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Abstract

An internal characterization of the Arkhangel’skii-Calbrix main theorem from [4] is obtained
by showing that the space C,(X) of continuous real-valued functions on a Tychonoff space
X is K -analytic framed in RX if and only if X admits a nice framing. This applies to show
that a metrizable (or cosmic) space X is o -compact if and only if X has a nice framing. We
analyse a few concepts which are useful while studying nice framings. For example, a class
of Tychonoff spaces X containing strictly Lindelof Cech-complete spaces is introduced for
which a variant of Arkhangel’skii-Calbrix theorem for o-boundedness of X is shown.
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1 Introduction

A classic result of Christensen asserts that for a metric and separable space X the space
C,(X) is analytic (i.e., is a continuous image of the Polish space @®) if and only if X is
o-compact (see for example [23, Theorem 9.6] and references therein).

Calbrix proved [11] that the analyticity of C,(X) yields the o-compactness of X for any
Tychonoft space X. The converse fails in general. Nevertheless, as Okunev proved [27], if
X is o-bounded, Cp(X) is K -analytic-framed in RX, i.e., there exists a K -analytic space Z
such that C,(X) € Z < R¥. This latter result motivated paper [4], where Arkhangel’skif
and Calbrix characterized cosmic o -compact spaces by showing

Theorem 1 A cosmic space X is o-compact if and only if C,(X) is K-analytic-framed in
RX.

The proof of Arkhangel’skii-Calbrix theorem depends on a result of Christensen about
fundamental compact resolutions in metric spaces and Okunev’s [28] about projectively o -
compact spaces X. They asked if the same holds when X is just a Lindelof space. The answer
to this question could already be found in Leiderman’s [24], and also recalled in [10, Remark
3.9]. We shall discuss again this example in a slightly stronger form. In [16] we extended the
above mentioned Okunev’s theorem by showing the following useful

Theorem 2 C,(X) is K -analytic-framed in RX if and only if it has a bounded resolution.

We will show that C,(X) is K -analytic-framed in R¥ if and only if X admits a nice fram-
ing (Theorem 13) if and only if X has a fundamental resolution of functions (Theorem 16,
Corollary 14). The latter concept will be directly used to construct an (usc) map from w® into
the compact sets of Z with C(,(X) € Z C RX (showing K -analyticity of Z). Examples illus-
trating these results are presented in Sects. 3, 4 and 5 where we discuss some consequences
of Theorem 13 for obtaining o -compactness of X, and provide an alternative approach (inde-
pendent of Arkhangel’skii and Calbrix) to this fact. For example, we analyze situations when
X admits a nice framing with a layer {U,, : n € w} giving a sequence of compact sets
covering X, and we introduce a class of spaces containing Lindelof Cech-complete spaces
for which a variant of the Arkhangel’skii-Calbrix theorem is obtained (Theorem 32). Recall
that if Cj, (X) is K-analytic-framed in RX, the space X is projectively o-compact, i.e. every
continuous separable and metrizable image of X is o -compact, [4, Theorem 2.3]. This moti-
vated us to examine some versions of projectively o-compactness and show (Theorem 6)
that if X is projectively analytic (i.e., if every continuous metrizable and separable image of
X is analytic) then every continuous metrizable image of X is separable. This yields that a
metrizable (or cosmic) space X is o-compact if and only if X has a nice framing. However,
this fact fails if X is only separable and strictly dominated by a metric space.

2 Bounded resolutions for spaces C,(X)

A covering F = {Ay : @ € @} of aset X is called a resolution for X if A, € Ag whenever
a < B coordinatewise. If X is a topological space and the sets A, are compact, the family
F is called a compact resolution. Recall that a subset B of a locally convex space (Ics) E is
said to be bounded if for each neighborhood of the origin U in E there exists A > 0 such that
AB C U. A resolution {A, : o € w®} for E consisting of bounded sets is called a bounded
resolution. If additionally every bounded set in E is contained in some A, we say that the
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family {Ay : a € w®} is a fundamental bounded resolution for E. For a Tychonoff space X,
by C),(X) and Cr(X) we denote the space of continuous real-valued functions on X with the
pointwise 7, and the compact-open topology t, respectively.

Proposition 3 If C,(X) is a continuous linear image of a metrizable Ics F, then C,(X)
admits a bounded resolution.

