
New Jersey Institute of Technology New Jersey Institute of Technology

Digital Commons @ NJIT Digital Commons @ NJIT

Theses Electronic Theses and Dissertations

10-31-1992

Domain analysis within the GenSIF framework Domain analysis within the GenSIF framework

Heiko Thimm
New Jersey Institute of Technology

Follow this and additional works at: https://digitalcommons.njit.edu/theses

 Part of the Databases and Information Systems Commons, and the Management Information

Systems Commons

Recommended Citation Recommended Citation
Thimm, Heiko, "Domain analysis within the GenSIF framework" (1992). Theses. 2380.
https://digitalcommons.njit.edu/theses/2380

This Thesis is brought to you for free and open access by the Electronic Theses and Dissertations at Digital
Commons @ NJIT. It has been accepted for inclusion in Theses by an authorized administrator of Digital Commons
@ NJIT. For more information, please contact digitalcommons@njit.edu.

https://digitalcommons.njit.edu/
https://digitalcommons.njit.edu/theses
https://digitalcommons.njit.edu/etd
https://digitalcommons.njit.edu/theses?utm_source=digitalcommons.njit.edu%2Ftheses%2F2380&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/145?utm_source=digitalcommons.njit.edu%2Ftheses%2F2380&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/636?utm_source=digitalcommons.njit.edu%2Ftheses%2F2380&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/636?utm_source=digitalcommons.njit.edu%2Ftheses%2F2380&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.njit.edu/theses/2380?utm_source=digitalcommons.njit.edu%2Ftheses%2F2380&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@njit.edu

Copyright Warning & Restrictions

The copyright law of the United States (Title 17, United
States Code) governs the making of photocopies or other

reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and
archives are authorized to furnish a photocopy or other

reproduction. One of these specified conditions is that the
photocopy or reproduction is not to be “used for any

purpose other than private study, scholarship, or research.”
If a, user makes a request for, or later uses, a photocopy or
reproduction for purposes in excess of “fair use” that user

may be liable for copyright infringement,

This institution reserves the right to refuse to accept a
copying order if, in its judgment, fulfillment of the order

would involve violation of copyright law.

Please Note: The author retains the copyright while the
New Jersey Institute of Technology reserves the right to

distribute this thesis or dissertation

Printing note: If you do not wish to print this page, then select
“Pages from: first page # to: last page #” on the print dialog screen

The Van Houten library has removed some of the
personal information and all signatures from the
approval page and biographical sketches of theses
and dissertations in order to protect the identity of
NJIT graduates and faculty.

ABSTRACT

Domain Analysis Within the
GenSIF Framework

by
Heiko Thimm

The GenSIF framework which is targeted towards very large, distributed, and com-

plex software systems recently has been proposed to accomplish a form of systems

engineering and systems development in which the issue of systems integration is

considered from the beginning on.

One of the components of GenSIF is domain analysis. Domain analysis

leads to the design of a domain model. The specific needs GenSIF has in that area

were investigated with an emphasis on domain modeling. Main points addressed in

that investigation were the issue regarding the relevant information for the domain

modeling process and the required type of domain model.

Based on these results, an approach to domain modeling for GenSIF was

developed that provides a specific graphical notation which allows to create a semi-

formal kind of domain model. A few modeling examples for the application domain

"university department" were designed to evaluate this notation.

In addition, the major aspects of the application of a computer based tool

with respect to domain analysis as a concept of GenSIF were analysed.

DOMAIN ANALYSIS WITHIN THE
GenSIF FRAMEWORK

by
Heiko Thimm

A Thesis
Submitted to the Faculty of

New Jersey Institute of Technology
in Partial Fulfillment of the Requirements for the Degree of

Master of Science
Department of Computer and Information Science

October, 1992

APPROVAL PAGE

Domain Analysis Within the
GenSIF Framework

by
Heiko Thimm

Dr. Wilhelm Rossak, Thesis Adviser
Assistant Professor of Computer and Information Science, NJIT

Dr. Peter Ng, Committee Member
Chairperson and Professor of Computer and Information Science, NJIT

BIOGRAPHICAL SKETCH

Author: Heiko Thimm

Degree: Master of Science in Computer and Information Science

Date: October, 1992

Date of Birth:

Place of Birth:

Undergraduate and Graduate Education:

• Master of Science in Computer and Information Science, New Jersey
Institute of Technology, Newark, NJ, USA, 1992

• Diplom-Informatiker (FH), Fachhochschule Konstanz
(Polytechnic University), Konstanz, Germany, 1991

Major: Computer and Information Science

ACKNOWLEDGMENT

The author wishes to express his gratitude to Professor Wilhelm Rossak,

for his faithful supervision, friendship, and constant moral support throughout this

research.

Special thanks to Professor Peter Ng for serving as a member of the com-

mittee and for the time invested on this research.

The author especially is grateful to Tamar Zemel for helpful discussions,

valuable suggestions, and constant support throughout this research.

The author is grateful to the Fulbright Commission for the opportunity

to complete the Master of Science Program in the United States and for funding

provided through their scholarship. Mostly the author appreciates the knowledge

gained through experiences in both academic and personal aspects of student life

in the United States.

TABLE OF CONTENTS

Page

1 INTRODUCTION 1

2 AN OVERVIEW OF GenSIF 3

2.1 What is GenSIF? 3

2.2 The Components of GenSIF 5

3 THE ROLE OF THE DOMAIN MODEL IN GenSIF 8

3.1 The Role of the Domain Model in Systems Engineering With GenSIF 8

3.2 The Role of the Domain Model in Systems Development With GenSIF 10

4 THE GENERAL DOMAIN ANALYSIS APPROACH 13

4.1 The Major Concern of Domain Analysis 13

4.2 Domain Modeling as Part of the Domain Analysis Process 16

5 DOMAIN ANALYSIS AS A CONCEPT OF GenSIF 19

5.1 How to Analyse the Application Domain 20

5.2 A Domain Model "Specification" 27

5.2.1 Required Usability of Domain Models for GenSIF 28

5.2.2 General Characteristics of the Required Domain Model Type 28

5.2.3 Important Criteria for the Phenomena Description 29

5.3 "Infinity" of the Domain Analysis Process Within GenSIF 31

5.4 Domain Phenomena to Select as Domain Model Contents 32

5.4.1 Relevant Domain Phenomena 33

5.4.2 Currently Unconsidered Domain Phenomena 38

5.5 Comparison to Other Domain Modeling Approaches 39

Page

6 AN APPROACH TO DOMAIN MODELING FOR GenSIF 42

6.1 The Philosophical Basis 42

6.2 The General Approach 44

6.3 The Modeling Primitives 46

6.4 Demonstration of Modeling Examples 59

6.5 Contributions of This Experiment to the GenSIF Project 67

7 SOME REMARKS ON A DOMAIN ANALYSIS SUPPORT TOOL FOR
GenSIF 70

7.1 A Framework for the Required Type of Tool 70

7.2 On the Modeling Formalism That Should be Facilitated 73

7.3 Computational Processability and Automatic Support 75

7.4 Domain Model Presentation - The User Interface 78

8 FINAL DISCUSSION 80

8.1 Summary 80

8.2 Open Research Questions 81

8.2.1 Elaboration of Domain Analysis as Concept of GenSIF 81

8.2.2 Approach to a Specific Domain Modeling Notation
for GenSIF 81

8.2.3 Selection of a Domain Analysis Support Tool for GenSIF 84

8.3 Conclusions 86

APPENDIX 90

REFERENCES 92

LIST OF FIGURES

Figure Page

2.1 The components of the GenSIF framework 6

3.1 Developing an integration architecture 9

3.2 Systems development with GenSIF 11

5.1 The three relevant aspects of the real world in domain analysis for
GenSIF 23

5.2 Different points of view at the application domain "university
department 25

5.3 "Interface" between the domain and the domain environment 26

5.4 Rough "specification" of the required domain model type for GenSIF 30

5.5 "Infinity" of the domain analysis process within GenSIF facing 31

5.6 Selecting domain phenomena as domain model content facing 32

6.1 Modeling example 1 facing 60

6.2 Modeling example 2 facing 62

6.3 Modeling example 3 facing 64

6.4 Modeling example 4 facing 65

6.5 Modeling example 5 facing 66

7.1 Conceptual schema of a domain analysis support tool 71

7.2 Relationship between modeling formalism implementation, computational
processability and automatic support facing 75

7.3 Computer aided systems engineering and systems development with
GenSIF facing 77

CHAPTER 1
INTRODUCTION

A new generation of computer based systems with fundamental differences to the

traditional ones is recognizable. The specific characteristics of these new systems

prevent the successful application of engineering methodologies that have been suc-

cessfully applied to the development and management of traditional systems. Es-

pecially for their development as integrated systems, these new systems necessitate

the innovation of new engineering methodologies and frameworks.

Currently such a framework is under development at the Institute for Integrated

Systems Research at the New Jersey Institute of Technology. This framework has

been called, due to its generic character, "Generic Systems Integration Framework"

or in its abbreviated form just GenSIF.

Integration architectures are an essential component of GenSIF. One major

aspect is that such an integration architecture must fit to the given environment,

the application domain, since integration architectures are domain specific.

For the decision about the fitting integration architecture, domain analysis is

a prerequisite that has been included as a component of GenSIF. Domain analysis

which goes beyond just requirements analysis is a model driven analysis approach

with the goal to derive and maintain a model of the application domain that is

called a "domain model". Besides its utilization in the decision process concerning

the fitting integration architecture, this domain model is also the input for the

requirements analysis of each application project within the domain.

In other words the domain model that is designed and maintained in domain

analysis, has a specific role in systems engineering as well as systems development

with GenSIF.

This thesis has been prepared as a contribution to the GenSIF project, with

respect to its domain analysis component. The core of the thesis is organized in

two main parts, where part one consists of the chapters 2 to 5 and part two includes

the chapter 6 and 7.

Part one is concerned with the elaboration of some major aspects of domain

analysis as a concept of GenSIF. After GenSIF has been introduced in general,

the different roles of the domain model within GenSIF are investigated. Then an

overview about the general domain analysis research area is provided. In the last

chapter of the first part, some important aspects of the process of domain analysis

are discussed, considering and discussing the specific needs GenSIF has in this area.

Based on the results of the first part, in the second part an approach to a

specific graphical notation for domain analysis within GenSIF is proposed. In the

remaining chapter 7 of the second part some remarks regarding a domain analysis

support tool for GenSIF are summarized.

At the end of this thesis a final discussion is provided. In this discussion first

a summary of the research this thesis is concerned with is provided before open

research questions with respect to each of the addressed areas are discussed. This

discussion also includes shortcomings of the introduced specific modeling notation.

Finally conclusions and recommendations regarding the continuation of the research

efforts of this thesis are provided.

CHAPTER 2
AN OVERVIEW OF GenSIF

In the following chapter an overview of the GenSIF framework is given. Although

the documentation prepared by the inventor of the GenSIF framework has been

studied carefully, it should be pointed out that the overview is based on the authors

point of view. Hence the reader is referred to the original documentation for more

information (Rossak and Ng 1991; Rossak 1992a; Zemel 1992).

2.1 What is GenSIF?

If we think about the usage of computers in organizations of our society like business

organizations, universities, federal organizations, production plants, or even non

profit organizations, in general we can conclude that almost every task is done by the

usage of computer systems. Most of these traditional systems can be characterized

in the following way (Zemel 1992):

• specific user group

• one purpose

• small size

• short life

• homogeneous environment

• each part depends on other parts.

Based on a new approach called global thinking, buzz words like Computer Inte-

grated Manufacturing (CIM), Computer Integrated Business (CIB) or even Com-

puter Integrated Industry (CII) emerged over the last few years. We also have

some research groups that work in the field of Computer Based Systems Engineer-

ing (CBSE). These new approaches all indicate that we are approaching a new

generation of computer systems. Some of the main characteristics of these new

systems are:

• no specific user group

• more than one purpose

• large and complex

• long life

• heterogeneous environment

• each part is a system by its own

A major issue of that new generation of computer systems is integration on the

systems level. But integration in that sense does not mean melting components in

one big system. A new system type, called mega-systems, is what is required for

that new generation of computer systems (Zemel 1992).

In a mega-system, the components are loosely coupled components, where each

element is still self-contained, but all elements interoperate. A mega-system should

be as open as possible like a general system but as preplanned as possible as well

(Rossak 1992b).

One of the major problems of traditional systems development is that main-

tenance becomes close to impossible. In the worst case the existing system has

to be phased out and redeveloped from scratch. In contrast to that, if a com-

ponent of a mega-system is replaced or upgraded, this should have no direct ef-

fect on the other components. Based on this problem and other aspects of de-

velopment/maintenance, the conclusion is that traditional systems development

approaches are not adequate for that new generation of systems (Zemel 1992).

The so-called Generic Systems Integration Framework, abbreviated GenSIF

(Rossak and Ng 1991), which is an on-going research project at the Institute for

Integrated Systems Research at the New Jersey Institute of Technology under the

leadership of Professor Dr. W. Rossak has been proposed as a possible solution.

GenSIF, as the name suggests, is a generic framework for systems integration for

very large, complex, distributed systems that contributes to systems engineering

and systems development of that new generation of computer systems. The focal

point of GenSIF is the engineering aspect where in (Zemel 1992) a process model

that is based on GenSIF is introduced.

The underlying believe of GenSIF is, that mega-systems are not developed in

only one project, but by many projects. All activities of the development process

within the application domain are integrated by modeling the domain in a domain

model and deriving an integration architecture.

The integration architecture is divided in a conceptual architecture model, pro-

viding guidelines and standards, and in an infrastructure, providing the environ-

ment for development and usage of such an integrated system. If everything is build

according to these guidelines and the infrastructure, the resulting system can be

used as one integrated system (mega-system).

Using these components of the integration framework, a meta-level of control for

system development can be specified. This meta-level provides the system engineer

with a basis to coordinate and to plan projects in the application domain (Rossak

1992a).

2.2 The Components of GenSIF

Figure 2.1, adopted from (Rossak 1992a), gives an overview about the components

of GenSIF. These three components reflect different levels of abstraction and ad-

dress different goals and needs during an integrated development process.

Each of these components is introduced in the following paragraphs, based on the

Figure 2.1: The components of the GenSIF framework.

definitions given in the papers which are intended to make the GenSIF framework

public to the system engineering and software engineering community (Rossak and

Ng 1991; Rossak 1992a).

Global (Domain) Integration:

Global (domain) integration specifies the conceptual basis for the integration archi-

tecture. One aspect of global integration is to deal with the concepts and semantics

of an application domain and with the mapping of these concepts into the installed

applications. These global activities involve an analysis of the application domain

in order to define a common model of the environment the system is going to serve.

Domain analysis (Prieto-Diaz, and Arango 1991) not only provides a basis for se-

mantic integration, but it is also the main input to decide on the design of the

integration architecture.

Integration Architecture:

The integration architecture is the core of GenSIF. An integration architecture is

a conceptual model that bridges the gap between the results of domain analysis

and the tool-level. It also is an infrastructure which provides the necessary utilities

and components to implement an application system by following the rules of the

conceptual model. An integration architecture must fit the needs oft the application

domain, like a given hardware- architecture must fit the needs of the typical working

environment it is serving.

Enabling Technologies:

Enabling technologies comprise all the tools and products that are required by the

infrastructure of an integration architecture to develop and implement the appli-

cations which will fill the abstract architecture with functionality and data. This

level should not only be concerned with the state-of-the-art but should also provide

suggestions for restrictions and standards in this area.

