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ABSTRACT 
Work-Preserving Real-Time 

Emulation of Meshes 
on Butterfly Networks 

by 
Alf-Christian Achilles 

The emulation of a guest network G on a host network H is work-preserving 

and real-time if the inefficiency, that is the ratio WG/WH  of the amounts of work 

done in both networks, and the slowdown of the emulation are 0(1). 

In this thesis we show that an infinite number of meshes can be emulated 

on a butterfly in a work-preserving real-time manner, despite the fact that any 

emulation of an s x s-node mesh in a butterfly with load 1 has a dilation of 

Ω s). 

The recursive embedding of a mesh in a butterfly presented by Koch et al. 

(STOC 1989), which forms the basis for our work, is corrected and generalized 

by relaxing unnecessary constraints. An algorithm determining the parameter for 

each stage of the recursion is described and a rigorous analysis of the resulting 

emulation shows that it is work-preserving and real-time for an infinite number of 

meshes. 

Data obtained from simulated embeddings suggests possible improvements to 

achieve a truly work-preserving emulation of the class of meshes on the class of 

butterflies. 
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Chapter 1 

Introduction 

The importance of emulations of networks became evident when computer sci-

entists became aware of the topological dependency of algorithms and programs 

constructed for multi-processor machines. It is necessary to know how feasible it is 

to make computations on another network topology without having to make major 

changes to the algorithm. 

To emulate a network (guest) by another one (host) means that the same al-

gorithm (or, in extreme cases, the same program) that was designed for the guest 

network is run without changes on the host network. The cost associated with this 

emulation determines the feasibility. The overhead of an emulation results from 

the fact that whereas messages between neighbors in the guest network were de-

livered in one step, they now might have to travel along a path consisting of many 

edges. Furthermore, if the number of nodes in the host network is smaller than in 

1 
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the guest network, it is evident that the computational load on the nodes in the 

host network is higher than in the guest network. Assuming equal computational 

power and communication bandwidth in both the guest and the host network, the 

computation will then take longer than in the guest network. 

An emulation is often completely described by an embedding of the guest net-

work in the host network, that is, by a mapping of nodes and edges in the guest 

network to nodes and paths in the host network. 

1.1 Motivation 

In this section we present a rationale for studying efficient emulations of a two-

dimensional mesh by a butterfly. 

We assume that the technology available has fixed-connections, that is, each 

processor has a constant set of neighbors with whom it may communicate. 

This is, of course, technology dependent. If we are considering VLSI where 

the processors and connections are embedded in silicon, then transforming a mesh 

topology to a butterfly is not possible. On the other hand, a set of transputers, with 

say four transputers per board, may be reconnected by manually reconnecting the 

jumper wires, a task which becomes quite tedious for more than a few processors, 

and even more so if we wish to reconnect statically, that is for each job that we 

wish to run on the network. On the other hand, retargetable lasers in an optical 
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network allow not only static but even dynamic reconfiguration [19]. Thus future 

technologies will remove this assumption. Our concern here is with those networks 

which cannot be statically reconfigured or for which it is not feasible to do so. 

We now consider the base topology to support general parallel computing needs. 

The two principle topologies that have been commercially available are the two-

dimensional mesh (e.g., the Xnet communication on the MasPar) and the hyper-

cube (e.g., NCube). 

There are many applications that can best exploit nearest-neighbor properties 

in each topology. Vision processing is usually done on a two-dimensional array and 

thus in many ways is best suited to a mesh (though not all — take for example the 

pyramid and mesh-bus architectures considered by others). There are also many 

numerical algorithms that are most appropriate for the mesh. On the other hand 

FFT is best suited for the hypercube, or specifically, a hypercube-related network 

called a butterfly. 

The question is: having chosen a base topology between a mesh and a butterfly, 

which can best support applications best implemented on the other topology? Or 

put another way, how well can one topology emulate the other? 

Koch, Leighton, Maggs, Rao, Rosenberg, and Schwabe in their paper "Work-

preserving emulations of fixed-connection networks" [13, 14] consider the emulation 

of TG  steps of an NG-node guest network G on an NH-node host network H. 

They define a work-preserving emulation to be one where the time required by the 
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host, TH , is O(TG NG /NH ), because the time-processor products of both networks, 

Θ(THNH), are to within a constant factor of each other. The slowdown S(NH ) 

is TH /TG. As a special case, a work-preserving emulation is called real-time if 

TH  = O(TG ), that is, the work-preserving emulation has constant slowdown. 

Due to a congestion-based lower bound [14], any work-preserving emulation of 

a butterfly by a k-dimensional n-node mesh has a slowdown of at least 20(n1  ). 

In fact, the ratio of the processor-time product of the mesh to the butterfly is at 

least Ω(NH/logk NG)1/(k+1)), where NH  is the number of mesh nodes and NG  is 

the number of butterfly nodes. 

In contrast, Koch et al also exhibit a real-time emulation of a butterfly by a 

mesh. 

We conclude, then, that a butterfly is a better base topology than a mesh. 

N.B. This conclusion is quite technology dependent. This analysis assumes 

that the physical length of an interconnection does not matter, that communication 

between every pair of processors is equal in delay. This is despite the facts that 

1. Butterflies have long wires [21]. 

2. Long wires in VLSI cause several problems, among them: increased delay, 

signal attenuation, and capacitive coupling [17]. The latter two problems can 

be dealt with by such devices as repeaters, but the first remains. 

There are two ways to counter this argument. First, optical interconnections 
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have none of these problems [10]. Thus a fixed-connection butterfly is even more 

interesting as a basis for future networks. Second, there are additional tradeoffs 

which show that for a reasonable range of processors per unit area, word size, and 

message length, the butterfly performs at least as well as the mesh [20]. 

1.2 The Butterfly Network 

A n 2n-node butterfly without wrap-around is a graph GB  = (VB , EB ) where 

is the set of vertices in the butterfly graph. The value i is considered the level (or 

row) of the node in the butterfly and j denotes the column, which is usually given 

in binary digits. These interpretations become clear when looking at Figure 1.2. 

EB  is the set of edges connecting the vertices. Two vertices are connected by a 

forward edge if they are in the same column on adjacent levels. A cross edge exists 

between nodes that are on adjacent levels i and i +1 and the binary representions 

of their column numbers differ in exactly the i-th bit. 
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Figure 1.1: A butterfly network without wrap-around containing 5 levels (rows) 
and 24  columns. 

1.3 Previous Work 

Work-preserving emulations of networks on smaller networks of the same class have 

been studied by Fishburn and Finkel in their paper on quotient networks [11]. 

Meyer auf der Heide [18] presented efficient emulations among different models 

of parallel computers. Since the hypercube has been and still is a popular inter-

connection topology, most work done in the area of emulations (embeddings) of 

networks has been focussed mainly on emulations of various other topologies on 
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hypercubes. Bhatt and Ibsen [3] and Desphande and Jenevein [8] have worked on 

embeddings of trees in hypercubes. Efe [9] demonstrated an embedding of a mesh 

of trees in a hypercube. Embeddings of meshes on hypercubes have been shown 

by Chan [6, 5, 7] and Ho and Johnsson [12]. 

Bhatt et al. [2] describe optimal emulations by butterfly networks and Leighton 

et al. [15] and Koch et al. [13, 14] demonstrated the embedding of a mesh on a 

butterfly that forms the basis for this thesis. 

The guest network does not necessarily have to be a physical network of pro-

cessing elements, but most often is the internal structure of a computational prob-

lem. Many algorithms exhibit a structure that can be described as a graph such 

as trees (divide-and-conquer, depth-first-search) or meshes (numerical solutions of 

differential equations, some imaging problems). The problem of mapping these al-

gorithms to a physical topology is called the mapping problem (Bokhari [4], Berman 

and Snyder [1]). 

