
New Jersey Institute of Technology New Jersey Institute of Technology

Digital Commons @ NJIT Digital Commons @ NJIT

Theses Electronic Theses and Dissertations

10-31-1992

Modeling, evaluation, and control of a flexible manufacturing cell Modeling, evaluation, and control of a flexible manufacturing cell

using petri nets using petri nets

Glenn Arthur Thorniley
New Jersey Institute of Technology

Follow this and additional works at: https://digitalcommons.njit.edu/theses

 Part of the Manufacturing Commons

Recommended Citation Recommended Citation
Thorniley, Glenn Arthur, "Modeling, evaluation, and control of a flexible manufacturing cell using petri nets"
(1992). Theses. 2381.
https://digitalcommons.njit.edu/theses/2381

This Thesis is brought to you for free and open access by the Electronic Theses and Dissertations at Digital
Commons @ NJIT. It has been accepted for inclusion in Theses by an authorized administrator of Digital Commons
@ NJIT. For more information, please contact digitalcommons@njit.edu.

https://digitalcommons.njit.edu/
https://digitalcommons.njit.edu/theses
https://digitalcommons.njit.edu/etd
https://digitalcommons.njit.edu/theses?utm_source=digitalcommons.njit.edu%2Ftheses%2F2381&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/301?utm_source=digitalcommons.njit.edu%2Ftheses%2F2381&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.njit.edu/theses/2381?utm_source=digitalcommons.njit.edu%2Ftheses%2F2381&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@njit.edu

Copyright Warning & Restrictions

The copyright law of the United States (Title 17, United
States Code) governs the making of photocopies or other

reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and
archives are authorized to furnish a photocopy or other

reproduction. One of these specified conditions is that the
photocopy or reproduction is not to be “used for any

purpose other than private study, scholarship, or research.”
If a, user makes a request for, or later uses, a photocopy or
reproduction for purposes in excess of “fair use” that user

may be liable for copyright infringement,

This institution reserves the right to refuse to accept a
copying order if, in its judgment, fulfillment of the order

would involve violation of copyright law.

Please Note: The author retains the copyright while the
New Jersey Institute of Technology reserves the right to

distribute this thesis or dissertation

Printing note: If you do not wish to print this page, then select
“Pages from: first page # to: last page #” on the print dialog screen

The Van Houten library has removed some of the
personal information and all signatures from the
approval page and biographical sketches of theses
and dissertations in order to protect the identity of
NJIT graduates and faculty.

ABSTRACT

Modeling, Evaluation, and Control of a
Flexible Manufacturing Cell Using Petri Nets

by
Glenn Arthur Thorniley

This thesis describes the usefulness of Petri nets in modeling, evaluating, and

controlling a Flexible Manufacturing Cell (FMC). The basics of Petri net theory are

explained and a specific FMC is examined. First, the FMC is modeled. The purpose

of modeling is to facilitate the evaluation and provide a framework on which the

control methodologies can be applied. The objective of the evaluation is to determine

how the FMC would benefit most by replacing or adding equipment. Several ideas on

control are combined to form a useful framework for the designing of the control net.

With this framework the control net is developed directly from the Petri net used in

the modeling and evaluation phases. Through the use of special symbols incorporated

into the control net, the basic input and output requirements of the system can be

derived from the graphical control net.

MODELING, EVALUATION, AND CONTROL OF A
FLEXIBLE MANUFACTURING CELL USING PETRI NETS

by
Glenn Arthur Thorniley

A Thesis
Submitted to the Faculty of New Jersey Institute of Technology

in Partial Fulfillment of the Requirements for the Degree of
Master of Science

Department of Manufacturing Engineering
October, 1992

APPROVAL PAGE
Modeling, Evaluation, and Control of a

Flexible Manufacturing Cell Using Petri Nets

by
Glenn Arthur Thorniley

Dr. MengChu Zhou, Thesis Adviser
Assistant Professor
Department of Electrical and Computer Engineering
Manufacturing Engineering Program, NJIT

Dr. Raj Sodhi, Committee Member
Director of Manufacturing Engineering Program
Department of Mechanical and Industrial Engineering, NJIT

Dr. Xiuli Chao, Committee Member
Assistant Professor
Department of Mechanical and Industrial Engineering, NJIT

BIOGRAPHICAL SKETCH

Author: Glenn Arthur Thorniley

Degree: Master of Science in Manufacturing Engineering

Date: October, 1992

Date of Birth:

Place of Birth:

Undergraduate and Graduate Education:

• Master of Science in Manufacturing Engineering, New Jersey Institute of
Technology, Newark, New Jersey, 1992.

• Bachelor of Science in Mechanical Engineering, The Pennsylvania State
University, University Park, Pennsylvania, 1986.

Major: Manufacturing Engineering

This thesis is dedicated to
my mother,

Grace J. Thorniley

ACKNOWLEDGMENT

The author wishes to thank his thesis adviser, Dr. MengChu Zhou, for his

outstanding support throughout this research. Dr. Zhou's willingness to answer questions

and his ability to explain the subject matter are exceptional.

In addition, thanks go to Dr. Raj Sodhi and Dr. Xiuli Chao for their assistance

in serving as committee members for this thesis.

A special thank you goes to the author's wife, Denise, whose patience and support

were crucial to the completion of this thesis.

TABLE OF CONTENTS

Page

1 INTRODUCTION TO PETRI NETS 1

1.1 History 1

1.2 Why Petri Nets? 1

2 BASIC PETRI NET THEORY 3

2.T The Graphical Model 3

2.2 The Mathematical Model 7

2.3 Behavioral Properties 9

2.4 Structural Properties 11

2.5 Classical Manufacturing Measures 12

3 MODELING OF A FLEXIBLE MANUFACTURING CELL 13

3.1 Problem Statement 13

3.2 Understanding the FMC 13

3.3 Building a Graphical Model 15

3.4 Equivalent Inspection Firing Rates 21

4 EVALUATION OF A FMC 25

4.1 Current vs. Upgraded Equipment 25

4.2 Software Packages 25

4.3 Requirements and Terminology of SPNP 26

4.4 Net Reduction 26

4.5 Results of Evaluation 29

5 CONTROL OF A FMC 32

5.1 History of Control 32

5.2 Attributes of an Effective Control System 33

5.3 The Control Net 34

5.4 C-net Symbols 36

6 CONCLUSION 43

6.1 Contributions 43

6.2 Limitations 44

6.3 Future Research 44

APPENDIX 1 45

APPENDIX 2 46

APPENDIX 3 54

APPENDIX 4 59

APPENDIX 5 66

REFERENCES 78

LIST OF TABLES

Table Page

1 Current and Upgraded Process Times 15

2 Time Delays and Firing Rates 22

3 Transition Designations 23

4 Place Designations 24

5 SPNP Terminology 26

6 Results of Evaluation 29

7 Process i/o Function Definitions 42

LIST OF FIGURES

Figure Page

1 Petri Net Symbols 3

2A Petri Net of a Machining Operation 5

2B After t1 Fires 6

2C After t2 Fires 6

3 Input, Output, and Incidence Matrices 7

4 Flexible Manufacturing Cell Layout 14

5A Hybrid Method, Step 1 16

5B Hybrid Method, Step 2 17

5C Hybrid Method, Step 3 18

5D Hybrid Method, Step 4 19

5E Hybrid Method, Step 5 (Complete Net Without Robot #3) 20

6 Process Subsystem 27

7 Inspection Subsystem 28

8 Main Net 28

9A Results of Evaluation (Subsystems) 30

9B Results of Evaluation (Main Net) 31

10 C-net Symbols 37

11 Main C-net With 3 Part Families 38

12 Hierarchically Structured C-net 39

13 C-net for the FMC 41

1 INTRODUCTION TO PETRI NETS

1.1 History

The fundamental idea on which current Petri net (PN) theory has been built was

originated in 1962 by Carl Adam Petri at the University of Darmstadt, Germany.

Petri's work was soon recognized by A.W. Holt who piloted the Information System

Theory Project of Applied Data Research, Inc., in the United States. During the

1970's, MIT had conducted research through their Computational Structure Group. The

Europeans became more involved in the early 1980's by arranging workshops and

publishing conference proceedings. By the later part of the 1980's, Petri net research

was being conducted on a broader spectrum including Japan and Australia in addition

to most European countries and the United States [17]. Research is currently being

conducted at many universities including, New Jersey Institute of Technology,

University of Illinois, Rensselaer Polytechnic Institute, Carnegie-Mellon University,

and Duke University.

1.2 Why Use Petri Nets?

Petri Nets are a simple, powerful, logical tool which enables the engineer to model,

evaluate, and control complex dynamic discrete event systems. Petri net methodology

utilizes both a mathematical and a graphical model. A graphical representation of a

Petri net can be constructed in a building block type manner where each newly revised

net is developed by further detailing a previous version. After the graphical model has

been completed, a mathematical model can be written systematically. These models are

used to evaluate the properties and characteristics of the system under investigation.

The graphical model can even be animated with computer software to reflect real-time

activities or simulated activity. Although this paper addresses the use of PN's in

flexible manufacturing, further development of Petri net theory would be beneficial in

other areas as well. Petri nets can be utilized to represent a variety of dynamic systems

including manufacturing, computer network, communication, and traffic systems. Petri

nets are also adept at modeling Just-in-Time manufacturing systems [21]. They are

particularly useful in modeling flexible manufacturing systems due to their ability to

model: asynchronous operations, concurrence, deadlock, conflicting events, and event

driven systems [12]. In addition, Petri nets have the ability to model all states of a

given system with a single model using different initial markings or conditions,

whereas Finite State Machines need often be changed drastically [12]. Unlike many

other modeling techniques, PN's can be used from design through evaluation to

control. This makes it possible to compile the net into control code or data for

implementation and execution on the shop floor [26]. As the different entities of

manufacturing systems become more and more integrated, Petri nets could become the

universal language of manufacturing systems. The remainder of this paper pertains to

the application of Petri nets in Flexible Manufacturing.

2 BASIC PETRI NET THEORY

2.1 The Graphical Model

The graphical model is constructed with places (circles), transitions (short lines or

boxes), arcs (arrows) and tokens (dots). These symbols are illustrated in Figure 1.

Although these four symbols seem elementary, they can be combined to model an

infinite variety of dynamic behavior.

Figure 1 - Petri Net Symbols

Places and transitions are connected alternately with arcs to form a directed graph or

net. Tokens flow from place to place via transitions. Tokens may only follow paths

designated by the arcs and only in the specified direction. Places can represent

operations, buffers, or resources. Tokens, when occupying a place, signify a true

condition. For example, a place can represent the availability of a machine (resource).

If that place contains a token then the machine (resource) is available. Conversely, the

absence of a token in that resource place signifies that the particular resource is not

available. Transitions generally designate the beginning or the completion of an event.

