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ABSTRACT

RESERVE PRICE OPTIMIZATION IN DISPLAY ADVERTISING

by
Achir Kalra

Display advertising is the main type of online advertising, and it comes in the form

of banner ads and rich media on publishers’ websites. Publishers sell ad impressions,

where an impression is one display of an ad in a web page. A common way to sell ad

impressions is through real-time bidding (RTB). In 2019, advertisers in the United

States spent nearly 60 billion U.S. dollars on programmatic digital display advertising.

By 2022, expenditures are expected to increase to nearly 95 billion U.S. dollars. In

general, the remaining impressions are sold directly by the publishers. The only way

for publishers to control the price of the impressions they sell through RTB is by

setting up a reserve price, which has to be beaten by the winning bids.

The two main types of RTB auction strategies are 1) first-price auctions, i.e.,

the winning advertiser pays the highest bid, and 2) second-price auctions, i.e., the

winning advertiser pays the maximum of the second highest bid and the reserve price

(the minimum price that a publisher can accept for an impression). In both types

of auctions, bids lower than the reserve prices will be automatically rejected. Since

both strategies are influenced by the reserve price, setting a good reserve price is an

important, but challenging task for publishers. A high reserve price may lead to very

few winning bids, and thus can decrease the revenue substantially. A low reserve price

may devalue the impressions and hurt the revenue because advertisers do not need to

bid high to beat the reserve. Reduction of ad revenue may affect the quality of free

content and publishers’ business sustainability. Therefore, in an ideal situation, the

publishers would like to set the reserve price as high as possible, while ensuring that

there is a winning bid.



This dissertation proposes to use machine learning techniques to determine

the optimal reserve prices for individual impressions in real-time, with the goal of

maximizing publishers’ ad revenue. The proposed techniques are practical because

they use data only available to publishers. They are also general because they can

be applied to most online publishers. The novelty of the research comes from both

the problem, which was not studied before, and the proposed techniques, which are

adapted to the online publishing domain.

For second-price auctions, a survival-analysis-based model is first proposed

to predict failure rates of reserve prices of specific impressions in second-price

auctions. It uses factorization machines (FM) to capture feature interaction and

header bidding information to improve the prediction performance. The experiments,

using data from a large media company, show that the proposed model for failure

rate prediction outperforms the comparative systems. The survival-analysis-based

model is augmented further with a deep neural network (DNN) to capture the feature

interaction. The experiments show that the DNN-based model further improves the

performance from the FM-based one.

For first-price auctions, a multi-task learning framework is proposed to predict

the lower bounds of highest bids with a coverage probability. The model can guarantee

the highest bids of at least a certain percentage of impressions are more than the

corresponding predicted lower bounds. Setting the final reserve prices to the lower

bounds, the model can guarantee a certain percentage of outbid impressions in real-

time bidding. The experiments show that the proposed method can significantly

outperform the comparison systems.
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CHAPTER 1

INTRODUCTION

1.1 Motivation

Traditional advertising advertises a business through the use of newspaper adver-

tisements, flyers, radio advertisements, and the yellow pages. However, compared

with traditional methods, online advertising is a more efficient and cost-effective

marketing solution for, especially, small businesses. The advantages of online

advertising include reduced cost, measurability, targeting, and brand engagement.

Two main components in online advertising are search advertising and display

advertising. Search advertising is a method of placing online advertisements on web

pages that show results from search engine queries. Search ads are targeted to match

key search terms entered on search engines. Advertisers are charged once their ads are

clicked by users. In display advertising, advertisers (e.g., Volkswagen) pay publishers

(e.g., Forbes) for showing banners, videos, or text on their webpages. Figure 1.1 is an

example display ad. One display of an ad in a page view is called an ad impression.

The revenue of online display advertising in the U.S. is projected to be 7.9 billion

U.S. dollars by 2022, and it has become the most critical revenue source for online

publishers [15].

There are two channels to sell display ads: direct sale and real-time bidding. In

direct sale, publishers make offline contracts with advertisers. Advertisers may set up

their own impression volumes and target requirements. For example, an advertiser

asks a publisher for 100,000 ad impressions, which are shown to male visitors in

California within one month. In this case, the publishers have to forecast their future

traffic and visitor profiles. Advertisers’ costs are already finalized in the contracts.

Publishers know the price of each ad beforehand.
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Figure 1.1 An example of a display ad.

The remaining inventory can be sold through auctions in the real-time. In other

words, when a user clicks the link of a page. Ad impressions on the coming pages can

be auctioned immediately, then the winning ads are returned and shown to the user.

Both advertisers and publishers enjoy the benefits of real-time bidding. They provide

publishers with a highly effective way to sell their 10% – 60% remnant inventory, help

them cut down on the time and money associated with selling inventory to advertisers,

and also offer a range of services, such as lead optimization and customer support.

Advertisers benefit by receiving high cost savings and an easier, more effective way

to connect with audiences on a much larger scale [60]. Globally, the real-time bidding

(RTB) market is expected to grow to $18.56 billion by 2023 at the compound annual

growth rate of 30.8% from 2018 to 2023 [3].

There are two main types of auctions: second-price auction and first-price

auction. In first-price auction, the winning advertiser who bids the highest is charged

by what it bid. In contrast, the second-price auction gives the winner a chance to pay

2



Figure 1.2 Ad impression selling in RTB in second-price auctions.

a little less than their original submitted offer. Instead of having to pay the full price,

the winning bidder pays the price offered by the second-highest bidder plus $0.01.

According to existing studies [14], second-price auction gives bidders an incentive to

bid their true value, i.e., it induces truthful bidding. The optimal strategy in a second

price auction is to give bids that advertisers themselves value the given impressions.

However, recently, with the complexity of the RTB system, a lack of trans-

parency is commonly cited as one of the main woes of programmatic RTB. Because

of certain inconsistencies in the ways various exchanges manage auctions, there is a

popular trend toward first-price auctions as an alternative, in a bid to create an even

playing field for everyone, including advertisers, publishers, networks, ad exchanges,

demand-side platforms (DSPs), and supply-side platforms (SSPs).

Figure 1.2 (steps 2-7) shows the basic process of ad impression selling (step 1 is

an improvement, header bidding, that will be discussed later). When a user requests

a webpage on a publisher’s website, a page view is displayed on a screen.

To trigger real-time bidding in ad exchanges, for each ad impression, the

publisher first determines a reserve price, the lowest price acceptable for an ad

3



impression (step 2). Then, the publisher sends the impression information (e.g. user

profile, page metadata) and the reserve price to an ad exchange (step 3).

An ad exchange, denoted as adx in the rest of this research, is a digital

marketplace that enables advertisers and publishers to buy and sell advertising

space, often through real-time auctions. Adx requests bids from advertisers (step

4). Currently, most RTB ad exchanges use the second-price auction model (step 5),

where the highest bidder wins if the bidding price is higher than the reserve price.

The price paid is the higher between the second-highest bid and the reserve price [43].

In the first-price auction that may become common in the future, the advertiser who

bids highest and higher than the reserve price still win the ad impression. However,

the winner pays its own bid, instead of the second highest bid. If there is no bidding

price higher than the reserve price, then the auction fails. If there is a winner in the

auction (step 6), the winner’s ad is shown as an ad impression.

Before triggering real-time bidding in ad exchanges, some publishers select to

obtain some bids from header bidding first (step 1). The most obvious advantage

of header bidding for publishers is increased advertising revenue. Publishers may

increase their yield by 10% by adding just a single header bid source [11]. Header

bidding allows the publisher to make the inventory available to multiple demand

partners (ad networks, ad exchanges, and DSPs) at the same time. Greater number

of advertisers participate in the auction automatically increases the probability that

impressions are successfully monetized. Header bidding is similar to real-time bidding:

An impression is sent to multiple header bidding partners. Each header bidding

partner conducts one auction which is similar to the one occurs in the ad exchange

later. Header bidding partners adopt first-price auctions. Thus, the advertiser who

bids the highest in each header bidding auction is selected. Each header bidding

partner returns its own highest bid. The publisher picks the highest winning bid

across the header bidding partners.

4



In both second-price and first-price auctions, publishers have little control on

the final revenue: advertisers determine whether and how much they are going to

bid. The only thing that publishers can determine is the reserve price. Reserve

price can impact the ad revenue for each impression. In second price auctions, since

the impression revenue is the maximum of the reserve price and the second highest

bid, increasing the reserve price can potentially maximize the impression revenue.

However, a high revenue price that is more than the highest bid makes the impression

unsold, in which case the impression revenue is zero. Likewise, in first price auctions,

if the reserve price is the highest among the bids of all advertisers, the impression

revenue is zero. Therefore, it is non-trivial to set reserve prices in both second-price

and first-price auctions. A non-optimal reserve price may minimize the revenue of a

publisher.

Therefore, it is significant to design algorithms for publishers to automatically

set up a reserve price for a given impression in the real-time. The algorithms should

be able to optimize publishers’ revenue and minimize the auction failure rate (i.e.,

the chance that impressions are unsold).

The research is highly challenging: First, in second price auctions, the highest

bids in ad exchange auctions are not accessible on the publisher’s side. Publishers do

not know the highest price advertisers would be willing to pay for each impression.

Thus, it is difficult to learn the affordability of advertisers from historical data.

Second, in both second-price and first-price auctions, advertisers utilize a large scale

of user data to determine their bids. Advertisers buy user data from third-party

companies and/or collect by themselves. On the other hand, publishers do not

have much user data. The only information that publishers know about users are

city-level geo locations, IP address, browser information, and so on. Furthermore,

most publishers, especially online media, do not require user to log in. In this case,

they can identify users only using cookies IDs, which is unreliable and expirable.
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A user can delete cookies from the browser anytime. Thus, publishers do not have

long browsing history of users even on their own websites. Third, few studies have

been done in reserve price optimization. It is unknown whether machine learning

algorithms can help determine optimal reserve price for individual impressions in the

real-time.

1.2 Overview of The Research

The research studies the problem of reserve price optimization in online display

advertising. The goal is to design machine learning algorithms that can automatically

determine optimal reserve prices for specific impressions and thus optimize publishers’

ad revenue.

The research looks into both second- and first-price auctions. As the main

auction strategy as of 2019, second-price auctions are first studied: In Chapter 3, a

parametric survival model has been proposed to predict the failure rate of a reserve

price of a given impression (i.e., the probability that no advertisers will outbid the

reserve price for the impression). If a reserve price is failed to be outbid, the impression

revenue is zero. Thus, the failure rate indicates the risk of the reserve price of the

impression. The outcome can help publishers estimate whether the reserve price that

they determined for an impression is suitable. In Chapter 4, the proposed failure

rate prediction model is then augmented by a deep neural network which capture

more complicated joint effect between features. With the whole industry switching

to first-price auctions, a reserve price optimization model is proposed in Chapter 5

to help publishers determine optimal reserve prices in real-time.

1.3 Organization of the Dissertation

The remainder of this dissertation is organized as follows. Chapter 2 provides a review

of the literature related to this study. Chapter 3 present the complete work on reserve
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price failure rate prediction. Given an impression and a reserve price, the proposed

algorithms estimate the probability that no advertisers will outbid that reserve price.

A parametric survival model with pairwise interaction tensor factorization and header

bidding regularization is proposed. Chapter 4 shows an extended work that further

unleash the potential of the proposed prediction framework. It proposes to replace

the factorization machines with a deep neural network. With the evolution of real-

time bidding, first-price auctions become the main ad selling mechanism replacing

second-price auctions. Chapter 5 introduces reserve price optimization in first price

auctions. The study propose an approach to estimate the lower bounds of the highest

bids from historical censored dataset.
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CHAPTER 2

LITERATURE REVIEW

2.1 Reserve Price Optimization

As a significant problem for online publishers, reserve price optimization has been

studied in the past few years. Almost all existing related studies focus on second-

price auctions, as it is the main auction strategy before 2020. The largest difficulty

of reserve price optimization in second-prince auctions is that the highest bids of

historical auctions are unknown, i.e., censored, on the publishers’ side. Thus, it is not

possible for publishers to learn advertisers’ affordability directly from historical data.

Cui et al. [13] described a bid landscape forecasting system in non-guaranteed

delivery marketplace for any advertiser campaign specified by a variety of targeting

attributes. Given a set of targeting attributes, the proposed gradient boosting decision

trees can predict the winning bid for a impression. However, in many cases, target

attributes of an ad campaign are inaccessible to publishers. Publishers also have no

ideas about a user’s attribute values, especially personally identifiable information,

due to privacy issues. Li et al. [40] evaluated the impact of reserve price on publisher

revenue in real-time bidding. Yuan et al. [72] proposed a simple game-theoretic-based

approach to obtain an optimal reserve price on the publishers’ side. Mohri et al. [46]

assumed that both the highest bids and the second highest bids are observed by

publishers, and then proposed a machine learning approach to optimize publishers’

real-time bidding revenue. Cesa-Bianchi et al. [8] showed a regret minimization

algorithm for setting the reserve price in online second-price auctions. Austin et

al. [5] described a scalable linear-function-based reserve price optimizer for real-time

bidding. Medina et al. [48] assumed that bids are observed by publishers, and directly

optimize the revenue by reducing reserve price optimization to the standard setting
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of prediction under squared loss, which can be conveniently minimized. Xie et al. [70]

came up with an efficient method of improving the publisher revenue by mainly

focusing on adjusting the reserve price for the high-value impressions. Jauvion et

al. [24] proposed a new online learning algorithm based on classical multi-armed

bandit strategies. However, these existing studies assume that publishers know the

highest winning bids and the second highest bids of historical impressions, which

is not the case for most publishers. Most of them evaluate their approaches using

either synthetic data (e.g., [46] and [48]) or ad exchange data (e.g., [5]). These

approaches do not consider data censorship, i.e., publishers do not know all the

information about RTB auctions. In contrast, this research addresses the reserve

price optimization of second-price auctions based on censored data available to most

publishers. Furthermore, our evaluation is done using real-life data from a large

publisher.

