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for l � 5, where

� (r ) =
D
2r

log(2D� F ) +
rd
2

�
2m log l + log(2D� G )

�
:

We choose

r = 1 +

" s
D log(2D� F )

d(2m log l + log(2D� G ))

#

:

Therefore

D
r

�

s
dD(2m log l + log(2D� G ))

log(2D� F )
(3:9)

and

rd � d +

s
dD log(2D� F )

2m log l + log(2D� G )
: (3:10)

Moreover (3.8) implies

r �
D
3d

+
D

p
3d

�
D
d

: (3:11)

By (3.9), (3.10) and (3.11) we have

� (r ) �
d
2

log(2D� G ) +
p

dD log(2D� F )(2m log l + log(2D� G )) :

ut

4. Lower bounds for
Q

j� h � � k j .

In this section we assume thatF and G are integral co-prime polynomials. Then

jRes(F; G)j � 1; � (F ) � M (F )2; � (G) � M (G)2:

Hence theorem 1.1 and theorem 3.1 provides lower bounds for
Q

j� h � � k j. As a
simple example, choosel = m = 1 in theorem 1.1. We �nd the following improved
version of (1.6):

Corollary 4.2. Let � , � 6= 0 be non-conjugate algebraic numbers of degreesD
and d. Then

j� � � j � 1 � e(2D)1+ d=2M (� )2dM (� )D exp
� q

dD log(2DM (� )2) log
�
2DM (� )2

�
�

provided that

3dmax
�

log(2DM (� )2)
log(2DM (� )2)

; 1
�

� D:
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Gp is irreducible (see [R] p. 139). Hence, for any realx, the polynomials G and
F =

p� x
Gp are square-free and coprime. We choosex = (log d)2=(log logd). By

the Prime Number Theorem,

D := deg F =
p� x

d � �
d(log d)2

2(log logd)2 �
d2

2
; (6:1)

logM (F ) =
p� x

p logM (� ) � �
(log d)4 logM (� )

4(log logd)3 � logd; (6:2)

and, since p� x pd j Res(F; G) by lemma 2 of [D],

log jRes(F; G)j �
p� x

d logp � � � 1 d(log d)2

log logd
: (6:3)

We also haveD � 9d and, by (6.2),

max
log(2DM (F )2)
log(2DM (� )2)

; 1 � 1 +
2 logM (F )

logd
� 3 �

D
3d

:

Therefore we can apply theorem 1.1 (withl = m = 0), which gives

log jRes(F; G)j �
d
2

log(2D ) + d logM (F ) + ( D + d)�

+ dD log(2DM (F )2) log(2DM (� )2):
(6:4)

By (6.1) and (6.2) we have

d
2

log(2D ) + d logM (F ) + ( D + d) log M (� ) � 2d logd (6:5)

and

dD log(2DM (F )2) log(2DM (� )2)

� � 2 d2(log d)4

4(log logd)2 2 +
(log d)3 logM (� )

(log logd)3 :
(6:6)

Substituting (6.3), (6.5) and (6.6) into (6.4) we obtain

� � 1 d(log d)2

log logd
� 2d logd + �

d(log d)2

2 log logd
2 +

(log d)3 logM (� )
(log logd)3

� � 2 d(log d)2

2 log logd
2 +

(log d)3 logM (� )
(log logd)3 ;

whence

logM (� ) � 4� � 6 � 2
log logd

logd

3

� (2 � " )
log logd

logd

3

:

ut
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