New Jersey Institute of Technology

Digital Commons @ NJIT

Mathematical Sciences Syllabi

NJIT Syllabi

Fall 2023

MATH 450H-H01, Fall 2023: Methods of Applied Mathematics I (Capstone I)

Shahriar Afkhami

Follow this and additional works at: https://digitalcommons.njit.edu/math-syllabi

Recommended Citation

Afkhami, Shahriar, "MATH 450H-H01, Fall 2023: Methods of Applied Mathematics I (Capstone I)" (2023). *Mathematical Sciences Syllabi*. 222.

https://digitalcommons.njit.edu/math-syllabi/222

This Syllabus is brought to you for free and open access by the NJIT Syllabi at Digital Commons @ NJIT. It has been accepted for inclusion in Mathematical Sciences Syllabi by an authorized administrator of Digital Commons @ NJIT. For more information, please contact digitalcommons@njit.edu.

THE DEPARTMENT OF MATHEMATICAL SCIENCES

MATH 450H: Methods of Applied Mathematics I (Capstone I) Fall 2023 Course Syllabus

NJIT Academic Integrity Code: All Students should be aware that the Department of Mathematical Sciences takes the University Code on Academic Integrity at NJIT very seriously and enforces it strictly. This means that there must not be any forms of plagiarism, i.e., copying of homework, class projects, or lab assignments, or any form of cheating in quizzes and exams. Under the University Code on Academic Integrity, students are obligated to report any such activities to the Instructor.

COURSE INFORMATION

Course Description: This course presents an introduction to methods of applied mathematics for modeling problems in the life sciences and engineering. An introduction to analytical and computational methods will be presented and problems from biological systems, control and optimization, heat transfer and fluid flows, and data science will be considered. Applied mathematics techniques for the problem simplification will be introduced along with computational methods for the solution of full problems.

Number of Credits: 3

Prerequisites: MATH 331 with a grade of C or better, MATH 337 with a grade of C or better, and MATH 340 with a grade of C or better.

Course-Section and Instructors:

Course-Section	Instructor
Math 450-H01	Professor S. Afkhami

Office Hours for All Math Instructors: Fall 2023 Office Hours and Emails

Required Textbook:

There is no mandatory text for this section. The following books and materials are recommended texts.

- Mathematical Models in the Applied Sciences; A. C. Fowler, University of Oxford; 9780521467032
- Introduction to the Foundations of Applied Mathematics; Mark H. Holmes; 978-0-387-87749-5
- An Introduction to Mathematical Modeling (Dover Books on Computer Science); Edward A. Bender;
 978-0486411804

University-wide Withdrawal Date: The last day to withdraw with a W is Monday, November 13, 2023. It will be strictly enforced.

POLICIES

DMS Course Policies: All DMS students must familiarize themselves with, and adhere to, the Department of Mathematical Sciences Course Policies, in addition to official university-wide policies. DMS takes these policies very seriously and enforces them strictly.

Grading Policy: The final grade in this course will be determined as follows:

Homework	50%
Midterm Exam	20%
Final Exam	30%

Attendance Policy: Attendance at all classes will be recorded and is **mandatory**. Please make sure you read and fully understand the **Math Department's Attendance Policy**. This policy will be strictly enforced.

Exams: There will be one exam during the semester and a cumulative final exam during the final exam week:

Midterm Exam	ТВА
Final Exam Period	December 17 - December 23, 2023

Makeup Exam Policy: There will be NO MAKE-UP QUIZZES OR EXAMS during the semester. In the event an exam is not taken under rare circumstances where the student has a legitimate reason for missing the exam, the student should contact the Dean of Students office and present written verifiable proof of the reason for missing the exam, e.g., a doctor's note, police report, court notice, etc. clearly stating the date AND time of the mitigating problem. The student must also notify the Math Department Office/Instructor that the exam will be missed.

Cellular Phones: All cellular phones and other electronic devices must be switched off during all class times.

ADDITIONAL RESOURCES

Math Tutoring Center: Located in the Central King Building, Lower Level, Rm. G11 (See: Fall 2023 Hours)

Further Assistance: For further questions, students should contact their instructor. All instructors have regular office hours during the week. These office hours are listed on the Math Department's webpage for Instructor Office Hours and Emails.

Accommodation of Disabilities: The Office of Accessibility Resources and Services (OARS) offers long term and temporary accommodations for undergraduate, graduate and visiting students at NJIT.

If you need an accommodation due to a disability, please contact the Office of Accessibility Resources and Services at oars@njit.edu, or visit Kupfrian Hall 201 to discuss your specific needs. A Letter of Accommodation Eligibility from the office authorizing student accommodations is required.

For further information regarding self identification, the submission of medical documentation and additional support services provided please visit the Office of Accessibility Resources and Services (OARS) website at:

Important Dates (See: Fall 2023 Academic Calendar, Registrar)

Date	Day	Event
September 4, 2023	Monday	Labor Day
September 5, 2023	Tuesday	First Day of Classes
September 11, 2023	Monday	Last Day to Add/Drop Classes
November 13, 2023	Monday	Last Day to Withdraw
November 21, 2023	Tuesday	Thursday Classes Meet
November 22, 2023	Wednesday	Friday Classes Meet
November 23 to November 26, 2023	Thursday and Saturday	Thanksgiving Recess - Closed
December 13, 2023	Wednesday	Last Day of Classes
December 14, 2023	Thursday	Reading Day 1
December 15, 2023	Friday	Reading Day 2
December 17 to December 23, 2023	Sunday to Saturday	Final Exam Period

Course Outline

Introduction to Mathematical Modeling		
The procedure of modeling		
Derivation of the mathematical model from first principles		
Examples		
Dimensional Analysis and Scaling		
Nondimensionalization and dimensionless parameters		
Buckingham theorem		
Scaling and size arguments		
Perturbation Methods and Asymptotic Analysis		
Regular and singular perturbation		
Boundary layer theory		

Optimization			
Linear and nonlinear optimization			
Lagrange multipliers			
Data-Driven Models			
Function fitting			
Least squares			
Singular value decomposition			
Applications of data analysis			
Mathematical Models of Continua			
Mathematical models of continua			
Fluids flow			
Elasticity			
Stochastic Models			
Stochastic processes			
Stochastic differential equations			

Updated by Professor S. Afkhami - 8/10/2023 Department of Mathematical Sciences Course Syllabus, Fall 2023