Existing related work that takes censorship into account may have datasets

that contain different combinations of right-, left-, and/or uncensored data, due

to different practices and platforms used among publishers. Alcobendas et al. [4]

proposed a game-theoretic-based model to optimize reserve prices in the context

of online video advertising with left- and uncensored data. The model considers

information about auctions (e.g., the number of bids higher than the reserve price)

as input. Such information is typically only available for the publishers that own ad

exchanges (e.g., Google and Yahoo). Wu et al. [69] studied how to predict the winning

price such that the advertiser/demand-side platform (DSP) can win the bid by placing

a proper bidding value in the real-time bidding (RTB) auction. To achieve this, the

authors proposed a censored-regression-based mixture model which is deployed on the

advertisers’ side. The authors considered their data as a partially observed dataset,

which contains right-, left-, and un-censored data. In other words, in some cases,

the exact winning price is observed. In one component of the proposed method, the
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authors used simple logistic regression to predict winning rate (i.e., the probability

that an advertiser can win an impression with a bid price). Wu et al. [68] proposed a

deep learning model that predict the winning price on the advertisers/DSPs’ side.

However, the proposed model assumes that the exact winning bids of the won

impressions are observed. Also, it cannot output a probabilistic prediction. Chahuara

et al. [9] described an engine to optimize web publisher revenue from second-price

auctions. The authors first adopted a relatively simple non-parametric regression

model of auction revenue based on an incremental time-weighted matrix factorization.

, which implicitly builds adaptive users’ and ad placements’ profiles. The authors

used an online extension of the Aalen’s Additive model to estimate the first and

second bids’ distribution. This method cannot handle left- and right-censored data

at the same time. In addition, the method has to discretize reserve prices due to the

limitation of the Aalen’s Additive model. In practice, feature binning is tricky and

makes the model inflexible, as it is hard to determine the boundary of bins. Also, the

method considers only user IDs and placement IDs. Thus, the model cannot make

predictions for infrequent users [38].

In addition to reserve price optimization, another family of related work is the

prediction of winning prices at the advertisers’ side [13, 69, 75, 68]. These studies

predict the adx bid of a given impression for an advertiser or a Demand-Side Platform

(DSP) to win the ad opportunity. Reserve price optimization and RTB winning price

prediction share a common feature: both evaluate the values of impressions. The

algorithms in existing studies on winning price prediction do not make probabilistic

predictions. Also, advertisers and DSPs typically know the highest bids (i.e., their

own bids) when they win the impressions. Most publishers are not able to access the

highest adx bids. This makes the problem more challenging.

Compared with the existing studies, this research makes prediction using data

available at the publishers’ side, which does not include details about the adx auctions.
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The proposed methods are applicable to data with any type of censorship faced by

a publisher. In addition, the proposed reserve price failure rate prediction model

outputs probabilistic predictions.

2.2 Matrix Factorization

Matrix Factorization decomposes the user-item interaction matrix into the product

of two lower dimensionality rectangular matrices. Matrix Factorization algorithms

factorize the user-item rating matrix as the product of two lower dimensional matrices,

so that each user/item has a latent vector representing the characteristics. The

dot product of a user’s latent vector and an item’s latent vector is the predicted

rating given by the user to the item. The most fundamental matrix factorization in

recommender systems is Singular Value Decomposition (SVD) [55] and its variation

SVD++ [37]. As a more general-purpose supervised learning algorithm, factorization

machines (FMs) [53] have been widely adopted to model the discrete feature

interactions in recommender systems. FMs combine the high-prediction accuracy

of factorization models with the flexibility of feature engineering. The core part

of FMs is pairwise interaction tensor factorization (PITF) [54]. PITF uses matrix

factorization to capture the interaction of pairwise features. FMs have been used

in many applications and studies, such as user behavior prediction [62, 64] and

click-through rate prediction [27].

In this work, we use use FMs, which learn latent vectors for users, pages, and

ad placements from training data, to predict the scale parameter of a statistical

distribution. Furthermore, we also propose a technique based on deep learning to

better capture the feature interaction.
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2.3 Feature Interaction in Deep Learning

We borrow ideas on capturing feature interactions from recommender systems studies.

In recommender systems, feature interactions take various forms, depending on

applications, such as user-product, user-content, and query-answer. Deep neural

networks have been extensively used in recommender systems [7, 47]. There are

several main methods to capture feature interaction: concatenation, multiplication,

and distance function. Some studies [12, 20, 65, 10] concatenate low dimensional

feature representations together and feed the results into the next layers, e.g., fully

connected layers. Other studies use element-wise product of vectors [6, 19]. A few

other studies use distance functions (e.g., cosine distance) [71, 22]. Model selection

usually depends on performance and specific applications. In this work, we adopt

concatenation due to simplicity and fast convergence.

2.4 Prediction Interval Estimation

Using the notation used in [33], machine learning based prediction often models

prediction targets by

ti = yi + εi (2.1)

where ti is the ith prediction target. εi is the error results from noise. The errors

are assumed to be independently and identically distributed. The true regression yi

is often approximated by the model prediction ŷi, which is output by a prediction

model. Thus, we get

ti − ŷi = yi − ŷi + εi (2.2)

Confidence intervals (CIs) measure the variance of yi − ŷi, which is the

uncertainty between the model prediction ŷi and the true regressions yi, i.e., yi − ŷi.
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In comparison, prediction intervals (PIs) reflect the uncertainty associated with the

different between prediction target ti and the model prediction ŷi, i.e., ti − ŷi.

Therefore, while a CI describes the uncertainty in the prediction of an unknown but

fixed value, a PI measures the uncertainty in the prediction of a future realization

of a random variable [45]. According to Section 2.2, PIs account for more sources of

uncertainty (model misspecification and noise variance) than CIs which only capture

model misspecification [21].

Several categories of methods have already been proposed for PI construction

in the literature.

The Delta method is a strategy for constructing intervals through nonlinear

regression. The Delta method linearizes a neural network model by learning optimal

parameters. It approaches optimal parameters by minimizing the error-based cost

function, sum square error (SSE). The Delta method is more computationally

demanding in the offline training phase, especially the Jacobian matrix calculations

and the estimation of the variance of the error term. Delta method has been used

for the construction of prediction intervals in many applications, such as travel time

prediction [29], uncertainty prediction in Adaptive Neuro Fuzzy Inference System

(ANFIS) [31], and short simulation or rare event applications [56].

The Bayesian method assumes that the set of neural network parameters is

a random set of variables with assumed a priori distributions. The predictive

distribution of network outputs is then evaluated using the posterior distribution.

The purpose of neural network training is to maximize the posterior probability of

the neural network parameters. Generally, Bayesian methods can better alleviate

overfitting. However, it is also computationally expensive because the cost function

involves Hessian matrix. The Bayesian method has been applied in several

applications [58, 61, 39].
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The MVE method assumes that errors are normally distributed around the

true mean of targets. The goal of the MVE method is to estimate the parameters

of the distribution, i.e., mean and variance. Unlike Delta and Bayesian methods,

the MVE method estimates the target variance using a dedicated neural networks.

This enhances the flexibility for estimating the heteroscedastic variance of the targets.

MVE is also very simple and computationally inexpensive. Its performance highly

relies on the assumption that the error term obeys a normal distribution with the

expectation of the true target [74]. In addition, due to the weak generalization ability

of neural networks, MVE may underestimate or overestimate the actual prediction

intervals. Example applications of the MVE method includes [30]

Bootstrap method ensemble a set of neural network models to output a less

biased estimation of the true regression of the targets [21]. It provides reliable

solutions to obtain the predictive distribution of the output variables in neural

networks [44]. The Bootstrap method estimates the targets by averaging the

predictions of all neural networks. It estimates the variance by calculating an unbiased

variance based on the outcomes of all neural networks. Since it has to build N neural

networks, it is computationally more expensive in the training phase. Given trained

models, it only needs to make N point estimates in the online prediction phase,

which is much less costly than the Delta and Bayesian techniques. The Bootstrap

method so far is the most commonly-used one among the four in the literature for

the construction of PIs [51, 59, 51, 16, 25].

The main strategy of the above four traditional PI construction methods is to

minimize the prediction error, instead of trying to improve the PI quality [32]. Thus,

the output PIs may not be optimal in terms of width and coverage: a high-quality

PIs should be as narrow as possible and capture some specific proportion of data

points. To overcome this issue, Khosravi et al. [32] propose a lower upper bound

estimation method (LUBE) which builds a neural network with two outputs (i.e.,
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lower and upper bound) for estimating the high-quality prediction interval. It is

achieved through minimizing a PI-based loss function, which optimizes both PI width

and coverage.
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CHAPTER 3

RESERVE PRICE FAILURE RATE PREDICTION IN
SECOND-PRICE AUCTIONS USING FACTORIZATION MACHINES

This chapter presents the completed work on reserve price failure rate prediction

in second-price auctions. A survival-analysis based machine learning algorithm is

proposed to predict how likely it is that a reserve price of a specific impression will

not be beaten in a following second-price auction.

3.1 Background and Motivation

In the second-price auction, an effective strategy of setting the reserve price can

significantly increase publishers’ revenue. Figure 3.1 illustrates the three RTB cases,

based on the relationship among the reserve price r, the highest bid b1, the second

highest bid b2, and the revenue generated.

• In Case 1, r < b2 < b1, the revenue is b2.

• In Case 2, the publisher increases the reserve price r such that b2 < r < b1; the
revenue will be r, which gives a revenue boost of r − b2 compared to case 1.

• In Case 3, b1 < r, the publisher increases r too much, such that no advertisers
in the auction are willing to bid more than r; the publisher obtains no revenue.

The objective of publishers is to set r as close as possible to b1 but never higher

than b1. Then, the revenue will be boosted to nearly b1. However, since publishers

do not know a priori b1 before an adx auction, it is difficult to set an optimal r.

To solve the problem of accurately predicting the reserve price value, we leverage

header bidding, a recent improvement to the basic RTB process. Before selling

impressions in ad exchanges, publishers send impression information to multiple

header bidding partners to conduct an impression header auction. Header auctions
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Figure 3.1 Impression revenue in the second-price auctions.

adopt first-price auction, instead of second-price auction as in RTB [14]. Without

header bidding, advertisers can only bid leftovers after more premium channels, e.g.,

sponsored lines. With header bidding, advertisers have the benefit of looking first at

the entire ad inventory: When a page loads, header bidding partners are called for all

impressions in the pageview. Publishers can have more transparency into how much

their impressions are worth and, thus, design adjust the reserve prices to increase

revenue.

A simple strategy to benefit from header bidding information when setting the

reserve prices is to always set r to h1, the highest bidding price in header bidding (if

available). In the example in Figure 1.2, the publisher can set r = $3. If the publisher

receives a higher winning bid in the RTB auction, the impression goes to the RTB

winner; otherwise, it goes to the header bidding winner. If neither RTB nor header

bidding has a winner, it triggers for a house ad or unfilled impression. This rarely

happens in reality. Hence, no matter which case in Figure 3.1 occurs, the revenue is

guaranteed to be max(h1, b2). However, this is not optimal: it can be improved by

predicting a better reserve price r′, such that b2 ≤ r′ ≤ b1. Thus, the expected revenue

can be further boosted to max(h1, r
′). On the other hand, increasing r′ increases the

chance that r′ fails to be outbid in adx and can be risky.
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The goal of this chapter is to propose effective machine learning models for

reserve price failure rate prediction: Given information about an ad impression

and a reserve price, the model outputs the probability that no advertisers in the

RTB ad exchange will outbid the reserve price. The outcome of our approach has

managerial implications for publishers to set appropriate reserve prices to maximize

the expected revenue. It can also help publishers to find a balance between taking

risks and maximizing revenue. For example, a conservative publisher may prefer to

set a reserve price with a 20% failure rate, while a risk lover may set it to 80%.

Reserve price failure rate prediction is challenging due to three reasons. First,

publishers do not know the bidding prices offered by RTB advertisers in past auctions,

making the prediction of bidding price (and hence of the reserve price) for a target

ad impression very challenging. We term this challenge “censorship” because the

publishers are “censored” from knowing the highest bidding price; they just know

the revenue generated by each ad impression (i.e., the second highest bid). There

are two types of censorship in publishers’ impression transaction data: left-censoring,

where the unobserved highest adx bid is less than the known reserve price; and right-

censoring, where the unobserved highest adx bid is greater than the observed revenue.

Second, publishers do not have access to personally identifiable information of users,

and thus do not know about users as much as advertisers and Demand-side Platforms

(i.e., systems that help advertisers to buy impressions in real time). Without user

profile information, it is difficult for publishers to predict the advertisers’ bidding

price in order to set the reserve appropriately. Third, although intuitively header

bidding information can help with RTB prediction, it is not clear how to utilize this

information. To the best of our knowledge, there is no existing work using header

bidding in RTB-related predictions.

To address the censorship challenge, we propose to use parametric survival

models. Unlike binary regressions, which cannot handle datasets with both censored
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and uncensored data, parametric survival models are more generic and can handle any

dataset with or without uncensored data [36]. To deal with the challenge of limited

user profile information, we use latent vectors to capture feature characteristics and

add factorized pairwise interaction between users and pages in the objective function.

For the header bidding challenge, we exploit the similarities between header bidding

and RTB in ad exchange and propose to improve the prediction model using header

bidding regularization.