Proof Let T : F — C,(X) be a continuous linear surjection; let {U,};2 | be a decreasing
base of neighborhoods of zero in F. If for ¢ = (x(n)) € w® we set Ay, = ﬂg’;l am)Uqn),
the family {Ay : o« € w®} is a fundamental bounded resolution for F'. Hence, {T (Ay) : @ €
®} is a bounded resolution for C, (X). ]

We refer also the reader to [19, Proposition 22] for a sufficient condition for C,(X) to have
a fundamental bounded resolution.

A topological space X is pseudocompact if f(X) € R is bounded, f € C(X); X is
pseudocompact if and only if C,,(X) does not contain a complemented copy of R (see [1,
Section 4]); X is called o-bounded if X = |_J, X, and every X,, is functionally bounded,
i.e., every f € C(X) is bounded on X,. A special case of Theorem 2 is Proposition 4 (due
to Uspenskil, see [27, Theorem 3.1]). We provide a short alternative proof.

Proposition 4 A Tychonoff space X is pseudocompact if and only if there exists a o -compact
space K with C,,(X) € K C RX.

Proof 1If X is pseudocompact and S = {f € C(X) : |f(x)| < 1,x € X}, the sequence
{nS}°2 | covers C,(X). Hence, the closure of n.S in R¥ provides a sequence of compact sets
in R* whose union K contains C (X). Conversely, if the conclusion holds, C,(X) is covered
by a sequence of bounded sets. If X is not pseudocompact, Cj,(X) contains a complemented
copy of R®, which is not covered by a sequence of functionally bounded sets. O

One can ask whether a Tychonoff space X is o-bounded if and only if C,(X) does not
contain a copy of RY for some uncountable Y. The answer is negative: C »(R®) does not
contain a copy of RY for any set ¥ with |Y| > Rg. Indeed, since the weak* dual of C »(R?)
is separable, C,(R”) admits a weaker metrizable locally convex topology, but RY fails this
property, whereas it is well known that C,(w) = R® is not o-bounded. Nevertheless, the
‘only if” part is true in general. In fact, if {B,}; | is a sequence of functionally bounded
sets covering X, the sets Ay = {f € C(X) : sup,cp [f(x)| < a(n) Vn € w} fora € »®
compose a bounded resolution for C,(X). If C,,(X) contains a copy of RY then this latter
Baire space also admits a bounded resolution. So, according to [23, Proposition 7.1], ¥ must
be countable.

Recall that X is a u-space if every functionally bounded set in X is relatively compact.

Theorem 5 ([22]) A Tychonoff space X is o-compact if and only if X is a p-space and there
exists a metrizable locally convex topology & on C(X) such that 7, < & < 7.

Recall that X is projectively analytic if each continuous metrizable and separable image of
X is analytic. The space X is said to have the Discrete Countable Chain Condition (DCCC)
if every discrete family of open sets is countable, which is equivalent to require that each
continuous metrizable image of X is separable.

Theorem 6 If an infinite Tychonoff space X is projectively analytic, then it has the DCCC.

@ Springer



90 Page4of15 J.C.Ferrando et al.

Proof Assume there exists a continuous surjective map 4 : X — Z and Z is metrizable but
not separable. Choose a closed discrete set D in Z with |D| = 1. Such set exists since
d(Z) = w(Z) = e(Z), where e(Z) means the extent of Z, see [13]. Then there exists a
continuous one-to-one map f : D — Y onto a metrizable and separable space Y, which
is not analytic. Indeed, such Y can be obtained as follows. Under (C H) we know that R
contains 2¢ subsets of the cardinality continuum, but only a continuum number of analytic
subsets. So, one of those 2¢ subsets Y is not analytic. Under (—=C H), take a subset ¥ C R
of cardinality 8. Then it is not analytic. Indeed, every uncountable analytic subset of R
contains a copy of the Cantor set and hence has cardinality c.

The map f admits a (canonical) extension Pf : PD — PY to spaces of finitely supported
maps, where PY is the space of finitely supported probability measures endowed with the
weak* topology determined by the subspace C? (X) of C (Y) consisting of bounded functions.
It turns out that PY is a separable and metrizable convex set by Prokhorov-Wasserman-
Kantorovich metric, see [7, Lemma 4.3]. As follows from the proof of [2, 0.5.9 Proposition],
the y = &y copy of Y in L(Y) (the dual of C(,(Y)) is closed in L (¥) when the latter linear
space is provided with the weak topology of the dual pair <L (Y),ch (Y)). Hence Y is closed
in PY. Since PY is a convex metrizable subset of alcs, f : D — Y C PY admits a
continuous extension f : Z — PY by Dugundji theorem [14, page 185]. f(Z) in PY is
not analytic since it contains a closed subset ¥ which is not analytic. Then f o & has a non
analytic (separable) metrizable image, a contradiction. O

A Tychonoff space X is called strongly projectively o -compact if every continuous metriz-
able image of X is o-compact.