The above identified components of GenSIF provide the necessary models to

handle strategic decisions and technical integration issues. The components of

GenSIF affect and guide the development of all system parts. These system parts

are usually developed in separate, independent projects.

CHAPTER 3
THE ROLE OF THE DOMAIN MODEL

IN GenSIF

After having introduced the general idea of the GenSIF framework and its compo-

nents, this chapter concentrates on the utilization of the domain model in GenSIF.

It is supposed to provide the background information that is presupposed by the

succeeding chapters and completes the description of the GenSIF framework on an

introductory level. The reader is referred again to the original documentation of

the GenSIF framework for more information (Rossak and Ng 1991; Rossak 1992a:

Zemel 1992).

3.1 The Role of the Domain Model in
Systems Engineering

With GenSIF

According to GenSIF, systems engineering consists of two phases (Rossak, and

Prasad 1991). During the first phase, the integration architecture is developed.

During the second phase, the architecture is used for global integration and for

evaluation of enabling technologies. With respect to the investigation of the role

of the domain model within systems engineering according to GenSIF, we can

concentrate on the first phase. As shown in figure 3.1, before a new integration

architecture can be designed or an existing one is adopted, domain analysis must

be completed (Rossak 1992a). Domain analysis as it should be performed there

is investigated in chapter 5. The focus is on the results of the domain analysis,

i.e. the acquired knowledge about the application domain which is formalized and

represented in a domain model.

Based on the domain model an integration architecture is derived. Implicitly

this has pointed out that integration architectures are always developed for specific

domains. The activity, where a fitting integration architecture is derived from

Figure 3.1: Developing an integration architecture

the domain model, has been called "mapping" the application domain model into

a fitting integration architecture. It is extremely important that the "mapping-

procedure" will find a fitting integration architecture, otherwise the utilization of

the GenSIF framework will fail.

The integration architecture provides a conceptual and technical framework for

systems development. This framework is used as a standardization and control tool

for every development and every existing component in the application domain. It

is used to provide a basis of reference for the projects in the application domain and

gives the developers and project managers a chance to evaluate decisions, trade-

offs and implications (Rossak 1992a). However the integration architecture does

not speak about particular application programs.

3.2 The Role of the Domain Model in
Systems Development

With GenSIF

Integrated development, as it has been described in (Rossak 1992a; Rossak 1992b),

typically has to cope with diversified and complex development environments where

the (sub-)systems are developed in independent projects as a part of the larger de-

velopment effort within the application domain. To achieve integrated development,

a meta-level above the level of the single projects has been introduced in (Rossak

1992a). This meta-level is oriented towards long-term goals and control of the

shorter projects, in order to assure integration of these projects and their results

into the global system framework.

The meta-model proposed in (Rossak 1992a) is divided into two development

tracks which reflect this meta-level and the project-level. The components of the

GenSIF framework namely a domain model, an integration architecture, and a

specification of enabling technologies are proposed as the instruments on the more

long-term oriented meta-level. The project-level is given by the development-cycle

for the subsystems of the integrated system. This approach is graphically depicted

in figure 3.2 and shows the role of the domain model in system development with

GenSIF (Rossak 1992a). On the project level, the domain model specifies the

conceptual environment for each of the projects. It includes those concepts and

terms of the "real world" which may be reflected in the application. It is used to

express the project's goals and requirements. An important point to notice is that

the usage of the domain model as a common reference model must be enforced for

the requirements analysis of each project. Therefore, the requirements analysis is

based on the domain model. The task of the requirements engineer can be described

as a process where the domain knowledge, that is captured in the domain model,

is refined up to a certain level. This allows to see the specific requirements of a

project as a part of (and derived from) the basic structure of the domain. The

Figure 3.2: Systems development with GenSIF.

proposal for this usage of domain models is also based on the experience that large

software systems are hard to change. Thus, to be able to base design decisions not

only on an initial set of user requirements, but on a comprehensive model of the

system's application domain, the domain model contains the objects, relationships,

and concepts that are considered important to those who will use the system. This

model is likely to be more stable than a set of specialized requirements.

Greenspan et al. give a good overview of the domain-modeling approach to tradi-

tional software development in (Greenspan, Mylopoulos, and Borgida 1982):

".. in conszdering the development of a variety of informatzon systems we have

found it necessary to become intimately familiar with a wide range of subject mat-

ters: medical knowledge, hospital procedures and policies, available therapzes (drugs,

surgery, etc.), legal responsibilities to government, and so on. We believe that this

kind of real world knowledge needs to be captured in a formal requirements speci-

fication. The ability to efficiently design appropriate computer systems and enable

them to evolve over their lifetime depends on the extent to which this knowledge can

be captured".

The design method JSD (Jackson 1983) is based on the same principle:

" Every computer system is concerned with a real world, a reality, outside itself.

A telephone switching system is concerned with telephone subscribers, telephone

handsets, dialing, conversations, conference calls. A payroll system is concerned

with employees, the work they do, the pay they earn, the tax they must pay, the

holidays they are entitled to.

It is a fundamental principle of JSD that the developer must begin by modeling

this reality, and only then go on to consider in full detail the functions which the

system, is to perform. The system itself is regarded as a kind of simulation of the

real world; as replicating within itself what is happening in the real world outside.

The functions of the system are built upon this simulation; in JSD they are explicitly

added in a later development step".

CHAPTER 4
THE GENERAL DOMAIN ANALYSIS APPROACH

Within the previous chapters, the term domain analysis has been used several times

without a further explanation of what it refers to. This was done on purpose in

order to avoid the introduction of additional new terms and concepts at the same

time the GenSIF framework has been introduced and under the assumption that

the reader is able to intuitively understand the used term.

Since domain analysis is a research topic of its own, this chapter is supposed

to give a general overview of that research area without any conclusions to domain

analysis as it should be performed within the GenSIF framework. The purpose

of this general overview is to prepare the elaboration of domain analysis as it is

requested by GenSIF, and to identify important aspects that need to be considered

in that elaboration.

4.1 The Major Concern of Domain Analysis

Let us start the description of the major concern of domain analysis with a definition

of what is called a domain:

"In a broad context it is "a sphere of activity or interest: field" (Webster) in the

context of software engineering it is most often understood as an application area,

a field for which software systems are developed. Examples include airline reserva-

tion systems, payroll systems, communication and control systems, spread sheets,

numerical control.

Domains can be broad like banking or narrow like arithmetic operations. Broad

domains consist of clusters of interrelated narrower domains usually structured in

a directed graph. To reserve a seat in the domain of airline reservation systems,

for example, an update operation is called from the domain of database systems. To

update a record in the database domain, operations from a still more basic domain,

like programming languages, are needed. Other domains like user interfaces (e.g.

screen manipulation, mouse interaction) are also instrumental for airline reserva-

tion systems. Domains, therefore, can be seen as networks in some semihierarchical

structure where primitive, narrow domains such as assembly language and arith-

metic operations are at the bottom and broader, more complex domains are at the

top. Domain complexity can be characterized by the number of interrelated domains

they require to be operational (Prieto-Diaz 1990)".

Domain analysis has been defined by Jim Neighbors (Neighbors 1981) as an attempt

to identify the objects, operations, and relationships domain experts perceive to

be important for the domain. Diaz has extended this definition to a form, most

researchers within that area seem to have agreed on today:

"... domain analysis can be seen as a process where information used in developing

software systems is identified, captured, structured, and organized for further reuse

(Prieto-Diaz 1990)".

It is quite plausible to draw an analogy between domain analysis and conventional

systems analysis like it has been done by Neighbors (Neighbors 1981) in the early

days of domain analysis research. However the important difference is that domain

analysis goes beyond systems analysis. It is a meta-level version of conventional

requirements analysis because of its focus on the meta-level of the software con-

struction process (Prieto-Diaz, and Arango 1991). Neighbors has explained the dif-

ference between both approaches by identifying that systems analysis is concerned

with actions in a specific system in an application area while domain analysis is

concerned with actions and objects in all systems in an application area (Neighbors

1981). He therefore concluded that domain analysis can be explained as a general-

ization of systems analysis in which the objective is to identify the operations and

objects needed to specify information processing in a particular domain. In (Prieto-

Diaz, and Arango 1991) another alternative definition of domain analysis has been

introduced in which it is regarded as a form of knowledge engineering designed to

support a particular problem-solving process: case-based software specification and

construction.

Domain analysis is at the intersection of a family of disciplines: software spec-

ification, automatic software development, conceptual modeling, knowledge acqui-

sition, knowledge representation, and software engineering economics. From all

these areas it can draw viewpoints and solutions. From them, it also inherits dif-

ficult questions and open problems. Related domain analysis experiences such as

in automatic programming, expert systems development, object-oriented software

development, development of software factories and also in library science are re-

ported in (Prieto-Diaz 1990). Despite this large spectrum of different fields where

domain analysis is evident, in most published research papers concerned with do-

main analysis there is a strong tendency to explain domain analysis as an activity

oriented towards software reusability. This tendency might come from the fact that

the domain analysis process automatically leads to a domain model that allows to

reuse the identified and structured information concerning the domain.

An attempt to identify concrete tasks of the domain analysis process is given in

(Prieto-Diaz, and Arango 1991), where the following steps have been identified:

• Domain Identification:
Identification of the boundary of the domain that defines its scope i.e. the
objects, operations, and relations that belong to the domain.

• Information Acquisition:
Identification, selection, and acquisition of information concerning the
identified domain.

• Domain Model Representation:
Making all that acquired information explicit, and readily available in a
formal domain model. In reality this step goes hand in hand with the former
step.

• Evolution:
Typically, knowledge of a domain evolves naturally over time. This has to
be reflected in the domain model.

• Evaluation, i.e. Verification and Validation:
Verification demonstrates that the model is syntactically and semantically
correct with respect to the definition of the modeling formalism. Validation
demonstrates that the information captured by the model does indeed serve
the goals for which domain analysis is applied.

Domain analysis is a broad and complex subject area. To cover all ramifications of

this research area goes beyond the scope of this paper. Due to the nature of the

activities and issues involved and to the newness of the area, domain analysis is

perceived differently by different communities. What is shared by all different ap-

proaches to domain analysis that have been reviewed for that thesis is that domain

analysis implies domain modeling i.e. the design of a model of the domain. This

issue is explored in more details in the following section of this chapter.

4.2 Domain Modeling as Part of the
Domain Analysis Process

The output of the domain analysis process is a domain model. According to (Iscoe,

Williams, and Arango 1991) domain models within the context of domain analysis

are representations of an application domain that can be used for a variety of

operational goals in support of specific software engineering tasks or processes.

These operational goals are always implicit in the construction of a domain model

and are essential to understand the form and contents of that model. In other

words, the operational goals specify the usage of the application domain knowledge

in support of various software engineering tasks and processes. Typical examples for

operational goals of domain modeling for software engineering are (Iscoe, Williams,

and Arango 1991):

• Requirements and Specifications:
Eliciting, verifying, and formalizing software requirements and specifica-
tions.

• Automated Program Generation:
Generating code from a system specification.

• Reverse Engineering:
Identifying the semantics of existing code.

• Explanation and Communication:
Capturing and communicating system content as with an executive informa-
tion system.

• Decision Modeling:
Understanding and resolving design decisions and rationales.

• Education and Training:
Training analysts and end users.

The difference to generalized knowledge representation projects that attempt to

provide a basis for modeling encyclopedic knowledge is that domain modeling ex-

plicitly acknowledges that representations are designed for particular purposes.

These purposes - the operational goals - inherently bias any particular solution

and dictate the contents and the final form of the domain model.

The domain model designer, i.e. the domain analyst or the domain engineer has

to obey these operational goals in his or her task of determining what knowledge

about the application domain to represent, how to organize, and how to express

it. Depending on that decision, the forms domain models can have vary to a large

degree. A taxonomy, for example, which can be characterized as a definitional

model, only shows what is in the domain and how it is organized. Knowledge

representation models like the LaSSIE environment of Devanbu et al (Devanbu,

Brachman, and Selfridge 1990) or the KITSS system of Kelly et al (Kelly 1991)

provide semantics and some explanatory capabilities by semantic retrieval. Domain-

specific languages like addressed in Neighbors DRACO system (Neighbors 1984),

when expressed as formal grammars supported by parsers, are models that may

support direct translation of software specification into executable code.

There are also models that provide information on how to build systems for the

domain. These may be in the form of standards, guidelines, templates, or interface

definitions. Functional models describe how systems work using representations

such as dataflow diagrams or program description languages. An examples for that

is described in (Setliff 1991). Structural models describe how systems in the domain

are built.

The construction of the domain model is called the model instantiation process

in which the domain knowledge is expressed by using a meta-model or modeling

language. A meta-model or modeling language is defined in the following way

(Iscoe, Liu and Tam 1991):

"A language or representation structure used to specify the knowledge about a given

domain. Formality and executability allow for reasoning and inference to support

the operational goals."

Knowledge representation and conceptual modeling languages play a promi-

nent role in making the output of the domain analysis explicit. Taxonomic and

object-oriented representations are widely used. Conventional software engineering

representation schemes such as structured charts, dataflow diagrams, state charts,

or pseudocode are used to encode implementation knowledge. Hypertext media

permit flexible interactions between analysts and domain models. Typing and al-

gebraic specifications have a role in formalizing domain semantics (Prieto-Diaz, and

Arango 1991).

CHAPTER 5
DOMAIN ANALYSIS AS A CONCEPT OF GenSIF

In chapter two the GenSIF framework has been introduced, followed by an elabo-

ration of the context for the utilization of domain models within this framework in

chapter three. A broad general overview of domain analysis which has been iden-

tified as a process that intends to derive and maintain a domain model has been

given in the previous chapter.

Domain analysis as a concept of GenSIF has only been introduced on a top level

without any discussion of its content. Only the general idea behind the framework

in which domain analysis is intended to take place has been discussed so far. The

assumption was that domain analysis in GenSIF is the prerequisite for the derivation

of an integration architecture and in addition it is a preparation for the single

application projects.

This chapter is concerned with the elaboration of domain analysis as a concept

of GenSIF, i.e. with the elaboration of a domain analysis variant, in which the

specific needs of the GenSIF framework are reflected. However the elaboration

focuses on the domain modeling task for the reason that a modeling formalism

which is appropriate for that domain analysis variant has not been identified yet.

At first it is discussed how the application domain has to be analysed with respect

to the specific needs of the GenSIF framework which basically corresponds to what

has been called information acquisition in (Prieto-Diaz, and Arango 1991). Based

on that discussion the relevant analysis results that have to be made explicit in a

domain model are identified, in terms of real world phenomena. This declares the

kind of domain information that a modeling formalism for GenSIF must be able to

handle. (In section 5.2 it is attempted to give a rough specification for the general

domain model type required by GenSIF.)

The point of view in the discussion of domain analysis in this chapter is changed

then from aspects regarding the initial design of the domain model to aspects

concerning what basically happens if the domain model has been designed. Some

of these aspects are discussed in section 5.4.

5.1 How to Analyse the Application Domain

From what we have said so far, we already can infer that domain analysis within

GenSIF is concerned with domains relatively of large dimension, such as for exam-

ple "company", "factory", or "university". The purpose of the domain analysis in

that context is to provide a standardized model of the application domain. This

model is used to provide information for the decision concerning the fitting integra-

tion architecture and to prepare the requirements analysis of the single application

projects. That information should be made readily available in form of a domain

model.