The chapter presents empirical results of the proposed approach on a real

dataset from Forbes Media, a large online publisher, which logs daily ad impression

transaction data. The concordance index (C-Index) is the standard performance

measure for model assessment in survival analysis. We develop a customized C-Index

for datasets containing only left- and right-censored instances. The experiments

show that our models with the Weibull distribution significantly outperform the

baselines, i.e., a Kaplan-Meier model and a logistic regression with observed reserve

price/revenue as the feature. Adding interaction factorization and header bidding

regularization reduces log-loss compared with the best baseline by 67%.

3.2 Reserve Price Failure Rate Prediction

This section first introduces our real-life dataset (Subsection 3.2.1) and discusses the

data censorship (Subsection 3.2.2). We then present our parametric survival model

(Subsection 3.2.3) with factorized pairwise interactions (Subsection 3.2.4) and header

bidding regularization (Subsection 3.2.5).

3.2.1 Real-Life Datasets

We use two datasets collected in one day in April 2018 at Forbes Media’s website:

1) NetworkImpressions and 2) NetworkBackfillImpressions 1. These two datasets are

1The description and data samples are available at https://support.google.com/adman
ager/answer/1733124 (Retrieval Date: July 23rd, 2021)
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Figure 3.2 Data preparation.

provided by Google DoubleClick for Publishers (DFP) [1]. The data preparation is

illustrated in Figure 3.2. The final dataset contains above 16 million impressions with

2.6 million unique users and 132 thousand unique pages.

NetworkImpressions records the impressions which were allocated to direct

sale or header bidding winners. Headerbidding-won impressions failed to receive

higher bids during RTB than the highest header bids (which is the reserve price

of the headerbidding-won impressions in our dataset). Unlike headerbidding-won,

directsale-won impressions were not sent to RTB. They were never bid by advertisers.

Therefore, we filter out direct sale impressions by their order IDs. We get nearly 6

million headerbidding-won impressions.

NetworkBackfillImpressions records the impressions which were allocated to

real-time bidding winners. In the context of this chapter, it contains adx-won

impressions. It includes fields such as time, pageID, ad position, channel, section,

geo-location, and header bids 2. In addition, it records the revenue and reserve price

of each impression. We obtain about 10 million adx-won impressions.

Although our method is based on Google DFP datasets (which has a dominant

market share), it can be adopted by a large majority of the other publishers as

well. This is because DFP’s competitors (e.g., OpenX [2]) provide similar datasets,

2The default data report does not contain header bids. This information was added by the
publisher.
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Figure 3.3 Three censorship cases.

and most publishers face the same restrictions/limitations in the datasets (e.g.,

censorship).

3.2.2 Data Censorship

The dataset has two types of impressions: adx-won and headerbidding-won. In the

rest of the chapter, they are referred to as reserve-won and header-won, respectively.

Without loss of generality, they are subdivided into three censorship cases in

Figure 3.3.

header-won is similar to case 3 in Figure 3.1. The only difference is that,

with header bidding available, the revenue is the maximum header bid. To increase

revenue, a publisher wants to decrease the reserve price, so that it may be outbid in

adx, and then the revenue will be the higher value between the revenue from adx and

header bidding. Since the highest bid was not disclosed to publishers, the impressions

are left-censored at the reserve prices.

reserve-won1 corresponds to case 1 in Figure 3.1. The reserve price and the

revenue (i.e., the second highest bid) are known, but the highest bid is unknown.

Reserve-won1 impressions are right-censored at the second highest bid.
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reserve-won2 corresponds to case 2 in Figure 3.1. Only the revenue (i.e. the

reserve price) is known. That is, reserve-won2 impressions are right-censored at the

reserve price.

For both Reserve-won1 and reserve-won2, to increase revenue, the publisher

wants to increase the reserve price to be close to (but not exceed) the highest bid,

which will then be the revenue [50].

3.2.3 The Proposed Parametric Survival Model

Problem Definition 1. Given an ad impression Ai and a reserve price ti, the goal

is to predict the probability that no advertiser is willing to bid higher than ti during

RTB.

Model Selection. Since our data are censored, it is natural to use survival

analysis models [66]. The goal of survival analysis is to estimate the probability of a

time-to-event of interest for a new instance with feature predictors. For instance, it

can answer a question such as how likely it is that a patient has a disease at a certain

point in time. To apply survival analysis to our case, we can make an analogy: one

impression is an instance, which has a set of features. The event of interest is that all

advertisers bid lower than the reserve price (i.e., reserve price failure). The time to

event is the reserve price. With the increase in the reserve price (i.e., time to event),

the probability of reserve price failure (i.e., event of interest) also increases. When

the reserve price is $0, it is most likely that the event of reserve price failure does not

occur. If the reserve price is high (e.g., $100), it can hardly receive a higher bid.

One important feature of survival analysis models is that they can output

probabilistic predictions. In our application, they can both infer the optimal reserve

price and tell how likely it is that a better bid can be received from advertisers. This

is helpful for publishers that would like to perform revenue optimization and/or find

the trade-off between risk and return.
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Survival analysis models have been used in many applications [66]. As a widely

used semi-parametric survival model, Cox proportional hazards model [36] assumes

that the baseline hazard is a function of time to event t, but does not involve the

feature predictors X. Thus, it is not necessary to specify the form of the baseline

hazard (i.e., how the probability of event occurrence is changing with t).

Although the Cox proportional hazards model is popular due to its flexibility,

it is insufficient for our application for several reasons. First, it does not directly

accommodate left- or interval-censored data (it does handle right-censor data,

though). Second, in model inference, partial likelihood requires observed data

whose times to event are known. However, our dataset consists of both right- and

left-censored data and does not contain any observed data, i.e., the highest adx bids

of all impression are not accessible on the publishers’ side. In addition, we need to

deal with continuous time points because the reserve price is a continuous variable.

Also, as the size of the impression data is huge, our model should be able to be learned

stochastically.

The Proposed Method. We propose to use the parametric likelihood of a

parametric survival model since it can easily accommodate left- and right-censored

data or uncensored data. Furthermore, parametric survival models are more general

compared to binary regressions, which cannot handle data containing both censored

and uncensored instances [36].

A parametric survival model is one in which the outcome is assumed to follow

a known distribution family. In other words, it assumes the probability that no

advertiser bids higher than a reserve price follows a certain distribution. Commonly

used distributions include Weibull, Exponential, and Log-logistic. Individual

instances typically share the same family of distributions of similar form but with

different parameters. Distribution parameter values are determined based on the

feature predictors of instances.
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Left- and right-censoring can be considered as special cases of interval-censoring

(with zero as the lower bound and positive infinity as the upper bound). Hence,

without loss of generality, given the ith ad impression, we aim to predict the

probability that the reserve price ti fails within the interval [ai, bi].

P (ai ≤ ti ≤ bi) =

∫ bi

ai

f(t)dt (3.1)

where P (ai ≤ ti ≤ bi) is the probability that the true failure reserve price ti

is between ai and bi. f(t) is the probability density function (PDF) of the specified

distribution. ai and bi are the lower bound and the upper bound of the reserve price

for the ith ad impression, respectively. Our particular cases are handled as follows

(refer to Figure 3.3):

• For header-won impressions (i.e., left-censoring), ai is zero and bi is the historical
reserve price because the true failure reserve price ti must be less than the
observed reserve price bi. For the ith impression, we want to maximize the
probability that a reserve price ti fails within the interval [0, bi], i.e., P (0 ≤ ti ≤
bi).

• For reserve-won impressions (i.e., right-censoring), ai is the historical revenue
and bi is positive infinity because the true failure reserve price ti must be higher
than the observed revenue ai. For the ith impression, we want to maximize
the probability that a reserve price ti fails within the interval [ai,+∞], i.e.,
P (ai ≤ ti ≤ +∞).

If a publisher’s data have uncensored impressions (i.e., the highest bids b
(1)
i are

observed), we can use P (ti = b
(1)
i ) = f(t).

Taking Weibull distribution as an example, its PDF is f(t) = β
α

(
t
α

)β−1
e−( tα)

β

,

where α is the scale parameter and β is the shape parameter. Both α and β are

positive. Typically, for parametric survival models, the shape parameter β is pre-

specified and held fixed. The scale parameter α can be re-parameterized in terms of

feature predictors Xi and regression coefficients Wi:
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αi = w0 +
m∑
j=1

wjxij (3.2)

where m is the number of impression features reflecting the user, the page, and

the context, which are defined next.

Features. The features we consider come from several aspects:

• User: User information plays an important role when advertisers/DSPs are
assessing ad opportunities. Most publishers do not have access to personally
identifiable information. Hence, we model users by 1) user IDs, 2) state-level
location, 3) operating system and Internet browser, 4) network bandwidth, and
5) devices.

• Ad Placement: The ad placement sizes and positions determine if the ads are
visible and thus convertible [63]. A small ad placement at the bottom of the
page may not receive high adx bids. We model ad placements by 1) ad unit
size, e.g., “123x324” and 2) ad position (On the publisher’s page template, each
ad slot has a unique name representing its position).

• Page: Page information reflects user interests and the information that a user
is looking for at the moment. It may also impact impression valuation. We
model pages by 1) page URLs, 2) channels, e.g., “business” and “lifestyle,”
3) sections, i.e., sub-channels, and 4) the trending status of the page (i.e., if the
page is labeled as trending by the publishers’ editors).

• Context: 1) hour of the day and 2) referrer URLs, i.e., which page the current
page request originated from.

All of these features are constant over the reserve prices. In other words, no

matter what the reserve price is, the feature values of a given impression do not

change. Since these features are all categorical, we convert them to dummy variables.

Inference. The log-likelihood function is defined as:

lnL =
N∑
i=1

[yi ln ŷi + (1− yi) ln(1− ŷi)] · ri (3.3)

where yi is the ground truth of the ith impression. If the ith impression is a

header-won impression, yi = 1; otherwise, it is 0. ŷi is the prediction of the reserve
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price failure rate. The corresponding success rate can be calculated by 1 − ŷi. ri is

the reserve price for header-won impressions and to the revenue (i.e., second highest

bid) for adx-won impressions.

Given Equation (3.1), ŷi is calculated by ŷi =
∫ ti
0
f(t)dt. As Figure 3.3 shows,

if the ith impression is header-won, ti is its reserve price. If it is reserve-won, ti is

its revenue. f(t) is the PDF of a distribution. The scale parameter αi in f(t) is

calculated by Equation (3.2).

An example weight ri is assigned to each training impression i to represent how

important the impression is. In our application, publishers care more about high-value

impressions [70]. For example, correctly predicting that an impression values $5 can

bring more revenue to a publisher than correctly predicting that one values $0.05.

Thus, ri serves as a weight in Equation (3.3).

Therefore, to learn w, we can minimize the negative log-likelihood, where the

log-likelihood function is as below:

w∗ = argmin
w

{
−

N∑
i=1

[yi ln ŷi + (1− yi) ln(1− ŷi)] · ri

}
(3.4)

3.2.4 Pairwise Interaction Tensor Factorization

To improve the prediction performance, we further consider the interactions between

users and pages. Indeed, the adx bids on an impression may be jointly determined

by the user, the page, and the ad placement. Matrix factorization-based predictive

models, e.g., Factorization Machines [53, 64], have been used at the advertisers’ side

to optimize RTB [26]. Considering pairwise interactions between features using latent

vectors captures better the features’ characteristics and thus boosts the performance

of reserve price failure rate prediction. It can also overcome data sparsity, which is

especially challenging for interactions between users and pages.

We add a term of pairwise interaction tensor factorization to Equation (3.2).

αi = w0 +
m∑
j=1

wjxij +
m∑
j=1

m∑
h=j+1

〈vj,vh〉xijxih (3.5)
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where m is the number of feature predictors. vj describes the jth feature with

k factors. k is a hyperparameter that defines the dimensionality of the factorization.

〈vj,vh〉 is the dot product of two vectors of size k, i.e., 〈vj,vh〉 :=
∑k

f=1 vj,f · vh,f .

To alleviate the data sparsity and the cold-start problem [41], we assign

occasional users and infrequent pages, whose occurrences are less than 5 times, to

dummy features “rare user” and “rare page”, respectively. In our dataset, 39.04%

users and 74.94% pages are involved in at least 5 impressions.

Adding factorization does not change substantially Equation (3.3) for log-

likelihood. The only part that needs to be revised is how to compute the

scale parameter α in the distribution PDF f(t), i.e., replace Equation (3.2) with

Equation (3.5).

Adding factorization increases the number of parameters that need to be learned

from data, especially if k is large. Thus, we add an L2 penalty term, i.e., λ1 ‖w‖2

and λ2 ‖v‖2, at the end of Equation (3.4) to avoid overfitting [53]. This limits w and

v from becoming extremely large or small. λ1 and λ2 are pre-specified parameters

controlling the strength of regularization. In this case, the new loss function is shown

in Equation (3.6).

w∗ = argmin
w,v

{
−

N∑
i=1

[yi ln ŷi + (1− yi) ln(1− ŷi)] · ri

+ λ1 ‖w‖2 + λ2 ‖v‖2
}

(3.6)

3.2.5 Header Bidding Regularization

Before undergoing a traditional RTB auction, an ad impression is offered for sale in

a header auction. In fact, the same advertiser may join both auctions. Therefore, it

can be assumed that header bids are pseudo-randomly sampled from adx bids. The

header bids that publishers receive from header bidding partners are the maximums in

the corresponding sample groups. Since header bidding uses first-price auctions, the
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Figure 3.4 Two cases for header bidding regularization.

highest header bid in each header bidding partner is known, which can shed insights

on advertiser’s bids in the later RTB auctions.