For example, a transition could represent the beginning of a machining process. Arcs

connect places to transitions and vice versa. These arcs designate the logical paths in

which the tokens can follow. An arc from a place to a transition is said to be an input

arc for that transition. An arc from a transition to a place is called an output arc. In

addition, arcs are assigned weights. Arc weights are assumed to be one unless they are

labeled otherwise. If an input arc has a weight of two, then two tokens are required

before the corresponding transition is enabled. The set of input places or pre-set for

a transition is designated as *tj and a set of output places or post-set is designated as

tj•. A transition is said to be enabled if all of its input places contain the required

number of tokens. An enabled transition may fire. This firing removes tokens (number

determined by the input arc weight) from the input places and generates tokens

(number determined by the output arc weight) to the output places. A detailed

explanation of this transition firing rule can be found in [17]. For a continuous

process, such as a machining operation, a time delay (T) is associated with each

transition. The time delay is an amount of time that elapses from the instant a

transition is enabled until the instant it fires. For example, if an input place to a certain

transition represents a machining operation, then the transition designates the

completion of the machining cycle and the corresponding time delay is the machining

or processing time. Due to the stochastic nature of most real-life processes, the process

times are usually random and exponentially distributed. If the time delay is random and

exponentially distributed, the resulting firing rate, 1, is equal to the inverse of the

expected time delay, E(T).

λ = 1/E(τ) where T is exponentially distributed. (1)

Finally, the initial marking, m0, is the initial set of tokens including their quantities

and locations at system start-up.

A Petri net model of a Flexible Manufacturing Cell (FMC) is illustrated in Figure

2A. This FMC contains a horizontal machining center. One unit of raw material is

machined to produce two finished parts. Once the machining operation has been

completed and the parts are unloaded, the machine becomes available. The completion

of the process triggers the release of more raw material. In Figure 2A, place pi along

with its initial marking of one token signifies that there is one unit of raw material

which is waiting to be machined.

Figure 2A - Petri Net of a Machining Operation

The availability of the machine is monitored through p3. When p3 contains a token, the

machine is available. Transition t1 represents the start of the machining process. The

machining process can begin if and only if the machine and the raw material are both

available. Since pi and p3 have tokens, t1 is enabled. Firing t1 results in the net shown

in Figure 2B. Here tokens are removed from the input places of t1, namely pi and p3,

and a token is generated in the output place of t1 , namely p2. At this point, t2 is

Figure 2B - After t1 Fires

Figure 2C - After t2 Fires

enabled. The time delay, T, of t2 corresponds to the machining or process time. After

this delay time, t2 fires resulting in the net shown in Figure 2C. Notice that p4 now has

two tokens due to the output arc weight of t2. This symbolizes that two finished

products are machined from one unit of raw material. Also notice that p3 again has a

token meaning that the machine is available again. Finally the firing of t2 also releases

more raw material, represented in p1. References [17] and [12] offer a detailed

description of Petri net theory.

2.2 The Mathematical Model

Figure 3 - Input, Output, and Incidence Matrices

Once the graphical model has been constructed, the mathematical model can be

developed. This model consists of several matrices. The input matrix, I, derived from

the Petri net of Figure 2A can be seen in Figure 3. The input matrix is an (s x n)

matrix where s is the number of places and n is the number of transitions. In other

words, the row number corresponds to the place number and the column number

corresponds to the transition number. The numbers in the input matrix correspond to

the arc weight of the input arc from a place (row) to a transition (column). For

instance, the upper left member of the input matrix of Figure 3 designates that there

is an input arc from pi to t1 with an arc weight of one. Similarly, the output matrix,

0, which is also an (s x n) matrix, is constructed from the output arcs and is also

shown in Figure 3. The Incidence Matrix, C, describes the dynamic characteristics of

the system and is equal to the difference between the output and input matrices, 0 -

I. This matrix represents the change from input to output. The incidence matrix for the

Petri net in Figure 2 is also illustrated in Figure 3. The "2" in the fourth row, second

column of this matrix signifies that two tokens are produced in p4 upon firing t2.

Negative numbers in the incidence matrix signify the consumption of tokens. This is

shown by the -1 in row 2, column 2, where a token of p2 (row 2) is consumed upon

firing t2 (column 2). The state or marking of a Petri net denotes the amount of tokens

occupying each place and is captured in a one dimensional matrix of size s. The initial

marking, m0, of the PN of Figure 2A can be seen in Equation (2).

m0 = [1 0 1 0] (2)

The above matrices are used to fully define a Petri net, Z, as shown in Equation (3)

where P and T are the sets of places and transitions in the net, respectively. A Petri

net is represented as a five-tuple:

Z = (P,T,I,O,m0) (3)

2.3 Behavioral Properties

Properties of a PN which depend on the initial marking are called behavioral

properties. From a manufacturing standpoint behavioral properties depend on the

conditions at system start-up. The most useful behavioral properties for manufacturing

applications are reachability, boundedness, liveness, reversibility, and persistence [17].

Reachability - The reachability set R(m0) of a Petri net, is defined as the set of all

markings (states) which are obtainable from the initial marking, m0, through

some firing sequence L(m0) [17].

Boundedness - A PN is said to be k-bounded if for any reachable marking, m, none

of the places contain more than k tokens. A 1-bounded PN is called safe [17].

No place in a safe net will ever contain more than one token.

Liveness - There are five degrees of liveness, LO - LA. They are defined with respect

to a single transition, t, as follows [17]:

LO "dead" if t can never be fired in any sequence, L(m0).

L1 "potentially firable" if t can be fired at least once in some firing sequence

L(m0).

L2 given any positive integer n, t can be fired at least n times in some firing

sequence L(m0).

L3 if t appears infinitely often in some firing sequence, L(m0).

L4 "live" if t is at least L1-live for every marking, m, in R(m0).

The entire PN is said to be "live" if all of the transitions in the net are L4-live.

The liveness of a PN determines how prone the net is to reaching a deadlocked

state. A live PN is one which cannot be deadlocked.

Reversibility - A reversible PN is one that can always return to a home state via some

firing sequence in L(mn). The home state is usually, but not necessarily, the

initial state [17].

Persistence - A PN is considered to be persistent if the firing of any enabled transition

does not disable another previously enabled transition [17].

According to the above definitions the following observations can be made of

Figure 2. The markings shown in Figures 2B and 2C are in the reachability set,

R(m2A), where m2A is the initial marking shown in Figure 2A.

R(m2A) = {m2B, m2C, • • • } (4)

The firing sequence to reach the marking of Figure 2C (m2C) from the marking of

Figure 2A, (m2A) is:

L(m2A) = {t1,t2} (5)

This net is unbounded (not safe) since p4 will continually accumulate tokens. It is live

since both transitions are L4-live. It is not reversible since there is no firing sequence

in which m2A can be reached from m2C. This PN is persistent because t1 and t2 cannot

be enabled simultaneously; therefore, no conflicts will arise. A bounded, live,

reversible net is desirable in the FMS context. A bounded net guarantees that system

will not produce product uncontrollably. A reversible system captures the cyclic

character of a FMS. Lastly, liveness insures the system will not deadlock [26].

2.4 Structural Properties

Properties which capture characteristics of a Petri net and are independent of the initial

marking (state) are called structural properties.

Structural Liveness - If there exists a live initial marking, a Petri net is considered to

be structurally live [17].

Controllability - If every marking is in the reachability set of any other feasible

marking then a Petri net is completely controllable [17].

Structural Boundedness - A Petri net is said to be structurally bounded if it is

bounded for any finite initial marking m0 [17].

Conservativeness - A Petri net is said to be (partially) conservative if there exists a

positive integer y(p) for every (some) place, p, such that the weighted sum of

tokens, mTy = m0 Ty = a constant for every m 6 R(m0) and for any fixed

marking m0 [17].

Repetitiveness - A Petri net is said to be (partially) repetitive if there exists a marking

m0 and a firing sequence L(m0) such that every (some) transition fires infinitely

often in L(m0) [17].

Consistency - A Petri net is said to be (partially) consistent if there exists a marking

m0 and a firing sequence L(m0) returning to m0 such that every (some) transition

appears at least once in L(m0) [17].

Some other important characteristics of the PN are described by p-invariants and

t-invariants. A p-invariant is a subset of places which always share a certain number

of tokens regardless of the firing order, given the initial marking. A t-invariant

indicates a firing sequence through which a Petri net will return to its current marking

or state.

2.5 Classical Manufacturing Measures

In addition to behavioral and structural properties, typical quantitative concerns such

as throughput, utilization, down time, work-in-process, and lead time can be

determined from the Petri net model. The effects of changes in resources, process

times, and buffer sizes on these performance measures can be determined easily by

making the appropriate changes in the model and analyzing the results. This can be

done with the aid of computer software such as SPNP, GRAMAN, SIMAN, and

SLAM.

3 MODELING A FLEXIBLE MANUFACTURING CELL

3.1 Problem Statement

As previously mentioned, Petri nets can be used to model and evaluate Flexible

Manufacturing Systems. In this chapter a specific Flexible Manufacturing Cell (FMC)

will be modeled. The purpose of modeling is to facilitate the evaluation and provide

a framework on which the control methodologies can be applied. The objective of the

evaluation (Chapter 4) is to determine how the FMC will benefit most as a result of

upgrading some of the existing equipment. The capital reserved for this improvement

is only enough to replace or add two major pieces of equipment. Candidates for

upgrading include three CNC machines and an inspection station. An additional robot

could be added to assume half of the load of an existing robot. In Chapter 5 process

control via Petri nets will be investigated and applied to operate the cell effectively and

efficiently.

3.2 Understanding the FMC

Before a system can be modeled, the builder should have a thorough understanding of

the systems dynamic behavior, a drawing of the cell layout, and a collection of time

delays for any events which do not occur instantaneously. These time delays include

process times, loading and unloading times, and inspection times. The drawing of the

cell layout (Figure 4), shows the location of the equipment in the FMC. Machine C

is a CNC machining center and machines A and B are CNC lathes. Parts #1, #2, and

#3 must all be machined and inspected within the cell. Raw material #1 must be

Figure 4 - Flexible Manufacturing Cell Layout

processed on machine A and inspected. Raw material #2 must be processed by machine

C, followed by machine A or machine B and then inspected. Raw material #3 must be

processed on machine B and inspected. The robot assignments are as follows: Robot

#1 loads machine C. Robot #2 transfers part #2 from machine C to machines A or B.

Robot #3, if it were added, would transfer part #2 from machine C to machine B, thus

relieving robot #2 to transfer from machine C to machine A, exclusively. The routings

for each part along with the current and upgraded process times are contained in Table

1. The current process times are those obtained with the presently used equipment. The

upgraded process times are those which would be obtained should the decision be made

to upgrade the corresponding machine or operation. The decision of whether or not to

upgrade certain equipment will be evaluated in Section 4.5.

Table 1 - Current and Upgraded Process Times

Part # Process

Current
Process

Time
(min.)

Upgraded
Process

Time
(min.)