Corollary 7 Let X be an infinite Tychonoff space. Then X is projectively o -compact if and
only if X is strongly projectively o -compact.

Theorem 6 and Okunev’s [27, Theorem 1.3] yield the following

Corollary 8 A metrizable space X is analytic if and only if every continuous metrizable and
separable image of X is analytic.

Corollary 9 A paracompact Cech-complete space X is o-compact if and only if C p(X) has
a bounded resolution.

Indeed, if C,(X) has a bounded resolution, X is strongly projectively o-compact by [4,
Theorem 2.3] and Corollary 7. Since X is mapped onto a completely metrizable space Y by
aperfect map T, see [13, 5.5.9(a)], the space Y is o-compact. Hence X is o -compact (since
T is perfect). The converse implication is clear.

From [4, p. 5200] the one-point Lindedfication of an uncountable discrete space X is
projectively o -compact but is not o-bounded. Even more can be shown.

Example 10 C,(X) is not K -analytic framed in R¥ for the one-point Lindedfication X of an
uncountable discrete space.

Indeed, X is an w-space, i.e. every continuous metrizable separable image of X is count-
able, see [3] or [2]. So, X is projectively o -compact. Since X is a P-space, Cj,(X) is a Baire
Ics. So, if C},(X) admits a bounded resolution, [23, Proposition 7.1] ensures that the space
Cp(X) is metrizable. This X must be countable, a contradiction.
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3 A characterization in terms of X

This section deals with the following
Problem 11 Characterize Tychonoff spaces X such that C,(X) has a bounded resolution.

According to [15] a family {U,, : (@, n) € o® x o} of closed subsets of X is called a
framing if (i) for each o € w® the layer {U,,, : n € w} is an increasing covering of X, and
(ii) for every n € w one has that Ug , € Uy, a < B.

Lemma12 ([15, Lemma 104]) A set A C Cp, (X) is bounded if and only if there is an
increasing covering {V, : n € w} of X by closed sets such that SUP rep lf ()] <n x€V,.

Theorem 13 The space C,(X) has a bounded resolution if and only if there exists a framing
{Ug.n @ (a,n) € 0® x w} in X enjoying the property that if f € C(X) there exists y € o®
such that | f (x)| < n for each x € U, , and n € w.

Proof If there is a framing {Uy , : (o, n) € w® x w} of the aforementioned characteristics,
the sets

Ay =3f€CX): sup |[f(x)|]<nVnew
x€Uyn
compose a bounded resolution for C (X). Indeed, each set A, is pointwise bounded by virtue
of Lemma 12, since {U{M ‘ne w} is an increasing covering of X by closed sets such that
SUpP rea, |f (x)| < nforall x € Uy . Moreover, Ay, € Ag if @ < B since Ug,, C Uy,,. If
f € C (X), by the statement of the theorem there exists y € w® suchthat| f (x)| < n foreach
x € Uy andalln € w.Hence f € A,,s0{Ay : @ € @} covers C (X). Conversely, assume
Cp (X) has a bounded resolution {By : « € @®}. If Vo, = {x € X :sup e |f (x)| < n},
then {VO,,” in € a)} is an increasing covering of X by closed sets for each o € w® with
Vgn © Vo,n whenevera < B, n € . If f € C (X) thereis § € w” suchthat f € Bs. Hence
|f (x)| <nforeachx € Vs, n € w,50{Vyn : (a,n) € ” X w}is a framing satisfying the
required property. O

We say that X has a nice framing if X admits a framing as stated in Theorem 13.

The following concept can also be used when studying the role of framings, see also [10],
where a similar concept was fixed for uniform spaces X with uniformly continuous functions
fo- A Tychonoff space X admits a fundamental resolution of functions if there exists on X a
family of nonnegative real-valued functions { fy : & € @} such that f, < fg fora < g and
for each f € C(X) there exists « € w® with | f| < fy.

Corollary 14 A Tychonoff space X has a fundamental resolution of functions if and only if
Cp(X) has a bounded resolution, if and only if X has a nice framing.