This section discusses how to leverage the known bids in header bidding to

improve reserve price failure rate prediction. One option is to add the winning header

bids as feature vectors in the prediction model. However, in our dataset, the publisher

receives winning header bids from five header bidding partners, who may not provide

bids for every impression; this often happens due to network latency that prevents

publishers from receiving header bids on time. Due to the presence of a substantial

number of missing values, directly adding these bids into feature vectors may not

work.

Instead, we propose to use header bidding information to regularize model

learning. The intuition is shown in Figure 3.4. The minimum and the maximum

header bids of an impression are first identified. They are denoted as hbmin and

hbmax, respectively. For a header-won impression, its reserve price was set too high.

The advertisers in the RTB auction were willing to pay less than the reserve price set

by the publisher (i.e., left-censoring), while the advertisers in header bidding auctions

were willing to pay at least hbmin. If hbmin is less than the reserve price, it can be

assumed that likely advertisers in the RTB auction were also willing to pay more than

hbmin. Thus, as Figure 3.4 shows, the header-won impression is strictly left-censored
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at the reserve price, while the highest adx bid probably is more than hbmin (i.e.,

loosely right-censored at hbmin). For a reserve-won impression, its reserve price was

set too low. The advertisers in the RTB auction were willing to pay more than

the revenue received by the publisher (i.e., right-censoring), while the advertisers in

header bidding auctions were willing to pay at most hbmax. If hbmax is less than the

revenue, it can be assumed that likely advertisers in the RTB auction were willing to

pay less than hbmax. Thus, as Figure 3.4 shows, the reserve-won impression is strictly

right-censored at the revenue, while it is loosely left-censored at hbmax.

Thus, we add a term on header bidding regularization to the log-likelihood, i.e.,

from Equation (3.3) to Equation (3.7):

lnL =
N∑
i=1

[yi ln ŷi + (1− yi) ln(1− ŷi)] · ri

+ λ3 · I{Ai∈H} ·
[
0 · ln ŷmini + 1 · ln(1− ŷmini )

]
· ri

+ λ4 · I{Ai∈E} · [1 · ln ŷmaxi + 0 · ln(1− ŷmaxi )] · ri

=
N∑
i=1

[yi ln ŷi + (1− yi) ln(1− ŷi)] · ri

+ λ3 · I{Ai∈H} · ln(1− ŷmini ) · ri + λ4 · I{Ai∈E} · ln ŷmaxi · ri (3.7)

In Equation (3.7), the first term is the same as in Equation (3.3). I{Ai∈H}

is an indicator variable, whose value is 1 if the impression Ai is in the header-won

impressions H; otherwise, it is 0. ŷmini is the prediction at the minimum header

bid of impression Ai (as shown in the first case of Figure 3.4). It is calculated by

ŷmini =
∫ hbmin
0

f(t)dt.

Since we assume adx advertisers are likely to bid more than hbmin (i.e., survive

at hbmin), the closer ŷmini is to 0, the better. λ3 is the strength of the regularization

for header-won impressions. A large λ3 encourages the model to predict correctly at
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hbmin. I{Ai∈E} is an indicator variable, whose value is 1 if Ai is in the reserve-won

impressions E; otherwise, it is 1. ŷmaxi is the prediction at the maximum header bid of

Ai (as shown in the second case of Figure 3.4). It is calculated by ŷmaxi =
∫ hbmax
0

f(t)dt.

Since we assume adx advertisers likely pay less than hbmax, the closer ŷmaxi is

to 1, the better. They are all weighted by ri. λ4 is the strength of the regularization

for reserve-won impressions. A large λ4 encourages the model to predict correctly at

hbmax.

The loss function is revised from Equation (3.6) to Equation (3.8).

w∗ = argmin
w,v

−

{
N∑
i=1

[yi ln ŷi + (1− yi) ln(1− ŷi)] · ri

+ λ3 · I{Ai∈H} · ln(1− ŷmini ) · ri + λ4 · I{Ai∈E} · ln ŷmaxi · ri

+ λ1 ‖w‖2 + λ2 ‖v‖2
}

(3.8)

3.3 Evaluation

3.3.1 Experimental Dataset and Ground Truth

The dataset has been described in Subsection 3.2.1. The dataset was collected over

one day in April 2018 on Forbes.com. All header-won and reserve-won impressions are

shuffled. Training data, validation data, and test data are randomly picked by 8:1:1.

Nearly 13 million impressions are in the training data, and 1.6 million impressions

are in the validation/test data.

Test impressions are also weighted by ri, as it was already described for training

data in Subsection 3.2.3. ri is set to the reserve price if the ith impression is header-

won or the revenue (second highest bid) if reserve-won.

We consider reserve price failure rate prediction as a classification problem. Our

model outputs the probability that no advertisers will outbid a reserve price for an
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impression. The ground truth is available in our dataset; it is known for each ad

impression with a reserve price whether it is header-won or reserve-won.

3.3.2 Implementation

The proposed parametric survival model is implemented using Tensorflow. The

experiments are run on a desktop with i7 3.60Hz CPU and 32GB RAM. The

computation is sped up using NVIDIA GeForce GTX 1060 6G GPU. Running 5

epochs usually takes 5-6 hours depending on the parameter setting. In practice, the

training phase can be offline. The prediction of an impression is done in less than

100ms, which demonstrates that the prediction phase can be deployed as an online

process.

The training goal is to minimize the log-loss. Since the large training dataset

does fit the memory, the optimizer we adopt is Stochastic Gradient Descent (SGD)

with a learning rate of 10−3.

Considering the training speed and memory consumption, we set the training

batch size to 2048. Although using smaller batch sizes, in theory, can speed up

convergence, it may also lead to longer training time for one epoch due to more I/O

with the GPU. In this experiment, we find a batch size of 2048 is a good trade-off

between convergence and training time for one epoch. The training process usually

can converge at the second epoch.

To avoid overfitting, across all 10 epochs, the model that performs the best on

the validation data is applied to the test data. The parameter values are empirically

set: λ1 and λ2 (introduced in Subsection 3.2.4) are both set to 10−7. They control the

complexity of the feature weights, w, and the complexity of the weights for feature

latent vectors, v. λ4 (introduced in Subsection 3.2.5) and λ5 are set to 10−4. They

control the strength of header bidding regularization for header-won and reserve-won

impressions, respectively.
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3.3.3 Experimental Metrics

Accuracy computes the percentage of the test instances correctly predicted at

the reserve prices (for header-won impressions) or the revenues (for reserve-won

impressions). Higher values are better.

Log-Loss is widely used in probabilistic classification. It penalizes a method

more for being both confident and wrong. logloss = − 1
N

∑N
i=1 [yi log(ŷi) + (1− yi) log(1− ŷi)],

where N is the number of test impressions. ŷi is the probabilistic prediction and yi

is the ground truth (either 0 or 1). Lower values are better.

Concordance-Index (C-Index) [18] is a well-recognized measure of discrim-

ination for models that predicts a time-to-event and equals the proportion of

impression pairs in which the predicted event probability is higher for the subject

who experienced the event of interest than that of the subject who did not.

The original C-Index requires uncensored instances. However, our dataset

contains censored instances: either left- or right-censored. Figure 3.5 shows the four

relationships of any pair of impressions, i.e., < Ai, Aj >. In the first case, Ai is

left-censored (i.e., header-won), while Aj is right-censored (i.e., reserve-won). As it

is known that Ai’s reserve price ti failed and Aj’s reserve price tj was outbid, we can

expect that 1 > ŷi > ŷj > 0, where ŷi is the reserve price failure rate of Ai. The

failure rates of < Ai, Aj > are comparable. In the second case, both are left-censored

because their reserve prices are higher than the (unobserved) highest adx bid prices.

The highest bid of Ai, ti
′, is within [0, ti). The highest bid of Aj, tj

′, is within

[0, tj). In the case of t2
′ < t1

′ < t1 < t2, we may expect 0 6 ŷi < ŷj 6 1 because

t2 − t2
′ > t1 − t1

′. In other words, ŷi is farther from its highest bid price than ŷj.

Thus, ŷj should be closer to 1. However, in the case of t1
′ � t1 < t2

′ < t2, we expect

ŷi > ŷj because t2 − t2 < t1 − t1′. Since t1
′ and t2

′ are censored, The failure rates of

< Ai, Aj > is not comparable. Likewise, the third and the fourth cases are also not

comparable on failure rates.
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Figure 3.5 Pairwise relationships.

Thus, we create a customized C-Index based on the original one:

c index =
1

|ε|
∑
Ai∈L

∑
Aj∈R

I{ŷi>ŷj} (3.9)

where L and R are the set of left- and right-censored impressions, respectively.

The customized C-Index only considers the first case, which is the only comparable

one. Higher values are better.

This customized C-Index provides a measure that considers only the test

instance pairs whose relationships are known. Along with log-loss, it is complementary

for the data in which the highest bids are far away from the observed reserve

prices/revenues, since the observed reserve prices/revenues are no longer reliable.

Since the customized C-Index only considers one case (refer to Figure 3.5), it may

be hacked by a naive method that always outputs low failure rates for large reserve

prices and large failure rates for low reserve prices. Therefore, in the experiments, we

evaluate the model using C-index along with log-loss and accuracy.

In our experiments, we ran each test three times and reported the averages.
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Figure 3.6 Log-loss of different distributions with different shapes.

3.3.4 Comparison Systems

Observed Reserve Price/Revenues (OR). The simplest way to predict failure

rates is to use reserve prices as the only feature in the model. Thus, we build a

logistic regression with one feature: reserve prices for header-won and revenues for

reserve-won.

Kaplan-Meier (KM): Kaplan-Meier [36] is an extensively used non-parametric

statistic used to estimate the survival function from lifetime data. We slightly modify

it: ŷi = 1 −
∏

j:tj≤ti

(
1− dj

nj

)
, where ti is the reserve price/revenue of the ith test

instance. tj is a price less than ti. dj is the number of impressions that failed to be

sold at tj. nj is the number of impressions that did not fail at tj.

3.3.5 Comparison of Different Distributions

The proposed parametric survival model requires the assumption of a distribution

of the reserve price failure rate. The distribution type can impact the prediction

performance. In practice, publishers can plug in commonly used distributions for

survival analysis and pick the one with the best performance [36]. We evaluate the

performance of Exponential, Weibull, and Log-Logistic distributions. Subsection 3.2.3

described how Weibull distribution is used. The PDFs of Exponential and Log-
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Figure 3.7 Accuracy of different distributions with different shapes.

Figure 3.8 C-index of different distributions with different shapes.

Figure 3.9 Log-loss of different distributions with different k.
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Figure 3.10 Accuracy of different distributions with different k.

Figure 3.11 C-index of different distributions with different k.
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Logistic distributions are f(t) = αe−αt and f(t) =
[
β
α
· ( t

α
)β−1

]
/
[
(1 + ( t

α
)β)2

]
,

respectively. The scale parameter, α, can be learned from the training data. It

is re-parameterized in terms of feature predictors Xi and regression coefficients Wi,

i.e., Equation (3.2). The optimal shape β, is found through experiments.

The performance of different distributions and different shape parameters is

presented in Figures 3.6, 3.7, and 3.8. The performance is reported for the proposed

model with factorization and header bidding regularization. As the Exponential

distribution has no shape parameter, its performance does not change across different

βs. As one can see, the performance of the Exponential distribution is not as good

as Weibull and Log-Logistic.

The Log-Logistic obtains its lowest log-loss (0.2248) when β = 0.7 and the

highest accuracy (0.8988) when β = 0.8. However, β = 0.7 and 0.8 make the model

with the Log-Logistic misclassify more test instances of the “sure case” (case 1 in

Figure 3.5). β = 0.1 leads to the highest C-Index, while its log-loss and accuracy are

unsatisfactory: β = 0.1 tends to favor impressions with large reserve prices rather

than those with low reserve prices (in terms of lowest failure rates).

The Weibull distribution obtains the lowest log-loss (0.2274) when β = 0.3,

the highest accuracy (0.8978) when β = 0.2, and the highest C-Index (0.8615) when

β = 0.1. The Weibull parametric survival model with a small β (e.g., 0.2) can obtain

outstanding performance for all three metrics. Thus, in the rest of the experiments,

we use the Weibull distribution with β = 0.2 as the model setting.

3.3.6 Comparison of Different Dimensionalities

In Subsection 3.2.4, each feature is represented by a k-length latent vector that carries

characteristics of the feature. k is an important parameter which can significantly

impact model performance. In theory, a larger k has better representation and results
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in a more complex model; however, it has a higher chance to overfit. Dimentionality

k is usually determined through experiments.

The results are shown in Figures 3.9, 3.10, and 3.11. They indicate that, with

the increasing in vector dimensionality, the performance on the test data generally

improves. The reason is that longer latent feature vectors can better capture the

signals in the training data so as to improve model complexity. In addition, the

performance of log-loss and accuracy increases fast when k grows from 40 to 60.

After 60, the growth slows down and even reduces. This is because most signals in

the training data have been captured, and further increasing k results in overfitting.

C-Index also follows such a trend. We observe that k = 100 leads to a jump

when compared with k = 90. The possible reason is that k = 100 may happen

to correctly predict many test instances in the first case of Figure 3.5, which increases

the customized C-Index. Finally, we notice that there is no single k that results in

best performance for all three metrics: When k = 80, we get the lowest log-loss in

the test data. k = 90 leads to the highest accuracy. k = 100 wins the C-Index test.

Publishers can select the k based on their objectives: Log-loss can make balance

between ad revenue and failure risk. Accuracy maximizes the total number of

impressions that are correctly classified. C-index can be used when the observed

reserve prices and revenues are believed to be very off from the actual highest bids.