1.4 Emulations of Networks 

Networks are described by graphs consisting of a number of vertices and edges 

connecting those vertices. Assume that we have two networks described by the 
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two graphs 

where H describes the host network and G describes the guest network, that is, 

the network to be emulated on H. NH  =|VH| and NH  = |VH| are the number of 

nodes in the respective networks. 

Emulations of networks can be characterized by certain measures which quan-

tify the performance. 

Definition 1.1 Let TG  be the time (number of steps) on G to be emulated and TH  

the time needed to emulate TG  steps on H. 

The amount of work being done therefore is 

Definition 1.2 

As Koch et al. [14] pointed out, inefficiency is the most important measure for 

emulations since its decribes the waste of resources. Therefore the aim of any 

emulation is to minimize inefficiency. 
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The embedding of a network consists of a mapping of nodes in G to nodes in H 

and a mapping of edges in G to paths in H. The following terms are characteristics 

of embeddings. 

Definition 1.3 

1. The load of an embedding is the maximum number of nodes in G mapped to 

a node in H. 

2. The dilation is the number of edges in the longest path in H onto which an 

edge in G has been mapped. 

3. The congestion is the maximum number of paths in H, onto which edges in 

G have been mapped, that traverse the same edge. 

1.4.1 The Computational Model 

In order to analyze emulations of networks, a model is needed to specify the capa-

bilities of the guest and host networks and just what a single step in the emulation 

comprises. Koch et al. [14] presented the general concept of pebbling. Here we 

will only use a simplified version of this model, which is described in [13, 15] and 

which suffices for our purposes. The pebbling process is a way to keep track of 

the states of the nodes in the emulated network. For each such node v and for 

every time step t, where 0 < t < TG , a pebble is a pair (v, t) representing the 
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state of the node v at time t. At the beginning of the emulation all the pebbles 

(v0, 0), (vi , 0), ..., (vNG, 0) exist. 

An emulation is modeled as a pebbling process on a directed acyclic graph 

(DAG), r, where at each step of the emulation each node in the host network H 

can 

1

. Copy a pebble it contains. 

2. Send a pebble to one of its neighbors in H. 

3. Create a pebble (v, t) if it contains pebbles with labels (v, t — 1), (v1, t — 1), 

(v2 , t — 1),... , (vk, t — 1), where v1, v2 , ... , vk  are the neighbors of v in G. 

The emulation stops if the host network has computed all pebbles of the form 

(v, TG). 

In practice, of course, the pebbles will not represent the complete state of a 

node in the guest network but only contain the information that is exchanged 

between nodes in G at time t. 

An important aspect of pebbling is that a pebble (v, t) may have more than one 

instance which can result in redundant computation where more than one node in 

H compute identical pebbles. The idea of redundant computation is the basis for 

the embedding of meshes in butterflies presented in [13, 14] and further developed 

in this thesis. 
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1.4.2 Work-Preserving Emulations 

In [13, 14, 15] the notion of work-preserving emulations of networks is introduced. 

The main argument is that slowdown and blowup are relevant characteristics for 

emulations but that their quality is best described by their efficiency. That is, it 

is most important to minimize inefficiency. 

A work-preserving emulation is an emulation with inefficiency I = 0(1). A 

class of networks is said to have a work-preserving emulation on another class 

of networks with slowdown S if each network in the class has a work-preserving 

emulation on a network of the other class with slowdown S. When S is 0(1) we 

speak of a real-time emulation. 

1.5 The Embedding of a Mesh in a Butterfly 

Richard Koch, Tom Leighton, Bruce Maggs, Satish Rao, Arnold Rosenberg and 

Bruce Maggs [13, 14] describe a recursive embedding of a mesh in a butterfly which 

will serve as a basis for the work presented in this thesis. 

Their work may be divided in two parts: First they describe an embedding of 

a mesh in a butterfly with constant congestion. The embedding leaves a number 

of parameters open that control the characteristics of the emulation. Then they 

choose the values for these parameters and claim that the resulting emulation 

constitutes a work-preserving, real-time emulation of the class of meshes on the 



12 

class of butterflies. Here we will concentrate mainly on the description of the 

embedding, since the choice of the emulation parameters in [13, 14] does not allow 

a work-preserving emulation (see Section 1.5.4) and in the later chapters we will 

chose a new set of parameters for the embedding. 

The embedding relies on a recursive scheme to emulate submeshes by 

subbutterflies and to connect the subbutterflies (and therewith the submeshes) to emulate 

the mesh. The following paragraphs will describe their work as briefly as possible. 

Let N = s2  be the number of nodes in the s x s mesh to be emulated. Since 

the emulation is recursive, let us denote the current stage' of the recursion with 

k (0 < k < w), where w is the number of recursive stages needed to completely 

embed the s x s mesh. 

Assume that we have an emulation of a .s²k-1-node mesh on a Nk-1  = nk-1  2nk-1-

node butterfly. The objective is to emulate a s²k-node mesh on a Nk  = nk2nk-node 

butterfly. Koch et al. require the parameter nk to be a power of two. 

1.5.1 Partitioning a Mesh into Submeshes 

The s²k-node mesh will be composed of overlapping meshes of size s²k-1, where 

the width of the overlapping region is fk. Figure 1.5.1 shows how the submeshes 

overlap. The set of nodes on the border of a mesh and of the nodes at distance 

1  Note that we have reversed the numbering of the stages with so  being the base case stage. 
Because of the constructive nature of the later chapters as opposed to the existentialistic approach 
in [13, 14] we consider this way of numbering the stages to be better suited. 
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Figure 1.2: (adapted from [13]) A mesh is divided into overlapping submeshes. 

fie-1  from the border will be called F

k

-1  . The nodes at distance fk-1  from the 

border of the submesh can be emulated for fk-1  steps until pebbles produced by 

a neigboring submesh are needed to proceed. The emulation of the whole mesh 

is therefore divided into periods of emulating 

fk

-1  steps on the submeshes and 

subsequently sending the fk-1  pebbles produced by the nodes at distance 

fk-1 

 

from the border to the neighboring submeshes. Once these pebbles arrive at the 

border nodes of the neighboring submeshes the emulation in these submeshes can 

resume. 
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Figure 1.3: The overlap of meshes in one dimension. The border nodes of the over-
lapping region in each mesh either receive or send pebbles as indicated 
by the arrows. 

The key idea here is to exploit the pipeline effect induced by the redundant 

emulation of the nodes in the border region (the nodes of the mesh from the border 

up to the distance fk-1  from the border) while not letting the additional resources 

(butterfly nodes) needed for this redundancy inhibit a constant blowup. 

Each submesh will be emulated by a subbutterfly and the subbutterflies will 

be connected to allow pebbles to be sent between corresponding nodes in 

fk-1 
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1.5.2 Partitioning a Butterfly into Subbutterflies 

Following is a description of how a Nk  = nkrk -node' butterfly is divided into 

Nk _1  = nk _i rk-i -node subbutterflies and how these subbutterflies are connected. 

A butterfly is divided into subbutterflies by removing all edges between each 

level which is a multiple of nk_1  and the next higher level and considering the 

remaining connected components. A more formal description of the partition fol-

lows. 

Let the bit string cnk _i cn,_2  • • - co  denote the column of a node in the nkrk - 

node butterfly. A subbutterfly in a nkrk -node butterfly consists of the set of nodes 

with the following property: Let a be a multiple of nk_1  (possibly zero); then all 

nodes of a subbutterfly share common values of cnk _i  • • • ca+,_, and cc,_ i  • • • co. a 

will be used to characterize the level of a subbutterfly within the superbutterfly. 