1 1- Load w/Robot 2 .500 -
2- Machine A 7.500 2.500
3- Unload w/Robot 2 .700 -
4- Inspection .750 .075

2 1- Load w/Robot 2 .500 -
2- Machine C 30.000 10.000
3- Transfer w/Robot 2 .800 -
4- Machine A or B 4.500 1.500
5- Unload w/Robot 3 .700 -
6- Inspection .750 .075

3 1- Load w/ Robot 2 .500 -
2- Machine B 13.200 4.400
3- Unload w/ Robot 3 .700 -
4- Inspection .750 .075

3.3 Building a Graphical Model

Several methods have been developed to aid in the construction of complex nets. The

Bottom-Up Method or Modular Approach designs individual nets for the smaller

components first, then combines these components into subsystems and finally,

integrates the subsystems into a complete model. For example, a net representing a

machine (such as the net in Figure 2A) would be an component. Next, this machine

along with other components would be combined into a work cell or subsystem.

Finally the subsystems or subnets are integrated to form a final net of the entire

system. As will be discussed in section 4.4, having subnets can greatly reduce the

overwhelming computational burden of evaluating the entire system simultaneously.

Analogously the hierarchical structure of a FMS is reflected through subnets. The Top-

Down Method, as the name suggests, starts with a simplified net of the overall system

and works towards a complete net by adding detail and complexity with each

refinement. A combination of these two methods is called the Hybrid Method.

The Hybrid Method will be used to construct a Petri net for the FMC of Figure

4. First the Top-Down Method is used. Here the entire cell is viewed as a single place

and transition. This pair is built upon by expanding into three parallel sections

representing the three parts. The section for each part includes a raw material place,

and an in-process place(s). These first two steps are illustrated in Figure 5A and Figure

5B, respectively.

Figure 5A - Hybrid Method, Step 1

Notice that the alternate routing through machines A or B for part #2 is reflected in

this structure. In Figure 5C the net is expanded again by adding places representing

inspection availability and buffers. In Figure 5D, places for loading and unloading each

machine are added along with post-inspection buffers. At this point the skeletal

structure of the system is intact. The Bottom-Up Method is now used to add resource

places (Figure 5E). These include robot, machine, and inspection station availabilities.

This leads to the creation of one and only one place for each machine, robot, and

inspection station. These resource places are connected, via arcs, to the functions in

Figure 5B - Hybrid Method, Step 2

which they are required for each part. As seen in Figure 5E, a part cannot be loaded

onto a machine unless the required robot and machine are available. In other words,

both resource places must contain tokens. After the machine is loaded the robot

becomes available again (a token is generated in the corresponding robot resource

place). However, the machine is still in use; therefore, it does not become available,

i.e. a token is not generated in its resource place, until the process is completed and

the machine is unloaded. Similarly, a part cannot be inspected unless the inspection

station is available. Notice that there are two arcs exiting each inspection place. These

correspond to the acceptance or rejection of the part. If the part is rejected, more raw

Figure 5C - Hybrid Method, Step 3

material is immediately released to replenish the scrapped part. If a part passes the

inspection, a token is generated in the acceptance buffer. After the Petri net is

completed, all places and transitions are numbered. The complete Petri net is shown

in Figure 5E. Notice there is exactly one place for each resource, i.e. robots,

machines, inspection, or raw materials. Other places represent the status of operations

such as loading, transferring, processing, or process complete. All transitions represent

Figure 5D - Hybrid Method, Step 4

Figure 5E - Hybrid Method, Step 5 (Complete Net Without Robot #3)

either the beginning or completion of an event. The corresponding time delays and

firing rates are in Table 2. The designations of the places and transitions are provided

in Tables 3 and 4, respectively. Firing rates of transitions immediately following

operation places are derived from the average time required to perform that operation.

Firing rates for transitions immediately following resource places represent the rate at

which the cells status is sampled. This is the time it takes the host computer to detect

that a transition has been enabled. The status of this system is evaluated 1000 times

each minute, resulting in a time delay of .001 min. The purpose of t28 is to

synchronize the ratio of parts being manufactured in the cell. In this particular case,

(1) part #1 and (2) parts #2 are required for every (1) of part #3. So, the input arcs

to t28 are weighted 1, 2, and 1 for parts 1, 2, and 3, respectively. In addition, the

output arcs, representing the release of more raw materials, are also weighted 1, 2, and

1, respectively.

3.4 Equivalent Inspection Firing Rates

It should be noted that firing rates for the transitions associated with inspection are not

calculated directly from taking the inverse of the inspection time delay. In Figure 5E,

p6 represents the inspection of part #1. A token may be consumed from this place by

firing either t6 or t7 signifying either the rejection or an acceptance of the part,

respectively. The fact that the expected inspection time delay is .75 min. regardless of

the outcome suggests that t6 and t7 should have equal time delays, thus having equal

firing rates, which would result in 50% rejection and 50% acceptance. This would not

reflect the actual 5% probability of rejection. So, to model the inspection process

accurately, equivalent firing rates were calculated for t6 and t7. These result in an

average time delay between the two transitions of .75 min. and also reflect the 5%

defective probability. The inspection transition rates for parts #2 and #3 were

calculated in the same manner. Details of these calculations are in Appendix 1.

Table 2 - Time Delays and Firing Rates

Transition τold Taw
λold

Anew

1 .001 - 1000.000 -
2 .500 - 2.000 -
3 .001 - 1000.000 -
4 .700 - 1.428 -
5 .001 - 1000.000 -
6 76.900 7.690 .013 .130
7 3.950 .395 .253 2.530
8 .001 - 1000.000 -
9 .500 - 2.000 -
10 .001 - 1000.000 -
11 .800 - 1.250 -
12 .001 - 1000.000 -
13 .700 - 1.428 -
14 .001 - 1000.000 -
15 76.900 7.690 .013 .130
16 3.950 .395 .253 2.530
17 .001 - 1000.000 -
18 .800 - 1.250 -
19 .001 - 1000.000 -
20 .700 - 1.428 -
21 .001 - 1000.000 -
22 .500 - 2.000 -

23 .001 - 1000.000 -
24 .700 - 1.428 -
25 .001 - 1000.000 -
26 76.900 7.690 .013 .130
27 3.950 .395 .253 2.530
28 .001 - 1000.000 -
29 30.000 10.000 .033 1.000
30 7.500 2.500 .133 .400
31 4.500 1.500 .222 .667
32 4.500 1.500 .222 .667
33 13.200 4.400 .075 .227

Table 3 - Transition Designations

Trans. Designation

1 Begin loading part #1 onto mach A with robot 2.
2 Finish loading part #1 onto machine A with robot 2 & begin processing.
3 Begin unload part #1 from mach A with robot 4.
4 Finish unload part #1 from mach A with robot 4.
5 Begin inspection of part #1.
6 Finish inspection of part #1 - Reject.
7 Finish inspection of part #1 - Accept.
8 Begin load part #2 onto machine C with robot 1.
9 Finish loading part #2 onto machine C with robot 1 & begin processing.
10 Begin transfer of part #2 from machine C to Machine A with robot 2.
11 Finish transfer of part #2 from machine C to Machine A & begin process.
12 Begin unload part #2 from mach A with robot 4.
13 Finish unload part #2 from mach A with robot 4.
14 Begin inspection of part #2.
15 Finish inspection of part #2 - Reject.
16 Finish inspection of part #2 - Accept.
17 Begin transfer of part #2 from machine C to machine B with robot 2.
18 Finish transfer of part #2 from machine C to machine B & begin process.
19 Begin unload part #2 from machine B with robot 4.
20 Finish unload part #2 from machine B with robot 4.
21 Begin loading part #3 onto machine B with robot 2.
22 Finish loading part #3 onto machine B with robot 2.
23 Begin unload part #3 from machine B with robot 4.
24 Finish unload part #3 from machine B with robot 4.
25 Begin inspection of part #3.
26 Finish inspection of part #3 - Reject.
27 Finish inspection of part #3 - Accept.
28 Release another set of raw materials.
29 Finish processing part #2 on machine C.
30 Finish processing part #1 on machine A.
31 Finish processing part #2 on machine A.
32 Finish processing part #2 on machine B.
33 Finish processing part #3 on machine B.

Table 4 - Place Designations

Place Designation
1 Raw material part #1 is available.
2 Robot 2 is loading part #1 onto machine A.
3 Part #1 is done processing on machine A.
4 Robot 4 is unloading part #1 from machine A
5 Buffer for part #1.
6 Part 1 is being inspected.
7 Buffer for accepted part #1.
8 Raw material part 2 is available.
9 Robot 1 is available.
10 Robot 1 is loading part #2 onto machine C.
11 Part #2 is done processing on machine C.
12 Robot 2 is available.
13 Robot 2 transferring part #2 from machine C to A.
14 Machine A is available.
15 Part #2 is done processing on machine A.
16 Robot 4 is unloading part #2 from machine A.
17 Buffer for part #2.
18 Part #2 is being inspected.
19 Buffer for accepted part #2.
20 Machine C is available.
21 Robot 2 transferring part #2 from machine C to B.
22 Part #2 is done processing on machine B.
23 Robot 4 is available.
24 Robot 4 is unloading part #2 from machine B.
25 Inspection resource available.
26 Reserved for Robot 3
27 Machine B is available.
28 Raw material part #3 is available.
29 Robot 2 is loading part #3 onto machine B.
30 Part #3 is done processing on machine B.
31 Robot 4 is unloading part #3 from machine B.
32 Buffer for part #3.
33 Part #3 is being inspected.
34 Buffer for accepted part #3.
35 Part #2 is processing on machine C.
36 Part #1 is processing on machine A.
37 Part #2 is processing on machine A.
38 Part #2 is processing on machine B.
39 Part #3 is processing on machine B.

4 EVALUATION OF THE FMC

4.1 Current vs. Upgraded Equipment

The budget set aside to improve this manufacturing cell is enough only to purchase two

major pieces of equipment. Choices include: upgrading machines A, B, or C,

automating the inspection procedure, or purchasing an additional robot. Of these five

choices, the two which best improve throughput must be determined.

The new CNC machines are capable of processing three times faster than the

current machines. An automated inspection is expected to be ten times faster than the

current manual method (see Table 1). An additional robot (robot #3) would assume

half of the duties of robot #2. The current manual inspection process reveals a defect

probability of five percent and is not expected to change with the arrival of new

equipment.

4.2 Software Packages

There are numerous software packages available for modeling and evaluating flexible

manufacturing systems. SPNP, GRAMAN, SIMAN, SLAM, and SIMSCRIPT are

some of the more popular packages. SIMAN, SLAM, and SIMSCRIPT are better

suited for simulation. Whereas SPNP and GRAMAN were developed around and

intended to be used for Petri nets. Languages such as FORTRAN, PASCAL, and C

can be utilized; however, this requires much more programming time and should only

be done if all existing software has been explored and found to be insufficient. A

UNIX based version of SPNP (Stochastic Petri Net Package) has been found to be

appropriate to model and evaluate the FMC under investigation. SPNP is written in

C and is also available for VMS systems (VAX).

4.3 Requirements and Terminology of SPNP

Table 5 - SPNP Terminology

place("p1"); establishes a place p1 .
init("p1",1); defines initial marking of p, as 1.
trans(" t 1 "); establishes a transition t,.

rateval(t1",2.0); defines firing rate of t, = 2.0.
iarc("p1","t2"); defines an input arc to t2 from p,.
oarc("p1","t2"); defines an output arc from t2 to pi.

miarc("p3","t5",2); defines an input arc to t5 from p3 with arc weight of 2.
oarc("p4","t1",3); defines an output arc from t, to p4 with arc weight of 3.