In contrast to other domain analysis approaches that incorporate a conceptual

analysis as well as an constructive analysis, GenSIF, at the current state, does not

require more than the former. It even is a fundamental principle of GenSIF that the

domain analysis may not be oriented towards an "implementation" in a computer

based system. The application domain is analysed from a general point of view,

without any kind of application system in mind. It is viewed as what it is, namely

a part of the real world that itself is embedded in other, larger parts of the real

world.

In contrast to other kinds of real world analysis, domain analysis within GenSIF

definitely does not deal with any raw quantitative data concerning the application

domain. It stresses an "in breath" kind of conceptual analysis of the part of the real

world that has been identified as the application domain. The acquired knowledge

is not the one we typically find in Expert Systems. Instead of the analysis is

concerned with shallow knowledge on a very wide basis.

The three underlying fundamental principles of that conceptual analysis are dis-

cussed in the following part.

Principle I:
Consideration of Three Relevant Real World Aspects

Viewing the application domain as a part of the real world implies the question of

what are the particular aspects of the real world which should be analysed.

In the research seminar for systems integration at the New Jersey Institute of

Technology, we have come to the decision that domain analysis within GenSIF has

to be concerned with the following three aspects of the domain:

(1) Static Real World:

The term "static real world" is used here to refer to that aspect of the real world in

which there is no time dimension, or in which the time dimension is unimportant

at the moment. In principle we are talking about "objects" and "relations". If we

take for example the application domain "university department", then the analysis

result with respect to the static real world aspect of that example domain would

be:

• there are students, professors, courses, etc.

• professors are instructors of courses

• students participate in courses

(2) Dynamic Real World:

With this term we refer to what is "happening" in the real world. Here the time

dimension is of importance. We identify activities and processes. With respect

to the example application domain "university department" some analysis results

would be:

• at beginning of each semester students register for courses

• until December 15th in the fall semester students apply for graduation in
the spring semester

(3) Communication that Takes Place in the Real World:

What is meant basically is relevant communication in its broad sense that happens

in the real world. Hence this aspect focuses on information exchange. Typical

analysis results could be:

• application forms for graduation are submitted by the students to the ad-
missions office

• review process material is distributed by the office of the provost to the
professors

Domain analysis within GenSIF goes beyond only an investigation of what has been

called here the static real world due to the fact that we have to be complete in a

way similar to requirements analysis for systems development.

The aspects which have been called "dynamic real world" and "communication

that takes place in the real world" are also necessary to derive the integration archi-

tecture. It is quite plausible that for the definition of that integration architecture

more than only a description of the static real world of the application domain

is required. This can be claimed, since an integration architecture not only has

to fit the static structure of the domain, but also the behavior of the elements in

the domain and their communication. In general it can be said that the kind of

domain analysis which is required in the GenSIF framework has to cover the static

semantics as well as the dynamic semantics of the application domain.

Figure 5.1: The three relevant aspects of the real world in domain analysis for GenSIF.

Principle II:
Consideration of Multiple Points of View

Another fundamental principle of domain analysis if it should meet the requirements

of the GenSIF framework is that the analysis may not be restricted to only one

specific point of view.

Theoretically speaking, if an application domain can be analysed with respect

to one specific view Vi and there are j relevant, different points of view to look at

the domain, then the domain analysis has to consider "all" these different points

of view. With respect to the example application domain "university department"

from above, points of view are for example:

• View of a Student:
to look at the application domain from the point of view of a student

who is interested in academic programs, courses, his duties or for example
the consequences of an GPA lower than 3.3

• View of a Secretary:
to look at the application domain from the point of view of an secretary
of the department office, who probably needs to know the responsibilities
of professors, performing organizational duties of the department

• View of a Professor:
to look at the application domain from the point of view of a professor,
who wants to know the procedure to be promoted from an assistant professor

 to an associate professor

All these examples correspond to points of view of elements which directly belong

to the domain but there are also examples for points of view from outside the

application domain at that domain like for example:

• View of the Office of Sponsored Programs:
to look at the university department from the point of view of the office
of sponsored programs which is concerned with the fund handling where
the professors of the department are involved

• View of the Admissions Office:
to look at the university department from the point of view of the admissions
office which is concerned with the students of the department

• View of the Office of the Provost:
to look at the university department from the point of view of the office
of the provost which is, beside other concerns, involved in the promotion
and tenure process

These different perceptions (views) of the application domain are important for the

discovery of the interdependencies between the items of the domain and to identify

roles. Furthermore it helps us to prepare a comprehensive domain model. It is

also important for the reason that the domain analysis should prepare the different

application projects which always have a different underlying point of view of the

application domain.

Figure 5.2: Different points of view at the application domain "university department".

Principle III:
Consideration of the "Interface" Between
the Domain and the Domain Environment

In the introduction of this section it has been explained that within the GenSIF

framework the application domain has to be viewed as a part of the real world

that itself is embedded in another part of the real world. This implicitly has al-

ready defined a third principle for the domain analysis as it is required by GenSIF.

Analysing the application domain is the central concern but this may not mean

that the analysis can stop as soon as an imaginary boundary line is reached.

First of all, it has to be said that this imaginary boundary line between the

application domain itself and the environment of the domain is very difficult to

define, may be it is not possible at all. In (Prieto-Diaz, and Arango 1991) this has

been called domain identification. But this is a research topic of its own, and is not

investigated in this thesis.

The point that should be addressed here is that making the domain analysis

Figure 5.3: "Interface" between the domain and the domain environment.

in a strictly "closed world manner" is not sufficient. The scope and nature of the

application domains which are analysed within GenSIF usually do not allow this,

because this would lead to a lot of undiscovered semantics of things which belong

to the domain. Or in other words, leaving the scope of the application domain is

required if something in the domain is "tightly connected" with something outside

the domain and for the discovery of its semantics needs an additional look at its

connections to those "environmental things". Even if these "environmental things"

are outside the current area of interest that has been identified as the application

domain we would like to include them. This inclusion of the domain environment

is not a transitive procedure, i.e. connections that "environmental things" might

have to other "things" outside the scope of the application domain are definitely

not considered any more. Furthermore "environmental things" should be identified

as such by a qualitative different kind of description like in SADT sources and sinks.

An example for such an environmental object with respect to the ''university de-

partment" application domain is the "travel expense report". (This example might

be very specific for the New Jersey Institute of Technology where all the mentioned

examples are derived from. However, it is assumed that it is not much different to

the general case.) If a professor of an university department has received a fund

from an institution, i.e. a company, the fund is partly administrated by an office

that is called "office of sponsored programs". For every travel activity which is

done for purposes that have been declared in the funding proposal, the professor

has to make a travel expense report and submit this report to the office of spon-

sored programs, which than has to complete some "business as usual procedures".

Restricting the analysis to a "closed world" analysis in this case would have the

consequence, that the "hidden semantics" of the "travel expense report", namely

that this form is requested by the "office of sponsored programs" and therefore is

involved with the fund handling is not discovered.

5.2 A Domain Model "Specification"

In the previous section we have discussed how the application domain should be

analyzed in domain analysis for GenSIF. This means we are now familiar with the

variety of information that is considered in the analysis process. However what

is missing yet at this point is something like a specification of the general type

of domain model that is required by the GenSIF framework. To provide such a

specification, although this is only possible on a rough level, is the intention of this

section.

The specification is derived by providing first some key-words that identify the

required usability of the domain model within the GenSIF framework. After that

some fundamental general characteristics of the domain model are briefly discussed.

Finally the important criteria of the phenomena description are provided at the end.

5.2.1 Required Usability of Domain Models for GenSIF

"Dictionary" for the Application Domain:

In a broader sense the domain model for GenSIF should be usable like a "dictio-

nary" for the application domain. It defines a set of terms which are useful like a

THESAURUS. For the example domain "university department" some of the terms

could be: student, professor, course, laboratory, application form for graduation,

academic program, ... etc. The meaning of each term in the real world is given

by the connection between the real world and the model since it is assumed that

the model has a formal semantic basis. This formal sematic basis is provided by

the utilized modeling formalism. Once the domain model has been created, the

user can obtain important information from the model that help to understand the

application domain specific terminology.

"Knowledge Base" for the Application Domain:

The form of the domain model should be similar to a "knowledge base" for the

domain. However, while knowledge of a real world domain may include heuristics

and rules of inference as in artificial intelligence or expert-system knowledge bases,

the knowledge acquired in the domain model is usually narrower in scope. It tends

to include factual and deterministic knowledge. It includes no data knowledge

and is without any portion of problem solving knowledge. The content of a domain

model for GenSIF can be seen as "general knowledge", sometimes also called shallow

knowledge.

5.2.2 General Characteristics of the Required Domain
Model Type

As the next step, some more identifying general characteristics for the required

type of domain model can be provided where the underlying point of view is not

the usability of the model.

"Mental" Model:

A fundamental hypothesis of cognitive science (Psychology, Linguistics, Philosophy,

Computer Science) is "that people understand the world by building mental models

(Sown 1984)". If we accept this hypothesis and take into account that our domain

model is based on the domain analyst's perception and understanding of the real

world, than we might call it a model that reflects the domain analyst's personal

mental model. This identifies one critical aspect that we have to consider within

this context. The point is that the domain model has to be regarded as a subjective

model that depends on the model designer's personal perception and understanding

of the real world.

"Exclusive" Real World Model:

In contrast to other approaches the domain model as product of domain analysis in

GenSIF is not targeted towards system design. It only is concerned with the part

of the real world that has been identified as the relevant application domain.

5.2.3 Important Criteria for the Phenomena Description

Human Oriented Phenomena Description:

As discussed in chapter three, the users of the domain model within GenSIF are

system engineers and system developers. Although it has not been elaborated in

which way the domain model is exactly utilized by these users, it can be infered

that the domain model within GenSIF has to be a human oriented model in the

sense that what the model describes must primarily be understandable for humans.

In contrast to that, a simulation model must primarily be "understandable" by a

computer. Nevertheless, it is important that the entire description is well structured

and organized and the description is not ambiguous.

Figure 5.4: Rough "specification" of the required domain model type for GenSIF

Abstract Phenomena Description:

A domain model within GenSIF is an abstract description of the application do-

main, in which relevant aspects are described and other irrelevant aspects are omit-

ted. It is like the abstract description of a real building, which might describe the

shapes of the main components, their relative sizes, and their relative positions and

orientations, but it may omit to describe the material from which the walls are

built, the water, electrical and other services, the parts of the building that are

underground, and the internal structures of the building. Jackson (Jackson 1983)

has described this kind of selectivity as inevitable in any description, since "... the

only complete description of reality is the reality itself".

Figure 5.5: "Infinity" of the domain analysis process within GenSIF.

5.3 "Infinity" of the Domain Analysis
Process within GenSIF

Domain analysis as a concept of GenSIF is not a process that is completed as soon

as a domain model has been derived. In fact it is an ongoing process that only is

finished under the condition that there is no longer any interest in the application

domain. Therefore it can be concluded that domain analysis as a concept of GenSIF

is in some sense an infinite process.

Why is it an infinite process can be explained by the fact that from GenSIF's

point of view systems engineering and systems development for large integrated

systems is not something that takes places only once or ends in a determined time

interval. Once the domain model has been designed and the integration architecture

has been selected or developed, some application projects will be identified and

developed. However, there might be other projects in the future for which the need

has already been identified or which will emerge just in the future. Since application

domains are dynamic and change over time, these changes must be considered

and the domain model must be updated, if these future application development

projects also should have the domain model as input for their requirements analysis.

Some changes within the application domain might even require changes in the

integration architecture, because it is an essential requirement of GenSIF that the

integration architecture fits to the domain.

This "updating" of the domain model, i.e. keeping it an accurate description of

the application domain, is also part of the domain analysis process. It directly cor-

responds to what has been called "Domain Model Evolution" in (Prieto-Diaz, and

Arango 1991). Another aspect of domain analysis that follows the initial design of

the domain model is what can be called the refinement of relevant domain informa-

tion. Refinement includes mainly the insertion of more specific domain information

that has been acquired by the requirements analysis of application development

projects. This is done for the reason that every additional, relevant domain infor-

Figure 5.6: Selecting domain phenomena as domain model content.

mation should also be made readily available to other projects, together with what

already has been made explicit by the design of a domain model. Hence, the more

general and generic original domain model becomes a more and more specific and

specialized model of the application domain during this refinement process.

5.4 Domain Phenomena to Select as
Domain Model Contents

In section 5.1 it has been explored how the application domain should be analysed

if the specific requirements of the GenSIF framework are reflected in the domain

analysis process. The main conclusion regarding that investigation was that in the

information acquisition step of the domain analysis process, information is derived

by viewing the application domain simply as a part of the real world and performing

a conceptional analysis of this part of real world with respect to the following three

principles:

1. consideration of three relevant real world aspects,

2. consideration of multiple points of view,

3. consideration of the "interface" between the domain and the domain environ-
ment.

This basically can be understood as guidance how the application domain should

be perceived in that kind of analysis (It is assumed that the real world, i.e. the

application domain, extends beyond that perceived part.). The purpose of this sec-

tion is to discuss the relevant domain phenomena that should be selected during the

analysis of the perceived application domain. The description of all these selected

domain phenomena basically forms the domain model. In this "description-process"

the selected phenomena are mapped into the modeling primitives provided by the

applied modeling formalism (Figure 5.6).

5.4.1 Relevant Domain Phenomena

We in the research group for systems integration at the New Jersey Institute of

Technology (spring term 1992) have identified and broadly classified in a pragmatic

manner the phenomena that should be described in a domain model for GenSIF.

A good help to avoid confusion with the terms used in object oriented modeling

approaches is the following differentiation criteria: The terms given below do only

refer to "what" we would like to have described. However, "how" it should be

described is not considered here at all.

(As throughout this whole thesis, the presented examples for relevant phenom-

ena are taken from the application domain "university department".)

(1) Domain Object-Classes

Before it can be defined what is meant with a domain object-class, first it is nec-

essary to define the term domain object. The given definition has been adapted

from (Embley, Kurtz, and Woodfield 1992) where it is given within the context of

Object-Oriented Systems Analysis.

❑ Definition of Domain Object:

An object is a person, place, or thing. It may be physical or conceptual. The idea

is that an object is a single entity or notion. Each object is a unique individual. An

object may be related to or made up of other objects, but each object is unique. If

the object belongs to the application domain, then we call it a domain object.

❑ Examples for Domain Objects:

Examples for physical domain objects:

• the student David with Student-ID-Number 017-90-4011

• the workstation newark3 with Inventory Number 12034-1117-200

• the laboratory Software Engineering Laboratory

• the data storage File of Graduating Students

Examples for conceptual domain objects:

• the course CIS 631

• the academic program Master of Science in Computer Science

• the final exam CIS 631 at 05/02/1992

❑ Definition of Domain Object-Class:

A set of domain objects that belong together for some logical reason is a domain

object-class. Which domain objects belong together depends on the perception of

the domain analyst. Each object-class has a name that is generic and denotes any

member of the object-class.

❑ Examples for Domain Object-Classes:

• PERSON

• STUDENT

• PROFESSOR

• COURSE

• LABORATORY

• ROOM

The following relevant phenomena are descibed on an object basis. By the term

"classified objects" which I use several times throughout their discussion I refer to

objects which are the members of an object-class. However in the final domain

model we want to have a description on an object-class level.

(2) Relationships between Domain Objects
❑ Definition of Relationship:

A relationship is a logical connection between objects that associates one object

with other objects.