Since the subbutterflies emulating submeshes must be connected within the 

butterfly to send pebbles from one subbutterfly to another, some subbutterflies are 

not used to emulate a submesh but to create connections between the emulating 

subbutterflies. A subbutterfly will be used exclusively for creating such connections 

if there exists y, a multiple of nk _1, -y > a (where a is the value used to define the 

subbutterfly) and c.y+4_1 _1  • • • c, = 10 • • • 0 for all nodes in the subbutterfly, or if 

a > 0 and c,k _1 _1  • • • c„ = 00 • • • 0. The parameter ek_i  has to be chosen for each 

2 Note, that the number of nodes assumes a butterfly with wrap-around, an assumption which 
we will discuss in Section 1.5.4. 
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stage; its meaning and the constraints for its value will become obvious in the next 

section. 

1.5.3 Choosing Paths to Connect Subbutterflies 

Each subbutterfly that emulates a submesh has a node v in level zero for every 

node v in Fk-1  of the submesh such that there exists a path from v to the butterfly 

node that emulates u along which pebbles can be send without slowing down the 

emulation of the submesh. These nodes in level zero, which we will call I/O ports, 

have the εk-1-bit string 10 • • • 0 as the least significant bits of their column and the 

next εk-1  bits are the same for all I/O ports, but can be chosen arbitrarily. 

To connect the corresponding nodes v in Fk-1 of adjacent submeshes, paths 

have to chosen that connect the I/O port u1  which, according to the recursive 

assumption, is connected to a subbutterfly node u emulating v, to the I/O port u'1 

in another subbutterfly. The subbutterfly containing u1  be characterized by a. As 

specified above, the bits cα+ ²εk-1-1 • • • cα+εk-1  for the I/O ports in the subbutterfly 

can be chosen arbitrarily and they will be set to the bit string cεk- -1  • • • c0. Let 

u²  be the node in level zero of the butterfly whose column is obtained by changing 

the εk-1 least significant bits to 10 • • • 0. There exists a path for every u1  to its 

corresponding node u²  in level zero of the butterfly. To connect u1  and u'1 it 

is sufficient to connect the corresponding nodes u²  and u'²  by a permutation on 

the columns of the subbutterfly consisting only of those nodes whose εk-1 least 
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significant bits are 00 • • • 0. As Koch et al. have shown, none of these paths conflict 

with each other or with paths at other levels of the recursion, since the εk-1 's are 

distinct. 

To satisfy the requirements for the next stage of the emulation, I/O ports in 

level zero of the butterfly must be provided for the nodes in Fk . Since Fk  C Fk-1 

we know that there exists already a path from each node u emulating a node v 

in Fk  to a node u2  in level zero of the butterfly. After choosing one of the u's 

for each v we can connect the corresponding u2 's with the I/O port by routing a 

permutation on the columns. 

The butterfly must also have enough I/O ports in level zero to connnect the 

internal butterfly nodes emulating a mesh node in Fk  to other butterflies. There 

are 8sk  nodes in Fk  and the number of I/O ports is 2nk-²εk. Therefore the following 

condition must be satisfied: 

lg 8sk  < nk — 2εk (1.1) 

1.5.4 Failure of the Emulation as Proposed by Koch et 

al. 

The choice of emulation parameters in [13, 14] — or the analysis thereof, respec-

tively — has flaws which inhibit the emulation of the mesh in a work-preserving, 

real-time fashion. In this section we will discuss these errors and indicate how we 

corrected them. 



18 

Butterflies with Wrap-Around 

The choice of parameters in [14] assumed that a butterfly with wrap-around would 

be used to emulate the mesh. In the analysis a butterfly is partitioned into butter-

flies with wrap-around with the argument that even though these butterflies would 

not really be butterflies with wrap-around (a butterfly with wrap-around is not a 

recurrent graph), a butterfly without wrap-around can emulate a butterfly with 

wrap-around in constant time in a work-preserving, real-time fashion and that one 

can therefore, for the purpose of analyzing the emulation, assume a partition into 

butterflies with wrap-around. However, this emulation of wrap-around butterfly 

on butterflies without wrap-around would be performed at each stage of the recur-

sion, such that the constants governing the slowdown of these butterfly-butterfly 

emulations at each stage would have to be multiplied in order to get the overall 

effect on the mesh-butterfly emulation. Since the number of recursive stages grows 

with N towards infinity, the accumulated effect of the slowdown in all stages is not 

constant and therefore the mesh-butterfly emulation can not be be real-time. 

In our analysis we will correct this and partition a butterfly into butterflies 

without wrap-around. 

Inadequate Choice of εk  

In this section we will show that the choice of emulation parameters as proposed 

in [13], specifically the choice of 4, inhibits an emulation with constant blowup. 
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The choice of emulation parameters in [13] sets 

In order to layout the communication paths in the proposed manner without letting 

the layout on one stage interfere with the layout on another stage, the size of the 

εk 's must be strictly monotonically increasing from the lowest to the highest stage. 

Since 

εk 

 is an integral parameter, it has to increase at least by one at each stage 

Thus the εω  of the final stage must be at least as great as the 

number of recursive stages w : > w. When we apply the necessary condition in 

Equation 1.1 get obtain: 

By multiplying the relations (1.2) and (1.3) we can infer the following relation 

between N and Nω  : 

Nω = > Ω (log N) Ω (N) 



which shows that the proposed This leads to a blowup of 

are only used to provide paths for the 

where 

The smallest butterfly 

s the butterfly of size 
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choice of εk  inhibits an emulation with constant blowup. Since the slowdown S 

of any emulation is at least 1 it follows that the inefficiency I = S • B is also not 

constant and therefore the emulation is not work-preserving. 

The rationale for the choice of the value for εk  in [14} is not clear. In our 

embedding we simply set 

εk 

 to the largest possible value that still leaves enough 

I/O ports in level zero of the butterfly (see page 39 item 4). The larger the value 

of 

εk 

 the less subbutterflies of size r 

connection of emulating subbutterflies (see Lemma 2.5.1). 

The Emulation is Work-Preserving Only for Some Meshes 

Koch et al. require the parameter nk  to be a power of two. As we increase the 

size of the mesh to be emulated, the size of the emulating butterfly increases and 

therewith nk. Let us take a look at all the meshes of size 

n

 is odd (to ensure that the size is a square number).  

that could possibly emulate such a mesh with a load of 1 i 
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The minimum blowup for meshes of these sizes therefore is 

Therefore the blowup increases with n towards infinity for meshes of the chosen 

sizes. This means that there is an infinite number of meshes which can not be 

emulated with constant blowup and, strictly speaking, this emulation of the class 

of meshes on the class of butterflies is not work-preserving. 

In our choice of the nk s we remove this unecessary constraint. The embedding 

does not a priori require that the nk s be powers of two, it is only necessary that 

that nk  is a multiple of nk-1  so that the butterfly can be completely partitioned 

into subbutterflies. However, as will be discussed in Section 3.3.4, 4.1 and 5.1.1, 

the question whether there is a work-preserving emulation of the class of meshes 

on the class of butterflies or not, could not be answered in the work presented and 

needs further investigation. 



Chapter 2 

The Emulation 

In this thesis we will show that the recursive embedding scheme presented in [13, 14] 

allows for a work-preserving real-time emulation of a mesh on a butterfly given the 

right choice of the parameters nk, sk, f k  and εk  for each stage of the recursion. Koch 

et al. attempted to show this in [14] but their analysis contains flaws inhibiting a 

work-preserving emulation. Furthermore they neglect to account for the integral 

nature of the parameters to be chosen and do not provide a base case for their 

induction. Their analysis also did not mention a serious restriction on the work-

preserving quality of the emulation. 

We will correct the mistakes made in [14] and, in an attempt to make the 

emulation more practical, we will generalize the choice of parameters in order to 

allow for more design freedom, ridding the emulation of unnecessary irregularities 

and constraints. In Chapter 4 we will analyze the emulation in a more quantitative 
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way and investigate the results of simulations. 