In order to run the model with the SPNP software, a source code must be written. The

purpose of this code is to provide the necessary input and also request certain output.

The input consists of the set of places along with their initial markings, a set of

transitions along with their firing rates, the placement of the input and output arcs, and

any variables that the user intends to change from run to run; such as machine process

times. The terminology is described in Table 5. Refer to the SPNP manual for more

information.

4.4 Net Reduction

The SPNP software was used to execute the Petri net model; however, due to the

complexity of the model, calculations were extremely time consuming or impossible,

depending on the initial marking. The model of Figure 5E was run on SPNP with a

Figure 6 - Process Subsystem

minimal amount of tokens and was found to have an unmanageable number of states.

This was expected since the input and output matrices are very large (39 x 33). For

this reason the model was split into two subsystems: a Process Subsystem (Figure 6)

and an Inspection Subsystem (Figure 7).

Figure 7 - Inspection Subsystem

Figure 8 - Main net

These subsystems have a much smaller number of states compared to the complete

net, thus greatly reducing the computational requirements. The use of subsystems or

subnets makes it possible to evaluate large systems. Once the subnets are constructed

and evaluated they can be represented by a single place or transition and then

combined to form the main net for the overall system. Figure 8 shows the process and

inspection subsystems as single places in the main net. It is apparent what a drastic

reduction this is when compared to the net of Figure 5E. Performance measures such

as system throughput and subsystem utilization can be derived from the main net.

Whereas, measures such as machine utilization and average buffer levels can be found

from the individual subnets. As will be discussed in later sections, this subnet approach

not only reflects the hierarchical structure of most flexible manufacturing systems, but

it is also well suited for process control of the individual subnets as well as the main

net.

4.5 Results of Evaluation

Table 6 - Results of Evaluation

Run # Mach A Mach B Mach C Robot 3 Inspect.

Process
Subsys.
Thrput.

Inspect.
Subsys.
Thrput.

Main
Net
Thrput.

1 NEW NEW OLD NO MANUAL 0.0154 0.0681 0.0126
2 NEW OLD NEW NO MANUAL 0.0335 0.0681 0.0224
3 NEW OLD OLD NO AUTO 0.0148 0.6796 0.0145
4 OLD NEW NEW NO MANUAL 0.0356 0.0681 0.0234
5 OLD NEW OLD NO AUTO 0.0149 0.6796 0.0146
6 OLD OLD NEW NO AUTO 0.0305 0.6796 0.0292
7 NEW OLD OLD YES MANUAL 0.0148 0.0681 0.0122
8 OLD NEW OLD YES MANUAL 0.0149 0.0681 0.0122
9 OLD OLD NEW YES MANUAL 0.0306 0.0681 0.0211
10 OLD OLD OLD YES AUTO 0.0144 0.6796 0.0141

The output requested from SPNP includes machine, robot, and inspection utilizations

as well as system throughput. Notice that throughput is the average rate at which t28

fires. The SPNP source code for the complete system (Figure 5E), the process

subsystem (Figure 6), and inspection subsystem (Figure 7) can be found in Appendices

2, 3, and 4, respectively. Each subsystem was executed for all possible choices of

Figure 9A - Results of Evaluation (Subsystems)

upgrades. There are 10 possible combinations of upgrades when choosing 2 of the 5

candidates. The results are shown in Table 6. Details are in Appendix 5. The

subsystem results in Table 6 are also graphically represented in Figure 9A.

The subsystem throughputs are equivalent to the firing rate for that subsystem.

These throughput rates were applied to the main net (Figure 8) and SPNP was used

to evaluate the overall throughput. The highest overall throughput rate (0.0292) was

obtained from run #6. This indicates that the inspection station and machine C should

be upgraded in order to maximize throughput. The throughput results for the main net

are shown in Figure 9B.

Figure 9B - Results of Evaluation (Main Net)

5 CONTROL OF A FMC

5.1 History of Control

In the past several decades the demands placed on manufacturing control systems has

increased dramatically. Due to the trend towards greater flexibility and the increasing

size and complexity of manufacturing systems, the control hardware and software must

be more reliable, efficient, and flexible. During the 1960's control was accomplished

through mechanical relays, timers, and counters. These were bulky, slow, and

unreliable. In 1970 the Programmable Logic Controller (PLC) was introduced. The

PLC has several improvements over its mechanical predecessors. It is more reliable,

easier to maintain, and reprogrammable [16]. In addition, it requires far less space and

is much more flexible [16]. Most PLC languages are based on ladder logic and

boolean algebra [5],[21]. Intended for more complicated applications, some PLC's

utilize more universal languages based on graphical formalism such as state diagrams,

GRAFCET, and algorithmic state machines. GRAFCET was developed from Petri net

theory and is well suited for controlling concurrence. It is commonly used in industrial

applications [21]. Although PLC's were a vast improvement over former methods,

programs using ladder logic or procedural languages such as ASSEMBLER can

become overwhelming for complex systems. They are difficult to interpret making

them inflexible and hard to maintain. Programming concurrent events can be a tedious,

if not impossible task. In an attempt to deal with concurrence, concurrent PASCAL

has been developed. Although GRAFCET is capable of handling concurrence, it is

only a modeling technique and cannot be executed directly [18]. During the 1980's

Petri net theory was generally used in conjunction with PLC's [26],[25]. Today Petri

net based controllers are usually developed around a computer such as a VAX 11/780

[12], an IBM PC/XT [12] or even an 1NTEL 8031 microprocessor [19]. Recently

several Petri net based control languages and controllers have been the subject of

research and development. These include: Station Controller (SCR) [18]; Petri net

DesCriptive Language (PNDL) [26],[25]; Petri net System Supervisor (PNSS)

[26],[25]; Marked Flow Graph (MFG) [18]; Control net (C-net) [18],[15]; Petri net

Controller (PNC) [11]; and the Token Player [1],[24],[19]. Petri net theory has also

been combined with knowledge based or rule based systems [2].

5.2 Attributes of an Effective Control System

A control system should have the following attributes:

1) A controller must have the inherent ability to deal with asynchronous,

stochastic, discrete-time events occurring concurrently as well as sequentially. The

system controller must be equipped to resolve conflicts.

2) A controller should share much of the methodology, terminology, and definitions

used throughout the design and evaluation phase. This provides for a smooth

transition from one stage to the next and provides a common language in which

people involved in each particular phase can communicate [21].

3) The control scheme should be applicable to all levels of control ranging from the

host computer at the global level to the workcell controller at the local level. This

facilitates communication of the software at different levels [21].

4) A control system should have a simple, easy to understand, graphical representation

with a solid mathematical foundation.

5) The hardware and software should be expandable and maintainable [15]. The

software should be flexible without being overly complex. See [21] for a discussion

of flexibility versus optimality.

6) The processor or computer needs to have rapid processing speed and the software

should be efficient to allow the system to be controlled in real time.

7) The cost of the design and implementation should be proportionally low.

8) The control system should be arranged hierarchically. It should be decentralized to

enable the different levels and subsystems to operate as independently as possible

[15].

9) The control system should be capable of detecting faults, diagnosing them, and even

learning from them as discussed in [8].

The remaining portion of this paper will describe the Control net and will

demonstrate its use in monitoring a flexible manufacturing cell. The Control net has

most of the attributes listed above (the exception being the ability to learn) thus

providing a solid foundation for a control system.

5.3 The Control Net

The basis for the following Control net (C-net) was developed from a Petri net based

controller presented by Tomohiro Murato et al [18]. The C-net is a bounded net which

is designed to be as choice-free as possible. The C-net has all of the characteristics of

the Petri net previously described for modeling and evaluation. However, several

aspects have been added to facilitate the control function. As was described in Section

2.2, a Petri net is defined as:

Z = {P,T,I,O,m} (3)

The expanded description of the C-net is as follows:

C = {P,T,I,O,δ,φ,η,U,V,m} (6)

The new additions are split into two groups: the process i/o functions, δ, φ , and η ; and

the process status symbols, U and V. Definitions for the original members P,T,I,O,

and m remain unchanged.

The process i/o functions, as the name implies, provide an i/o interface between

the actual system and the controller thus enabling the C-net controller to communicate

with the system in real time. Let A represent a set of output (control) signals x, and

let E be a set of input (observable) signals yi. Each place and transition has a particular

set of signals associated with it and they are defined as follows:

8(131) = xi, {xi€A, Piell (7)

(i) (P►) = (y1,1,y1,2,-..,yi,n), {Yij EE, Pi ell (8)

ri (9 = (yi,k, • • • ym,n), {yi,keE, teT, *ti =(pi,...,pm)} (9)

The process status symbols, U(pj) and V(t.), monitor the progress of the activities

occurring throughout the system. U(A) is directly dependent on 6(pi) and (p(pi). U(pi)

is defined for each place and is set to zero until the action associated with p, has been

completed, at which time U(p1) is set to a value other than zero (U(p,)*0). V(9 is

dependent on 77(9 and determines whether or not transition tj is opened or closed. If

an input y,,k defined by 77(;) has been detected V(;) is set to 1 (open); otherwise, V(9

is set to 0 (closed) [18].

The C-net terminology refers to places as boxes and transitions as gates. With the

additions incorporated into the C-net, our previous form of the transition firing rule

is no longer adequate. An expanded version of this rule is called the gate firing rule

and includes U(m) and V(9. The gate firing rule for a k-bounded C-net states that a

gate t,ET is enabled at marking m1 if and only if, V(9=1, U(p,)*0, 1..m1(p,)_•sk, and

Osml(ph)_(k-1) for all p,E'tj and PhE ti.. As with the transition firing rule, the

requirements placed upon the input and output boxes remain intact for the gate firing

rule. One purpose of the gate firing rule is to insure that the C-net remains k-bounded.

This is captured in 1..ai1(p,)51 and Osm1(ph)_(k-1). V(9 =1 insures that the required

input signal defined by rAtj) has been received and the gate is open. The completion

of the action modeled by p, is acknowledged by U(A)*O.

5.4 C-net Symbols

In an effort to make the graphical representation of a C-net more descriptive, several

different box types will be used which have been developed as part of the Petri Net

Controller (PNC) which is presented by D. Crockett et al in [11]. The five box types

are semaphore, simple, action, switching, and macro. Figure 10 contains graphical

representations of each type. The first type, a semaphore box, is an elementary box

Figure 10 - C-net Symbols

which is generally used to acknowledge that a specific condition exists. For example,

the availability of a resource would be represented through a marked semaphore box.

A simple box is employed to describe a relatively short procedure in which a very

small amount of time is required to perform a task and receive the result. This may

involve sending a message to a workstation and receiving a confirmation of its receipt.