❑ Examples for Relationships:

• thesis advisors, which are professors, advise students

• courses are taken by students

• courses are taught by professors

(3) Roles of Domain Objects

❑ Definition of Role:

A role is a specific point of view on domain objects that belong to a specific domain

object-class. More concrete a role can be regarded as a mission, assignment, job,

or purpose that belongs to the objects of a specific domain object-class. Roles can

be differentiated according to several different criteria, like level of commitment

towards the role (mandatory, optional) or frequency of the role (one time, repetitive,

permanent).

❑ Examples for Roles of Domain Objects:

Relevant roles for the objects in the domain object-class REGISTERED STUDENT are:

• research assistant

• course participant

• Master's Thesis writer

• participant in academic program

Relevant roles of objects in the domain object-class PROFESSOR are:

• course instructor

• thesis advisor

• researcher

• promotion candidate

(4) Activities of Domain Objects
❑ Definition of Activity:

Something that is done is called an activity. Objects are the processors of activi-

ties. Hence, certain habitual activities can be identified as those activities that are

performed by certain objects classified in an object-class.

(We would get the behavior pattern of the objects classified in an object-class if we

also would consider the sequence of the activities. See section 5.4.2)

❑ Examples for Activities of Domain Objects:

Activities of the objects in the domain object-class REGISTERED STUDENT are:

• apply for graduation

• register for courses

• make Master's Thesis proposal

Activities for the objects in the domain object-class PROFESSOR are:

• make funding proposal

• process annual summary form

• make travel expense report

(5) Communication between Objects
❑ Definition of Communication:

The exchange of information between objects is regarded as communication between

objects. A differentiation between the participating partners (environmental object

or classified object) is not made.

❑ Examples for Communication between Objects:

• review process material is exchanged between the OFFICE OF THE
PROVOST and PROFESSORS which is implied by the promotion and
tenure process

• the travel expense report is exchanged between PROFESSORS and
the OFFICE OF SPONSORED PROGRAMS

(6) Environmental Objects

❑ Definition of Environmental Object:

It is referred to the definition for the term "Domain Object" given above. In

contrast to that, if an object is of relevance but does clearly not belong to the

application domain any more it, is referred to as an environmental object. Please

see also section 5.1, principle III, for an explanation regarding the question when

such an environmental object is of relevance.

❑ Examples for Environmental Objects:

• OFFICE OF SPONSORED PROGRAMS

• OFFICE OF GRADUATE STUDIES

• OFFICE OF THE PROVOST

(7) Activities of Environmental Objects

❑ Definition of Activity of an Environmental Object:

In contrast to activities of classified domain objects, here the activity is performed

by what has been defined as an environmental object.

❑ Examples for Activities of Environmental Objects:

In the following list the environmental object which is the processor of the environ-

mental activity is given in parenthesis.

• perform promotion and tenure process (OFFICE OF THE PROVOST)

• close course (OFFICE OF THE REGISTRAR)

• hire students (COMPANY)

• establish fund (COMPANY)

(8) Time Frames

❑ Definition of Time Frame:

As the name suggests a time frame is a certain period of time which is associated

with (a) certain (activity) activities. Since a time frame identifies the time interval

in which (an activity is) activities are performed in the domain, it can also be

regarded as a temporal constraint for the (activity) activities.

o Examples for Time Frames:

• academic year

• term

• graduation application period

• registration period

5.4.2 Currently Unconsidered Domain Phenomena

At the current status of our research regarding domain analysis within the GenSIF

framework, we have limited the contents of the domain model, to the elements

listed in section 5.4.1. However there are other elements which we have regarded

as currently not important for our domain model. These notions could become

relevant if we advance in our research.

(1) Behavioral Patterns

What we mean with behavioral pattern is the identification of the sequence in which

activities are performed. This could also include that one activity is identified as a

subactivity of another activity. Furthermore this could mean that several activities

which are oriented towards the same global goal are identified as something that

might be called a process.

(2) States and State Transformations

Although we are interested in the dynamics of the real world, currently we do not

consider the notions of state and state transformations like it is done in Petri-Nets.

At the actual status of our research we want to consider dynamics on a more general

level.

(3) Internal Events

An internal event is an instantaneous happening in the real world that has an impact

on one or more phenomena of the application domain. An event can trigger certain

additional activities, suppress certain activities, or change the status of objects. At

the moment we rather see the consideration of such internal events as a task of the

requirements analysis for the specific projects within the application domain.

(4) Constraints and Rules

Currently we see the consideration of constraints and rules as a task of the require-

ments analysis for the specific projects within the application domain.

(5) Quantities and Heuristics

Since domain analysis for GenSIF at the current status stresses an abstract, concep-

tual kind of analysis, quantities and heuristics do not have first priority. However

as selected quantities and heuristics they are of interest in general.

(6) Pre- and Postconditions of Activities

This simply regards to the conditions that must be satisfied before an activity can

be performed or after it has been completed respectively. Since we motivate an

abstract kind of analysis we do not consider these phenomena.

5.5 Comparison to Other Domain Modeling
Approaches

In the preceding sections of this chapter a domain modeling approach has been

introduced, which is based on the specific needs of the GenSIF framework. It is

the intention of this section to compare this approach to other domain modeling

approaches on a general level. The focal point of the comparison is on the contents

and form of the domain model.

In contrast to most other approaches, the GenSIF specific domain modeling

approach strives to build a much more comprehensive and differentiated model of

the application domain. The information provided by that model is not restricted

to only the objects in the domain, and their relationships to each other as it is

typical for domain modeling for reuse purposes. Domain modeling within the Gen-

SIF framework strives to capture more than this. As elaborated in the succeeding

sections it also is concerned with the dynamics, and the communication within an

application domain. Furthermore, in contrast to other approaches, it is the in-

tention to describe the domain from as many different perspectives as necessary.

Another difference is that, if necessary, information regarding the domain environ-

ment are captured in the domain model as well.

As an intermediate conclusion it can be said that a domain model within GenSIF

is concerned with a larger variety of phenomena than other approaches.

In (Prieto-Diaz, and Arango 1991) two facets of domain analysis are proposed

which are called: conceptual analysis and constructive analysis. This is the typical

reuse oriented domain analysis view where the domain model includes in addition

to the results of the conceptual analysis of the application domain, information

obtained by a constructive analysis as well. For instance in (Prieto-Diaz, and

Arango 1991) it is claimed that "a model of a domain should include information

on at least three aspects of a problem domain":

• concepts to enable the specification of systems in the domain

• plans describing how to map specifications into code

• rationales for the specification concepts, their relations, and their relation to
the implementation plans

As a significant difference the domain modeling approach within the GenSIF frame-

work is not concerned with any information regarding a constructive analysis at all.

It even is one of the basic principles of the way domain analysis should be performed

for GenSIF that the application domain should be perceived as "neutral" as pos-

sible. With "neutral" we mean that the analysis may not be targeted towards any

software systems solution.

There are some domain modeling approaches in which the domain model con-

tents include the domain modeling history (Lubars 1988) as well. Basically the

domain modeling history is the recording of events that affect the state of the do-

main model. Currently the domain modeling approach within GenSIF does not

include such a component. Although it would be nice to have this component,

at the actual state of our research it would be more of a luxury feature than a

necessity.

CHAPTER 6
AN APPROACH TO DOMAIN MODELING

FOR GenSIF

This chapter introduces an intuitive and pragmatic approach to a domain modeling

notation which has been developed based on what has been described in section

5.4 as the domain phenomena to select as domain model content. It should be

pointed out that there is no formal proof that the introduced notation is sound and

complete, and that we do not claim that it is the ultimate and only alternative to

the task addressed.

It has to be understood as the documentation of an experiment. This experiment

was carried out to gain more insights into a domain modeling notation for a domain

analysis variant in which the particular needs of the GenSIF framework are reflected.

In the first section the main idea behind the approach is introduced. In order to

enable the continuation of the introduction of the approach by discussing concrete

modeling examples, section 6.3 is concerned with the specification of modeling

primitives. Section 6.4 applies the primitives to model the application domain

"university department". Finally, in the last section, the contributions of this

design experiment for the GenSIF project are analysed from the authors point of

view.

6.1 The Philosophical Basis

The underlying basic opinion for the experiment to design an approach to a specific

domain modeling notation for GenSIF is that such a notation contributes best to

the goal if it provides a rich set of adequate modeling primitives. The concrete

modeling primitives, introduced in the next section, were determined by looking at

the real world phenomena that have to be described in domain analysis for GenSIF

(see section 5.4).

This stands directly in contrast to some other opinions that argue for a limited set

of modeling primitives to gain a high processability of the model and to simplify

the model design process. The study of the relevant research literature shows that

this currently is an open issue that has lead to the separation of two main "mod-

eling schools". There is the "modeling school" that favoures a rich set of adequate

modeling primitives that allows to map relevant phenomena very directly into the

formalism. Some representatives are for example Robert Balzer's GIST specifica-

tion language (Balzer 1981), and the ERAE data model for requirements analysis

developed by Eric Dubois et al (Dubois, Hagelstein, Lahou, Ponsaert, and Rifaut

1986; Dubois, Hagelstein, Lahou, Rifaut, and Williams 1986). On the other hand

side there is the "modeling school" that claims a limited set of primitives with which

the model designer can describe the relevant phenomena. The approaches that can

be regarded as representatives of that school typically do not facilitate a specific

modeling formalism. Instead they map everything into the primitives typically sup-

plied by object-oriented languages or knowledge representation languages. Booch's

object-oriented Ada design method (Booch 1987) is one of the representatives of

that "modeling school".

Another underlying opinion is that with respect to the tasks that should be

facilitated by the required domain model type, modeling behavior by means of

operational semantic of the modeling formalism is not a good solution. Although

operational semantic provides capabilities for model validation by model execution,

the study of modeling languages like GIST (Balzer 1981; Goldman, and Wile 1980)

has shown that this implies in some sense an unnatural way of modeling behavior.

Unnatural, because the real world behavior has to be encoded in data base like

atomic transactions, as for example:

• create object, create relation

• destroy object, destroy relation

• insert object, insert relation

For that reason, our approach to a domain modeling notation can be called an

unified approach, since everything is based on the same descriptive paradigm, with

no operational semantic at all. Hence the approach presented in the next sections

reminds to some degree on the requirements modeling language RML which has

been developed by Sol Greenspan (Greenspan 1984). It also has something in

common with the ERAE model invented by Eric Dubois et al (Dubois, Hagelstein,

Lahou, Ponsaert, and Rifaut 1986; Dubois, Hagelstein, Lahou, Rifaut, Williams

1986)

Despite some similarities, the presented notation is not supposed to be a vari-

ation of the semantic network formalism or even a data model. The spirit of the

notation is much closer to the spirit of object-oriented modeling techniques such as

proposed in (Embley, Kurtz, and Woodfield 1992) and (Rumbaugh, Blaha,

Premerlani, Eddy, and Lorenson 1991). As stated in the introduction, our approach should

be understood as a specific notation targeted towards the specific information we

would like to formalize in a domain analysis within GenSIF. With our proposed

notation we are currently able to reach a semiformal kind of description of what is

important within our domain analysis. A more elaborated discussion of the contri-

butions of the design experiment to the GenSIF project is provided in section 6.5.

The shortcomings of the notation are discussed in subsection 8.2.2.

6.2 The General Approach

Using the proposed notation leads to a representation structure that could be com-

pared to a "semantic network" of building blocks, i.e. particular modeling prim-

itives provided by the notation. The provided primitives can be differentiated in

two groups. One group is used to form the nodes of the network and, therefore,

can be called node-primitives. The other group is used to form the links between

the nodes and can be called link-primitives or just simply connectors. Similar to

semantic networks, the node-primitives represent concepts and the link-primitives

represent relationships between the concepts represented by their corresponding

node-primitive.

The provided node-primitives are derived from the phenomena which are rele-

vant for domain analysis within GenSIF (see sections 5.1 and 5.4). Node-primitives

are basically generalized constructs to describe the set of interesting phenomena in

a way that allows to take the specific type of domain model, required by GenSIF,

into account (see section 5.2).

The notation provides two types of link-primitives:

• completely predefined relationship connectors:
Applicable to accomplish a connection between two specific types of
predefined node-primitives with a predefined specific semantic. This means
the identifier of the relationship connector as well as the semantic of the
connector is completely predefined.

• partially predefined relationship connectors:
Applicable to accomplish a connection between two specific predefined
node-primitives with a partially specific semantic. The semantic is only
partially predefined since the complete semantic of the relationship is only
given when the primitive has been associated by the model designer with
a proper word (identifier) denoting the relationship-name.

To develop a domain model means to select from the predefined primitives the

fitting ones and to use them to describe an abstraction of the real world. This

restricts in some sense the freedom of expression for the model builder. However,

at the same time it opens the possibility to guide the model design process to-

wards a final model that is based on a standardized set of well defined constructs.

This allows one to handle domain analysis as an engineering process and to map

the model, expressed in well understood primitives, to a (partially) machine inter-

pretable formalism.

6.3 The Modeling Primitives

The particular modeling primitives provided by the notation have been derived by

looking at the phenomena that are relevant for a domain model for GenSIF (see

section 5.4). Hence the notation allows to map each relevant phenomena to its own

primitive.

The complete set of primitives is informally introduced in this section. Accord-

ing to what has been said in section 6.2, the primitives can be differentiated in those

that correspond to nodes (node-primitives) and others that correspond to links

(link-primitives) in the final diagrammatic structure. Furthermore link-primitives

can be differentiated in those that are completely predefined (graphically depicted

as single solid line arrows) and others that are partially predefined. Three different

partially predefined link-primitives are provided:

• Object-Class-Relationship Link-Primitive:
graphically depicted as arrow consisting of three solid lines

• Role-Relationship Link-Primitive:
graphically depicted as double solid line arrow

• Environmental-Participation-Relationship Link-Primitive:
graphically depicted as single dotted line arrow

In the following, I introduce these primitives by describing each node-primitive to-

gether with the link-primitives that are applicable to accomplish a connection from

that primitive to a particular other primitive. As already explained, an association

between primitives represents a relationship between two real world concepts which

are represented by node-primitives.

Under the headline "Connectivity" I discuss the issue if the number of connec-

tions a node-primitive can have to other node-primitives is restricted. I provide

this discussion for every type of node-primitive and link-primitive.

It should be pointed out that the names used for the predefined relationships have

been chosen from a practical point of view. Although that choice was made with

general applicability in mind the overall objective was to accomplish a development

state that enables to present the spirit of the approach by some concrete modeling

examples. An overview of all node primitives and their links can be found in the

appendix.

(1) The Node-Primitive "(Domain) Object-Class"

❑ Definition:

An object-class corresponds to a collection of abstract or concrete domain objects

that, presumably are grouped together because some uniform conditions hold over

all of them.

❑ Diagrammatic Symbol:

❑ Applicable Link-Primitives:

- "category_of":

An object-class can be connected to another object-class by this predefined link-

primitive to represent that one object-class (tail of arrow) is a specific category

of objects (a subset), contained in the other, more general, object-class (head of

arrow).

- Object-Class-Relationship:

This link-primitive can be used to connect one object-class with another object-

class or a role to represent a particular relationship between both concepts. The

model designer has to denote the relationship by a proper name. In order to be able

to differentiate this link-primitive which is only partially predefined from others,

the graphical representation for the object-class-relationship is an arrow consisting

of three solid lines. Furthermore the relationship name should be written in capital

letters.

General Diagrammatic Symbol of the Object-Class-Relationship Link-Primitive:

❑ Connectivity:

A primitive of type object-class may only be connected to exactly one other prim-

itive of type object-class by the connector category_of. In contrast to that there

is no restriction for the numbers of connections that can be established by the

link-primitive Object-Class-Relationship.