2.1 Recursive Assumption 

At this point we think it is helpful to summarize the assumptions that allow the 

recursive embedding of the mesh into the butterfly. At each stage k the following 

must hold: 

For the mesh: The fk's and sk's must be chosen such that Fk C Fk-1 for all k. 

For the butterfly: The butterfly emulating the s²k-1-node mesh must adhere to 

the following contraints: 

o For every butterfly node v emulating a mesh node in Fk-1  there must be 

a butterfly node in level zero that can send pebbles to v with constant 

slowdown (constant congestion). 

o The nodes in any column in the butterfly whose εk-1 least significant 

bits are 00 ... 0 are not participating in the emulation, where εk-1. 
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2.2 The Basic Idea Behind the Choice of Pa-

rameters 

In the following sections of this chapter, we will present and analyze the emulation 

of a mesh on a butterfly. At this point we will give an overview of the features and 

an outline of the algorithm determining the emulation parameters. 

The basic idea of the recursive embedding of meshes in butterflies is taken from 

[13, 14] which we will modify for more flexibility. 

• We will take the base case into account and describe the constraints and 

degrees of freedom for the design of a base case emulation. 

• The partitioning of butterflies into subbutterflies does not require a priori 

that the parameter nk  be a power of two, so that the only contraint we set 

up is that nk  be a multiple of nk-1. 

Furthermore we will partition a butterfly into subbutterflies without wrap-

around as the wrap-around butterfly is not a recurrent graph. 

• The growth of the meshes from stage to stage can be controlled by a param-

eter g which we will call the growth rate. 

• We will allow a constant congestion greater than 1 in order to allow for more 

flexibility in the design of the base case. 
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The general algorithm for finding the emulation parameters is the following. 

At each stage k we assume that we have an emulation of an sk-1  x sk-1  mesh on 

a nk-12nk--1 -1-node butterfly. 

1. Pick a minimum mesh size 4 for the mesh to be emulated at stage k. If 

4 < sk-1  then set all the parameters of this stage equal to the parameters of 

the last stage k — 1 and continue with the next stage k + 1. Else determine 

the number of meshes from stage k = 1 that are needed to compose a mesh 

with at least 4 nodes. Round 4 to the next submesh size if necessary. 

2. Determine the smallest butterfly of size Nk = nk 2nk -1  with at least as many 

emulating subbutterflies as submeshes in the 4 x 4 mesh, where nk  must 

be an integral multiple of nk-1. 

3. Extend the 4 x 4 mesh by rows and columns of submeshes until there are 

not enough emulating subbutterflies left in the butterfly to extend it further. 

Let sk  be the number of nodes in one row of the extended mesh. 

4. Set k  to the maximum integer such that there are still enough I/O ports for 

the sk  x sk  mesh in the Nk-node butterfly. 

5. Let the width of the overlapping region fk  for this stage be the number of 

nodes along one dimension in the sk-1  x sk-1 meshl, so that when two sk  x sk 

l In fact, one can set fk  to be any constant multiple of sk-1. 



26 

meshes are overlapped the border lines will coincide with the border lines of 

the submeshes of which the sk  x sk  mesh is composed, and the condition 

Fk  C Fk _ 1  is satisfied. 

2.3 The Base Case 

The base case of the recursive emulation is an emulation of a s0  x s0  mesh on a 

n0 2n°-1-node butterfly without wrap-around. Further parameters to be chosen for 

the base case are the width of the border region f0  and the parameter 0.  How this 

emulation is performed is of no importance. Only a few constraints, which form 

the recursive assumption for the embedding, have to be enforced: 

s Koch et al. required that for every node v in F0  there must be an I/O port 

in level zero of the butterfly. We will relax this constraint in order to allow 

for smaller-sized base case butterflies. 

Since the pebbles received and sent by the nodes in F0  at the same side of 

the mesh all go along the same path to or from another subbutterfly, their 

flow can be multiplexed along the path, thus increasing the congestion c. 

As stated above this decreases the size of the smallest possible base case 

butterfly since the number of butterfly nodes in level zero, that function as 

I/O ports for any pebbles to or from the mesh emulated by the butterfly, 

decreases. For each side of the 2-dimensional mesh we now need 2s0 /c I/O 
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ports and therefore for the whole mesh 8so /c I/O ports are necessary. In the 

extreme case that c = 2s0  there will be only one I/O port for each side of 

the mesh in the base case emulation through which all the pebble streams to 

and from the nodes in F0 will be multiplexed. 

As already described in Section 1.5.3, I/O ports are the nodes in level zero 

of the butterfly whose ε0  least significant bits of the column are 00 ... 01 and 

the bits in the positions ε0  to 2ε0  — 1 are the same for all I/O ports, but can 

be chosen arbitrarily. Therefore there are 2n0-2εk -1  I/O ports in the base 

case butterfly. 

Since there must be at least 4 • 2s0/c I/O ports, the following condition must 

be satisfied for the base case emulation: 

• The butterfly nodes in the columns whose ε0  least significant bits are all zeros 

must not participate in the emulation of the base case; they will be used for 

the connection of the base case butterflies in their superbutterfly. Note, that 

for ε0  values of 1,2, 3, ... only ½, ¾, 7/8, ... of the nodes in the basecase can be 

used for the emulation of the base case mesh. 
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The size of the mesh emulated in the base case must be at least 2 x 2 because 

otherwise there would be no overlapping regions. 

If the size of the overlapping region were any larger than half of the mesh 

width, the overlapping regions would overlap each other. 

Obviously, 1 is the minimum for ε0. 

The base case butterfly has a minimum size which can be determined as follows: 

Since ε0  must be at least 1 and at least 4 I/O ports are needed (this would mean 

a base case congestion of c = 2s0 ) we can fill these values into Equation 2.1: 

A small base case butterfly has few I/O ports on level zero available compared to 

the number of nodes that can be used for emulation of mesh nodes, so that the 

congestion c will increase as more internal butterfly nodes are used for emulation 

of mesh nodes. Table 2.3 shows various base case configurations to illustrate this 
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Table 2.1: Various parameter configurations for the base case emulation. 

Description n0  s0 f0 εk Congestion 
minimal base case 5 2 1 1 4 
minimal base case 
with one-to-one mapping 

5 6 < 3 1 12 

minimal base case 
with one-to-one mapping 
and congestion of one 

14 239 < 119 1 1 

small base case 7 2 1 2 4 
small base case 
with one-to-one mapping 

7 18 < 9 2 36 

behavior. A base case embedding that uses as many butterfly processors as possible 

and has a congestion of c = 1 is possible for values of n0  > 14, because that is the 

minimal value that provides enough I/O ports for all the 8s0  nodes in F0. That 

means that the base case butterfly would have at least N0  = 114,688 nodes which 

would prove much too large as a starting point for the emulation. A congestion of 

c = 1 is therefore not feasible. Therefore one has to choose whether to accept a 

congestion greater than 1 or to waste resources by not assigning a mesh node to 

every available butterfly node in the base case. 

Note also, that 0 = 1 implies that at most a fourth of the base case butterflies 

will be used to emulate submeshes in stage 1, the rest will be used to route paths 

connecting these subbutterflies. 
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2.4 The Number of Submeshes and Subbutterflies 

At this point we will show how to compute the number of submeshes in a mesh 

and the number of subbuterflies in a butterfly since the expressions for these two 

quantities are frequently used throughout this thesis. 

The number of sk-1  x sk-1  submeshes at stage k is 

This expression can easily be derived when looking at Figure 1.5.1 on page 13. 