The third type of box is the action box which is used to represent more lengthy

procedures such as machining processes or the robotic loading of workpieces. Notice

the action box has two general areas: the larger open area within the square and the

area inside of the small circle. When a token first arrives in an action box it resides

in the larger area and the action associated with this box begins. Upon completion of

the action, the token moves into the small circle signifying that the action has been

completed and the token is ready to continue through the net. The switching box

resolves conflicts or makes decisions based on the current state of the system. As with

the action box, a token is held in the larger area within the square. The state of the

system is evaluated and depending on the result the token moves into circle a or b

where it is available to continue through the net. The fifth box type, a macro box, is

used in conjunction with a subprogram or a subnet. When the larger circle within this

box is marked, the subprogram or subnet is initialized. After the subprogram or subnet

has been executed successfully, the token moves into the smaller circle. These five

symbols are useful for the real time graphical representation of the C-net.

Figure 11 - Main Net With 3 Part Families

An example of how these new box types would be used to model the hierarchical

structure of a flexible manufacturing system is shown in Figure 12. Here, a host

computer executes the main C-net algorithm. Two particular macro boxes contained

within the main net represent workcells A and B. These workcell macro boxes engage

subnets of the individual workcells. In turn, these workcell subnets contain macro

boxes representing the individual machines within the cell. This hierarchical structure

distributes the computational burden between the host, workcell, and machine

computers.

Figure 12 - Hierarchically Structured C-net

The FMC (Figure 4) modeled in earlier sections can be viewed as a subsystem

within a larger Flexible Manufacturing System (FMS). The Main Control Net for the

FMS (Figure 11) would contain three macro boxes (among other boxes) representative

of each of the three part families. Once one of the macro boxes of the main control

net become marked, control would be initiated in the subnet (Figure 13) representing

the FMC. In Figure 13 these new box types have been employed to better represent

the net of Figure 5E for control purposes. This C-net is 2-bounded. When the required

quantities of parts 1, 2, and 3 have been processed, t28 fires and returns control to the

main net.

In order to expedite the defining of the process i/o functions, basic definitions have

been developed for .5(pi) and (p(pi) as they apply to each box type. These definitions

can be found in Table 7. In addition to a(pi) and cp (pi), a basic definition for r7(t.i) must

be developed which is appropriate for all gates of the C-net. Since all gates have at

least one input box and all input boxes have a minimum of two input (observable)

signals associated with them, ri(tj) will be defined as the desired response from the

system. For a gate following an action box the desired response would be the proper

completion of the action. Similarly the desired response for a macro box is that the

subnet or subprogram has been executed correctly. For all of the box types, except the

switching box, the desired responses are yo . The error response, yo, is not desirable.

Therefore, ri(ti) = yi,i where j is the gate number and i is the number of the input box.

In the event that the gate has a switching box as an input, the desired response may

be either yo or yi,2 (yi,3 is the error response). If a gate tj has two input boxes, a and

Figure 13 - C-net for the FMC

Table 7 - Process i/o Function Definitions

Semaphore Box, i - 6(P) = x, -. No output required.
T(p) = yo -. Resource is ready.

Y1,2 '''' Error (Resource is down).

Simple Box, i - 6(P) = x, -.. Send message (if required).
9)(P) = yo -. Acknowledge receipt of message.

y„2 -. Error

Action Box, i - 5(1)) = x, -. Send message to start action.
(1)(1)) = y„, -. Action completed properly.

Yi,2 -•• Error

Switching Box, i - 6(13i) = x, -. Evaluate current state of the system.
(1)(P) = y„, State of system warrants choice A.

y,,2 -. State of system warrants choice B.
yo -. Error

Macro Box, i - 5(p) = x, — Execute a subnet or subprogram.
(1)(1)) = y,1 -. Execution completed properly.

Y1,2 '' Error

b, then 77(9 = {ya, i , yb, i}, with *ti = (pa,pb). These basic process i/o function

definitions are now linked to the C-net symbols to completely describe the specific i/o

requirements of the FMC.

6 CONCLUSION

6.1 Contributions

It has been shown that Petri nets are an extremely versatile tool which are useful for

the modeling, evaluation, and control of flexible manufacturing systems. Their simple

yet powerful graphical representation allows manufacturing engineers to model existing

or proposed systems. Petri nets have proven to be flexible and maintainable. The

graphical model is easily developed via the hybrid method. Input and output matrices,

used for mathematical analysis, are derived directly from the graphical model. The

system characteristics and performance measures can be evaluated mathematically or

through simulation. The model and its parameters can be altered and evaluated

repeatedly until the results are optimal. Petri nets bridge the gap between modeling

a system, evaluating a system, and designing a control net for that system. As a result,

the overall development time is reduced.

In particular this paper has made several contributions to the application of Petri

nets for Flexible Manufacturing Systems.

1) Thorough research has resulted in a list of attributes for an effective control system.

2) Strong graphical C-net symbols have been combined with process i/o function

definitions to provide a smooth transition from a model to a functional system

controller. The Petri net is transformed into a Control net through the use of special

C-net box symbols. Basic i/o requirements for the system are inherent in the

Control net since they are defined for each box symbol.

3) The original definition of a C-net [18] has been expanded to allow a structurally

bounded rather than a strictly safe net. In addition, the definition of r7(tj) has been

expanded to include desired responses from multiple input places, "tj.

4) This paper has demonstrated the use of Petri nets for the complete engineering cycle

of a Flexible Manufacturing Cell. Several ideas and methodologies have been

combined to provide a workable framework for the modeling, evaluation and

control phases.

6.2 Limitations

Two significant limitations were encountered during this research. The number of

states which can evolve from a relatively simple model require a large amount of

computational power. Also, in trying to incorporate flexibility into the system the

model can become overly complex and unmanageable.

6.3 Future Research

Future research could involve developing a C-net software package to be used for

design, simulation, and control of flexible manufacturing systems. A crucial first step

would be the creation of an effective control algorithm. This software would enable

the user to build a graphical C-net interactively on a personal computer screen and

simulate its operation. In addition it might assist the user in defining the process i/o

functions. Also it should be capable of controlling the system in real time through

some i/o interface.

APPENDIX 1

Equivalent Firing Rates
for Inspection Related Transitions

P1 Probability of acceptance.

P2 Probability of rejection.

X1 Firing rate of inspection acceptance transition discounting probabilities.

).2 Firing rate of inspection rejection transition discounting probabilities.

eq11 Equivalent firing rate of acceptance transition combining inspection time delay

T with probability of acceptance P1.

eqX2 Equivalent firing rate of rejection transition combining inspection time delay

T with probability of acceptance P2.

P1 = .95 P2 = .05 T = .75

X1 = lir = 1.333 A.2 = 1/1- = 1.333

eq11 = P1 • (X1 + X2) = 2.533

eqA2 = P2 • (X1 + X2) = 0.133

APPENDIX 2

SPNP Source Code for Complete
System With Robot #3

include "user.h"

/* Glenn Thorniley, 203-58-4911*/

/* Analysis of FMS with Robot #3 */

float S,T,U,V,MA1,MC2,MA2,MB2,MB3,IA, IR;

parameters()

iopt(IOP_PR_FULL_MARK, VAL_YES);

iopt(IOP_PR_MC,VAL_YES);

iopt(IOP_PR_RGRAPH,VAL_YES);

iopt(IOP_PR_PROB,VAL_YES);

S = input("Machine A Old(3) or New(1):");

T = input("Machine B Old(3) or New(1):");

U = input("Machine C Old(3) or New(1):");

V = input("Inspection - Automatic(10) or Manual(1):");

MA1 = .4/S;

MC2 = .1/U;

MA2 = .667/S;

MB2 = .667/T;

MB3 = .227/T;

IA = .253*V;

IR = .013*V;

net() {

place("p1"); init("p1",1);

place("p2");

place("p3");

place("p4");

place("p5");

plaCe("p6");

place("p7");

plaCe("p8"); init("p8",1);

place("p9"); init("p9",1);

place("p10");

place("p11"); init("p11",1);

place("p12"); init("p12",1);

plaCe("p13");

place("p14"); init("p14",1);

place("p15");

place("p16");

place("p17");

place("p18");

place("p19");

place("p20"); init("p20",1);

place("p21");

place("p22");

place("p23"); init("p23",1);

place("p24");

place("p25"); init("p25",1);

place("p26"); init("p26",1);

place("p27"); init("p27",1);

place("p28");

place("p29");

place("p30");

place("p31");

place("p32"); init("p32",1);

place("p33");

place("p34");

place("p35");

place("p36");

place("p37");

place("p38");

place("p39");

trans("t1"); rateval("t1",1000.0);

trans("t2"); rateval("t2",2.0);

trans("t3"); rateval("t3",1000.0);

trans("t4"); rateval("t4",1.428);

trans("t5"); rateval("t5",1000.0);

trans("t6"); rateval("t6",IR);

trans("t7"); rateval("t7",IA);

trans("t8"); rateval("t8",1000.0);

trans("t9"); rateval("t9",2.0);

trans("t10"); ratevar t10",1000.0);

trans("t11"); rateval("t11",1.25);

trans("t12"); rateval("t12",1000.0);

trans("t13"); ratevart13",1.428);

trans("t14"); rateval("t14",1000.0);

trans("t15"); rateval("t15",IR);

trans("t16"); rateval("t16",IA);

trans("t17"); rateval("t17",1000.0);

trans("t18"); rateval("t18",1.25);

trans("t19"); rateval("t19",1000.0);

trans("t20"); rateval("t20",1.428);

trans("t21"); rateval("t21",1000.0);

trans("t22"); rateval("t22",2.0);

trans("t23"); rateval("t23",1000.0);

trans("t24"); rateval("t24",1.428);

trans("t25"); rateval("t25",1000.0);

trans("t26"); rateval("t26",IR);

trans("t27"); rateval("t27",IA);

trans("t28"); rateval("t28",1000.0);

trans("t29"); rateval("t29",MC2);

trans("t30"); rateval("t30",MA1);

trans("t31"); rateval("t31",MA2);

trans("t32"); rateval("t32",MB2);

trans("t33"); rateval("t33",MB3);

iarc("t1","p1"); iarc("t1","p12"); iarc("tl","p14");

oarc("t1","p2"); iarc("t2","p2"); oarc("t2","p36");

oarc("t2","p12"); iarc("t3","p3"); iarc("t3","p23");

oarc("t3","p4"); iarc("t4","p4"); oarc("t4","p5");

oarc("t4","p14"); oarc("t4","p23"); iarc("t5","p5");

iarc("t5","p25"); oarc("t5","p6"); iarc("t6","p6");

oarc("t6","p1"); oarc("t6","p25"); iarc("t7","p6");

oarc("t7","p7"); oarc("t7","p25"); iarc("t8","p8");

iarc("t8","p9"); iarc("t8","p20"); oarc("t8","p10");

iarc("t9","p10"); oarc("t9","p9"); oarc("t9","p35");

iarc("t10","p11"); iarc("t10","p12"); iarc("t10","p14");

oarc("t10","p13"); iarc("t11","p13"); oarc("t11","p12");

oarc("t11","p37"); oarc("t11 ","p20"); iarc("t12","p15");

iarc("t12","p23"); oarc("t12","p16"); iarc("t13","p16");

oarc("t13","p14"); oarc("t13","p17"); oarc("t13","p23");

iarc("t14","p17"); iarc("t14","p25"); oarc("t14","p18");

iarc("t15","p18"); oarc("t15","p8"); oarc("t15","p25");

iarc("t16","p18"); oarc("t16","p19"); oarc("t16","p25");

iarc("t17","p11"); iarc("t17","p26"); iarc("t17","p27");

oarc("t17","p21"); iarc("t18","p21"); oarc("t18","p20");

oarc("t18","p38"); oarc("t18","p26"); iarc("t19","p22");

iarc("t19","p23"); oarc("t19","p24"); iarc("t20","p24");

oarc("t20","p17"); oarc("t20","p23"); oarc("t20","p27");

iarc("t21","p26"); iarc("t21","p27"); iarc("t21","p28");

oarc("t21","p29"); iarc("t22","p29"); oarc("t22","p26");

oarc("t22","p39"); iarc("t23","p23"); iarc("t23","p30");

oarc("t23","p31"); iarc("t24","p31"); oarc("t24","p23");

oarc("t24","p27"); oarc("t24","p32"); iarc("t25","p25");

iarc("t25","p32"); oarc("t25","p33"); iarc("t26","p33");

oarc("t26","p25"); oarc("t26","p28"); iarc("t27","p33");

oarc("t27","p25"); oarc("t27","p34"); iarc("t28","p7");

rniarc("t28","p19",2); iarc("t28","p34"); oarc("t28","p1");

moarc("t28","p8",2); oarc("t28","p28"); iarc("t29","p35"); •

oarc("t29","p11"); iarc("t30","p36"); oarc("t30","p3");

iarc("t31","p37"); oarC("t31","p15"); iarc("t32","p38");

oarc("t32","p22"); iarc("t33","p39"); oarc("t33","p30");