(2) The Node-Primitive "Role"

❑ Definition:

A role is a specific view on the objects contained in a particular object-class. How-

ever with view we do not mean the same what is regarded in the database area as

a view. In our context a view is oriented towards operationality. Hence a role is

a medium that allows to group the specific set of activities that are performed by

the objects of a particular object-class. Furthermore it helps to implement different

user views on the application domain. The role name denotes a specific mission,

job, purpose, duty or assignment for which the following holds: 1. the objects in

the connected object-classes are the owners of that mission, job, purpose, duty, or

assignment, and 2. the activities connected to the role specify the operational side

of that mission, job, purpose, duty or, assignment. Since a role in our context need

not necessarily to have an operational side (passive role), they are not required to

have activities which are connected to them. While a role can represent a mission,

job, purpose, duty, or assignment which can have several different owners, a role

can be connected to several different object-classes.

❑ Comments:

The notion of role can also be found in other modeling approaches as well. Here

usually roles correspond to the relationships between the object-classes. It is an

important difference that in our approach a role does not represent a relationship

between concepts. Instead it is a concept of its own.

❑ Diagrammatic Symbol:

❑ Applicable Link-Primitives:

- "mandatory_one_time_role_of" abbreviated "mot_role_of":

This predefined link-primitive can be used to connect a role (tail of arrow) with

a relevant object-class (head of arrow) to represent that the role is mandatory for

exactly one time with respect to the owner objects contained in the connected

object-class.

- "mandatory_repetitzve_role_of" abbreviated "mr_role_of":

This predefined link-primitive can be used to connect a role (tail of arrow) with

a relevant object-class (head of arrow) to represent that the role is mandatory

for more than only one time with respect to the owner objects contained in the

connected object-class.

- "mandatory_permanent_role_of" abbreviated "mp_role_of":

This predefined link-primitive can be used to connect a role (tail of arrow) with

a relevant object-class (head of arrow) to represent that the role is permanently

mandatory with respect to the owner objects contained in the connected object-

class.

- "optional_one_time_role_of" abbreviated "oot_role_of":

This predefined link-primitive can be used to connect a role (tail of arrow) with a

relevant object-class (head of arrow) to represent that the role is not mandatory

with respect to the connected object-class. Furthermore it specifies that if an object

contained in the connected object-class is owner of that role than the ownership

cannot be repeated.

- "optional_repetitive_role_of" abbreviated "or_role_of":

This predefined link-primitive can be used to connect a role (tail of arrow) with a

relevant object-class (head of arrow) to represent that the role is not mandatory

with respect to the connected object-class. Furthermore it specifies that if an object

contained in the connected object-class is owner of that role than the ownership

can be repeated.

- "optzonal_permanent_role_of" abbreviated "op_role_of":

This predefined link-primitive can be used to connect a role (tail of arrow) with a

relevant object-class (head of arrow) to represent that the role is not mandatory

with respect to the connected object-class. Furthermore it specifies that if an object

contained in the connected object-class is owner of that role than the ownership is

permanent.

- Role-Relationship:

This partially predefined link-primitive can be used to connect one role with another

role or an object-class to represent a particular relationship between both concepts.

The model designer has to "fill in" the name of the relationship similar how it is done

in the design of Entity-Relationship Diagrams. However in contrast to relationships

in ER-Diagrams role-relationships are graphically depicted as arrows. In order to be

able to differentiate this only partially predefined link-primitive from others in the

final model their arrow consists of double lines. Furthermore the relationship name

should be written in capital letters since the names of all predefined link-primitives

are written in small letters.

General Diagrammatic Symbol of the Role-Relationship Link-Primitive:

❑ Connectivity:

A primitive of type role may only have exactly one connection to one and the same

primitive of type object-class by one of the six different connectors xxx_role_of.

However the number of connections to different primitives of type object-class is

not restricted. There is no restriction with regards to the application of the link-

primitive Role-Relationship.

(3) The Node-Primitive "Activity"

❑ Definition:

The activity primitive is used to represent habitual activities. An activity either is

connected to a role or directly to an object-class. In both cases by this primitive

the operational side of the objects which are contained in the indirectly (with a role

as intermediate primitive) or directly connected object-class can be specified. In

our context a role has been defined as mission, job, purpose, assignment, or duty.

Since activities can belong to different missions, jobs, purposes, assignments, or

duties, it is allowed to connect an activity to several different roles even if the role

owner object-class is different. Furthermore an activity can directly be connected

to several different object-classes as well. For an activity it is not necessary to be

connected to a corresponding time frame primitive. Here the model designer has

to decide whether or not to consider temporal aspects with regards to the activity.

❑ Diagrammatic Symbol:

❑ Applicable Link-Primitives:

- "mandatory_one_time_activity_of" abbreviated "mot_activity_of":

This predefined link-primitive can be used to connect an activity (tail of arrow) with

either a role or an object-class (head of arrow). The semantics of this connector is

that the activity is mandatory for exactly one time with respect to the objects in

the object-class it is directly or indirectly (role as intermediate primitive) referred

to.

- "mandatory_repetitive_activity_of" abbreviated "mr_act?vity_of":

This predefined link-primitive can be used to connect an activity (tail of arrow) with

either a role or an object-class (head of arrow). The semantics of this connector

is that the activity is mandatory for more than only one time with respect to the

objects in the object-class it is directly or indirectly (role as intermediate primitive)

referred to.

- "mandatory_permanent_activity_or abbreviated "mp_activity_of":

This predefined link-primitive can be used to connect an activity (tail of arrow) with

either a role or an object-class (head of arrow). The semantics of this connector

is that the activity is mandatory permanently with respect to the objects in the

object-class it is directly or indirectly (role as intermediate primitive) referred to.

- "optionaLone_time_activity_of" abbreviated "oot_activity_of":

This predefined link-primitive can be used to connect an activity (tail of arrow) with

either a role or an object-class (head of arrow). The semantics of this connector is

that the activity is not mandatory with respect to the objects in the object-class it

is directly or indirectly (role as intermediate primitive) referred to. Furthermore it

is predefined that if the activity is performed once than it cannot be repeated.

- "optional_repetitive_activity_of" abbreviated "or_activity_of":

This predefined link-primitive can be used to connect an activity (tail of arrow) with

either a role or an object-class (head of arrow). The semantics of this connector is

that the activity is not mandatory with respect to the objects in the object-class it

is directly or indirectly (role as intermediate primitive) referred to. Furthermore it

is predefined that the activity can be repeated.

- "optional_permanent_activity_or abbreviated "op_activity_of":

This predefined link-primitive can be used to connect an activity (tail of arrow) with

either a role or an object-class (head of arrow). The semantics of this connector is

that the activity is not mandatory with respect to the objects in the object-class it

is directly or indirectly (role as intermediate primitive) referred to. Furthermore it

is predefined that the activity is performed permanently.

- "scheduled_in":

By this predefined link-primitive temporal aspects with regards to performed ac-

tivities can be considered. It can be used to connect an activity (tail of arrow)

with an primitive that is introduced later on and which is called time frame (head

of arrow). The predefined semantics of this primitive is that the activity only is

performed within the connected time frame but not outside that time frame. Hence

a connection of an activity to a time frame by the application of this link-primitive

is like the specification of a temporal constraint for the activity.

❑ Connectivity:

A primitive of type activity may have only one connection to one and the same

primitive of type role by one of the six different connectors xxx_activzty_of Like-

wise there may only be one connection between one particular primitive of type

activity and one and the same primitive of type object-class. However the number

of connections to different primitives of type role (no matter if the owner object-

class is identical) and type object-class is not restricted. There is no restriction

with regards to the link-primitive scheduled_in.

(4) The Node-Primitive "Communication Element"

❑ Definition:

The primitive communication element is used to represent items that are exchanged

between a sender and a receiver as part of an activity of the sender. All three

components must be specified. Both, sender, and receiver, can be an environmental

object, a role of an object-class, or an object-class itself.

❑ Diagrammatic Symbol:

❑ Applicable Link-Primitives:

- "sent_by":

This predefined link-primitive is used to connect the communication element (tail

of arrow) with the sender (head of arrow) which either is an environmental object,

a role of an object-class, or an object-class itself. The predefined semantics of

this primitive is that the communication element is sent by the component it is

connected to.

- "received_by":

This predefined link-primitive is used to connect the communication element (tail

of arrow) with the receiver (head of arrow) which either is an environmental object,

a role of an object-class, or an object-class itself. The predefined semantics of this

primitive is that the communication element is received by the component it is

connected to.

- "implied_by":

This predefined link-primitive is used to connect the communication element (tail

of arrow) with the activity of the sender (head of arrow). The predefined semantics

of this primitive is that the connected activity implies the exchange of the commu-

nication element between the connected sender and receiver. Since the sender can

be an environmental object the activity can be an environmental activity as well.

❑ Connectivity:

The three different link-primitives introduced in the previous paragraph must be

applied for each primitive of type communication element. However each of these

connectors may only be used one time so that the total number of connections for

primitives of type communication element is restricted to the number three.

(5) The Node-Primitive "Environmental Object"

❑ Definition:

The modeling primitive environmental object is used to represent a concrete or

abstract object which is outside the scope of the application domain. For more

information regarding the consideration of environmental objects within domain

analysis for GenSIF the reader is referred to section 5.1 principle III.

❑ Diagrammatic Symbol:

❑ Applicable Link-Primitive:

- Environmental-Participation-Relationship:

This partially predefined link-primitive is used to connect an environmental object

(tail of arrow) with an domain activity (head of arrow). The general meaning of

this link-primitive is that the environmental object is involved in the domain activ-

ity it is connected to by that primitive. In which way the environmental object is

involved in the domain activity is given by the name of the relationship which has

to be "filled in" by the model designer. This is similar to the way relationships are

specified in Entity-Relationship Diagrams. However in contrast to relationships in

ER-Diagrams an environmental-participation-relationship is graphically depicted

as arrow. In order to be able to differentiate these only partially predefined link-

primitives from the others in the final model their arrow consists of dotted lines.

Furthermore the relationship name should be written in capital letters since the

names of all predefined link-primitives are written in small letters. To avoid con-

fusion it is pointed out that here we are concerned with domain activities in which

the environmental object is involved but not with activities that are performed by

the environmental object.

General Diagrammatic Symbol of the Environmental-Participation-Relationship

Link-Primitive:

❑ Connectivity:

There is no restriction for the application of the link-primitive Environmental-

Participation-Relationship.

(6) The Node-Primitive "Environmental Activity"

❑ Definition:

The primitive environmental activity is used to represent activities performed by

environmental objects.

❑ Diagrammatic Symbol:

❑ Applicable Link-Primitives:

- "activzty_of":

This predefined link-primitive is used to connect the environmental activity (tail

of arrow) with an environmental object (head of arrow). The predefined semantics

is that the activity is performed by the connected environmental object. Similar

to the connectors xxx_actzvity_of for domain activities by this link-primitive an

environmental activity can be connected to several different environmental objects.

- "scheduled_in":

By this predefined link-primitive temporal aspects with regards to performed ac-

tivities can be considered. It can be used to connect the environmental activity

(tail of arrow) with an primitive that is introduced later on and which is called

time frame (head of arrow). The predefined semantics of this primitive is that the

activity only is performed within the connected time frame but not outside that

time frame.

❑ Connectivity:

The primitive environmental activity can be connected to an unrestricted number of

primitives of the type environmental object by the connector activity_of. Likewise

it can also have an unrestricted number of connections to primitives of the type

time frame by the connector scheduled_in.

(7) The Node-Primitive "Time Frame"

❑ Definition:

The primitive time frame is used to represent certain periods of time which are of

interest for a domain model for GenSIF. Time frames allow to consider temporal

aspects. They define time intervals in which certain activities are performed.

❑ Diagrammatic Symbol:

❑ Applicable Link-Primitives:

- "is_time_frame_in":

This predefined link-primitive can be used to connect a time frame (tail of arrow)

to another larger time frame (head of arrow). The predefined semantics of this

connector is that the greater time frame (head of arrow) includes the smaller time

frame (tail of arrow). Hence this link-primitive can be utilized to organize time

frames in a "inclusion hierarchy".

❑ Connectivity:

A primitive of type time frame may have an unrestricted number of connections

to other primitives of type time frame by the application of the link-primitive

is_time_frame_in.

6.4 Demonstration of Modeling Examples

In this section I continue with the introduction of the approach to a domain mod-

eling notation for GenSIF. I illustrate in a few examples how the primitives allow

us to model information that is relevant for a domain model. For that purpose the

application domain "university department" has been chosen and the New Jersey

Institute of Technology has served as the underlying "part of the real world" in the

sense stated in section 5.4. It should be pointed out that the examples are based

on a look at this "real world part" from the perspective of the rules of the Com-

puter and Information Science Department. This has to be kept in mind to fully

understand our choice concerning the predefined link-primitives in the presented

examples.

As already stated, the application of the notation leads to a diagrammatic rep-

resentation structure that could be viewed as a network. The components of the

network are the modeling primitives that have been introduced in the previous sec-

tion. It is the intention to use the presented modeling examples as "vehicles" to

discuss in a less abstract manner the anatomy of these networks and their semantics.

The ztalic type style is used to refer to a modeling primitive. The typewriter

type style is used to refer to an identifier in a given modeling example. The usual

type style is used to discuss something in the real world.

In general the "backbone" of these diagrammatic networks is an object-based

like representation of concrete and abstract objects of the application domain for

which the primitive object-class can be applied. By the connector category_of

specialization relationships between object-classes can be modeled. This means

that the notation provides the abstraction mechanisms classification and special-

ization/generalization that help to make the description of the application domain

manageable.

Classification in general allows us to group individuals into a class and to discuss

properties of the class without referring to any members of the class (Borgida,

Greenspan, and Mylopoulos 1985).

Discussion of Modeling Example 1:

In the modeling example 1 (Figure 6.1) there are the object-classes PERSON, STUDENT,

NEW STUDENT, REGISTERED STUDENT, and PROFESSOR which are roughly speak-

ing some of the "containers" in which the concrete and abstract domain objects are

"collected". The object-class STUDENT is associated with the object-class PERSON by

the category_of relationship to represent that the objects contained in the former

are a special category (a subset) of the objects contained in the latter more general

one. The interpretation of the other category_of relationships between the object-

classes is straightforward. The objects collected in the object-class NEW STUDENT

is one subset and the objects collected in the object-class REGISTERED STUDENT

is another subset of the object-class STUDENT. Both subsets are disjoint, i.e. they

have no object in common. Furthermore the category_of connector between the

object-classes PROFESSOR and PERSON represents that the objects of the former are

a specialized subset of the latter.

Using the modeling primitive role, different views on the objects "contained"

in an object-class can be modeled. Since there are almost always more than just

one relevant point of view for certain objects, object-classes may be associated

with several role primitives (See also the definition for the primitive role). Re-

garding modeling example 1 for instance, the objects contained in the object-class

PROFESSOR are related to the three different roles: course instructor, thesis

advisor, and researcher. The model designer can choose from a set of six dif-

ferent connectors the fitting one in order to establish the association. It can be

said that such a connector declares a specific kind of role-ownership with regards to

the connected object-class. The connectors are differentiated by the level of com-

mitment towards the role (optional or mandatory) and the frequency of the role

(one-time, repetitive, or permanent) (See also the definition of the primitive role

Figure 6.1: Modeling example 1.