The number of Nk-node subbutterflies at stage k simply is the ratio of the number 

of nodes in the superbutterfly and the number of nodes in a subbutterfly: 

2.5 The Number of Emulating Subbutterflies at 

each Stage 

A subbutterfly will either be used to emulate a submesh or to provide communi-

cations paths to connect other emulating subbutterflies (and thus submeshes). In 
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this section we will investigate what the ratio between the number of emulating 

and connecting subbutterflies at each stage is and we will demonstrate a convenient 

lower bound for this ratio. 

2.5.1 Combinatorial Analysis of the Division into Emu-

lating and Connecting Subbutterflies 

The following analysis is based on the definitions in Section 1.5.2. 

The probability pE(α, k) that a subbutterfly of size nk-12nk-1-1  characterized by a 

at stage k is going to be used to emulate submeshes within 

the butterfly of size nk2nk-1 is 

Fora > o : pE(α, k) is the probability that the bit string 0 ... 01 of length εk-1 

does not appear in the column of the subbutterfly at any of the positions 

and that neither the bit string 0 ... 00 

nor the bit string 0 ... 01 appear at position 0. Since these probabilities are 

independent, we can multiply them to obtain pE(α, k): 

For a = o : pE(0, k) is the probability that the bit string 0 ... 01 of length 6k-1  

does not appear in the column of the subbutterfly at any of the positions 
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The general probability pE  for an arbitrary subbutterfly therefore is the sum of 

the probabilities for each row of subbutterflies divided by the number of rows: 

Since the sum of the geometric series  the expression can be sim- 

plified to 
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Lemma 2.5.1 (Probability That A Subbutterfly Is Used For Emulation) 

The probability pE(k) that a subbutterfly in a butterfly at stage k is used to emulate 

a submesh and not to connect emulating subbutterflies is 

Proof: See previous paragraphs for the derivation of Equation 2.2. ■ 

Definition 2.1 Let πE(k) be the right hand term in the product defining pE(k): 

Therefore pE(k) can be rewritten as 

In the following corollary we will show that rE(k) has a simple expression as a 

lower bound. 

Corollary 2.1 (Lower Bound For πE(k)) 

Proof: Using Lemma 2.5.1 
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and the fact that we obtain the following relation: 

at any 

of the positions can be any multiple of 

or whose column's least significant 1  bits are 00. . .O. Not all of these 

This lower bound leads to a lower bound of  for pE(k). Koch 

et al. [13, 14] have shown another lower bound for pE(k) which we will also use in 

our analysis of the emulation and which is presented in the following lemma. 

Lemma 2.5.2 The probability pE(k) that a subbutterfly in a butterfly at stage k 

is used to emulate a submesh and not to connect emulating subbutterflies is at least 

Proof: This lower bound can be derived by determining how many subbutterflies 

are only used to connect subbutterflies. Consider the set of subbutterflies 

characterized by a whose columns exhibit the 

subbutterflies will be used to provide paths, but certainly all subbutterflies 

that will connect other subbutterflies are elements of this set. 
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The probability for the bit string to appear in one of the positions is 

Since there are nk/n k-1  events of the same likelihood (there are 

possible values for -y) we simply multiply the probability with the number of 

events to obtain an upper bound on the overall probability for a subbutterfly 

to belong to the set mentioned above. 

It therefore follows that the probability for a subbutterfly to belong to the 

complementary set, that is the set of butterflies that are used to emulate 

submeshes, is at least 

which concludes the proof. ■ 

2.5.2 The Number of Emulating Subbutterflies 

Theorem 1 (The Number of Emulating Subbutterflies) 

The number of butterflies that are used to emulate submeshes is 
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subbutterflies. ■ 

By combining Theorem 1, Lemma 2.5.1, and Corollary 2.1, we obtain a lower 

bound on the number of emulating subbutterflies as shown in Corollary 2.2. 

Corollary 2.2 (The Minimum Number of Emulating Subbutterflies) 

Proof: 

This lower bound will prove to be very convenient in our analysis, since the factor 

has constant upper and lower bounds irrespective of the value of 

2.6 Choosing the Parameters for the Emulation 

[n this section it will be shown how the parameters for the assembly of butterflies 

from subbutterflies emulating submeshes are chosen and that the choice will satisfy 



Assume that we have a butterfly of size that can emulate a 
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important constraints. In Section 2.2 we have already described the main ideas 

behind our choice of parameters. 

mesh. Associated with this emulation is a parameter ek-1  describing the number 

of I/O ports of the mesh. 

We want to find a butterfly of size that can emulate a mesh of size 

where g is a parameter determining the growth of the meshes from 

stage to stage. 

The parameters nk  and sk  will be determined as follows: 

1. The first step is to determine a minimum, which we will name s'k , for the 

size of the mesh at this stage in order to ensure a minimum growth of the 

mesh sizes from stage to stage. Let 

s'k 

 be the smallest integer that satisfies 

the following two conditions: 

where g is a constant greater than 1 which we will call the growth rate 

of the emulation. This ensures the growth of the sk's. 

This ensures that the region Fk  will also be in Fk-1  and irregular sub-

meshes are therefore avoided because of the corresponding choice of the 

fk

's later in this section. 



38 

then all the parameters of this stage will be set equal to the last 

stage and one proceeds with the parameters of the next stage. In that case 

the current stage will be ignored. 

2. Let nk  be the smallest integral multiple of nk-1  such that 

This condition ensures that the chosen butterfly contains at least as many 

emulating subbutterflies as submeshes. 

Note, that nk  does not have to be a power of two as required in [13] which 

allows for a better adjustment of the size of the resulting butterfly to the size 

of the mesh to be emulated. 

3. Let sk  be the greatest integer such that 

This ensures that the mesh can be partitioned into overlapping sub- 

meshes without having to resort to irregular meshes as in [13]. 

(b) 

This constraint ensures that the number of submeshes at most the num- 
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ber of emulating subbutterflies. This constraint is basically the same as 

in condition 2 except for the fact that nk  is constant and sk  is increased 

in order to maximally use the butterfly for emulation purposes. 

Choose the maximum 

ε k 

 that still leaves enough I/O ports. The larger the 

ek , the fewer communication butterflies there will be in the next stage. 

This ensures that the boundary region coincides with the boundary of a 

submesh and therefore 

This choice of parameters ensures that 

1. The sk 's grow at a set rate. 

2. We choose the smallest possible butterfly and 

3. the butterfly characterized by nk  is maximally used for emulation purposes. 

2.7 Validation of the Emulation Parameters 

After having specified how the parameters governing the emulation are chosen for 

each stage, it is necessary to verify that the parameters always allow the embedding 

of subbutterflies (submeshes) in butterflies as described in [13]. 
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We need to show that the overlapping regions in each mesh do not overlap 

each other, that is, that their width is at most half of the width of the mesh. The 

embedding requires that the parameter εk  has a distinct, increasing value from 

stage to stage and it will be shown that this is true for the choice of parameters 

as given in Section 2.6. 

2.7.1 The Size of the Overlapping Regions 

Lemma 2.7.1 The width of the mesh is at least twice as large as the width of the 

overlapping region in the mesh. 

Proof: Proof by induction: 

k = 0 : The base case parameters satisfy this condition as set forth in the 

description of the base case. 

Assuming that the relation holds for k — 1 we will show that it 

holds for k: 



Since we proceed with 
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■ 

We now use the inductive assumption that 

(see Section 2.3) and 

Conclusion: We can infer by induction that sk  > 2 fk  holds for all k. 

2.7.2 The εks are Distinct 

The proof that the paths connecting subbutterflies at one stage do not interfere 

with the paths at another stage requires that the ek's be strictly monotonically in-

creasing with respect to k, and thus distinct due to their integral nature. Therefore 

we have to show that this condition is satisfied when the parameters are chosen in 
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the proposed way. The value εk  is defined as 

If we can show that 

then it follows that  and the εk'S increase from stage to stage. Since 

we can proceed by substituting sk  with  in the term in Equation 2.3: 
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which gives us the desired result and ensures that the εk 's will be distinct and 

increasing from stage to stage. 