/*The net is defined, and the analysis will be conducted */

1

/* the following lines should appear in all programs */

assert() {return(RESNOERR);}

ac init() { }

ac _reach() {fprintf(stderr,"/nThe reachibility graph has been generated/n/n");)

/* User-defined output functions */

reward_type efO() {return(rate("t28"));}

/* throughput */

reward_type efl() {return(mark("p10"));}

reward_type ef2() {return(mark("p2")+mark("p13"));}

reward_type ef3() {return(mark("p21")+mark("p29"));)

reward_type ef4() {return(1.0-mark("p23"));)

/* robot utilization */

reward_type ef5() {return(1.0-mark("p14"));)

reward_type ef6() {return(1.0-mark("p27"));)

reward_type ef7() {retuni(1.0-mark("p20"));)

/* machine utilization */

reward_type ef8() freturn(1.0-mark("p25"));}

/* inspection utilization */

/*Output*/

ac _final() (pr_expected("throughput = ",ef0);

pr_expected("Robot 1 Utilization = ",efl);

pr_expected("Robot 2 Utilization = ",ef2);

pr_expected("Robot 3 Utilization = ",ef3);

pr_expected("Robot 4 Utilization = ",ef4);

pr_expected("Machine A Utilization = ",ef5);

pr_expected("Machine B Utilization = ",ef6);

pr_expected("Machine C Utilization = ",ef7);

pr_expected("Inspection Utilization = ",ef8);

pr_std_average();)

APPENDIX 3

SPNP Source Code for
the Inspection Subsystem

include "user.h"

/* Glenn Thorniley, 203-58-4911*/

/* Analysis of Inspection Subsystem */

float V,IA, IR;

parameters() {

iopt(IOP_PR_FULL_MARK, VAL_YES);

iopt(IOP_PR_MC,VAL_YES);

iopt(IOP_PR_RGRAPH,VAL_YES);

iopt(IOP_PR_PROB,VAL_YES);

V = input("Inspection - Manual(10) or Automatic(1):");

IA = 2.53/V;

IR = .13/V;

)

net() [

place("p1"); init("pl",2);

place("p6");

place("p7");

place("p8"); init("p8",4);

place("p18");

place("p19");

place("p25"); init("p25",1);

place("p28"); init("p28",2);

place("p33");

place("p34");

trans("t5"); rateval("t5",1000.0);

trans("t6"); rateval("t6",IR);

trans("t7"); ratevart7",1A);

trans("t14"); ratevart14",1000.0);

trans("t15"); rateval("t15",LR);

trans("t16"); rateval("t16",IA);

trans("t25"); rateval("t25",1000.0);

trans("t26"); rateval("t26",IR);

trans("t27"); rateval("t27",IA);

trans("t28"); rateval("t28",1000.0);

iarc("t5","p1");

iarc("t5","p25"); oarc("t5","p6"); iarc("t6","p6");

oarc("t6","p1"); oarc("t6","p25"); iarc("t7","p6");

oarc("t7","p7"); oarc("t7","p25");

iarc("t14","p8"); iarc("t14","p25"); oarc("t14","p18");

iarc("t15","p18"); oarc("t15","p8"); oarc("t15","p25");

iarc("t16","p18"); oarc("t16","p19"); oarc("t16","p25");

iarc("t25","p25");

iarc("t25","p28"); oarc("t25","p33"); iarc("t26","p33");

oarc("t26","p25"); oarc("t26","p28"); iarc("t27","p33");

oarc("t27","p25"); oarc("t27","p34"); iarc("t28","p7");

miarc("t28","p19",2); iarc("t28","p34"); oarc("t28","p1");

moarc("t28","p8",2); oarc("t28","p28");

/*The net is defined, and the analysis will be conducted */

]

/* the following lines should appear in all programs */

assert() freturn(RES_NOERR);)

ac init() [}

ac _reach() {fprintf(stderr,"/nThe reachibility graph has been generated/n/n");}

/* User-defined output functions */

reward_type ef00 [return(rate("t28")+(rate("t6")/2)+(rate("t15")/4)+(rate("t26")/2));)

/* throughput */

reward_type efl() (return(rate("t6"));)

reward_type ef4() {return(rate("t7"));)

reward_type ef2() treturn(rate("t15"));)

reward_type ef5() [return(rate("t16"));)

reward_type ef3() freturn(rate("t26"));)

reward_type ef6() (return(rate("t27"));)

/* actual rejection rate */

reward_type ef8() freturn(1.0-mark("p25"));}

/* inspection utilization */

/*Output*/

ac final() tpr_expected("throughput ",ef0);

pr_expected("Reject rate of part #1 ",efl);

pr_expected("Accept rate of part #1 ",ef4);

pr_expected("RejeCt rate of part #2 ",ef2);

pr_expected("Accept rate of part #2 ",ef5);

pr_expected("Reject rate of part #3 ",ef3);

pr_expected("Accept rate of part #3 ",ef6);

pr_expected("Inspection Utilization ",ef8);

pr_std_average();}

APPENDIX 4

SPNP Source Code for
the Process Subsystem

Without Robot #3

include "user.h"

/* Glenn Thorniley, 203-58-4911*/

/* Analysis of process subsystem without Robot #3 */

float S ,T,X,MA1,MC2,MA2,MB2, MB3;

parameters() [

iopt(IOP_PR_FULL_MARK, VAL_YES);

iopt(IOP_PR_MC,VAL_YES);

iopt(IOPPRRGRAPH,VALYES);

iopt(IOP_PR_PROB,VAL_YES);

S = input("Machine A Old(3) or New(1):");

T = input("Machine B Old(3) or New(1):");

X = input("MaChine C Old(3) or New(1):");

MA1 = .4/S;

MC2 = .1/X;

MA2 = .667/S;

MB2 = .667/T;

MB3 = .227/T;
,

)

net() {

place("p1"); init("p1",1);

place("p2");

place("p3");

place("p4");

place("p5");

place("p8"); init("p8",2);

place("p9"); init("p9",1);

place("p10");

place("p11");

place("p12"); init("p12",1);

place("p13");

place("p14"); init("p14",1);

place("p15");

place("p16");

place("p17 ");

place("p20"); init("p20",1);

place("p21");

place("p22");

plaCe("p23 "); init("p23",1);

place("p24");

place("p27"); init("p27 ",1);

place("p28"); init("p28",1);

place("p29");

place("p30");

plaCe("p31");

place("p32");

place("p35");

place("p36");

place("p37");

place("p38");

place("p39");

trans("t1"); rateval(" tl",1000.0);

trans("t2"); rateval(" t2",2.0);

trans("t3"); rateval("t3",1000.0);

trans("t4"); rateval("t4",1.428);

trans("t8"); rateval("t8",1000.0);

trans("t9"); rateval("t9",2.0);

trans("t10"); rateval("t10",1000.0);

trans("t11"); ratevart11",1.25);

trans("t12"); rateval("t12",1000.0);

trans("t13"); rateval("t13",1.428);

trans("t17"); rateval("t17",1000.0);

trans("t18"); rateval("t18",1.25);

u•ans("t19"); rateval("t19",1000.0);

trans("t20"); rateval("t20",1.428);

trans("t21"); rateval("t21",1000.0);

trans("t22"); rateval("t22",2.0);

trans("t23"); rateval("t23",1000.0);

trans("t24"); rateval("t24",1.428);

trans("t28"); rateval("t28",1000.0);

trans("t29"); rateval("t29",MC2);

trans("t30"); rateval("t30",MA1);

trans("t31"); rateval("t31",MA2);

trans("t32"); rateval("t32",MB2);

trans("t33"); rateval("t33",MB3);

iarc("t1","p1"); iarc("t1","p12"); iarc("t1","p14");

oarc("t1","p2"); iarc("t2","p2"); oarc("t2","p36");

oarc("t2","p12"); iarc("t3","p3"); iarc("t3","p23");

oarc("t3","p4"); iarc("t4","p4"); oarc("t4","p5");

oarc("t4","p14"); oarc("t4","p23");

iarc("t8","p8");

iarc("t8","p9"); iarc("t8","p20"); oarc("t8","p10");

iarc("t9","p10"); oarc("t9","p9"); oarc("t9","p35");

iarC("t10","p11"); iarc("t10","p12"); iarc("t10","p14");

oarc("t10","p13"); iarc("tll","p13"); oarc("tll","p12");

oarC("t11","p37"); oarc("t11","p20"); iarc("t12","p15");

iarc("t12","p23"); oarc("t12","p16"); iarc("t13","p16");

oarc("t13","p14"); oarc("t13","p17"); oarc("t13","p23");

iarc("t17","pll"); iarc("t17","p12"); iarc("t17","p27");

oarc("t17","p21"); iarc("t18","p21"); oarc("t18","p20");

oarc("t18","p38"); oarc("t18","p12"); iarc("t19","p22");

iarc("t19","p23"); oarc("t19","p24"); iarc("t20","p24");

oarc("t20","p17"); oarc("t20","p23"); oarc("t20","p27");

iarc("t21","p12"); iarc("t21","p27"); iarc("t21","p28");

oarc("t21","p29"); iarc("t22","p29"); oarc("t22","p12");

oarc("t22","p39"); iarc("t23","p23"); iarc("t23","p30");

oarc("t23","p31"); iarc("t24","p31"); oarc("t24","p23");

oarc("t24","p27"); oarc("t24","p32");

iarc("t28","p5");

miarc("t28","p17",2); iarc("t28","p32"); oarc("t28","p1");

moarc("t28","p8",2); oarc("t28","p28"); iarc("t29","p35"); •

oarc("t29","p11"); iarc("t30","p36"); oarc("t30","p3");

iarc("t31","p37"); oarc("t31","p15"); iarc("t32","p38");

oarc("t32","p22"); iarc("t33","p39"); oarc("t33","p30");