). This in some sense is specification of meta information, i.e. information about

information. To give an example, the role thesis advisor in modeling example

1 is linked by the connector mr_role_of (long form: mandatory_repetitive_role_of)

to the object-class PROFESSOR. This reflects the fact (if we look at the department

form the point of view of the rules of the department) that professors have the

duty to be thesis advisor for more than just one time. In contrast to that, the con-

nector oot_role_of (long form: optional_one_time_role_of) that has been chosen to

link the role master's thesis writer to the object-class REGISTERED STUDENT

represents that this role is not a duty for registered students and that a registered

student can only be for one time a "Master's Thesis writer".

Since course instructor is not an exclusive role of professors with regards to

the university department domain, the corresponding role in the example has also

been linked to the object-class REGISTERED STUDENT by the connector or_role_of

(long form: optional_repetitive_role_of). This shows another important feature of

the notation. Since roles, which in our context correspond to a mission, job, duty,

assignment or purpose in the real world, also can have different kinds of role owners,

it is possible to link a role to many different object-classes. This contributes to a

more realistic model and to better understanding of semantic contexts between

domain objects and their roles. For instance the way we find the role course

instructor connected to the object-classes REGISTERED STUDENT and PROFESSOR

makes the gist of the semantic context between the objects in these object-classes

and the role course instructor explicitly clear. Regarding that example, the

semantic context is the following: While for professors being a course instructor is

obligatory, for registered students this is optional.

The general advantage of such an explicit role primitive is that it reduces the

redundancy of considering each role as a separate object and permits therefore more

real world oriented modeling (See also the definition for the primitive role). This

idea first has been invented in the Object Role Data Model (Bachman 1977).

Figure 6.2: Modeling example 2.

The partially predefined role-relationship link-primitive (differentiated from other

link primitives by a double line arrow and a relationship-name written in capital

letters) has been used to represent that there is a relationship, called ADVISES,

between the role thesis advisor and the role master's thesis writer. The in-

terpretation which is straight forward is the following: The owner-objects of the role

thesis advisor ADVISE the owner objects of the role master's thesis writer.

By taking the connections into account these roles have to object-classes we get

the following less abstract interpretation: Professors in their role as thesis advisor

advise students in their role as master's thesis writer.

Discussion of Modeling Example 2:

Capturing of the behavior of objects, which are modeled by object-classes is realized

by the primitive activity. In most cases activity primitives are associated with

role primitives to structure the overall behavior of the objects in different sets of

activities. In this case activities are accumulated by roles where the accumulated

set of activities specifies the operational side of the role. However it also is allowed

to associate an activity directly with an object-class.

In modeling example 2 (Figure 6.2) for instance there are three different ac-

tivities represented which are performed by registered students in their particular

role as participants in an academic program namely: apply for graduation, reg-

ister for courses, make Master's Thesis proposal. Analog to the role connectors

the notation provides a set of six different connectors from which the model de-

signer has to choose the fitting one for the association between the activity and

the corresponding role or object-class respectively. These activity connectors spec-

ify additional semantics regarding the level of commitment towards the activity

(optional or mandatory) and the frequency of the activity (one-time, repetitive, or

permanent).

Let us pick the activity apply for graduation for a closer look. The ac-

tivity is not mandatory since the completion of an academic program is com-

pletely up to the student. On the other hand, the activity might also be repet-

itive since if due dates are not obeyed, it can happen that the application for

graduation has to be repeated. Therefore the connector or_activity_of (long form:

optional_repetitive_activity_of) has been chosen to associate this activity with the

relevant role (participant in academic program) of the object-class REGISTERED

STUDENT. In contrast to that the activity register for courses is associated by

the connector mr_activity_of (long form: mandatory_repetitive_activity_of) with

the same role of the object-class REGISTERED STUDENT, since course registration

must be repeated in each term by each participant of an academic program (if we

look at the department from the point of view of the rules of the department).

The third activity that is included in the modeling example 3 has the identifier

make Master's Thesis proposal. The connector or_activity_of (long form: op-

tional_repetitive_activity_of) has been chosen since making a proposal for a Master's

Thesis is optional and eventually must be repeated if the proposal is not accepted.

This kind of modeling behavior in some sense reminds on the entity life-cycle

diagrams of the Jackson's System Development Method (JSD) (Jackson 1983).

In JSD life-cycle diagrams the sequence of activities associated with one entity

corresponds to the sequence in which they are performed in the real world. This

is not so in the representation structures which result from the application of the

introduced notation. However, although only on a rough level, by the application of

the modeling primitive time frame temporal aspects can be considered. If we look

at modeling example 2 there is the activity apply for graduation connected to

the time frame Graduation Application Period by the utilization of the link-

primitive scheduled_in. This represents that the application for graduation has to

be completed within a specific period of time. In a broader sense it can be regarded

as a temporal constraint for the activity from which the connection to the time

frame is realized. Since registration for courses also has to be completed within

Figure 6.3: Modeling example 3.

a certain period of time the activity register for courses is associated with a

time frame that has the identifier Registration Period.

Modeling example 2 also shows that time frames can be organized in an inclusion

hierarchy. The time frame at the highest level of the hierarchy includes all other

time frames on the lower levels. This hierarchical organization is accomplished by

the utilization of the link-primitive is_time_frame_in. In the example the largest

time frame at the top of the hierarchy is the time frame Academic Year. Since an

academic year is divided in terms in the hierarchy of the example we find the time

frame term on the second hierarchical level. Beyond that we have the time frames

Graduation Application Period and Registration Period, each is connected

to the time frame term by the predefined link-primitive is_time_frame_in. The

interpretation of this is straight forward: An academic year includes academic

terms and in each academic term there is a time period for the application for

graduation and a time period for course registration as well.

The basic idea for this is that most application domains have their own par-

ticular time dimension, i.e. their application domain specific time frames that

can include other smaller time frames. This approach allows to consider temporal

aspects regarding habitual behavior of the (active) domain objects that perform

activities. Two further examples for such top-level time frames are "business year"

for the company domain and "production week" for the factory domain. Such time

frames in some sense are generic since they are not only true for one specific period

of time, e.g. academic year 1991/92.

Discussion of Modeling Example 3:

Let us take modeling example 3 (Figure 6.3) for a closer look how communica-

tion can be represented by the primitive communication element together with

its applicable link-primitives. Here two activities are included that imply the ex-

change of certain information which is modeled by the utilization of these prim-

Figure 6.4: Modeling example 4.

itives. The first communication element we want to discuss has the identifier

review process material. The implied_by association to the environmental ac-

tivity perform promotion and tenure process represents that this activity in-

volves the exchange of review process material. The sent_by association to the

environmental object OFFICE OF THE PROVOST specifies the sender of the review

process material. The received_by association to the role promotion candidate

defines professors in their role as promotion candidate as the receiver of review

process material. The second communication element has the identifier travel

expense report. The exchange of it is implied by the activity make travel

expense report. The objects in the object-class PROFESSOR which are the owners

of the role researcher are defined as the sender. The environmental object OFFICE

OF SPONSORED PROGRAMS is modeled as the receiver of the communication element

travel expense report.

The modeling example 3 also shows the utilization of the modeling primitives

environmental object and environmental activity. Since the "Office of the Provost"

is not considered being a part of the application domain "university department",

it has been modeled by the usage of the primitive environmental object. In sec-

tion 5.1 principle III the consideration of such environmental objects is discussed

in more details. Activities that are performed by those environmental objects if

they need to be considered are represented by the primitive environmental activity.

Hence perform promotion and tenure process is represented by the primitive

environmental activity.

Discussion of Modeling Example 4:

Modeling example 4 (Figure 6.4) shows the application of the partially predefined

environmental-participation-relationship link-primitive. The link-primitive is par-

tially predefined since in contrast to completely predefined link-primitives the name

of the relationship has to be given by the model designer. The relationship-name for

Figure 6.5: Modeling example 5.

the association between the environmental object OFFICE OF SPONSORED PROGRAMS

and the activity make funding proposal is SUPPORTS (To avoid confusion it is

pointed out that here we are concerned with a domain activity and not an environ-

mental activity). This represents that the "Office of Sponsored Programs" supports

the elaboration of funding proposals which is performed by professors in their role

as researchers. The relationship-name for the association between the environmen-

tal object OFFICE OF THE REGISTRAR and the activity register for courses is

GUIDES. This represents that the "Office of the Registrar" is responsible for the

administration of the course registration.

Discussion of Modeling Example 5:

In modeling example 5 (Figure 6.5) the utilization of the partially predefined link-

primitive object-class-relationship is introduced. This is done within the context of

the consideration of some abstract object-classes which we can identify in the "uni-

versity department" domain. First of all we have the abstract object-class OFFERED

COURSE which is defined as a subset of the object-class COURSE by the category_of

connector. Furthermore we have the object-classes LECTURE ROOM, LABORATORY,

PROFESSOR'S OFFICE, and CONFERENCE ROOM, which are all disjoint subsets of the

object-class ROOM. Between the object-class OFFERED COURSE and the object-class

LECTURE ROOM there is an object-class-relationship denoted with the name HELD

IN. The interpretation of this part of the given example is straight forward: offered

courses are held in lecture rooms. In addition we find the object-class REGISTERED

STUDENT and the role course participant that is connected to it. Furthermore

there is the object-class PROFESSOR and the role course instructor that has been

linked to the latter and the object-class REGISTERED STUDENT as well. Since that

slice of the modeling example also appears in some of the previous examples, there

is nothing new so far. However the utilization of the predefined role-relationship

link-primitive (double line arrow) to connect a role with an object-class has not

been presented in the previous examples. In modeling example 5 this is demon-

strated twice. In its first application to connect the role course participant

to the object-class OFFERED COURSE it has been used to capture the information

that course participants utilize offered courses. In the second application where it

connects the role course instructor to the object-class OFFERED COURSE it rep-

resents that course instructors teach offered courses.

6.5 Contributions of This Experiment
to the GenSIF Project

As mentioned before, what has been presented in this chapter should be understood

as a first approach to a notation that fits the specific needs of domain modeling

within the GenSIF framework. We in the research group for systems integration at

the New Jersey Institute of Technology (spring term 1992) have used this approach

to drive our reasoning about domain analysis as component of GenSIF. It should

be pointed out that we had a controversial discussion with an open end, concerning

the appropriateness of the notation introduced in this chapter. A critical discussion

of the notation is included in subsection 8.2.2.

Nevertheless, the notation and the presented modeling examples respectively,

advanced our discussion of domain modeling for GenSIF. Hence it can be claimed

that one contribution of this experiment is the preparation of an adequate "vehicle"

for a further and more concrete discussion of domain modeling within GenSIF.

Based on the experience of the utilization of the notation in our research group

we also believe that beginners who work in that problem area might find a quicker

mental access to the problem through this documented experiment. Therefore in a

broader sense the notation might be called a "catalyst" for the familiarization with

domain modeling for GenSIF.

In addition to these contributions, in the following paragraph the author strives to

discuss the question if there is some more potential in the introduced notation.

Is There Some More Potential in the Result
of This Design Experiment?

As the reader might have already guessed, it is the personal opinion of the au-

thor that the introduced approach to a domain modeling notation under certain

conditions has some more potential then only the contributions listed before. In

addition it might be an adequate "platform" for further research in that area. In

the following the main aspects within that context are discussed.

Appropriate Notation for a Step Preceding Computer Based Domain
Modeling:

An often referenced domain modeling language in the relevant research literature

is the requirements modeling language RML developed by Sol Greenspan as part

of the Taxis project at the University of Toronto (Greenspan 1984). An RML re-

quirements model is meant to serve as a bridge between a requirements definition

expressed in SADT (Ross 1977) and a system design expressed in Taxis. Greenspan

views SADT as an appropriate notation for capturing intuition about the system,

leading to a formal representation in RML. Although in domain modeling for Gen-

SIF we are not concerned with any system design at all, it is at least a quite

reasonable idea to precede the computer based modeling task by a manual step.

For this manual modeling step the introduced notation might be an appropriate

notation. As shown in the provided modeling examples it can be used to manually

capture the relevant domain information on the required conceptual level.

"Criteria" for the Selection of a Domain Analysis Support Tool for
GenSIF:

In a broader sense the introduced modeling notation can be used as a "checklist"

for the selection of a tool that is appropriate to domain analysis as component of

GenSIF. Certainly it would be a mistake to strictly require that such a tool has to

facilitate a modeling formalism that exactly corresponds to our notation. Instead

the author would like to suggest that the modeling formalism should be understood

as a "pointer" in the correct direction. This basically means that every candidate

tool that allows to capture the same information as the introduced notation can be

regarded as a "hot candidate tool". The issue concerning an appropriate tool for

the entire domain analysis concern within GenSIF is discussed in the next chapter.

"Heart" of a Research Tool Implementation of a Domain Analysis
Support Tool for GenSIF:

Currently there are too many open questions regarding the introduced notation.

But eventually after its completion and improvement it might be utilized as the

"heart" of a research tool implementation of a specific domain analysis support

tool for GenSIF. As it can been inferred from the discussion given in section 6.2,

implementation issues have been considered in the general approach to the notation.

CHAPTER 7
SOME REMARKS ON A DOMAIN ANALYSIS

SUPPORT TOOL FOR GenSIF

The purpose of this chapter is to discuss, the essential aspects regarding a com-

puter based support tool for domain analysis as concept of GenSIF. The objective

is to provide questions and interdependencies to consider if one wants to select or

built a domain analysis support tool for GenSIF.

In the first section, a broad definition for such a tool is provided. Here also the

three fundamental aspects regarding such a support tool that are investigated in

the succeeding sections are identified.

7.1 A Framework for the Required Type of Tool

Although there are still some open questions regarding domain analysis as concept

of GenSIF, it is possible to identify the essential aspects of a domain analysis

support tool for GenSIF. Within this thesis such tool is regarded as a tool that

facilitates the following:

• domain model design

• domain model manipulation (evolution and refinement)

• domain model utilization

Although the last mentioned point, i.e. the utilization of the domain model, actually

does not belong to the domain analysis process any more, it would be a mistake

to exclude this issue from this discussion. The reason is that the specific way the

domain model is utilized in GenSIF also has some implications for the support tool,

as explained in section 7.3.

Figure 7.1: Conceptual schema of a domain analysis support tool.

In figure 7.1, in which the basic structure of such a tool is depicted graphically,

I have called the component that handles the processing of the model (design,

changes, queries, ... etc.) "Model Processor". This "Model Processor" can simply

be imaginated as a set of functions that can be applied to design and manipulate

the domain model according to the implemented formal basis of the underlying

modeling formalism. Furthermore it includes "services" for the utilization of the

domain model itself.

Within this framework the component that has been called "implemented formal

basis of supported modeling formalism" is that facility which enables the "Model

Processor" to generate, process, and to interpretate the internal representation of

the domain model.

Hence the component "Domain Model Representation" is the computationally

processable internal representation of the domain model.

The user interface in this framework is the facility which allows to interact with

the model processor and which is responsible for the presentation of the domain

model to the user of the tool.

It should be pointed out that it is not claimed that this is the only way to

describe a domain analysis support tool. Actually it is what the author has used

for his reasoning about the requirements for a tool that supports domain analysis

for GenSIF. On this basis, three fundamental aspects that need to be discussed in

more detail have been identified:

(1) Modeling Formalism

The first aspect, certainly the most important one, is concerned with the require-

ments for the modeling formalism whose formal basis should be implemented in

such a tool. This is the topic of section 7.2.