Chapter 3 

Analysis of the Emulation 

In this chapter we will analyze the emulation parameters with regard to the blowup 

and slowdown of the emulation. First we will make some observations that give 

us bounds for the number of stages and for the growth in the number of levels 

from stage to stage. To investigate the blowup we will present an expression for 

the number of nodes in the butterfly at each stage and show that this expression 

is within a constant factor of the number of nodes in the mesh. 

After we know that the blowup is constant we can estimate the dilation of the 

embedding and show that the slowdown is constant as well. 

Having shown that both the blowup and the slowdown are constant we conclude 

this chapter by inferring that the emulation is work-preserving and real-time. 

44 
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3.1 The Number of Recursive Stages 

To analyze the embedding we have to know how many recursive stages will be 

needed to completely embed the s x s mesh in a butterfly. In this section we will 

show an upper bound for the number of stages. 

Definition 3.1 Let ω be the number of recursive stages needed to emulate a mesh 

of size N  = s2  nodes. 

Theorem 2 (Upper Bound of the Number of Recursive Stages) 

Proof: Since s'k  > sgk-ω  and s0 = sg-ω  it is clear that 

and therefore the mesh at stage k = 0 can be emulated by the base case 

butterfly and at most [logg  logs0 s1 stages are necessary. ■ 

Note, that as opposed to the approach by Koch et al. the number of stages in our 

analysis does not only depend on s, the width of the mesh, but also on the growth 

rate and the size of the mesh emulated in the base case emulation. 
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3.2 An Upper Bound of the Growth of nk  

In this section we will show that, after a constant number of stages, the number of 

levels in the butterfly at a stage is bounded by a constant multiple of the number 

of levels at the next lower stage. 

The condition 

will become true after a constant number of stages (depending on g, which is 

constant), since the parameter nk  is at least n02k. Using this relationship as a 

starting point we will now show that nk  < (g + 1)nk-1  after a constant number of 

stages. Let nk  be (g + 1)nk- 1. Using the bound for pE(k) obtained in Corollary 2.1 

we can derive 

and proceed to transform Equation 3.1 by replacing 2([g]+1).1 with pE(k): 



Since g is greater than 1 the expression 

and we can proceed with 
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is also greater than one 

1 



Lemma 3.2.1 After a constant number of stages K the ratio is at most 

we can proceed with 
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Proof: As shown in the previous paragraphs, the following condition is satisfied 

for nk  < ([g] + 1)nk- 1  after a constant number of stages: 

nk  is defined to be the smallest integral multiple of nk-i  that fulfills this 

condition (see page 38 item 2). Since ([g] + 1)nk-1 is a multiple of nk-1 and 

it satisfies the condition, it is clear that nk  can be at most ([g]  + 1)nk-1. • 

3.3 The Size of the Butterfly 

In this section we will show that the number of butterfly nodes is within a constant 

factor of the number of mesh nodes. 



(3.2) 

1 

1 
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The choice of parameters described in section 2.6 leads to a maximal butterfly size 

of 

This relation expresses the fact that if one more row and column of submeshes had 

been added to the mesh, it would not have fit into the butterfly. This recurrence 

relation can be unfolded as follows: 

If the product P1.P2  is bounded by a constant, then Nk will be 0(4). P1  can be 

interpreted as the contribution of the node redundancy due to the overlap of the 

submeshes to the blowup, whereas P2 accounts for the waste of butterfly nodes 

due to the non-emulating subbutterflies. We will investigate P1  and P2 separately 

in Sections 3.3.1 and 3.3.2, respectively.. 
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3.3.1 The Blowup Attributable to Redundancy 

In this section we will show that the waste of butterfly nodes due to the redundancy 

caused by the overlap of submeshes is bounded by a constant ratio of the overall 

number of nodes. 

The product P1  as defined in Equation 3.4 is 

Note that a product πn=1(1+ an) converges if and only if the series 

converges. We therefore write 

and investigate the corresponding sum 

Lemma 3.3.1 
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Proof: 

Lemma 3.3.2 The sun  is bounded for all k. 



the sun 
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Proof: We will show that the sum is bounded by a geometric series which is, of 

course, convergent. With Lemma 3.3.1 we can bound the elements of the 

sum by 

Since the quotient of two successive elements of the bounding sum is at least 

Proof: Again we will show that the sum is bounded by a geometric series. With 

Lemma 3.3.1 we can bound the elements of the sum by 

Since the quotient of two successive elements of the bounding sum is at least 

converges and with it the bounded sum. ■ 
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Lemma 3.3.4 The product 

is bounded by a constant for all k. 

Proof: By combining the results of Lemma 3.3.2, Lemma 3.3.3, and Equation 3.5, 

we know that the sum 

is bounded by a constant for all k. 

Since a product πn=1(1 + an) converges if and only if the series 

converges, we can infer that P1  converges and therefore has a constant upper 

bound. • 

3.3.2 The Blowup Attributable to Communication Sub-

butterflies 

In this section we will show that the product P2 in Equation 3.4 is bounded by a 

constant. 



Recall that nk < [g] +1 for k > K (Lemma 3.2.1). We will partition the product nk-1 

into a finite product consisting of the first K elements and the remaining product. 

Lemma 3.3.5 The product 

where K is the constant described in Lemma 3.2.1, is bounded by a constant for 

all k. 

Proof: We will use the lower bound for pE(k) derived in Lemma 2.5.2: 

Inserting this bound into the product yields 



This product is bounded for all k if the sum 

is bounded. This can easily be verified by looking at the ratio of two succes-

sive elements of the sum, which is at least 2: 

■ 

This result allows us to bound the product P2 in the followin lemma. 

Lemma 3.3.6 The product 

is bounded by a constant for all k. 

Proof: The product P2 can be partitioned in the following way: 
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In Lemma 3.3.5 we have shown that the second product is bounded by a 

constant. The finite (first) product is also bounded and therefore we can 

conclude that P2 is bounded by a constant. ■ 

3.3.3 Constant Blowup of the Emulation 

Theorem 3 (The Emulation Has a Constant Blowup) 

Proof: Equation 3.4 shows that the number of nodes in the butterfly at stage k 

is at most 

In Lemma 3.3.4 and Lemma 3.3.6 we have shown that both P1  and P2 are 

bounded by a constant for all k. Therefore Nk  is within a constant factor of 

the number of nodes in the mesh at stage k and therewith 

Since the emulation has a constant blowup at each stage of the recursion, this is 

also true for the last stage w and we can conclude that the emulation of the 

mesh on the Nw-node butterfly has a constant blowup. 
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3.3.4 Caveat! 

The result of the previous section (Theorem 3) shows that the sω  x sω mesh is 

emulated with constant blowup. The mesh to be emulated, however, is as x s 

mesh. Since sω > s we can emulate this mesh on the Nw-node butterfly as well. 

Whether this emulation can be done with constant blowup will be investigated in 

this section, but we can already say that this is not necessarily the case. 

For the emulation of the .s x s mesh to be of constant blowup, the size S2  of 

the mesh obviously has to be within a constant factor of the size s2„, of the 8,,, x .5„, 

mesh, since that mesh size is within a constant factor of the size of the butterfly. 

However, no provisions have been made to ensure that 32  is sufficiently close 

to sw2  . In the following paragraphs we will show that in the worst 32  is indeed too 

small with respect to s2w. Let s: denote the size of the s x s mesh in the worst 

case. 

The N„, = n4,2"---1-node butterfly consists of subbutterflies of the size N,„_.1  = 

72,,,,_12n--1' where n,, is a multiple of nu.,-1. Let m be '-. We will now investigate n„, .,_i 

the value of s:. 