/*The net is defined, and the analysis will be conducted */

]

/* the following lines should appear in all programs */

assert() { return(RESNOERR);}

ac init() f)

ac _reaCh() ffprintf(stderr,"/nThe reachibility graph has been generated/n/n");)

/* User-defined output functions */

reward_type ef0() freturn(rate("t28"));)

/* throughput */

reward_type efl() treturn(mark("p10"));)

reward_type ef2() freturn(mark("p2")+mark("p13")+mark("p21")+mark("p29"));)

reward_type ef4() treturn(1.0-mark("p23"));)

/* robot utilization */

reward_type ef5() (return(1.0-mark("p14"));}

reward_type ef6() [return(1.0-mark("p27"));)

reward_type ef7() (return(1.0-mark("p20"));)

/* machine utilization */

/*Output*/

ac _final() [pr_expected("throughput ",ef0);

pr_expected("Robot 1 Utilization ",ef 1);

pr_expected("Robot 2 Utilization ",ef2);

pr_expected("Robot 4 Utilization ",ef4);

pr_expected("MaChine A Utilization ",ef5);

pr_expected("Machine B Utilization ",ef6);

pr_expected("Machine C Utilization ",ef7);

pr_std_average();}

APPENDIX 5

SPNP Results

LOW INITIAL MARKING

INPUT: Machine A Old(3) or New(1): = 1

INPUT: Machine B Old(3) or New(1): = 1

INPUT: Machine C Old(3) or New(1): = 3

EXPECTED: throughput = 0.0153808857286

EXPECTED: Robot 1 Utilization = 0.0153808857286

EXPECTED: Robot 2 Utilization = 0.0399903028944

EXPECTED: Robot 4 Utilization = 0.0430837135255

EXPECTED: MaChine A Utilization = 0.105935328175

EXPECTED: Machine B Utilization = 0.131742184266

EXPECTED: Machine C Utilization = 0.965249957578

INPUT: Machine A Old(3) or New(1): = 1

1NPUT: Machine B Old(3) or New(1): = 3

INPUT: Machine C Old(3) or New(1): = 1

EXPECTED: throughput = 0.033523984539

EXPECTED: Robot 1 Utilization = 0.033523984539

EXPECTED: Robot 2 Utilization = 0.0871623598013

EXPECTED: Robot 4 Utilization = 0.0939047185966

EXPECTED: Machine A Utilization = 0.267211275694

EXPECTED: Machine B Utilization = 0.60548304163

EXPECTED: Machine C Utilization = 0.781018565647

INPUT: Machine A Old(3) or New(1): = 1

INPUT: Machine B Old(3) or New(1): = 3

INPUT: Machine C Old(3) or New(1): = 3

EXPECTED: throughput = 0.0148311008485

EXPECTED: Robot 1 Utilization = 0.0148311008485

EXPECTED: Robot 2 Utilization = 0.038560862206

EXPECTED: Robot 4 Utilization = 0.0415436998557

EXPECTED: Machine A Utilization = 0.108750410419

EXPECTED: MaChine B Utilization = 0.285968420606

EXPECTED: Machine C Utilization = 0.932036107568

INPUT: Machine A Old(3) or New(1): = 3

INPUT: Machine B Old(3) or New(1): = 1

INPUT: Machine C Old(3) or New(1): = 1

EXPECTED: throughput = 0.0355997644126

EXPECTED: Robot 1 Utilization = 0.0355997644126

EXPECTED: Robot 2 Utilization = 0.0925593874728

EXPECTED: Robot 4 Utilization = 0.0997192280466

EXPECTED: Machine A Utilization = 0.489275868275

EXPECTED: Machine B Utilization = 0.327518060752

EXPECTED: Machine C Utilization = 0.839018893752

INPUT: Machine A Old(3) or New(1): = 3

INPUT: Machine B Old(3) or New(1): = 1

INPUT: Machine C Old(3) or New(1): = 3

EXPECTED: throughput = 0.0149488162929

EXPECTED: Robot 1 Utilization = 0.0149488162929

EXPECTED: Robot 2 Utilization = 0.0388669223616

EXPECTED: Robot 4 Utilization = 0.0418734349942

EXPECTED: Machine A Utilization = 0.213531804902

EXPECTED: Machine B Utilization = 0.132967052135

EXPECTED: Machine C Utilization = 0.941071239519

1NPUT: Machine A Old(3) or New(1): = 3

1NPUT: Machine B Old(3) or New(1): = 3

INPUT: Machine C Old(3) or New(1): = 1

EXPECTED: throughput = 0.0305320799866

EXPECTED: Robot 1 Utilization = 0.0305320799866

EXPECTED: Robot 2 Utilization = 0.0793834079652

EXPECTED: Robot 4 Utilization = 0.0855240335759

EXPECTED: Machine A Utilization = 0.483125145075

EXPECTED: Machine B Utilization = 0.592565884829

EXPECTED: Machine C Utilization = 0.762865258787

INPUT: Machine A Old(3) or New(1): = 1

INPUT: Machine B Old(3) or New(1): = 3

1NPUT: Machine C Old(3) or New(1): = 3

EXPECTED: throughput = = 0.0148379717715

EXPECTED: Robot 1 Utilization = = 0.0148379717715

EXPECTED: Robot 2 Utilization = = 0.0216126580076

EXPECTED: Robot 3 Utilization = = 0.0169660685984

EXPECTED: Robot 4 Utilization = = 0.0415629461388

EXPECTED: Machine A Utilization = = 0.108758870116

EXPECTED: Machine B Utilization = = 0.286175859058

EXPECTED: Machine C Utilization = = 0.932249554797

INPUT: Machine A Old(3) or New(1): = 3

INPUT: Machine B Old(3) or New(1): = 1

INPUT: Machine C Old(3) or New(1): = 3

EXPECTED: throughput = = 0.0149540230703

EXPECTED: Robot 1 Utilization = = 0.0149540230703

EXPECTED: Robot 2 Utilization = = 0.0185075990661

EXPECTED: Robot 3 Utilization = = 0.0203728609166

EXPECTED: Robot 4 Utilization = = 0.0418880198047

EXPECTED: Machine A Utilization = = 0.2T3635509528

EXPECTED: Machine B Utilization = = 0.132993115568

EXPECTED: Machine C Utilization = = 0.94114634447

INPUT: Machine A Old(3) or New(1): = 3

INPUT: Machine B Old(3) or New(1): = 3

INPUT: Machine C Old(3) or New(1): = 1

EXPECTED: throughput = = 0.0306376646557

EXPECTED: Robot 1 Utilization = = 0.0306376646557

EXPECTED: Robot 2 Utilization = = 0.0441953150773

EXPECTED: Robot 3 Utilization = = 0.0354626130275

EXPECTED: Robot 4 Utilization = = 0.0858197889515

EXPECTED: Machine A Utilization = = 0.484862153642

EXPECTED: Machine B Utilization = = 0.594532795797

EXPECTED: Machine C Utilization = = 0.763895210177

EXPECTED: throughput = = 0.0143798216136

EXPECTED: Robot 1 Utilization = = 0.0143798216136

EXPECTED: Robot 2 Utilization = = 0.0197886653038

EXPECTED: Robot 3 Utilization = = 0.0175988708916

EXPECTED: Robot 4 Utilization = = 0.0402796123631

EXPECTED: Machine A Utilization = = 0.220153063019

EXPEL: TED: Machine B Utilization = = 0.285937480366

EXPECTED: Machine C Utilization = = 0.912949295163

HIGH INITIAL MARKING

INPUT: Machine A Old(3) or New(1): = 1

INPUT: Machine B Old(3) or New(1): = 1

INPUT: MaChine C Old(3) or New(T): = 3

EXPECTED: throughput = = 0.0159255608857

EXPECTED: Robot 1 Utilization = = 0.0T59255608665

EXPECTED: Robot 2 Utilization = = 0.0414064584304

EXPECTED: Robot 4 Utilization = = 0.0446094146301

EXPECTED: Machine A Utilization = = 0.109906268726

EXPECTED: Machine B Utilization = = 0.136449069T21

EXPECTED: Machine C Utilization = = 0.999968077062

INPUT: Machine A Old(3) or New(1): = 1

1NPUT: Machine B Old(3) or New(1): = 3

INPUT: Machine C Old(3) or New(1): = 1

EXPECTED: throughput = = NaN

EXPECTED: Robot 1 Utilization = = NaN

EXPECTED: Robot 2 Utilization = = NaN

EXPECTED: Robot 4 Utilization = = NaN

EXPECTED: Machine A Utilization = = NaN

EXPECTED: Machine B Utilization = = NaN

EXPECTED: Machine C Utilization = = NaN

INPUT: Machine A Old(3) or New(1): = 1

INPUT: Machine B Old(3) or New(1): = 3

INPUT: Machine C Old(3) or New(1): = 3

EXPECTED: throughput = 0.0158931062717

EXPECTED: Robot 1 Utilization = 0.0158931733636

EXPECTED: Robot 2 Utilization = 0.0413222663171

EXPECTED: Robot 4 Utilization = 0.0445186515T21

EXPECTED: Machine A Utilization = 0.118644558228

EXPECTED: Machine B Utilization = 0.302724058355

EXPECTED: Machine C Utilization = 0.99980055532

INPUT: Machine A Old(3) or New(1): = 3

INPUT: Machine B Old(3) or New(T): = 1

INPUT: MaChine C Old(3) or New(1): = 1

EXPECTED: throughput = NaN

EXPECTED: Robot 1 Utilization = NaN

EXPECTED: Robot 2 Utilization = NaN

EXPECTED: Robot 4 Utilization = NaN

EXPECTED: Machine A Utilization = NaN

EXPECTED: Machine B Utilization = NaN

EXPECTED: Machine C Utilization = NaN

INPUT: Machine A Old(3) or New(1): = 3

INPUT: Machine B Old(3) or New(1): = 1

INPUT: MaChine C Old(3) or New(1): = 3

EXPECTED: throughput = 0.0158665191804

EXPECTED: Robot 1 Utilization = 0.0158665190803

EXPECTED: Robot 2 Utilization = 0.04T2529507526

EXPECTED: Robot 4 Utilization = 0.0111140335113

EXPECTED: Machine A Utilization = 0.224146547102

EXPECTED: Machine B Utilization = 0.142606145763

EXPECTED: Machine C Utilization = 0.999963219362

INPUT: Machine A Old(3) or New(1): = 3

INPUT: Machine B Old(3) or New(1): = 3

INPUT: Machine C Old(3) or New(1): = 1

EXPECTED: throughput = NaN

EXPECTED: Robot 1 Utilization = NaN

EXPECTED: Robot 2 Utilization = NaN

EXPECTED: Robot 4 Utilization = NaN

EXPECTED: Machine A Utilization = NaN

NPUT: Machine B Old(3) or New(1): = 3

TNPUT: Machine C Old(3) or New(1): = 3

EXPECTED: throughput = = 0.015895312463

EXPECTED: Robot 1 Utilization = = 0.015895377829

EXPECTED: Robot 2 Utilization = = 0.0236782355169

EXPECTED: Robot 3 Utilization = = 0.0176497620586

EXPECTED: Robot 4 Utilization = = 0.0445248276866

EXPECTED: Machine A Utilization = = 0.118649442048

EXPECTED: Machine B Utilization = = 0.302778247778

EXPECTED: Machine C Utilization = = 0.999804066883

INPUT: Machine A Old(3) or New(1): = 3

