense, and it is
easy to check that the foliation around each regular leaf is defined by the fibers of
a Riemannian submersion. In particular, the restriction of F to the regular set is a
singular Riemannian foliation. Since every singular leaf is a limit of regular leaves,
one deduces that singular leaves as well stay at a constant distance from each other,
and therefore F defines a transnormal system on CaP

2. Finally, similarly to Propo-
sition 3.1 we can conclude that F is, in fact, a singular Riemannian foliation on
CaP

2. This foliation cannot be homogeneous, because on the unit sphere around p0

it is given by (S15, F0 ◦ FC) which is not homogeneous by Proposition 5.6.

7 Properties of Clifford and composed foliations

The new examples exhibit some behaviours that either do not appear in the homo-
geneous case, or have not been shown to appear. We collect here a few of these new
behaviours.
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7.1 Orbifold quotient. Recall that a singular Riemannian foliation (M, F) is
called polar if, for every point p ∈ M , there is a totally geodesic submanifold of
dimension equal to the codimension of F that passes through p and is perpendicular
to all the leaves it meets. The quotient of a closed polar foliation (Sn, F) has constant
curvature 1. If (S2l−1, FC) is a Clifford foliation with hemispherical quotient and
(SC , F0) is a polar foliation, then the quotient of F0 ◦ FC is isometric to an orbifold
of curvature 4. In particular there is a large variety of non polar singular Riemannian
foliations whose leaf space is an orbifold of constant curvature 4, of any dimension.
This should be compared with a recent result of C. Gorodski and A. Lytchak [GL00],
who show that if the quotient X of a non-polar homogeneous foliation on a sphere
is isometric to an orbifold, then it is either a weigthed projective space (complex
or quaternionic) or it is a good orbifold of curvature 4 and dimension lower than 5.
In particular, there is only a finite number of orbifolds of curvature 4 what arise as
quotients of homogeneous foliations.

7.2 Strata on the leaf space. Let (Sn, F) be a homogeneous foliation, induced
by the action of a compact group G ⊆ SO(n + 1). If Σ is a minimal stratum of F
and x ∈ Σ is a singular point with isotropy group Gx, the connected component of
Fix(Gx) through x is a totally geodesic sphere S

k ⊆ S
n that projects via π : S

n →
S

n/G to the minimal stratum π(Σ) of S
n/F containing π(x). Moreover, the group

G′ = N(Gx)/Gx acts effectively on S
k by isometries, and there is a map S

k/G′ →
π(Σ). If we let G′

0 be the identity component of G′, G′
0 induces a homogeneous

singular Riemannian foliation F ′ on S
k, and the stratum π(Σ) is the quotient of the

singular Riemannian foliation (Sk, F ′) (cf. [GL00] where this fact is stated in greater
generality).

This is no longer true in the case of (non homogeneous) Clifford foliations. In
fact given a Clifford foliation (S2l−1, FC), the only singular stratum in the quotient
is SC � S

m, which in particular is also minimal but it cannot be the quotient of any
singular Riemannian foliation (Sk, F ′), unless m = 2, 4, 8.

7.3 Highly curved quotients. Given a composed foliation (S2l−1, F0 ◦ FC)
where F0 is not polar, the quotient S

2l−1/F0◦FC is an Alexandrov space of curvature
≥ 2, but not with constant curvature. Some of these examples are homogeneous, but
it is not known whether there are other homogeneous examples with these curvature
properties.

7.4 Isometric quotients. It is not hard to produce non congruent homoge-
neous foliations (Sn, F), (Sn′

, F ′) with isometric quotients. Such foliations have
been recently been extensively studied by Gorodski and Lytchak in [GL14,GL00].
However, to the best the author’s knowledge there are no known examples of
non congruent homogeneous foliations (Sn, F), (Sn′

, F ′) that admit an isometry
I : S

n/F → S
n′

/F ′ which preserves the dimension of the leaves.
It was shown in [AR00] that if two singular Riemannian foliations (M, F),

(M ′, F ′) admit an isometry I : M/F → M ′/F ′ which preserves the dimension of the
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leaves, then the two foliations admit isomorphic sheaves of smooth basic functions
(i.e. smooth functions that are constant along the leaves). In the case M = M ′ = S

n

it was hard to come up with non congruent examples with this property.
By leaving the realm of homogeneous foliations and using composed foliations,

however, we can produce arbitrary numbers of pairwise non congruent foliations
(Sni , F i) all of whose quotients are isometric, and the corresponding leaves have the
same dimension. In fact, fixing an integer r, consider r geometrically inequivalent
Clifford systems C(i) =

(
P

(i)
0 , . . . , P

(i)
m

)
on R

2l, with i = 1, . . . , r. By the classifica-

tion of Clifford systems, such C(i) exist if m is a multiple of 4 and l = kδ(m) for some
k ≥ 2r + 2. By Proposition 4.2 the foliations FC(i) on S

2δ(m)−1 are not congruent
but the quotients S

2δ(m)−1/FC(i) , i = 1, . . . , r are all isometric to each other, with
corresponding leaves of the same dimension. Given a singular Riemannian foliation
(Sm, F0), the foliations F0 ◦ FC(i) are also not congruent, but again the quotients
S

2δ(m)−1/(F0 ◦ FC(i)) are all isometric to each other, with corresponding leaves of
the same dimension.
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