The need of at least one additional subbutterfly was the reason that the (n„, - 

n,,,_1)2nw ---n'-1 -1-node butterfly was not used for the emulation and we had to resort 

to the next larger butterfly Nw. Therefore 32  can be so small that to emulate the 

s x s mesh only one more subbutterfly is needed for the emulation of a submesh 

in addition the number of emulating subbutterflies already available in the next 



smaller butterfly of size (nω - nω-1)2nω-nω-1-1 . 

We can therefore conclude that the value 4 is at most the number of emulating 

subbutterflies in the (nω — nω-1)2nω-nw-1-1-node butterfly plus one multiplied by 

the size of the mesh emulated in each of these subbutterflies. 

The blowup of the emulation of the 4-node mesh on the Nw-node butterfly is 

therefore 
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Since the expression 2n-1 increases towards infinity with increasing mesh sizes, it 

follows that the blowup of the emulation of the sz  x sz  mesh on the Ar„, mesh is 

not constant. 

Because the mesh size s! was defined as the smallest possible size for the s x .s 

mesh as compared to the N„, butterfly we can conclude the argument by stating 

that not all meshes can be emulated in a work-preserving manner. 

3.4 The Slowdown of the Emulation 

In this section we will bound the slowdown of the s x s mesh on the Nw-node but-

terfly. In the first subsection we establish a bound on the growth of the parameter 

sk  from stage to stage. This result and the dilation of the embedding determined 

in the second subsection allows us to finally bound the slowdown of the emulation 

in the last part of this section. 

3.4.1 A constant upper bound for the growth of sk 

To show an upper bound for the growth of sk  we need to observe two different 

cases. Lemma 3.4.1 will show the bound for the case that nk  = 2Nk_l, whereas 

Lemma 3.4.2 prepares Lemma 3.4.3 which shows the bound for the case that nk  > 
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Theorem 4 then concludes this section by combining the results. 

Using these bounds for 4 and sk , we can now derive the bound for the 

logarithm: 

We know that the number of butterfly nodes in stage k -1 is within a constant 

1This is true because otherwise the k-th stage would not have increased the size of the butterfly, 
and would have been identified with the (k — 1)-st stage. 



This yields 
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■ 



Since trivially 

get 

we can multiply these two relations and 
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Multiply the marked term with 

Lemma 3.4.3 For nk  > 3nk-1  the logarithm log s'k  sk  is bounded by 2. 

Proof: Since nk  has been chosen as the smallest multiple that can accommodate 

the mesh of size 

s'k

2, it is clear that this mesh does not fit into the next smaller 
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. This can be formulated as follows. butterfly of size 

Furthermore sk  has been chosen so as to maximally fill the butterfly of size 

Lk with emulating butterflies of size Nk-1. 

With Lemma 3.4.2 it follows that logs  sk  < 2 . ■ 

Theorem 4 (Upper Bound of the Mesh Growth) 

For all k 

where σ > 1 is a constant. 

Proof: In Lemma 3.4.1 and Lemma 3.4.3 we show that the logarithm logs/ sk  is 

bounded by constants in the two cases that nk  = 2nk-1  and nk  > 3nk-1. We 

can conclude this proof by letting o be the maximum of these two constants. 

■ 
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This theorem is important as it allows us to establish relationships between the 

sk's, which we will do in the following corollary. 

■ 

Theorem 4 also lets us establish an interval for each sk  with respect to s, the width 

of the mesh to be emulated. 

Corollary 3.2 

3.4.2 Dilation of the Embedding 

In order to determine the slowdown of the emulation, we need to know the dilation 

of the embedding. The dilation is the maximum number of edges in the path along 

which pebbles are sent from one mesh node to its neighbor. It gives the maximum 

distance between two adjacent mesh nodes in the butterfly. 
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Definition 3.2 Let dk  denote the dilation for corresponding mesh nodes in  Fk n 

neighboring submeshes at stage k. 

To send a pebble from a node in Fk  which resides in subbutterfly u to another node 

in the subbutterfly v emulating an adjacent mesh, we route the pebble from u to a 

node in level zero of the butterfly. This requires a maximum path of nk  edges. The 

pebble is then sent to another node in level zero by routing a permutation up and 

down all the nk  butterfly levels. This results in another maximum 2nk  edges being 

added to the path length. The final step of sending the pebble to the destination 

subbutterfly adds a maximum of nk  edges to the path length. Therefore the path 

needed to route a pebble from a submesh to another arbitrary submesh is 4nk. 

As shown in Theorem 3 the number of butterfly nodes is within a constant 

factor A of the number of mesh nodes for all but the last stage w, that is, 



Since the next smaller butterfly of size 

not acommodate the mesh of size sω  x sω  is it clear that 
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Proof: From relation 3.7 it follows that for nk  > A the path length (dilation) is 

bounded by 41g sk  and therefore dk  = 0(1g sk)•  

We will show that this lemma also holds for the last stage w by looking at the two 

cases that 
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Proof: See Lemma 3.4.4 and the previous paragraph. ■ 

3.4.3 Emulation Slowdown 

Let Tk  be the time to emulate fk  steps of a sk  x sk  mesh on a Nk-node butterfly. This 

emulation is divided into fk /f k-1  phases: In each phase, we attempt to recursively 

emulate fk-1  steps of the sk-1  x sk-1  submeshes on the Nk-1-node subbutterflies. 

Since the base case size has a constant upper bound the emulation of fo  steps 

on the mesh of size so  x so  is O(fo ) = 0(1). For all other stages each phase requires 

time Tk-1  + dk  for the recursive emulation and the delivery of pebbles along the 

paths of maximum length dk  = 0(1g sk ). 

This recurrence can be unfolded as follows 
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where SE  is the slowdown of the emulation. SE  is the sum of the slowdown SR  

yielded by the recursion and the slowdown SR  resulting from the emulation of the 

base case. The sizes of the base case butterfly and mesh have a constant upper 

bound (by definition), so that SB  is also constant. It remains to investigate SR  

which will be the purpose of the following paragraphs. 
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In order to construct a constant upper bound for the slowdown we will investigate 

the integral bounding the sum: 

Lemma 3.4.6 The ntegral is

is bounded by a constant for all s. 

Proof: First we will determine the indefinite integral: By defining u = -gk-1-ω  

and deriving —dduk  = —gk-l-ω  ln  g , we can substitute dk. 
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we get When evaluating the definite integral 

Theorem 2 says that ω < [logg logs0 s] and therefore 

Using this relation we can bound the integral: 

■ 

Theorem 5 (Constant Slowdown of the Emulation) 

The slowdown SE  of the emulation of the mesh is of the order 0(1). 

Proof: As shown in Lemma 3.4.6, the slowdown SR  of the recursive emulation 

(Equation 3.8) is of the order 0(1). The slowdown of the emulation in the 
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base case butterfly is also 0(1) because the base case mesh has a constant 

maximum size. 

Since both SE  and SE  are bounded by a constant, it follows that SE = 

SE + SE  = 0(1). ■ 



Chapter 4 

Simulation Results 

In this chapter we will show the results of simulated embeddings of meshes in 

butterflies. The figures in this chapter are meant to visualize the behavior of the 

blowup as different parameters are varied. The slowdown depends much on how 

the emulation in the base case butterfly is performed and has not been investigated 

here. The following parameters can be varied: 

Growth rate : The growth rate can be varied; in fact, one does not have to 

choose a single growth rate for an emulation. The analysis of the emulation 

only requires that the growth rate has a constant upper bound and a lower 

bound greater than 1. 