INPUT: Machine B Old(3) or New(T): = 1

INPUT: Machine C Old(3) or New(1): = 3

EXPECTED: throughput = = 0.0158687182592

EXPECTED: Robot 1 Utilization = = 0.0158687T81678

EXPECTED: Robot 2 Utilization = = 0.0T9284TT6768

EXPECTED: Robot 3 Utilization = = 0.0219745515453

EXPECTED: Robot 4 Utilization = = 0.0444501932988

EXPECTED: Machine A Utilization = = 0.224184477505

EXPECTED: Machine B Utilization = = 0.142617T09799

EXPECTED: Machine C Utilization = = 0.999963416156

1NPUT: Machine A Old(3) or New(T): = 3

1NPUT: Machine B Old(3) or New(1): = 3

INPUT: Machine C Old(3) or New(T): = 1

EXPECTED: throughput = = NaN

EXPECTED: Robot 1 Utilization = = NaN

EXPECTED: Robot 2 Utilization = = NaN

EXPECTED: Robot 3 Utilization = = NaN

EXPECTED: Robot 4 Utilization = = NaN

EXPECTED: Machine A Utilization = = NaN

EXPECTED: Machine B Utilization = = NaN

EXPECTED: Machine C Utilization = = NaN

INPUT: Machine A Old(3) or New(1): = 3

INPUT: Machine B Old(3) or New(1): = 3

INPUT: Machine C Old(3) or New(1): = 3

EXPECTED: throughput = = 0.0T56868843794

EXPECTED: Robot 1 Utilization = = 0.0156868838995

EXPECTED: Robot 2 Utilization = = 0.0217322149873

EXPECTED: Robot 3 Utilization = = 0.0190536861088

EXPECTED: Robot 4 Utilization = = 0.0439408573187

EXPECTED: Machine A Utilization = = 0.24T41T791994

EXPECTED: Machine B Utilization = = 0.310999122732

EXPECTED: Machine C Utilization = = 0.999874828192

Inspection

INPUT: Inspection - Manual(10) or Automatic(1): = 10

EXPECTED: throughput = 0.0681096183864

EXPECTED: Reject rate of part #1 = 0.0032492663644

EXPECTED: Accept rate of part #1 = 0.0632357188129

EXPECTED: Reject rate of part #2 = 0.00649853272994

EXPECTED: Accept rate of part #2 = 0.126471437648

EXPECTED: Reject rate of part #3 = 0.0032492663644

EXPECTED: Accept rate of part #3 = 0.0632357188129

EXPECTED: Inspection Utilization = 0.999774245428

INPUT: Inspection - Manual(10) or Automatic(1): = 1

EXPECTED: throughput = 0.6797T5156704

EXPECTED: Reject rate of part #1 = 0.0324267773512

EXPECTED: Accept rate of part #1 = 0.631074990614

EXPECTED: Reject rate of part #2 = 0.0648535546739

EXPECTED: Accept rate of part #2 = T.26214998068

EXPECTED: Reject rate of part #3 = 0.0324267773512

EXPECTED: Accept rate of part #3 = 0.631074990614

EXPECTED: Inspection Utilization = 0.997747031799

REFERENCES

1. Atabakhche, H., D. S.Barbalho, R. Valette, and M. Courvoisier. "From Petri Net
Based PLC's to Knowledge Based Control." IECON, (1986): 817-821.

2. Bako, B., and R. Valette, "Towards a Decentralization of Rule-Based Systems
Controlled by Petri Nets: an Application to F.M.S.." Fourth International
Symposium on Knowledge Engineering, Technical Sessions, Barcelona,
L.A.A.S. C.N.R.S, Technical Report #90123, Toulouse, France (May 7-1T,
1990).

3. Bako, B., and R. Valette, "Software Implementation of Petri Nets and
Compilation of Rule-Based Systems." Lecture Notes in Computer Science 524,
Advances in Petri Nets 1991, G. Rozenberg (editor). Springer-Verlag: 296-
316.

4. Boucher, T., M. Jafari, and G. Meredith. "Petri Net Control of an Automated
Manufacturing Cell." Industrial Engineering, Vol. T7. Nos. 1-4 (1989): 459-
463.

5. Brand, K., and J. Kopainsky. "Principles and Engineering of Process Control with
Petri Nets." IEEE Transactions on Automatic Control, Vol. 33, No. 2
(February, 1988): 138-149.

6. Cardoso, J., R. Vallete, and D. Dubois. "Petri Nets with Uncertain Markings."
Lecture Notes in Computer Science 483, Advances in Petri Nets 1990, G.
Rozenberg (editor). Springer-Verlag: 64-78.

7. Cofrancesco, P., A. Cristoforetti, R. Scattolini. " Petri Nets Based Approach to
Software Development for Real Time Control." IEE Proceedings-D, Vol. 138,
No. 5 (September, 1991): 474-478.

8. Combacau, M., and M. Courvoisier. "Process Failure Diagnosis in F.M.S. Real-
Time Control: An Approach Combining Rule-Based Systems and Petri Nets."
IEEE Proceedings, Second Annual Conference on AI, Simulation and Planning
in High Autonomy Systems, Cocoa Beach, Florida. April 1-2, 1991. pp. 174-
180.

9. Courvoisier, M., J. M. Bigou, R. Valette, C. Desclaux and K. Benzakour. "The
SECOIA Project." European Conference on Computers in Communication and
Control (Septemper, 1984).

10. Courvoisier, M., R. Valette, A. Sahraoui, and M. Combacau. "Specification and
Implementation Techniques for Multilevel Control and Monitoring of F.M.S.. "
Computer Applications in Production Engineering, F. Kimura and A Rolstadas
(editors), Elsevier Science Publishers B.V. IFIP (T989): 509-516.

11. Crockett, D., A. Desrochers, F. DiCesare, and T.Ward. "Implementation of a
Petri Net Controller for a Machining Workstation." Proceedings of IEEE
International Conference on Robotics and Automation (March 30 - April 3,
1987).

12. Desrochers, A. "Modeling and Control Using Petri Nets." Modeling and Control
of Manufacturing Systems, IEEE Computer Society Press (1990): 239-251.

13. Hatono, I., K. Yamagata, and H. Tamura. "Modeling and On-Line
Scheduling of Flexible Manufacturing Systems Using Stochastic Petri Nets."
IEEE Transactions on Software Engineering, Vol. 17, No. 2 (February, 1991).

14. Kasturia, E., F. DiCesare, and A. Desrochers. "Real Time Control of
Multilevel Manufuacturing Systems Using Colored Petri Nets." IEEE
International Conference on Robotics and Automation (April, 1988): 1114-
1119.

15. Komoda, N., K. Kera, and T. Kubo. "An Autonomous Decentralized Control
System for Factory Automation." Computer (December, 1984): 73-83.

16. Konat, H. "Series One Programmable Controllers." GE Fanuc Automation, GEK-
90842A(1987): 1.

17. Murata, T. "Petri Nets: Properties, Analysis and Applications." IEEE, Vol. 17,
No. 4 (April, 1989): 54T-580.

18. Murata, T., N. Komoda, K. Matsumoto, and K. Haruna. "A Petri Net Based
Controller for Flexible and Maintainable Sequence Control and its Applications
in Factory Automation." IEEE Transactions on Industrial Electronics, Vol.

IE-33, No. 1 (February, 1986): 1-8.

19. Nketsa, J., and M. Courvoisier. "A Petri Net Based Single Chip Programmable
Controller for Distributed Local Controls." IEEE, IECON '90, Volume I,
Processing and System Control Factory Automation (November 27-30, 1990):
542-547.

20. Sahraoui, A., and L. Gilhodes. "State Charts, Temporal Logic and Petri Nets to
Specify Discrete Event Controllers: A Comparative Study on Descriptive
Power." European Control Conference (ECC) Proceedings, Vol. 1 (July 2-5,
1991): 1690-1695.

21. Silva, M., and R. Valette. "Petri Nets and Flexible Manufacturing." E.T.S.
Ingenieros Industriales, Technical Report #F50015, Zaragoza, Spain (January,
1990): 1-43.

22. Thuriot, C., and M. F. Valax. "Interactive Algorithm for Scheduling Based on
a Temporal Logic Under Resource Constraints. " L.A. A. S. C. N. R. S, Technical
Report #89182, Toulouse, France (May 7-11, 1990).

23. Tsukimoto, H. "A Model Matching Design Method for Sequence Control
Systems." IEEE, ISSN# 0-7803-0233-8/91 (1991): 501-506.

24. Valette, R., J. Cardoso, H. Atabakhche and T. Lemaire. "Petri Nets and
Production Rules for Decision levels in FMS Control." Artificial Intelligence
in Scientific Computation: Towards Second Generation Systems. R. Huber et
al. (editors). J.C. Baltzer AG, Scientific Publishing Company. IMACS (1989):
301-305.

25. Zhou, M. C., F. Dicesare, and D. Rudolph. "Control of a Flexible
Manufacturing System Using Petri Nets." IFAC World Congress, Vol. 9
(August 13-17, 1990): 43-48.

26. Zhou, M.C., F. DiCesare, and D. L. Rudolph. "Design and Implementation of
a Petri Net Based Supervisor for a Flexible Manufacturing System." To appear
in Automatica (November, 1992).

27. Zhou, M. C., K. McDermott, P. Patel, and T. Tang. "Construction of Petri Net
Based Mathematical Models of an FMS Cell." Proceedings of IEEE
International Conference on Systems, Man, and Cybernetics, Charlottesville,
Virginia (October 13-16, 1991).

	Modeling, evaluation, and control of a flexible manufacturing cell using petri nets
	Recommended Citation

	Copyright Warning & Restrictions
	Personal Information Statement
	Abstract
	Title Page
	Approval Page
	Biographical Sketch
	Dedication
	Acknowledgment
	Table of Contents (1 of 2)
	Table of Contents (2 of 2)
	Chapter 1: Introduction To Petri Nets
	Chapter 2: Basic Petri Net Theory
	Chapter 3: Modeling A Flexible Manufacturing Cell
	Chapter 4: Evaluation of the FMC
	Chapter 5: Control of a FMC
	Chapter 6: Conclusion
	Appendix 1: Equivalent Firing Rates for Inspection Related Transitions
	Appendix 2: SPNP Source Code for Complete System with Robot #3
	Appendix 3: SPNP Source Code for the Inspection Subsystem
	Appendix 4: SPNP Source Code for the Process Subsystem Without Robot #3
	Appendix 5: SPNP Results
	References

	List of Tables
	List of Figures