Since minimizing the overall log-loss is the training objective in Equation (3.8),

we set k = 80 in the rest of the experiments.

3.3.7 Overall Comparison

We compare the proposed model with two baselines: KM and OR.

For our model, we use three versions: the plain parametric survival model

param-surv, the model with interaction factorization param-surv-f, and the model
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with both pairwise interaction factorization and header bidding regularization param-

surv-fhb. All use Weibull distribution with β = 0.2.

Table 3.1 Comparison for All Impressions

Log-Loss Accuracy C-Index

KM 1.5762 0.5495 0.0

OR 0.6883 0.5486 0.0

Param-surv 0.2425 0.8880 0.8532

Param-surv-f 0.2305 0.8953 0.8577

Param-surv-fhb 0.2266 0.8972 0.8583

Table 3.2 Comparison for Impressions with Header Bids Only

Log-Loss Accuracy C-Index

KM 1.5766 0.5493 0.0

OR 0.6881 0.5487 0.0

Param-surv 0.2438 0.8879 0.8533

Param-surv-f 0.2311 0.8946 0.8573

Param-surv-fhb 0.2186 0.9011 0.8597

Table 3.1 presents the results. All three versions of our model outperform the

two baselines. Among the three versions, param-surv-fhb is the best.

The C-Index values of the two baselines are all zero because: 1) KM makes

predictions based on the percentages of impressions whose reserve prices that are less

than a given price have already failed. As the overall failure rate increases with the

increase of the reserve price, KM always “thinks” an impression with a higher reserve

price has a higher failure rate (i.e., case 1 in Figure 3.5 never happens). 2) Likewise,

OR is a linear model. It learns from the data that the failure rate is positively
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correlated with the reserve price. It always gives a higher reserve price a greater

failure rate than a lower reserve price.

The param-surv model has good performance and clearly outperforms the

baselines. Adding interaction factorization, param-surv-f reduces the log-loss by 5%

because latent feature vectors can better capture the regularities in the training data

and overcome data sparsity compared to one-hot encoding. Furthermore, utilizing

header bidding to regularize the model, param-surv-fhb can reduce the log-loss by an

additional 1.7% from param-surv-f.

Header bidding regularization is only applicable on impressions with header

bids. To fully present its effect, we filter out impressions without header bids from

the test set. The results are shown in Table 3.2, and they demonstrate that Param-

surv-fhb has a larger performance improvement compared with the other models.

3.4 Summary

This chapter proposes a parametric survival model to predict the failure rate of the

reserve price of an online display ad impression in an ad exchange auction. The

model is further augmented by user-page pairwise interaction tensor factorization

and header bidding factorization. We also develop a customized C-Index for datasets

containing only left- and right-censored instances. The experimental results show

that the proposed models with the Weibull distribution significantly outperforms a

Kaplan-Meier model and a logistic regression with observed reserve price/revenue as

the feature. Adding factorized interaction and header bidding regularization further

boost performance. Our model can be adopted by the majority of online publishers

because similar data can be conveniently collected on most publishers’ platforms.
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CHAPTER 4

RESERVE PRICE FAILURE RATE PREDICTION IN
SECOND-PRICE AUCTIONS USING DEEP NEURAL NETWORKS

4.1 Motivation

The previous chapter proposes a parametric survival analysis model that is powered by

factorization machines (FM). Although FM models learn latent vectors to model input

variables, it is still insufficient to capture the deep pattern among input variables.

Hence, in this work, we replace the FM model with a deep neural network, which

improves the end prediction performance. The deep neural network can be easily

plugged into the previously proposed framework.

4.2 Reserve Price Failure Prediction

4.2.1 Deep Neural Network for Feature Interaction

Since the features introduced in Subsection 3.2.3 are mostly sparse inputs (i.e.,

categorical features with a large number of possible feature values, such as users,

pages, and ad placements), we can also use a deep neural network (DNN) to

infer scales, instead of the pairwise interaction tensor factorization proposed in

Subsection 3.2.4. Unlike tensor factorization, our DNN technique captures the

similarities of all features and better models the complex feature interactions. These

two features are explained next.

In Subsection 3.2.3, the features, i.e., users, ad placements, pages, and context,

are modeled by one-hot encoding. Subsection 3.2.4 proposes to use lower-dimensional

dense representations (i.e., embeddings) to model individual pages and users.

However, ad placements and context also need to be modeled by vectors: For instance,

similar ad placements and referrer URLs may have similar impact on the scale and,

thus, the final failure rate. Simply modeling them by one-hot encoding is insufficient
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Figure 4.1 The architecture of the deep neural network.

to capture the similarities and their impact: features with similar contributions have

similar coefficients, i.e., one scalar, which however are not able to fully capture the

complex nature of the features. On the other hand, embeddings can capture the

characteristics of features in a number of dimensions. Thus, features can be close to

each other in some dimensions while different in other dimensions.

The pairwise interaction tensor factorization in Subsection 3.2.4 only captures

pairwise interaction, e.g., users and pages. Neural networks allow all features to be

modeled by embeddings, and use multiple layers of neurons to abstract the joint

effects of all input features. The abstract representations of the interactions of input

features are obtained through multiple layers of computation.

The DNN technique and the pairwise interaction tensor factorization in

Subsection 3.2.4 achieve the same goal, despite their differences. When deploying

the proposed model, practitioners can determine which of the two techniques to use

through experiments and select a trade-off between prediction accuracy and training
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efficiency. As it will be shown in Subsection 3.3, the DNN techniques achieves higher

prediction accuracy, at the cost of slower training.

Figure 4.1 shows the architecture of our DNN technique.

Input Layer: All features at the input layer are represented by one-hot

encoding, which is the same with what we did in Subsection 3.2.4. Note that on

the Forbes webpages, the number of different ad placement shapes is finite due to a

fixed number of page templates. Thus, we represent the ad unit size, e.g., “123x324”,

as a string feature.

Embedding Layer: The embedding layer takes one-hot vectors of input

features, and it looks up the corresponding embedding matrix for the embeddings of

the features. Since all input features are categorical, we use embeddings to represent

all features, as proposed in [17]. The lengths of the embeddings are pre-specified

parameters that can be tuned through experiments. The embeddings of the features

representing the user, the page, and the ad placement are concatenated together,

respectively. These features will be combined into unified vectors for the user, the

page, and the ad placement by a Rectified Linear Unit (ReLU) layer. ReLU is

an activation function that truncates its argument at zero. The negative part of

the argument is forced to be zero, i.e., f(x) = max(0, x), where x is the input

argument of a ReLU. The advantages of ReLU include sparse activation, better

gradient propagation, and efficient computation. Due to these advantages, it has

been widely used in recent deep learning studies. Therefore, each neuron Ui in the

user vector U is calculated by:

Ui = ReLU(wix
(u)
e + bi) (4.1)
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where wi is the weight vector for the ith neuron in the user vector, and x
(u)
e are

the embeddings of the user features. The equations for the page vector and the ad

placement vector are similar. bi is the bias.

Concatenation Layer: This layer concatenates the user vector, the page

vector, the ad placement vector, and the context information (i.e., the embedding

of the hour of the day and the embedding on the referrer URL). To reduce the

number of parameters that need to be learned from training data (thus improve

training efficiency and alleviate overfitting), we share page embeddings with the

referrer embeddings if the referrer is a Forbes page. Otherwise, the referrer embedding

starts with a random value.

In addition to concatenation, another way to take into account feature

interaction is to calculate the dot product of the user vector, the page vector, the

ad placement vector, and the context vector. The output of the dot product can be

the final scale prediction. However, through experiments, we see that it is hard to

converge. The training error fluctuates even though a small learning rate is given.

Also, it does not fit the data as well as concatenation.

Abstraction Layer: The concatenated vector is then further mapped to lower-

dimension representations by multiple fully connected layers. Specifically, we use

three layers with ReLU activation:

yhj = ReLU(

{u,p,a,c}∑
f

w
(f)
hj x

(f)
h−1 + bhj) (4.2)

where u, p, a, c are the vectors of the user, the page, the ad placement, and

the context, respectively. w
(f)
hj is the weight vector for the jth neuron in the hth

abstraction layer. x
(f)
h−1 are the neurons of the previous layer. yhj is the value of the

jth neuron in the hth layer.
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Output Layer: The range of the output of ReLU is [0,+∞). However, the

range of the scale parameter in statistical distributions (e.g., Weibull distribution)

must be (0,+∞). To predict scale, the output layer uses Softplus activation to convert

the last abstraction layer to a positive scalar. Softplus is a smooth approximation

to the rectifier. The analytic function is f(x) = ln(1 + ex). Thus, the range of the

prediction f(x) is (0,+∞).

The DNN technique predicts the scale parameter for the distribution, given

impression information, and it is expected to perform better than the pairwise

interaction tensor factorization because it leverages feature embeddings and multiple

fully connected layers to capture sophisticated interactions between input features.

4.3 Evaluation

4.3.1 Comparison of Different Distributions

The proposed parametric survival model requires the assumption of a distribution

of the reserve price failure rate. The distribution type can impact the prediction

performance. In practice, publishers can plug in commonly-used distributions for

survival analysis and pick the one with the best performance [36]. We evaluate the

performance of Exponential, Weibull, and Log-Logistic distributions. Subsection 3.2.3

described how Weibull distribution is used. The PDFs of Exponential and Log-

Logistic distributions are f(t) = αe−αt and f(t) =
[
β
α
· ( t

α
)β−1

]
/
[
(1 + ( t

α
)β)2

]
,

respectively. The scale parameter, α, can be learned from the training data. It

is re-parameterized in terms of feature predictors Xi and regression coefficients Wi,

i.e., Equation (3.2). The optimal shape β, is found through experiments.

The performance of different distributions and different shape parameters is

presented in Figure 4.2, 4.3, and 4.4. The performance is reported for the proposed

model with factorization and header bidding regularization (i.e., ps-fhb) and the

model with DNN and header bidding regularization (i.e., ps-nhb). As the Exponential
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Figure 4.2 Log-loss of shapes .

Figure 4.3 Accuracy of shapes.
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Figure 4.4 C-Index of shapes.

distribution has no shape parameter, the performance does not change across different

βs. As one can see, the performance of the Exponential is not as good as Weibull

and Log-Logistic.

With ps-fhb, the Log-Logistic obtains its lowest log-loss (0.2248) when β = 0.7

and the highest accuracy (0.8988) when β = 0.8. However, β = 0.7 and 0.8 make

the model with the Log-Logistic misclassify more test instances of the “sure case”

(case 1 in Figure 3.5). β = 0.1 leads to the highest C-Index, while its log-loss and

accuracy are unsatisfactory: β = 0.1 tends to favor impressions with large reserve

prices rather than those with low reserve prices (in terms of lowest failure rates). The

Weibull distribution obtains the lowest log-loss (0.2274) when β = 0.3, the highest

accuracy (0.8978) when β = 0.2, and the highest C-Index (0.8615) when β = 0.1. The

Weibull parametric survival model with a small β (e.g., 0.2) can obtain outstanding

performance for all three metrics. Thus, in the rest of the experiments, we use the

Weibull distribution with β = 0.2 as the model setting.

With s-nhb, the Log-Logistic obtains its best log-loss (0.2203) when β = 0.7,

the highest accuracy (0.8993) when β = 0.8, and the best C-Index (0.8601) when

β = 0.1. The Weibull distribution obtains the lowest log-loss (0.2183) when β = 0.2,

the highest accuracy (0.8995) when β = 0.2, and the highest C-Index (0.8605) when

47



Figure 4.5 Log-loss of ks.

Figure 4.6 Accuracy of ks.

β = 0.1. Thus, the best β settings for ps-fhb and ps-nhb are almost the same. Similar

to ps-fhb, since β = 0.2 leads to decent performance for all metrics, we use the Weibull

distribution with β = 0.2 for ps-nhb in the rest of the experiments.

4.3.2 Comparison of Different Dimensionalities

Both proposed techniques, pairwise interaction tensor factorization and DNN, have

parameters to control the complexity of the models. In pairwise interaction tensor

factorization, each feature is represented by a k-length latent vector that carries

characteristics of the feature. k is an important parameter which can significantly

impact model performance. In theory, a larger k has better representation and

results in a more complex model; however, it has a higher chance to overfit.
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Figure 4.7 C-Index of ks.

Dimensionality k is usually determined through experiments. The DNN technique

has more parameters, such as the length of the embeddings and the length of each

abstraction layer. We carefully fine tune all parameters in order to find the best

performance. Due to space constraints, we only present the effects of the most

important parameters in the network structure: the embedding length of user, page,

and ad placement.

We first present the impact of k in ps-fhb. The results are shown in Figure 4.5,

4.6, and 4.7. They indicate that, with the increasing in vector dimensionality, the

performance on the test data generally improves. The reason is that longer latent

feature vectors can better capture the signals in the training data so as to improve

model complexity. In addition, the performance of log-loss and accuracy increases

fast when k grows from 40 to 60. After 60, the growth slows down and even reduces.

This is because most signals in the training data have been captured, and further

increasing k results in overfitting. C-Index also follows such a trend. In addition, we

observe that k = 100 leads to a jump when compared with k = 90. The possible

reason is that k = 100 may happen to correctly predict many test instances in the

first case of Figure 3.5, which increases the customized C-Index. Finally, we notice

that there is no single k that results in best performance for all three metrics: When
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Figure 4.8 Log-loss of embedding width.

Figure 4.9 Accuracy of embedding width.

k = 80, we get the lowest log-loss in the test data. k = 90 leads to the highest

accuracy. k = 100 wins the C-Index test.