Base case : The base case parameter configuration can be varied only subject to 

the constraint that the size of the base case butterfly and the load have a 

73 
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constant upper bound. However, different from the variation of the growth 

rate, there are only a finite number of combinations to choose from, which 

therefore can not change the emulation characteristics except by a constant 

factor. For this reason, we did not simulate embeddings with different base 

case emulations. 

4.1 The Behavior of the Emulation Blowup 

As already shown in Section 3.3.4, the emulation does not have a constant blowup 

for meshes of any size. However, for each mesh there exists a larger mesh that 

can be emulated with constant blowup and therefore in a work-preserving manner. 
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This behavior of the blowup is very obvious when looking at Figure 4.11  which plots 

the blowup against the mesh size. The mesh sizes that exhibit a minimum for the 

blowup are sizes of meshes that can be emulated using the corresponding growth 

rate with constant blowup and therefore in a work-preserving fashion. Figure 4.2 

shows that the blowup values for these meshes are lower than 27  and sometimes 

even lower than 23  = 8. Considering that the base case configuration used for the 

emulation does not even use all the butterfly nodes available for emulation of mesh 

nodes (the base case butterfly with no  = 7 and co  = 2 can accommodate a 18 x 18 

'The data shown in Figures 4.1, 4.3 and 4.2 are based on an emulation with a base case 
parameter configuration of no  = 7, so  = 15, fo = 3 and eo = 2. 
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Figure 4.3: The worst case ratio of butterfly nodes to mesh nodes for different 
growth rates. The greater the growth rate, the smaller the peaks. 

mesh with a load of 1) and that we could therefore improve the blowup by a factor 

of 0.7, these are satisfying results. 

However, as shown in Section 3.3.4, only a few meshes sizes exhibit blowup 

minima and the maxima of the blowup are increasing towards infinity with the 

mesh size. Figure 4.3 shows the trend of the blowup peaks. 
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4.2 The Influence of the Growth Rate on the 

Emulation Blowup 

As can be seen in Figure 4.1 and Figure 4.3, the growth rate g influences the 

blowup in the following ways: 

1. The larger the growth rate, the smaller the worst-case blowup becomes. 

2. As the growth rate increases, the distance between local minima becomes 

smaller. 

3. Different growth rates exhibit blowup minima at different mesh sizes. 

Observations 1 and 2 are not very useful to solve the problem of non-work-preserving 

emulations for most mesh sizes. Observation 3, however, leads to the question 

whether there is a growth rate for every mesh size such that the blowup of the 

embedding of the mesh in the butterfly is minimal. Our analysis of the emulation 

requires that the growth rate have a constant upper and lower bound. Therefore 

the following question arises: 

Does a constant range of growth rates exist such that for any mesh size 

there is a growth rate in this range which allows a constant blowup and 

therefore a work-preserving emulation ? 

Figure 4.2 displays how the blowup values for emulations of certain meshes behave 

when the growth rate is varied. Though the overall behavior is not very conclusive, 
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Growth Rate g 

Figure 4.4: The change of the blowup of the emulation as the growth rate varies. 

one can observe that the blowup has small minima for some growth rates. 

To investigate these blowup minima, we show in Figure 4.2 the same data but 

only for small blowup values and we include more mesh sizes to increase the sample 

size. As one can see, for each of the investigated mesh sizes there is a growth rate 

in the range from 2 to 20 such that the blowup is at most 220. The quantity 

220  is certainly not an acceptable blowup value for practical purposes, but as the 

mesh sizes and therewith the number of stages in the emualation increases, one 

can expect that the growth rate becomes a better instrument for fine-tuning the 

size of the butterfly in the last stage (and therewith the blowup). 
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The aforementioned question is very difficult to tackle analytically and could 

not be answered in this thesis. A more generalized version of this problem is 

presented in Section 5.1 as an open problem left for future research. 



Chapter 5 

Conclusion 

5.1 Future Work 

The work presented in this thesis does not answer the question whether a work-

preserving emulation exists for all mesh sizes. Furthermore, the emulation can be 

generalized to include the emulation of higher-dimensional meshes. These issues 

are addressed here and should be investigated further. 

5.1.1 Is There a Work-Preserving Emulation for Every 

Mesh? 

In this thesis we did not show that there is a work-preserving emulation for any 

mesh size, but that there is a infinite sequence of meshes which can be emulated 
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by a butterfly with a constant blowup and constant slowdown. 

Naturally, the question is now whether this is a consequence of our choice of 

the emulation parameters or if the recursive embedding strategy does not allow for 

the work-preserving emulation of any mesh (as was the case in [13, 14]). 

Note, that the growth rate g does not have to be constant for all stages. One 

could chose a different growth rate gk  for each stage where 

gmin  and gmax, constant. The analysis of the blowup and slowdown would not 

change except for a constant factor. The idea behind making the growth rate 

variable within certain bounds is that we want to increase the number of butterflies 

that can emulate a given mesh with constant blowup. Assuming a given base case, 

the emulation is completely charaterized by the sequence of the parameter nk  

through the recursive stages, since all the other parameters can be derived from 

nk  and the parameters of the stage k — 1. Let the vector 

be that sequence. 

The variability of the growth rate would allow for more sequences of butterflies 

and makes the set of possible butterflies denser. The problem can be reduced to the 

question whether the increase of possible butterflies is enough to guarantee that 

there will always be a butterfly whose number of nodes 
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stant factor of the mesh size such that a sequence of butterflies can be constructed 

that satisfies the constraints of the embedding. 

Thus the problem of the existence of a truly work-preserving emulation of the 

class of meshes on the class of butterflies can be reformulated in the following way: 

such that the following conditions are satisfied: 

Even if the answer to this problem is positive, there is still a non-trivial optimiza-

tion problem to be solved when trying to construct such a sequence for a given 

mesh. 

5.1.2 Extending the Emulation to Related Networks 

In this thesis we describe the embedding of a two-dimensional mesh into a butter-

fly. It is not very difficult to modify the embedding to include meshes of higher 
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dimensions. Furthermore one could change the target network to a close derivative 

of the butterfly, the multi-butterfly. 

5.2 Conclusion 

In this thesis we have presented an embedding of meshes in butterflies that allows a 

work-preserving emulation. Based on the work in [13, 14] we developed a recursive 

embedding of asxs mesh in a butterfly, while correcting errors made in previous 

attempts and removing unnecessary constraints that prevented a work-preserving 

emulation. The recursive embedding consists of O(log log s) stages in which a mesh 

is partitioned into overlapping submeshes which are emulated by subbutterflies. We 

studied the constraints imposed on the base case of the recursion and developed 

an algorithm which determines the parameter for each stage of the recursion. 

In a rigorous analysis of the emulation we have shown that the blowup of the 

emulation is 0(1) for an infinite number of meshes and that the slowdown is also 

constant. Therefore we could conclude that the emulation is performed in a work-

preserving real-time manner for an infinite number of meshes. 

The introduction of the parameter g, the growth rate, which controls the growth 

of the meshes from one stage to another, proved to be an important step towards 

a generalization of the embedding and contributed to the emergence of a possible 

removal of the restriction on the work-preserving quality of the emulation. 
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We could show that for every mesh there exists a larger mesh that can be 

emulated with constant blowup. However since there are an infinite number of 

meshes for which we could not demonstrate a work-preserving emulation our results 

fall short of presenting a work-preserving emulation of the class of meshes on the 

class of butterflies. 

This problem might have a possible solution, as the data obtained from sim-

ulations suggests, which would rely on a variation of the growth rate parameter 

introduced in this work. The analysis of the influence of a variable growth rate 

remains an interesting and demanding problem for future research. 
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Appendix A 

Table of Used Symbols 

Following is a table for reference purposes that lists all the symbols used in this 

thesis with their meanings, possible constraints on their values and a reference to 

a page where they were defined or discussed. 
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(Continued on next page ... 
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