(2) Computational Processability

The second aspect is that computational processability of the domain model deter-

mines the power of what has been called the "Model Processor". The computational

processability itself depends on the implementation of the modeling formalism. A

processable syntax of the modeling formalism permits machine manipulability of

the domain model up to a certain degree. But only a processable semantic permits

powerful operations such as semantic retrieval, or consistency checking. Especially

within the context of the domain model utilization a processable semantic seems

to be required, as discussed in section 7.3.

(3) Presentation of the Domain Model

The last aspect that is considered here concentrates on the user interface, the pre-

sentation of the domain model to the user. Since a domain model within the GenSIF

framework is massively used by the users in their different tasks, the presentation of

the model has also to be considered as an important criteria. Section 7.4 provides

a discussion of this criteria.

7.2 On the Modeling Formalism That
Should be Facilitated

In general a modeling formalism "... describes an epistemology that accounts for

how a concept has meaning within the model as well as what it denotes in the world

(Carasik, Johnson, Patterson, and von Glahn 1990)".

It basically can be compared to a data model "... that provides a formal (nota-

tional and semantic) basis for tools and techniques used to support data modeling

(Brodie 1982)," but with the difference that it has to support domain modeling.

The central goal of such a modeling formalism is to provide facilities for gather-

ing and representing the selected domain phenomena in a natural and convenient

fashion, and at the same time to organize and structure the representation so that

it can be easily accessed and (re-)used. This implies two questions to be answered

regarding the modeling formalism in a tool for domain analysis for GenSIF:

1. Which level of expressive power is necessary and sufficient?

2. Which facilities for structuring and organizing the domain model are nec-
essary and sufficient?

(1) Expressive Power

What is called here expressive power basically regards to the question what should

be describable with the modeling formalism. The modeling notation introduced in

the previous chapter is one possible answer to that question. Everything expressable

with that notation should also be expressable with the modeling facilities supplied

by the tool. That means, for example, that a tool with an underlying modeling

formalism that is appropriate for the static aspect of the application domain, but

lacks expressive power for the description of the two other relevant aspects of the

domain is not sufficient.

(2) Facilities for Organizing and Structuring the Domain Model

Domain models in GenSIF should be organized in a way that allows to identify and

to understand the general structure of the environment of the integrated system

(Rossak 1992a). For that reason the modeling formalism has to provide structuring

facilities that allow to organize the domain knowledge in such a way, to use an

old German saying, that enables the user of the model "to see the forest despite

the many trees". Expressed in a more academic way, these structuring facilities

are important with respect to the intellectual manageability of the large amount of

highly interdependent information about different aspects of an application domain

that have to be integrated into a domain model.

For a long time it has been asserted that abstraction is the best tool we have to-

ward the intellectual manageability of complex descriptions. An abstraction mech-

anism is a conceptual or linguistic mechanism that allows certain information to be

highlighted while suppressing other information (Mylopoulos, Borgida, Greenspan,

and Wong 1984). Another, basically same definition but with the data handling side

as point of view is given in (Garg 1988), where abstraction mechanism is defined as

the means by which information can be stored and retrieved from an information

structure at different levels of detail and from different perspectives.

In software engineering, abstraction is usually equated with the suppression of

design decisions or implementation details. Since in this thesis a domain model

has been already characterized in section 5.2 as similar to a conceptual model

of the application domain, it is appropriate to have a look at the research area

of conceptual modeling. Abstraction mechanisms have been intensively studied

there, for example in (Brodie, Mylopoulos, and Schmidt 1986; Bubenko 1983; Olle,

Sol, and Verrijn-Stuart 1982). To introduce the 14 different types, or classes, of

structuring principles provided in (Kangassalo 1983) certainly goes beyond the

scope of this thesis. However from the approach to a specific modeling notation for

GenSIF introduced in the preceding chapter it can be inferred that classification,

Figure 7.2: Relationship between modeling formalism implementation, computational
processability and automatic support.

generalization and aggregation are necessary structuring facilities that should be

provided by the formalism.

7.3 Computational Processability and
Automatic Support

The level of support to design, manipulate, and utilize the domain model provided

by the support tool depends on the power of what has been called the "Model

Processor" in section 7.1. The power of the "Model Processor" itself depends on

the computational processability of the domain model (Figure 7.2). What is ad-

dressed in this discussion is the question how much of the information captured in

the domain model can be interpreted by the computer. The answer to that ques-

tion is determined by the computational tractability of the modeling formalism;

the modeling formalism implementation respectively. If the implementation of the

formalism just covers its syntax, then only the syntax of the domain model is pro-

cessable. However if in addition also the semantics of the formalism is implemented,

then also the semantics of the domain model is processable and interpretable by the

computer (up to a certain degree). The difference between both can be explained

by looking at the types of queries that could theoretically be facilitated by the tool.

A consequence of a purely syntactic implementation, where the terms used have

no description (like in relational databases or keyword systems), is that the users

of the tool are forced to provide the exact identifies that are used in the domain

model. By means of an implementation of the semantics of the modeling formalism,

the user can describe a query in terms which may be different from the exact terms

under which the desired domain information is stored, as long as the meaning is

similar.

In the following classification I have attempted to clarify the relationship be-

tween the level of support for designing, manipulating and utilizing the domain

model within the context of GenSIF and the corresponding requirements for the

processability of the domain model.

Although an interesting point, the impact on the workload and qualification of

the involved system engineers and system developers is not included.

"Trivial" Automatic Support:

The level of automatic support that is regarded here as "trivial" support incorpo-

rates those functions that are performed based on simple pattern matching mech-

anisms. The processability of the domain model simply covers the syntax but not

any semantics. The semantics of the domain model contents is not interpretated in

any function at all.

This outline of automatic support perfectly matches to that typically provided

by Hypertext systems, since the goal of Hypertext users is often to capture an inter-

woven collection of ideas without regard to their machine interpretability (Conklin

1987).

Some examples for concrete functions which belong to that level are: searching,

browsing, focusing, "trivial" query processing, ...etc.

"Intelligent" Automatic Support:

In contrast to the previous level of automatic support I have called this level "Intel-

ligent" Automatic Support since the processability of the domain model is enriched

by the semantics of its content up to a certain degree. This basically means that the

content of the domain model partially can be interpretated by the computer. Hence

automatic support is enlarged by "intelligent" functions, such as typically provided

by knowledge representation systems. Some examples for concrete functions which

belong to this level are: semantic retrieval, consistency checking, "explanatory"

functions, "active modeling assistance", ...etc.

Figure 5.5: Computer aided systems engineering and systems development with GenSIF

Scenario for the Future:
"Computer Aided Systems Engineering and Systems Development

with GenSIF"

What is presented here is "a look beyond the rim of the plate". If computer

programs are used to land airplanes, to control nuclear power plants, or "just" used

to control production plants, why shouldn't we think about the possibility to have

a domain analysis support tool that is able to derive automatically the integration

architecture and give active assistance to the requirements engineer as well. In fact,

Fickas "KATE" system (Fickas 1987) and the "MIT Requirements Apprentice"

system (Rich, Waters, and Reubenstein 1987) are research efforts which basically

have similar objectives. (Similarities can also be seen between the former and what

is attempted to realize in the research area of automatic programming (Barstow

1985).)

The two additional fundamental components such a tool for computer added

systems engineering and system development with GenSIF would require are a data

base of predefined integration architectures and a rule base, in which knowledge

concerning the question which integration architecture fits to which application

domain is encoded in rules (Figure 7.3).

In order to derive the fitting integration architecture, such a tool would require

a high level of processability of the semantics of the domain model and support

reasoning about the domain structure. Regarding processability of the domain

model, such a tool would require a high level processability of the semantic of the

domain model that must allow to reason about it in order to derive the fitting

integration architecture.

7.4 Domain Model Presentation - The
User Interface

A good modeling formalism and high processability of the domain model are im-

portant aspects for a domain analysis support tool as introduced in section 7.1.

However if the user interface is bad in the sense that the domain model is presented

in a "poor" manner most of the gained advantages would be lost.

The domain analysis support tool provides the required facilities to build and

maintain a complex domain model and to utilize it for the purposes described in

chapter 3. There should be no doubt that already for that goal a good model

presentation is of importance. But an even stronger argument for a high level

presentation can be seen with regards to the aspect that the domain model is

communicated in a group of persons, probably even a changing group of persons,

over a long period of time. Therefore, it is a necessary requirement for such a domain

analysis support tool to present the domain model in a manner that facilitates

understandability and semantic interpretability of the model.

A text-based only presentation of the model to the user certainly is not enough.

What is required is visual and graphics support, which allows the domain modeling

engineer to interact with and even directly manipulate graphical output. Signifi-

cant visual support, such as browsing, tracing and navigating facilities, as provided

by "state of the art" commercial knowledge representation systems and hypertext

systems are important facilities regarding the user interface of the tool. Such facil-

ities contribute to the intellectual manageability of the highly interdependent and

complex information regarding the application domain.

Especially with regard to the utilization of the domain model by requirements

engineers of application projects, facilities to "browse and navigate through the

model" and to trace back particular model components play an important role.

Since a requirements engineer might be interested only in a particular view on

the modeled real world part, a facility to concentrate on one particular point of

view and to cut out the others is desired as well. Likewise a facility to focus on

"slices" of the domain model is an important feature that would ease the task of the

requirements engineer within the GenSIF framework. This would include facilities

to focus on one particular aspect of the application domain (e.g. only the static

structure of the application domain), and to "fade out" others.

In general all these facilities are concerned with the ability to instruct the domain

analysis support tool to present a reduced domain model. With regard to this, the

part of the model that should not appear in the reduced domain model should be

flexible and easy describeable by the user.

CHAPTER 8
FINAL DISCUSSION

The contents of the thesis are outlined in the summary given in section 8.1, where

the main areas I have addressed are described. In each of the areas, currently open

research questions are identified and discussed in section 8.2. Finally, in section

8.3, I provide my conclusions and propose how the research this thesis is concerned

with could be continued.

8.1 Summary

The research reported in this thesis is a first effort to elaborate how domain analysis

should look like if the overall goal is systems integration. With regards to this area,

it is focused on the special needs of the GenSIF framework for systems integration

as proposed in (Rossak and Ng 1991; Rossak 1992b; Zemel 1992).

The two main areas addressed in the thesis are:

1. The elaboration of domain analysis as component of GenSIF, i.e. the
description of important aspects of domain analysis within the GenSIF
framework.

2. An approach to a domain modeling notation that fits the specific needs of
the GenSIF framework.

Furthermore based on the gained insights some remarks regarding a domain analysis

support tool for GenSIF are summarized.

8.2 Open Research Questions

8.2.1 Elaboration of Domain Analysis as Concept of
GenSIF

In our current approach to domain analysis within GenSIF we motivate the design

of a general domain model. Hence information regarding quantities and exact dates

with respect to temporal aspects are not considered at all. Currently it is an open

research question if such a general domain model can contribute as a "decision

support tool" to the selection of the fitting integration architecture. (See also

subsection 5.4.2)

8.2.2 Approach to a Specific Domain Modeling Notation
for GenSIF

As it has been pointed out several times throughout this thesis the presented ap-

proach to a specific domain modeling notation for GenSIF has to be regarded as a

first attempt to such a specific notation. Hence the notation introduced in chapter

6 has some shortcomings which are discussed in this section.

First of all, despite the possibility to integrate several different views on domain

objects in one model by the utilization of the modeling primitive role, the notation

does not really allow to integrate different views on the relevant real world part. The

reason for this is that a role can only be connected to a relevant object-class by a sin-

gle xxx_role_of link-primitive and the final choice for the link-primitive depends on

the way the model designer looks at the relevant real world part. To make this clear

with an example it is referred to modeling example 1 (page 60, Figure 6.1). Here

for instance the connector mp_role_of (long form: mandatory_permanent_role_of)

has been used to link the role thesis advisor to the object-class PROFESSOR. This

is based on looking at the domain "university department" from a point of view of

the rules of the university department. However if we would look at the domain

from the point of view of a professor as a human being we would rather choose

the connector or_role_of (long from: optzonal_repetitive_role_of). Despite the duty

to accept students as his/her Master's Students, certainly "thesis advisor" is not a

role which is truly mandatory from the point of view of a professor.

The same is also true for the utilization of the modeling primitive activity.

Here the number of connections an activity may have to a relevant role or object-

class respectively also is restricted to exactly one connection but not more. Let

us take modeling example 2 (page 62, Figure 6.2) to discuss this in more de-

tails. Here the activity make Master's Thesis proposal is linked to the role

participant in academic program by the connector or_activity_of (long form:

optional_repetitive_activity_of). This particular connector has been selected based

on looking at the real world from the point of view of the rules of the department.

Since there is not any rule included which states that participants of an academic

program (here the Master's Program) have to make a Master's Thesis proposal

this activity is represented as an optional activity in the example. But it has to

be considered that if we would look at the real world part from the point of view

of a student who is participating in the Master's Program we would rather choose

the connector mr_activity_of (long form: mandatory_repetitive_activity_of). This

can be claimed since for a student the preparation of a Master's Thesis proposal is

an absolutely "must-activity", i.e. a mandatory activity if we assume that his/her

intention is the completion of an academic program.

This shortcoming could be removed by allowing more than only one single link-

primitive between the relevant pair of primitives where each connection corresponds

to a specific view at the real world. However this would imply that each connection

has to be identifyable regarding the underlying point of view. This means that

these link-primitives must also "carry" information with respect to the point of

view behind them. Another alternative is to simply acknowledge that the notation

cannot handle different points of user views in one comprehensive representation

structure. Hence, different views have to be considered in different graphical models

("slices").

It is also an open issue if the link-primitives applicable to the node-primitives

role and activity are appropriate and sufficient for the design of realistic domain

models. As pointed out in section 6.3 they have been selected from a practical

point of view. I am quite sure that they need to be modified qualitatively as

well as quantitatively after we have gained more experience regarding our domain

modeling concern. The problem within this context is to find the right balance

regarding the trade-off between modeling guidance towards the required kind of

model and limitation of freedom of expression for the model designer.

The understandability, i.e. readability, of the notation could be improved if the

predefined link-primitives would be graphically differentiated as well. A differenti-

ation criteria on a top level could be the issue whether a connection represents a

logical (xxx_role_of xxx_activity_of, is_scheduled_in , ... etc.) or physical (sent_by,

received_by) connection. A criteria on a lower level could be the issue whether the

role or activity respectively is mandatory or optional. This would make it redundant

to have each link-primitive associated with its name.

A big shortcoming of the introduced notation is the lack of facilities to model

complex temporal aspects. At the current status the notation only supports the con-

sideration of time intervals in which certain activities are performed in the domain.

This is similar to the specification of temporal constraints regarding the particular

time interval within a certain activity has to be performed. These time intervals

are mapped into the modeling primitive time frame which can be organized in an

inclusion hierarchy. This makes it fairly easy to incorporate some temporal aspects

of activities on a rough level. However, to provide only this facility certainly is not

enough. Other connections between time frames which might be of interest are for

example: BEFORE, EQUAL, SYMMETRIC OVERLAP, ASYMMETRIC OVER-

LAP. Research work on this issue is provided for instance in (Balour, Anderson,

Dekeyser, Wong 1981; Allen 1981; Bubenko 1980).

Furthermore, the notation lacks a facility to consider temporal aspects that

include instantaneous events which are connected to some reactions within the

domain. What is required is something like a mechanism that allows to generate

events that are the triggers for some reactions. However, the incorporation of such a

mechanism without "breaking-down" the conceptual level of our modeling approach

we have so far seems to be non-trivial.

The notion of inheritance has not been discussed at all throughout the introduc-

tion of our approach to avoid confusion. However, the issue if we need inheritance

has to be investigated. Regarding our approach to a modeling notation this would

not imply a modification of the primitives. However, the incorporation of inheri-

tance in our approach would change the way our networks have to be interpretated.