The effects of different embedding lengths in ps-nhb are presented in Figure 4.8,

4.9, and 4.10. The overall trends are similar to those in Figures 4.5, 4.6, and 4.7.

However, the curves in Figures 4.8, 4.9, and 4.10 are smoother than those in Figure 4.5,

4.6, and 4.7. The reason is that DNN has a much more complex structure than

factorization machines. Therefore, the changes of the embedding lengths may not

necessarily have drastic changes on the final performance. When the embedding

length is set to 256, the model achieves the best log-loss and accuracy. It can also
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Figure 4.10 C-index of embedding width.

obtain decent performance by C-index. To get the highest C-Index, one can increase

the embedding length to 512.

Publishers can select the right dimensionality based on their objectives: Log-loss

can make balance between ad revenue and failure risk. Accuracy maximizes the total

number of impressions that are correctly classified. C-index can be used when the

observed reserve prices and revenues are believed to be very off from the actual highest

bids.

As minimizing overall log-loss is the training objective, in the rest of the

experiments, we set k = 80 for ps-fhb and embedding length to 256 for ps-nhb.

4.3.3 Overall Comparison

We compare the proposed model with two baselines: KM and OR. Table 4.1 presents

the results. All three versions of our model outperform the two baselines. Among the

three versions, ps-fhb is the best.

The C-Index values of the two baselines are all zero because: 1) KM makes

predictions based on the percentages of impressions whose reserve prices that are less

than a given price have already failed. As the overall failure rate increases with the

increase of the reserve price, KM always “thinks” an impression with a higher reserve
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Table 4.1 Comparison for All Impressions

Log-Loss Accuracy C-Index

KM 1.5762 0.5495 0.0

OR 0.6883 0.5486 0.0

Ps 0.2425 0.8880 0.8532

Ps-f 0.2305 0.8953 0.8577

Ps-fhb 0.2266 0.8972 0.8583

Ps-nhb 0.2183 0.8995 0.8590

Table 4.2 Comparison for Impressions with Header Bids

Log-Loss Accuracy C-Index

KM 1.5766 0.5493 0.0

OR 0.6881 0.5487 0.0

Ps 0.2438 0.8879 0.8533

Ps-f 0.2311 0.8946 0.8573

Ps-fhb 0.2186 0.9011 0.8597

Ps-nhb 0.2017 0.9102 0.8615

price has a higher failure rate (i.e., case 1 in Figure 3.5 never happens). 2) Likewise,

OR is a linear model. It learns from the data that the failure rate is positively

correlated with the reserve price. It always gives a higher reserve price a greater

failure rate than a lower reserve price.

The ps model has good performance and clearly outperforms the baselines.

Adding interaction factorization, ps-f reduces the log-loss by 5% because latent

feature vectors can better capture the regularities in the training data and overcome

data sparsity compared to one-hot encoding. Furthermore, utilizing header bidding

to regularize the model, ps-fhb can reduce the log-loss by additional 1.7% from ps-f.
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The ps-nhb model can further reduce the log-loss by 3.7%. It learns multi-dimensional

representation to capture the characteristics of input features. The ps-nhb model also

leverages deep structures to compute the joint effects among the input features, which

is the main reason that it outperforms ps-fhb by all three metrics.

Header bidding regularization is only applicable on impressions with header

bids. To fully present its effect, we filter out impressions without header bids from

the test set. The results are shown in Table 4.2, and they demonstrate that Ps-fhb

has a larger performance improvement compared with the other models.

4.4 Summary

This chapter proposes parametric survival models to predict the failure rate of the

reserve price of an online display ad impression. The model is further augmented by a

deep neural network (DNN) technique to capture the feature interaction and header

bidding factorization. We also develop a customized C-Index for datasets containing

only left- and right-censored instances. The experiments show that the proposed

models with the Weibull distribution significantly outperforms a Kaplan-Meier model

and a logistic regression with observed reserve price/revenue as the feature. The DNN

technique and header bidding regularization further boost performance. Our model

can be adopted by the majority of online publishers because similar data can be

conveniently collected on most publishers’ platforms.

53



CHAPTER 5

RESERVE PRICE OPTIMIZATION IN FIRST-PRICE AUCTIONS

Online display advertising is the most important revenue stream of most online

websites. Websites, such as Facebook, Google, and Yahoo, provide free information

and services run on display ads. In display advertising, advertisers (e.g., Volkswagen)

pay publishers (e.g., Forbes) for showing banners, videos, or text on their webpages.

Figure 5.1 is an example display ad. One display of an ad in a page view is called

an ad impression. Display ads allow for catchy messaging, plus graphics, video, and

advertisers’ branding to stand out and attract attention.

One of the main ad selling methods is real time bidding: An impression triggered

in the real-time is sent to ad exchanges with a reserve price provided by the publisher.

Reserve price is the minimum price that the publisher would be willing to accept

from advertisers for this impression. The impression is then bid by advertisers. The

winning advertiser is allowed to show the ad on the publisher’s webpage.

Second-price auctions and first-price auctions are two main auctions used in

online display advertising. Over the last few years, the whole display advertising

market is switching from second-price auctions to first-price auctions. Unlike second-

price auctions in which winners are charged by the second highest bids, in first-price

auctions, the winning advertisers pay the prices that they just bid if they outbid the

publisher’s reserve price. If all bids are lower than the reserve price (i.e., underbid),

the impression is unsold. If at least one bid is equal to or higher than the reserve

price (i.e., outbid), the impression is regarded as sold through real-time bidding.

Although the highest bid is accessible to publishers (i.e., no censorship exists) in

first-price auctions, setting good reserve prices is still tricky and worth of exploring:

Similar as what happens in second-price auctions, a too high reserve price may fail to
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Figure 5.1 An example of a display ad.

be outbid, in which case the publisher receives zero revenue from the RTB auction.

On the other hand, a too low reserve price is not able to stimulate advertisers to

bid higher: To have a chance to win, advertisers may only need to bid slightly

higher than the reserve price, which results in a sub-optimal impression revenue.

In preliminary data analysis, when a reserve price was outbid, highly likely its final

revenue was slightly higher than the reserve price. This means that advertisers’ bids

are correlated to the reserve prices. Hence, a good reserve price can optimize the

publisher’s impression revenue: Always setting their reserve prices slightly less than

the highest prices can motivate advertisers to bid higher next time.

Since the highest bids are uncensored in first-price auctions, publishers can

build a machine learning model to predict the highest bids using their historical

real-time bidding transaction data. Given an impression, publishers just set their

reserve prices right below the predicted highest bids. In this case, publishers can win

all impressions and try to push future bids higher. However, due to uncertainty in
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the ad market, data noise, and model misspecification, predicted highest bids are not

always equal to true highest bids. Publishers may fail to sell ad impressions. Directly

predicting highest bids is risky. Therefore, instead of point estimation, we do interval

estimation. i.e., [b̂L,+∞]. Namely, instead of predicting highest bids, we propose to

predict the lower bound of the highest bids, bL, with a pre-specified confidence level,

(1 − α)%. Publishers can set their own confidence level according to their revenue

goal: decreasing the confidence level leads to a more aggressive strategy (i.e., less

risk), while increasing the confidence level leads to a more conservative strategy (i.e.,

higher risk).

In statistical inference, a prediction interval is an estimate of an interval in which

a future observation will fall, with a certain confidence level (1− α)% (i.e., coverage

probability). For instance, a prediction interval [0.1,+∞] with 80% confidence level

means at least 80% chance that the highest bid is not less than $0.1. Publishers

can consider α as the risk level. The risk is that the highest bid is likely to be less

than the reserve price. In this case, a publisher can set the reserve price to the lower

bound. For instance, a publisher sets the risk level to 20%, i.e., α = 20%. Assuming

the model predicts b̂L = 0.1, a reserve price equal to $0.1 can guarantee that it is at

least 80% chance that the highest bid will be equal to or higher than $0.1, i.e., the

reserve price can be outbid. To build such model, we propose to modify an existing

loss function QD [52] for computing prediction intervals, fed by historical impressions

whose reserve prices were outbid.

Besides outbid impressions, those underbid impressions also carry important

information on advertisers’ bidding behavior. To this end, we propose a multi-task

learning neural network to predict both bL and the hazard rate h (i.e., the probability

of being underbid). The final loss function combines the loss of prediction interval

estimation and the loss of a proportional hazards model.
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In addition to uncertainty in prediction, it is always challenging to model

the characteristics of users, pages and ad slots, which play a significant role in

determining impression prices. Especially, publishers have very limited information

about users. Thus, it is not possible to explicitly build user features which may

impact advertisers’ bids. Moreover, advertisers are using different real-time bidding

algorithms (from deterministic methods to machine learning models), which are

black-box to publishers. It is not feasible to reverse-engineer their algorithms on the

publisher side. To overcome these issues, a deep neural network is used to capture the

complicated joint effect between the features. The deep neural network models users,

pages, and ad placements features using embeddings. These latent vectors will be

able to learn latent features from massive historical transaction data on the publisher

side.

The contributions of this work are as follows: 1) This is the first work that

attempts to optimize reserve prices for first price auctions. 2) We use prediction

interval estimation, instead of point estimation, to better quantify the uncertainty

in the highest bid prediction. Publishers can arbitrarily adjust the risk level based

on their business strategies. 3) We propose a multi-task learning algorithm which

predicts the highest bid lower bound and hazard rate using both outbid and underbid

impressions. 4) The proposed method is evaluated on a real-life transaction dataset,

which contains tens of millions of impression transactions.

5.1 The Proposed Multi-Task Learning Loss Function

In this section, we define the research problem, the censorship issue in the data, and

the reason of using prediction interval estimation. We then introduce the proposed

multi-learning framework which combines prediction interval estimation and survival

analysis.
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5.1.1 Problem Definition

Problem Definition 2. Given an ad impression Ai and a risk level α%, the goal is

to determine a reserve price so that there is at least (1−α)% chance that the reserve

price will be outbid.

In first-price auctions, the real-time bidding transaction data on the publisher

side contains censorship. The highest bids (i.e., how much advertisers are willing to

bid at most) are not always visible: if a reserve price was outbid, the highest bid

and the reserve price are known, i.e., uncensored. If a reserve price was underbid,

the publisher knows the reserve price only. The highest bid is not accessible on the

publisher’s side, i.e., left-censored.

Directly predicting the exact highest bids is risky. Too high reserve prices make

publishers lose significant revenue. Therefore, it is proposed to predict ranges of the

highest bids with a certain confidence level. The final reserve price is the lower bound

so that the highest bids will be guaranteed to be more than the lower bound with a

certain probability. To achieve his goal, we propose to construct prediction intervals,

instead of traditional point estimation.

5.1.2 Multi-task Learning Framework

Historical outbid impressions can be used to learn for constructing prediction

intervals because their highest bids (i.e., revenue) are known. However, historical

underbid impressions cannot be directly used because their highest bids are censored.

Only utilizing outbid impressions may lose significant information about advertisers’

bidding behaviors. Therefore, to more efficiently leverage historical information, we

propose to use a multi-task learning neural network which predicts both the lower

bound of the highest bids bL and the hazard rate h. The loss of the lower bounds

estimation is computed based on only outbid impressions, while the loss of the hazard

rate estimation is computed based on both outbid and underbid impressions.
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5.1.3 Highest Bid Lower Bound Prediction

This section introduces an existing loss function for prediction interval construction,

which is used in this research to predict lower bounds of highest bids with a certain

confidence level. Highest bid lower bound prediction requires true highest bids.

Historical underbid impressions are not used in training because it is impossible

to determine whether estimated prediction intervals are appropriate without true

highest bids. Hence, only historical outbid impressions are available because their

highest bids are known.

Pearce et al proposed this loss function for Quality-Driven prediction interval

estimation, denoted as QD in [52]. It has been applied in existing studies, such

as [57, 23, 42] for wind power interval prediction and it is modified in this project

to be used in reserve price optimization: the upper bound included in the original

loss function is canceled because the ranges of the highest bids are one-sided, i.e., the

upper bound is +∞.

Pearce et al. [52] proposed this quality-driven and distribution-free loss function

that can generate high-quality prediction intervals which are as narrow as possible

and meanwhile capture some specified proportion of data points, i.e., High-Quality

(HQ) principle [32]. Compared with traditional prediction interval (PI) construction

methods, which minimize prediction errors, QD directly improves PI quality. The

constructed PIs are guaranteed to be optimal in terms of their key characteristics:

width and coverage probability.

In general, the QD loss function has two components: Mean Prediction Interval

Width (MPIW) and Prediction Interval Coverage Probability (PICP). The overall

loss is the sum of MPIW and PICP.

MPIW measures the width of the average prediction intervals. The assumption

is that a wide prediction interval (e.g., [0,+∞]) is not informative and useful at all.

Therefore, a good prediction interval should be as narrow as possible. QD defines
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a captured MPIW, denoted as MPIWcapt., which represents the average width of

prediction intervals that correctly include the ground truth labels:

MPIWcapt. =
1∑n
i=1 ki

(
b̂Ui − b̂Li

)
· ki (5.1)

where ki is a Boolean indicator representing whether the ground truth label of

the ith sample out of n samples is correctly captured in the estimated PI. b̂Ui and

b̂Li are the upper and lower bound of the estimated PI, respectively. The higher

MPIWcapt., the better PI quality.

In our case, since we only care about the the lower bound, bUi is +∞, (i.e., the

interval is [bLi ,+∞]). It is removed from Section 5.1. Note that ki = 1 if bLi 6 bi,

where bi is the actual highest bid:

MPIWcapt. = − b̂Liki∑n
i=1 ki

(5.2)

PICP measures the coverage probability of the estimated PIs, i.e., how many

ground truth labels are correctly captured (Equation. 5.3).

PICP =
1

n

i=1∑
n

ki (5.3)

PICP is the most important indicator on the quality of PIs. [52] tries to learn

parameters θ that can minimize Lθ = L (θ|k, α). It can be further represented by

a binomial distribution: Lθ =
(
n
c

)
(1 − α)cαn−c, where c =

∑n
i=1 ki. Using the de

Moivre-Laplace theorem, it can further be approximated by a normal distribution.

Therefore, the negative log likelihood is updated to:

−logLθ ∝
n

α(1− α)
((1− α)− PICP )2 (5.4)
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Putting the MPIW and PICP terms together, the loss of highest bid lower

bound prediction considers both width and coverage, as shown in Equation (5.5). λ

is a parameter controlling the importance of PICP.

Lossqd = MPIWcapt. + λ ·PICP = − b̂Liki∑n
i=1 ki

+
n

α(1− α)
max(0, (1−α)− 1

n

i=1∑
n

ki)
2

(5.5)

5.1.4 Hazard Rate Prediction

Section 5.1.3 uses only historical outbid impressions. However, historical underbid

impressions also carry important information on advertisers bidding patterns. Since

the highest bids of underbids impressions are censored, we proposed to use survival

models, which have been adopted in [67, 73, 28] in the online advertising field.

Thus, to leverage underbid impressions, the proposed loss function incorporates a

loss function of a Cox’s proportional hazards model (Cox PH model).

h(t,Xi) = h0(t)e
ŷi (5.6)

The Cox PH model gives an expression for the hazard at time t for an individual

with a given specification of a set of explanatory variables [35]. The Cox PH model

formula is shown in Equation (5.6). The Cox PH model consists of two parts:

1) the underlying baseline hazard function, h0(t), is called the baseline hazard

function. It is the cumulative hazard rate, i.e., the percentage of the training

instances whose events have already occurred at t. h0(t) describing how the risk

of event per time unit changes over t at baseline levels of explanatory variables; 2)

the exponential term is the exponential expression e to ŷi, which is computed from

trainable parameters θ and explanatory variables Xi (the feature values of the ith
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impression). ŷi describes how the hazard varies in response to explanatory variables.

The output h(t,Xi) is the hazard rate of Xi at time t.

Note that h0(t) is an unspecified function. It is this property that makes the

Cox PH model a semiparametric model. We do not need to assume that the baseline

hazard follows any specific distribution. h0(t) can be easily computed from existing

observations. This is one of the reasons that the Cox PH model is so popular. It is

important in the online display advertising scenario because the ad market is highly

complicated and dynamic. The highest bids may not always be drawn from a specific

distribution.

To handle both uncensored and censored data, the parameters θ are estimated

using the Cox PH partial likelihood function. The partial likelihood function considers

probabilities only for those training instances whose events happen and does not

explicitly consider probabilities for those whose are censored. In particular, although

the partial likelihood focuses on instances which fail, survival time information prior

to censorship is used for those which are censored.

To apply survival analysis to our case, we can make an analogy: one impression

is an instance, which has a set of features. The event of interest is that all advertisers

bid lower than the reserve price r (i.e., underbid). The time to event is the reserve

price. Left-censored instances are underbid impressions (only the reserve price r

is known), while uncensored instances are outbid impressions (the highest bid b is

known). With the increase in the reserve price (i.e., time to event), the event of

interest also increases. When the reserve price is $0, it is most likely that the event

of reserve price failure does not occur. If the reserve price is high (e.g., $100), it can

hardly receive a higher bid.

Therefore, for an underbid impression Ai whose reserve price is ri, we find all

outbid impressions Aj whose highest bid is bj, where bj > ri. Since it is already

known that Ai was underbid before ri and Aj was not underbid at ri, the goal is to
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find θ that can maximize h(ri, Xi)−h(ri, Xj). Therefore, the partial likelihood of the

event at a price ri is:

Li =
h(ri, Xi)∑

j:bj>ri
h(ri, Xj)

=
h0(ri)e

ŷi∑
j:bj>ri

h0(ri)eŷi
=

eŷi∑
j:bj>ri

eŷi
(5.7)

Treating the impressions as if they are statistically independent of each other,

the joint probability of all uncensored cases is Lθ =
∏

Ai∈U Li. U is the set of

underbid impressions. The loss of the hazard rate prediction, (i.e., negative log partial

likelihood) is Equation (5.8):

Losscox =
∑
Ai∈U

(log
∑
j:bj>ri

eŷi − ŷi) (5.8)

Therefore, incorporating Equations (5.5) and (5.8) together, the final loss is

Equation (5.9). µ is a parameter controlling the importance of the hazard rate

prediction.

Loss = Lossqd + Losscox

= − b̂Liki∑n
i=1 ki

+ λ
n

α(1− α)
max(0, (1− α)− 1

n

i=1∑
n

ki)
2

+ µ
∑
Ai∈U

(log
∑
j:bj>ri

eŷi − ŷi)

(5.9)

b̂Li and ŷi are computed from a mapping of θ and the features X. Next section

introduces the proposed mapping.

5.2 Predicting Highest Bid Lower Bounds and Hazard Rates

Section 5.1 introduces a multi-task learning loss function that predicts both lower

bounds of the highest bids and hazard rates. Given b̂Li and ŷi, the final loss function

Equation 5.9 calculates the training loss. The next task is to predict b̂Li and ŷi.
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The highest bid reflects the value of an ad impression. Advertisers will bid high if

they believe showing their ad in an impression can benefit the advertising campaigns.

The value of an impression is determined by multiple factors: 1) User: User interest

is the most important factor. If advertisers think the user in the impression likely

has interest in their products, they will be willing to pay more for this impression.

2) Ad placement (e.g., position): if an ad placement on top of a page is much more

viewable than one at the bottom [63]. 3) Page (e.g., topics): an ad opportunity on a

web article about electronic products may be more attractive than one on a political

article because the user who reads the former more likely has shopping intent. 4)

Context (e.g., time): the time that an impression occurs also matters. The average

bid price varies over the day.

It is highly challenging to predict advertisers’ bidding behavior on the publisher

side. Most advertisers either collect by themselves or buy from third-party companies

excessive information about users and real-time ad market. Hence, advertisers are

using massive data and building complicated algorithms to determine their bids in

real-time. However, most publishers do not have detailed user data. Many online

media websites even do not require visitors to log in before reading articles. This

study is to analyze the problem from the publishers’ point of view. Thus, only limited

user information is utilized.

To estimate the value of ad impressions, features about these four factors are

taken into account. User features include 1) user IDs, 2) state-level location, 3)

operating system and Internet browser, 4) network bandwidth, and 5) devices. Note

that, unlike advertisers, publishers usually do not have access to user personal data.

The above features are identified from the user cookies. Users’ personally identifiable

information (PII) is not used in this study. Ad placement features include 1) ad unit

size, e.g., 123x324 and 2) ad position (On the publisher’s page template, each ad slot

has a unique name that represents its position). Page features include 1) page URLs,
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Figure 5.2 The architecture of the proposed multi-task learning neural network.

2) channels, e.g., business and lifestyle, 3) sections, i.e., sub-channels, and 4) the

trending status of the page (i.e., if the page is labeled as trending by the publishers’

editors). Context features include 1) hour of the day and 2) referrer URLs, i.e., which

page the current page request originated from.

In addition, due to the complexity of advertisers’ real-time bidding algorithms

and the uncertainty in the ad market, publishers have to learn latent features, instead

of using explicit features, from historical data. It is also important to capture

interaction among latent features. Therefore, simple linear models are not sufficient

for this task. This work proposes to use deep neural networks, which has been

extensively studied and deployed in many applications, e.g., recommender systems.

To reduce the complexity of the model and improve prediction performance, we

adopt the multi-task learning framework. It predicts b̂Li and ŷi using a set of shared

parameters. Figure 5.2 presents the architecture of the proposed multi-task learning

neural network.
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Input Layer: All features listed above are either categorical or can be easily

converted to categorical variables. For instance, ad unit size is converted to a string

feature, such as “747x413”. These categorical variables are then one-hot encoded.

A publisher usually has fixed number of standard ad unit sizes on the templates.

Using one string feature, instead of two integer features, can capture the interaction

of width and height.

Embedding Layer: User, page, and ad placement features are represented

by latent embedding vectors. Embedding vectors can significantly enhance model

complexity and the ability of fitting training data. It is also able to capture the

sophisticated ad market from historical data. The embedding layer retrieves feature

embeddings based on the one-hot input. The lengths of the embeddings are pre-

specified parameters that can be tuned by experiments. The feature embeddings of

the three factors are then concatenated, respectively. These features will be combined

into unified vectors for the user, the page, and the ad placement by a Rectified

Linear Unit (ReLU) layer. The Rectified Linear Unit is the most commonly used

activation function in deep learning models. The function returns 0 if it receives

any negative input, but for any positive value x it returns that value back. ReLU is

written as f(x) = max(0, x). It can allow the model to account for non-linearities

and interactions. In theory, ReLU is able to approximate any function. Thus, it is

suitble for our application, in which we have to mimic advertisers’ black-box bidding

algorithms.

Concatenation Layer: Besides concatenating user, page, and ad placement

vectors, the concatenation layer also incorporate context information. To reduce the

number of parameters that need to be learned from training data. Page and referrer

share the same embedding matrix. Parameter sharing can reduce overfitting and

decrease training cost.

66



Abstraction Layer: The concatenated vector is then further mapped to lower-

dimension representations by multiple fully connected layers with ReLU activation.

Output Layer: The output layer outputs two values: 1) the lower bound of

the highest bid b̂Li , whose range is [0,+∞]. Hence, a ReLU function is used as the

activation function. 2) the exponential of the Cox PH model ŷUi , whose range is

[−∞,+∞]. Hence, a linear function is used as the activation function.

The predicted b̂Li and ŷUi are then fed into the final loss function, i.e.,

Equation (5.9). Stochastic gradient descent is used to train the neural network.

5.2.1 Risk Level Selection

The proposed model allows publishers first specify a risk level α ∈ (0, 1). The risk

level determines predicted lower bounds of the highest bids, which is the predicted

reserve price. Thus, the risk level can be explained as the percentage of underbid

impressions the publisher can tolerate. This risk level is a trade-off: a high risk level

causes many underbid impressions. On the other hand, a low risk level may incur

low highest bids due to low predicted lower bounds b̂Li (i.e., predicted reserve prices).

The optimal risk level can be determined based on the publisher’s business strategy

(i.e., aggressive or conservative). It can also be set empirically by A/B testing (i.e.,

select the one that can maximize total revenue).

5.3 Evaluation

5.3.1 Experimental Data

The data used in this project is collected in four days in March 2021 at Forbes Media’s

website. Forbes Media switched to first-price auctions later 2020. The transactions

in the dataset are all first-price auctions. The dataset contains nearly 60 million

impressions on average per day, in which the ratio of outbid impressions and underbid

impressions is about 3:2.
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The models are trained over both outbid and under impressions, while being

evaluated using only outbid impressions due to presence of the highest bids. The

evaluation is conducted three times: a model trained using the all impressions on one

day is tested on the outbid impressions of the next day. As we have four days data,

each model is tested on three days test data.

5.3.2 Implementation

The proposed model is implemented using Tensorflow. The experiments are run on

a desktop with i7 3.60Hz CPU and 32GB RAM. The computation is sped up using

NVIDIA GeForce GTX 1060 6G GPU.

The training goal is to minimize the total loss in Equation (5.9). Since the large

training dataset does fit the memory, the optimizer we adopt is Stochastic Gradient

Descent (SGD) with a learning rate of 10−3. The training batch size is set to 256.

To avoid overfitting, across all 10 epochs, the model that performs the best on

the validation data is applied to the test data.

The widths of the embeddings and abstraction layers are empirically set to be

128. We adapt two abstraction layers.

5.3.3 Evaluation Metrics

The main purpose of the proposed multi-task learning model is to predict the lower

bounds of highest bids bL with a risk level α. It is a special case of prediction interval

estimation, in which the upper bound is +∞.

Following the HQ principle [32, 52], two evaluation metrics are used: Mean

Prediction Interval Width (MPIW) and Prediction Interval Coverage Probability

(PICP).
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PICP measures the coverage probability of the estimated PIs, i.e., how many

ground truth labels are correctly captured. It is defined in Equation (5.3). PICP

indicates the percentage of outbid impressions in the prediction results.

MPIW measures the average width of the prediction intervals. It is defined in

Equation (5.2). In our application, publishers expect the lower bound (i.e. reserve

price) to be as high as possible so that they can optimize long-term ad revenue.

Since the upper bound is +∞, MPIW is negative in this application. Also, as

the distribution of reserve prices and highest bids are highly left skew, median is

a better measure than mean. Thus, to build a more intuitive metric, we use Median

Outbid Reserve Price (MORP), which is the median of all b̂L which b̂Li 6 bi (i.e.,

median(
{
b̂Li |b̂Li 6 bi

}
)). MORP is a positive value.

PICP signals the percentage of outbid impressions. MORP reflects the median

unit price of outbid impressions. Let N is the total number of impressions. Therefore

(PICP ∗ N) ∗MORP is the expected lower bound revenue that the publisher got

received from real-time bidding. The reason that it is the lower bound because b̂Li

is the reserve price, which is mostly less than the highest bid (i.e., final impression

revenue). To fairly compare results datasets with different sizes, N can be canceled.

So, we use the third experimental metric, Expected Revenue (ER), which more

intuitively shows the impact of the proposed method to the final revenue.