8.2.3 Selection of a Domain Analysis Support Tool for
GenSIF

There are several types of tools which are based on different technological ap-

proaches that more or less match to the description of a domain analysis support

tool as given in chapter 7. These are the following one:

• Existing Tools for Domain Modeling

• Knowledge Representation Systems

• Hypertext Systems

• Special Modeling Languages for Software Engineering

• Object Oriented Analysis and Design Systems

The question now is which is the best choice with regards to its application as

a domain analysis support tool for GenSIF.

There are only a few specific domain modeling tools on the market. Most of

these tools are oriented towards software-reusability. Hence these tools facilitate

a conceptual as well as constructive kind of analysis. The set of primitives which

is provided by these tools mostly focuses on the static structure of an application

domain. However, in most cases these specific modeling tools lack primitives that

allow the consideration of dynamic aspects. Furthermore, they do not provide

facilities to take elements of the domain environment into account.

Knowledge representation systems in general are difficult to use and require

a good background in knowledge representation techniques. Their advantage is

that they provide what has been called "intelligent support" such as semantic

retrieval and consistency checking. From the different common Knowledge Rep-

resentation systems only the so-called object-centered systems (semantic network

systems, inheritance hierarchies, frame systems) or a hybrid-one that includes an

object-centered component seem to be appropriate for our modeling concern.

Hypertext systems are natural and easy to use. Building a hypertext network

is a kind of informal knowledge engineering. The difference to knowledge repre-

sentation is that the goal of the hypertext user is often to capture an interwoven

collection of ideas without regard to their machine interpretability. Thus hyper-

text systems do not provide any "intelligent support" but they provide powerful

mechanized operations and processes to build, manipulate, and view a "networked"

user-interface.

Special modeling languages for software engineering such as GIST (Balzer 1981;

Goldman, and Wile 1980), or REFINE (Smith, Kotik, and Westfold 1985; Goldberg

1986), are targeted on requirements engineering, systems specification, or

prototyping. Despite that difference in the underlying goal, they are interesting within the

context of domain analysis for GenSIF. Their mostly rich set of different modeling

primitives generally has an underlying object-based approach with some specific

other constructs. These other constructs allow to capture information concerning

dynamic aspects as well.

Object-oriented analysis and design systems, as they are described, can han-

dle static aspects, dynamic aspects and even communication within an application

domain. However they are oriented towards specific application projects. Further-

more they do not provide facilities for reasoning and the final model cannot be

regarded as human oriented.

To give an answer to the question which of the briefly discussed candidate systems

is the best choice regarding its application as domain analysis support tool for

GenSIF requires that practical tests are carried out.

8.3 Conclusions

Domain analysis is an important concept of the GenSIF framework. It provides the

other GenSIF components and activities with a model of the application domain.

The role of the provided domain model in these steps is of high importance, since

what is done presupposes the existence of an adequate domain model.

Domain analysis in general is a young research area and the opinions about the

concrete contents of the domain analysis process vary sometimes to a large degree.

This is the direct implication of the fact that domain analysis always is oriented

towards a specific goal, which in our case is systems integration.

One major finding was that in order to facilitate the selection or design of

the fitting integration architecture, a conceptual analysis regarding the application

domain under consideration of specific aspects has to be performed. Since the

integration architecture must also fit to the dynamics within a domain and the

communication that takes place in a domain, these aspects must be considered in

the domain analysis and therefore in the resulting domain model as well.

In comparison to other domain modeling approaches, it can be said that the

domain modeling approach within GenSIF strives to build a much more compre-

hensive model of the real world but neglects any constructive or design approach

as part of the domain modeling process.

The developed approach to a domain modeling notation for the specific needs of

GenSIF at the current status can only be regarded as a first attempt towards such

a specific notation. However it can help to discuss domain analysis and domain

modeling within the GenSIF framework on a more concrete level.

A similar notation could be used as the "heart" of a research tool implementation

of a specific domain analysis support tool for GenSIF. To talk about implementation

issues of such a notation does not just mean to think about the possibilities to

transform the representation structures introduced in chapter 6 into a machine

processable form. The main point is that we would like to have the semantics of

those representation structures as much as possible "understood" and interpretated

by the computer.

What is required as tool for domain analysis with respect to GenSIF is not

just any tool that facilitates modeling of an application domain. This is just the

basic purpose such a tool must facilitate and the set of modeling primitives of

the underlying modeling formalism is only one aspect to consider. Beyond that,

additional aspects to consider are:

• the level of automatic support for designing, manipulating and utilizing the
domain model

• the presentation of the domain model to the user.

An analogy can be drawn to the criterias one would apply to select a word pro-

cessing system which best fits his/her needs. Besides others, one criteria certainly

would be the level of automatic support provided by the system to create efficiently

documents of high quality. Another criteria would be concerned with the way a

document would be presented to the user by the system.

As discussed in section 7.3 the level of automatic support provided by such a tool

basically depends on the computational processability of the domain model, which

can cover the syntax only or some semantics of the model as well. Here the "ultimate

objective" could be such a high level processability of the domain model that it

could be used by an "automatic generator" of integration architectures and by an

"automatic requirements analysis assistant". This would lead to something that

could be called "Computer Aided System Engineering and System Development

with GenSIF".

From the authors perspective and to the current status, the final choice regard-

ing the selection of a domain analysis support tool for GenSIF tends to be between

knowledge representation systems and hypertext systems. However, the final de-

cision depends on aspects that have not been fixed yet. These aspects are related

to the question if we should favor a domain model that allows to include more

"automatization" within the GenSIF framework later on. In this case our choice

should be a knowledge representation system since the necessary computational

processability with respect to the semantics of the domain model is facilitated by

such a system.

The other alternative is to favor a more natural and convenient to use domain

analysis support tool that emphasises human understandability. In this case the

choice would be a hypertext system. However it has to be accepted that this

decision implies a domain model where the contents stays uninterpreted. Hence,

this alternative does not offer any potential for "automatization" within GenSIF

based on the domain model.

This thesis does not provide something like a complete "recipe" for domain analysis

as concept of GenSIF. To keep once more this metaphorical "language", it is more

concerned with the "central ingredients" of it, namely its domain modeling com-

ponent and the kind of support tool that is appropriate to it. However, the given

results are an advanced basis for the continuation of research within that area.

The author sees two independent approaches to continue with his research. One

more long term oriented approach would be the development, formalization and

implementation of a specific modeling language for GenSIF. The presented approach

to a specific modeling notation for GenSIF might be a good "platform" for that

continuation. A more short term oriented continuation would be the evaluation of

concrete available tools with respect to their applicability to domain analysis as

concept of GenSIF.

APPENDIX

Overview of Proposed Modeling Primitives:

REFERENCES

Allen, J. 1981. "A General Model of Action and Time." Technical Report 76,
Dept. of Computer Science, Rochester University

Bachman, C.W. 1977. "The Role Concept in Data Models." Proc. 3rd Int. Conf.
on Very Large Databases, Tokyo, Japan

Balour, A., Anderson, T., Dekeyser, J., Wong, H.K.T. 1981. "The Role of Time
in Information Processing: A Survey." ACM SIGMOD Letters April

Balzer, R.M. 1981. "A Summary of Gist." Technical Report, USC Information
Science Institute

Barstow, D. 1985. "Domain-specific Automatic Programming." IEEE Transac-
tions on Software Engineering. SE-11(11): pp. 1321-1336

Booch, G. 1987. "Software Engineering with Ada." Benjamin Cummings, Red-
wood City, CA, USA

Borgida, A., Greenspan, S., Mylopoulos, J. 1985. "Knowledge Representation as
the Basis for Requirements Specification." IEEE Computer April: pp. 82-91

Brodie, M. 1982. "On the Development of Data Models." in Brodie, Mylopoulos,
and Schmidt 1986, pp. 19-47

Brodie, M., Mylopoulos, J., Schmidt, J. 1986. "On Conceptual Modeling." Springer-
Verlag

Bubenko, J. 1983. (ed) "Infomation Modeling." Studentlitteratur, Chartwell-
Bratt Ltd

. 1980. "Information Modeling in the Context of System Development." Pro-
ceedings of IFIP 80 pp. 395-411

Carasik, R.P., Johnson, S.M., Patterson, D.A., von Glahn, G.A. 1990. "Towards
a Domain Description Grammar: An Application of Linguistic Semantics."
ACM SIGSOFT, Software Engineering Notes vol. 15, no. 5: pp. 28-43

Conklin, E.J., 1987. "Introducing Hypertext." IEEE Computer Sept.: pp. 22-41

Devanbu, P., Brachman, R.J., Selfridge, P.G., Ballard, B.W. 1990. "LaSSIE: a
Knowledge-based Software Information System." Proc. 12th Int. Conf. on
Software Engineering pp. 249-261

Prieto-Diaz, R. 1990. "Domain Analysis. An Introduction." ACM SIGSOFT,
Software Engineering Notes vol. 15, no. 2: pp. 47-54

Prieto-Diaz, R., Arango, G.F. 1991. "Domain Analysis and Software Systems
Modeling." IEEE Computer Society Press, pp. 9-32

Dubois, E., Hagelstein, J., Lahou, E., Ponsaert, F., Rifaut, A. 1986. "A Knowledge
Representation Language for Requirements Engineering." Proceedings of the
IEEE vol. 74, no. 10: pp. 1431-1444

Dubois, E., Hagelstein, J., Lahou, E., Rifaut, A., Williams, F. 1986. "A Data
Model for Requirements Analysis." Proceedings of the 4th Conference on
Data Engineering pp. 646-653

Embley, D.W., Kurtz, B.D., Woodfield, S.N. 1992. "Object- Oriented Systems
Analysis." Yourdan Press, Englewood Cliffs, NJ, USA

Fickas, S. 1987. "Automating the Analysis Process: An Example." Proceedings
of the ,4th Int. Workshop on Software Specification and Design

Garg, P.K. 1988. "Abstraction Mechanisms in Hypertext." Communications of
the ACM vol. 31, no. 7: pp. 862-879

Greenspan, S.J., Mylopoulos, J., Borgida, A. 1982. "Capturing More World
Knowledge in the Requirements Specification." Proc. 6th Int. Conf. on
Software Engineering pp. 225-234

Greenspan, S.J. 1984. "Requirements Modeling: A Knowledge Representation
Approach to Software Requirements Definitions." PhD Thesis, University of
Toronto, Technical Report CSPG-155

Goldberg, A.T. 1986. "Knowledge-Based Programming: A Survey of Program
Design and Construction Techniques." IEEE Transactions on Software En-
gineering SE12: pp. 752-768

Goldman, N.M., Wile, D.S. 1980. "A Database Foundation for Process Specifica-
tions." Technical Report ISI/RR-80-84, USC Information Science Institute

Iscoe, N., Liu, Z.Y., Tam, K.Y. 1991. "A Framework for Understanding and Dis-
cussing Domain Modeling." Proc. 13th Int. Conf. on Software Engineering,
Domain Modeling Workshop, Austin, Texas, USA pp. 5-13

Iscoe, N., Williams, G.B., Arango, G. 1991. "Domain Modeling for Software
Engineering." Proc. 13th Int. Conf. on Software Engineering, Domain
Modeling Workshop, Austin, Texas, USA pp. 1-4

Jackson, M. 1983. "System Development." Prentice-Hall International

Kangassalo, H. 1983. "Structuring Principles of Conceptual Schemas and Con-
ceptual Models." in Bubenko 1983, pp. 223-307

Kelly, V.E. 1991. "The KITSS Project: Domain Modeling to Support Functional
Testing of Evolving Embedded Software Systems." Proc. 13th Int. Conf. on
Software Engineering, Domain Modeling Workshop, Austin, Texas, USA pp.
109-113

Lubars, M.D. 1988. "A Domain Modeling Representation." MCC Technical Re-
port Number STP-366-88

Mylopoulos, J., Borgida, A., Greenspan, S., Wong, H. 1984. "Information System
Design at the Conceptual Level - The Taxis Project." Database Engineering
vol. 3: pp. 185-190

Neighbors, J. 1981. "Software Construction Using Components." PhD Theszs,
Department of Information and Computer Science, University of Californza,
Irvine

—. 1984. "The Draco approach to constructing software from reusable compo-
nents." IEEE Transactions on Software Engineering SE-10(9): pp. 1247-1267

011e, W., Sol, G., Verrijin-Stuart, A. 1982. "Information Systems Design Method-
ologies. A Comperative Review." North-Holland Publishing Company, Am-
sterdam

Ross, D.T 1977. "Structured Analysis (SA): A language for communicating ideas."
IEEE Transactions on Software Enginerring SE-3(1): pp. 16-34

Rossak, W., Ng, P.A. 1991. "Some Thoughts on Systems Integration: A Concep-
tual Framework." International Journal of Systems Integration vol. 1, no. 1:
pp. 97-114

Rossak, W., Prasad, S. 1991. "Integration Architectures - A Framework for Sys-
tems Integration Decisions." Proc. of the IEEE Int. Conf. on Systems, Man,
and Cybernetics, Charlottesville, VA, USA pp. 545-550

Rossak, W. 1991. "Domain Modeling and Systems Integration." Proc. 13th Int.
Conf. on Software Engineering, Domain Modeling Workshop, Austin, Texas,
USA pp. 150-153

—. 1992a. "Integration Architectures, A Concept and a Tool to Support In-
tegrated Systems Development." Internal Report, Department of Computer
and Information Science, New Jersey Institute of Technology

. 1992b. Presentation of the GenSIF framework in the first seminar for systems
integration at New Jersey Insitute of Technology (spring term).

Rumbaugh, J., Blaha, M., Premerlani, W., Eddy, F., Lorensen, W. 1991. "Object-
Oriented Modeling and Design." Prentice Hall, Englewood Cliffs, New Jersey,
USA

Rich, C., Waters, R., Reubenstein, H. 1987. "Toward a Requirements Apprentice."
Proceedings 4th International Workshop on Software Specification and Design

Setliff, D.E. 1991. "Domain Modeling in a Real-Time Software Synthesis System."
Proc. 13th Int. Conf. on Software Engineering, Domain Modeling Workshop,
Austin, Texas, USA pp. 162-167

Smith, D.R., Kotik, G.B., and Westfold, S.J. 1985. "Research on knowledge-based
software environments at Kestrel Institute." IEEE Transactions on Software
Engineering SE-11(11)

Sowa, J.F. 1984. "Conceptual Structures, Information Processing in Mind and
Machine." Addison-Wesley Publishing Company

Zemel, T. 1992. "MegSDF - Mega-Systems Development Framework" PhD The-
sis Proposal, Department of Computer and Information Science, New Jersey
Institute of Technology, June 1992

	Domain analysis within the GenSIF framework
	Recommended Citation

	Copyright Warning & Restrictions
	Personal Information Statement
	Abstract
	Title Page
	Approval Page
	Acknowledgment
	Table of Contents (1 of 2)
	Table of Contents (2 of 2)
	Chapter 1: Introduction
	Chapter 2: An Overview of GenSIF
	Chapter 3: The Role of the Domain Model in GenSIF
	Chapter 4: The General Domain Analysis Approach
	Chapter 5: Domain Analysis as a Concept of GenSIF
	Chapter 6: An Approach to Domain Modeling for GenSIF
	Chapter 7: Some Remarks on a Domain Analysis Support Tool for GenSIF
	Chapter 8: Final Discussion
	Appendix
	References

	List of Figures