ER = PICP ·MORP ·N

∼ PICP ·MORP

(5.10)

5.3.4 Comparison Systems

As two classic methods of prediction interval estimation, MVE and Bootstrap are

selected as comparison systems. The proposed method is also compared with the

existing QD loss. Note that these methods use different loss functions with the same
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set of features, which are constructed using the deep neural network proposed in

Section 5.2.

MVE: The MVE method was originally proposed by Nix et al. [49] for

construction of PIs. This method assumes that errors are normally distributed around

the true mean of targets, y(x). The MVE method estimates the target variance using

a dedicated neural network. The dependence of the target variance on the set of inputs

is the fundamental assumption of this method for PI construction. The outputs of

the neural network are the predicted mean µ̂ and the predicted variance σ̂2 of the

normal distribution. The final reserve price is b̂Li which makes Φ(b̂Li) = α (Φ is the

cumulative distribution function (CDF) of the standard normal distribution).

Bootstrap: To make less biased estimation, it builds B neural network models

using different subsets of the parameter space. Collective decisions are made by the

ensemble of neural networks [34]. The predicted mean is ŷ =
∑h=1

B ŷh. The predicted

variance σ̂2
ŷ = 1

B−1
∑B

h=1 (ŷh − ŷ). One separate individual neural network is built to

estimate the variance of errors σ̂2
ε . Once both σ̂2

ŷ and σ̂2
ε are known, the ith PI with

a confidence level of (1− α)% can be constructed

ŷ ± t1−α
2
,df

√
σ̂2
ŷ + σ̂2

ε (5.11)

where t1−α
2
,df is the 1− α

2
quantile of a cumulative t-distribution function with

df degrees of freedom. df is defined as the difference between the number of training

samples and the number of parameters of neural networks. The final reserve price is

the lower bound: ŷ − t1−α
2
,df

√
σ̂2
ŷ + σ̂2

ε .

LUBE: LUBE [32] was developed based on the HQ principle (as described in

Subsection 5.1.3). It considers PICP and normalized MPIW (NMPIW). NMPIW is

equal to MPIW divided by the range of the underlying target. Since the target range

in our application is indefinite. In the experiments, we use MPIW instead. LUBE
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tries to minimize coverage width-based criterion (CWC) which is used for evaluation

of PIs:

CWC = MPIW (1 + γ(PICP )e−η(PICP−µ)) (5.12)

where MPIW = 1
n

∑n
i=1 b̂Ui − b̂Li , PICP is the same as the one in the proposed

method. The constant η and µ are two hyperparameters determining how much

penalty is assigned to PIs with a lower coverage probability. γ(PICP ) is a step

function that is 1 if PICP ≥ µ otherwise 0.

Since LUBE is not differentiable everywhere, it is proposed with Simulated

Annealing (SA) as the training method.

QD: QD is a quality-driven distribution-free loss function is proposed in [52]. It

is proposed based on LUBE. It has been described in Subsection 5.1.3. The formula

is shown in Equation (5.5). QD actually is a model without the failure rate prediction

part described in Subsection 5.1.4.

5.3.5 Performance by Varying λ and µ

Before comparing with comparison systems, we first seek for the optimal λ and µ

through experiments. To compare them fairly, the risk level α is controlled to 30%.

In other words, the prediction intervals, i.e., [b̂L,+∞], are expected to cover the

highest bids of at least 70% impressions. Figures 5.3, 5.4 and 5.5 shows the PICP,

MORPs and expected revenue of different combinations of λ and µ, respectively.

The PICPs of all combinations are more than 70%, which meet the minimum

coverage. Increasing λ and µ can promote coverage, thereby enhancing PICP: High

λ awards the model to focus more on the PICP part in Equation (5.5). High µ

stimulates the model to predict failure rate more accurate. Thus, the PICP of the

proposed model goes up with the increasing of λ and µ.
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Figure 5.3 The PICPs of different λ and µ.

The proposed method QD+Cox receives the best MORP and expected revenue

when λ = 10 and µ = 0.01 across all three days. In terms of the expected revenue,

QD+Cox(10, 0.01) wins the first two days, while QD+Cox(20, 0.001) wins the last one

(because its PICP on the last days is much higher). On average, QD+Cox(10, 0.01)

has the highest mean expected revenue on the selected three test days.

5.3.6 Performance of Lower Bound Highest Bid Prediction

In this section, QD+Cox(10, 0.01) is compared with the comparison systems (MVE,

Bootstrap, LUBE, and QD). The risk level is fixed to 30%. Figures 5.6, 5.7 and

5.8 shows the comparison of PICP, MORPs and expected revenue of the outbid

impressions, respectively.

As shown in Figure 5.6, when α = 30%, the PICPs of most methods are more

than 70%, which meet the minimum coverage. In other words, the highest bids of

70% impressions are more than or equal to the corresponding b̂L. However, the PICPs

of MVE and Bootstrap are less than 70% on the test data of two days.
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Figure 5.4 The MORPs of different λ and µ.

The MORPs of MVE and Bootstrap are less than other models. It is interesting

to see that MVE and Bootstrap do not get high PICPs in return for low MORPs.

This indicates that their predicted b̂L are mostly low. They also produces too high b̂L

which makes many impressions underbid. In theory, MVE has a strong assumption

that the variance of the highest bids follows Gaussian distribution. It is an improper

estimation in our application because bids are skew to the lower left tail. On the other

hand, bootstrap does not have any assumption. However, due to limited number of

bootstrap neural networks and the potential bias, leading to an inaccurate estimation

of the model misspecification variance [33]. This may lead to either too wide or too

narrow prediction intervals.

Since LUBE and QD are recognisable as having the similar objective [52],

they have similar performance on our data set (QD is slightly better on average).

QD+Cox(10, 0.01) significantly outperforms QD, which does not utilize underbid

impressions in the training phase. It indicates that considering underbid impressions
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Figure 5.5 The revenue of different λ and µ.

can significantly improve the final prediction performance. Underbid impressions also

contain useful patterns on advertisers’ bidding behavior.

5.3.7 Performance of Different Risk Levels

The risk level α determines the minimum coverage, i.e., the minimum percentage

of predicted outbid impressions. In theory, there is often an inverse relationship

between a model’s coverage (i.e., PICP) and its lower bounds (i.e., MORP, final

reserve prices), where it is possible to increase one at the cost of reducing the other.

Reducing the lower bounds can increase the chance of covering the actual highest

bids. On the other hand, setting up high reserve prices for individual impressions

likely causes more underbid impressions. Therefore, for publishers, setting α is a

trade-off between selling more outbid impressions and motivating advertisers to bid

high in a long run.
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Figure 5.6 The PICPs comparison of lower bound highest bid prediction.

In this experiment, we observe the performance of the proposed method by

varying α. The model we use is QD+Cox(10, 0.01) which has the best performance

in last section.

Figure 5.9 shows the PICP performance of different α’s. When α = 30% and

40%, the PICPs of QD+Cox(10, 0.01) on the test data can meet the required minimum

coverage. However, it is interesting to observe that when α = 10% and 20% the PICPs

on the test data (except α = 20% on the first day) are less than the required minimum

coverage (i.e., 90% and 80%, respectively). The reason is that covering more than

80% on test data is highly difficult due to the challengingness in the data. During

model training, the model has to either overfit the training data or fail to meet the

minimum coverage (i.e., get converged with a relatively large loss). In the result on

the test data, the model fail to meet the minimum coverage.

Figures 5.10 and 5.11 present the MORPs and revenue of different αs on three

days. α = 40% has the highest MORPs, i.e., the median reserve price is the highest.
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Figure 5.7 The MORPs comparison of lower bound highest bid prediction.

This is because that the required minimum coverage is as low as 60% when α = 40%.

Thus, the model has large room to push the predicted lower bounds much higher.

In contrast, when α = 10%, to reach the minimum coverage 90%, the model has to

largely shrink predicted lower bounds. This causes low MORPs. On the other hand,

the expected revenue of α = 40% is slightly less than that of α = 30% because PICP

of α = 40% is lower. In other words, when α = 40%, although individual reserve

prices are higher, much fewer impressions are outbid.

Therefore, setting α is a trade-off between harvesting many outbid impressions

and increasing the unit price of impressions: A high α causes many underbid

impressions. However, once an impression gets outbid by advertisers, the publisher

can own more revenue. On the other hand, a low α makes many impressions will

be sold through real-time bidding, while lower reserve prices may not motivate

advertisers to keep their high bids. Real-time bidding algorithms of advertisers may

quickly learn that high bids are unnecessary and try to bid lower next time.
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Figure 5.8 The expected revenue comparison of lower bound highest bid

prediction.

5.3.8 Performance on Different Sizes of Training Data

This section investigates the impact of the training sizes on the model performance.

This may tell publishers how many data they have prepare for model training and

how often they have to refresh their models. We vary the training size from one day

to three days. Since the total dataset is 4-day, we obtain two groups of data: one

uses Day 1 and 2 as the training pool and tests on Day 3; the one uses Day 1-3 as

the training pool and tests on Day 4. The model we select is the best model so far

we found: QD+Cox (λ = 10, µ = 0.01).

Table 5.1 presents that training on one day or two days generates similar results:

each has a narrow win on Day 3 and Day 2, respectively. This indicates that publishers

(especially those who have limited computational resources) may only need to train

on the previous one day to get decent performance out of the proposed model.
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Figure 5.9 PICPs by varying the risk level α.

5.3.9 Performance of Different Neural Network Parameters

We show the impact of the neural network parameters on the performance of lower

bound highest bid prediction. We use the best model we find, i.e., QD+Cox(λ =

10, µ = 0.01). For the sake of simplicity, we report the 3-day average metrics values.

We first vary the embedding width, fixing the number abstraction layers to

2. Table 5.2 shows the performance by varying the width of the embeddings for

users, pages, and ad placements. The performance significantly improves with the

embedding width being increased from 64 to 128. Wider embeddings than 128

generates subtly worse results.

We then fix the embedding width to 128. Table 5.3 presents the performance by

varying the number of abstraction layers. It tells that using more than one abstraction

layers generates very similar performance.
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Figure 5.10 MORPs by varying the risk level α.

Table 5.1 Performance of Different Sizes of Training Data

Data Partitions
PICP MORP Expected Revenue

Train Test

Day 2
Day 3

73% 0.577 0.421

Day 1&2 73% 0.578 0.422

Day 3

Day 4

72% 0.551 0.397

Day 2&3 72% 0.548 0.395

Day 1&2&3 72% 0.542 0.390

5.4 Summary

The entire display advertising industry has been bracing first-price auctions, in which

the advertisers who bid the highest win the ad opportunities. Publishers can know

the highest bids if their reserve prices were outbid. Such information can be used to

estimate the highest bid of future impressions. The estimation can help publishers

find optimal reserve prices which optimize outbid rate and motivate advertisers to

bid high in the future. This chapter proposes a multi-task learning framework that

predicts the lower bounds of highest bids with a coverage probability (1− α)%. The
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Figure 5.11 Expected revenue by varying the risk level α.

Table 5.2 Performance of Different Embedding Widths

Embedding Width Mean PICP Mean MORP Mean Expected Revenue

64 72% 0.517 0.372

128 73% 0.527 0.386

256 74% 0.520 0.385

512 73% 0.522 0.381

lower bounds is expected to be lower than at least (1− α)% highest bids. Publishers

can set the lower bounds as the final reserve prices. In this case, at least (1 − α)%

impressions will be successfully outbid by advertisers. The risk level α can be adjusted

based on publishers’ business strategy. In addition to predict lower bounds, the

proposed method also predict hazard rates using Cox PH model in order to utilize

historical underbid impressions. The experiments show that the proposed method

can significantly outperform the comparison systems.
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Table 5.3 Performance of Different Number of Abstraction Layers

#Abstraction layers Mean PICP Mean MORP Mean Expected Revenue

1 72% 0.520 0.374

2 73% 0.527 0.386

3 73% 0.523 0.384

4 73% 0.525 0.385
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CHAPTER 6

CONCLUSIONS AND FUTURE WORK

The aim of this dissertation is to advance the state-of-the-art research on reserve price

optimization in online display advertising. Online display advertising is a million-

dollar industry. It is the main revenue source of most online websites. It allows

online publishers to continue providing high-quality and free content service to users.

A main display ad selling method is real-time bidding: publishers provide reserve

prices with impression information and sell their ad impressions through real-time

auctions at ad exchanges. There are two popular auctions: second-price auctions

and first-price auctions. In second-price auctions, optimal reserve prices can help

publishers boost their ad revenue. In first-price auctions, optimal reserve prices can

help publishers not only defend minimum ad revenue but also motivate advertisers

to keep high bids. Therefore, it is important for publishers to optimize reserve prices

in real-time bidding.

Chapter 3 proposes a parametric survival model to predict the failure rate of

the reserve price of an online display ad impression in second-price auction. The

model is further augmented by user-page pairwise interaction tensor factorization and

header bidding factorization. Chapter 4 further augments the previously proposed

parametric survival model by a deep neural network (DNN) to capture the feature

interaction. The experiments show that the proposed models with the Weibull

distribution significantly outperforms a Kaplan-Meier model and a logistic regression

with observed reserve price/revenue as the feature. The DNN technique and header

bidding regularization further boost performance.

With the entire industry moving from second-price auctions to first-price

auctions, Chapter 5 proposes a multi-task learning framework that predicts the lower
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bounds of highest bids with a coverage probability (1 − α)%. The lower bounds is

expected to be lower than at least (1−α)% highest bids. Publishers can set the lower

bounds as the final reserve prices.

As future work, we will deploy the multi-task learning model proposed for first-

price auctions in a real business platform. We are going to measure the actual revenue

lift.
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