Indeed, if {Ay : @ € @®} is a bounded resolution on Cj,(X), then f,(x) = sup{| f(x)] :
f € Ay} form a fundamental resolution of functions, and if ( f,) is a fundamental resolution
of functions, sets A, = {f € C,(X) : | f| < fu} form a bounded resolution on C,, (X). The
last statement follows from Theorem 13.

To keep the paper self-contained we apply this concept to present a short proof of The-
orem 1 if X is metrizable (or cosmic), although the main idea remains similar (see also
[6, Proof of Theorem 2.2] for a similar argument). Nevertheless, theorem fails if X is only
separable with a stronger metric topology, Example 37.
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Theorem 15 A metrizable space X is o-compact if and only if X admits a nice framing. The
same statement holds if X is cosmic.

Proof Assume first that X is metrizable and separable, with anice framing. Let { fy, : @ € 0®}
be a fundamental resolution of functions on X (we apply Corollary 14). Let X be a metric
compactification (see [20] for details). For ¢ € ® set K, = ﬂyex(f\ B(y, exp(—fo(y)),
where B(y, r) is the open ball at y and radius r. Clearly each K, is a compact subset of X \ X
and K, € Kg,ifa, B € 0 witha < B.LetK C Y\Xbecompact.Forh(y) =|Ind(K, y)|,
y € X, there exists 0 € o® with h < f,. Hence d(K,y) > exp(—fs(y)), and then
K C X\ B(y,exp(—f,(»))) for every y € X; so K € K,. Thus {Ky : @ € o®}
is a fundamental compact resolution for the metrizable and separable space X \ X. By
Christensen’s [23, Theorem 6.1] X \ X is Polish, so X is o-compact.

Next, assume that X is metrizable and contains a nice framing. By Corollary 14 the space
Cp(X) has abounded resolution. Assume that X is continuously mapped on a metrizable and
separable space Y. Since C,(Y) is isomorphic to a subspace of C, (X), the space Cj,(Y) hasa
bounded resolution; consequently the metrizable and separable space Y admits a nice framing.
By the first case we derive that Y is o-compact. Now, Corollary 7 applies to get that X is o'-
compact. The converse follows from the fact, mentioned earlier, that if { B}, | is a sequence
of functionally bounded sets covering X, the sets Ay = {f € C(X) : sup,cp [f(x)| <
a(n) Vn € w} for @ € @” compose a bounded resolution for C,(X).

Finally, assume that X is cosmic with a nice framing, and let Y be a continuous metrizable
and separable image of X. By the previous argument Y is o-compact. So, according to [27,
Theorem 1.5], the space X is o-compact. The converse is clear. O

A regular space X is angelic if every relatively countably compact subset A of X is
relatively compact and for every x € A there exists a sequence in A which converges to x.
The concept of a fundamental resolution of functions will be directly used to define an (usc)
map F from @® into compact subsets of some space Z where C,(X) € Z C RX.

Theorem 16 If X has a nice framing, C, (X) is K -analytic-framed in RX and angelic.

We provide two proofs of Theorem 16. For the first one we need the following two simple
technical lemmas (which might be already known).

Lemma 17 Each increasing function ¢ : ® — [0, 00) is bounded on some non-empty open
subset of w®.

Proof Suppose, by contrary, that ¢ is unbounded on every non-empty open subset of w®. Let
Bl = (B) € w® with p(B') > 1. Let y! € {B}} x »® with p(y!) > 2. Put g2 = (B2) =
max(B', y'}; then ¢(B?) > 2,2 = B' and B} = B|. Let y* € {(B], B3)} x »” with
o(y? = 3. Put B* = (B) = max{B%, y*}; then (B%) > 3,83 > pZand ] = B}. B3 =
ﬂzz. Following this procedure we get an element 8 = (f]!) € »® and an increasing sequence
(B*) € @® such that p(B%) > k and B¥ = B forall 1 <i <k, k € ». Then ¥ < B and
k< (p(,Bk) < @(B) < +oo for any k € w, a contradiction. ]

Lemma 18 (1) Each increasing function ¢ : o® — [0, 00) is locally bounded, i.e. each
point x € w® has an open neighborhood U such that ¢(U) is bounded. (2) For every locally
bounded function ¢ : @* — [0, 00) there exists a locally constant function g : ©® — [0, 00)
with g > @; in particular, g is continuous.
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Proof (1) Assume the claim fails. Then there exists @ € @® such that ¢ is unbounded on
{(aer, ..., am)} X 0® for every m € w. Hence for every f > « the function ¢ is unbounded
on {(B1, ..., Bm)} x w® forevery m € w.

Setyr : w® — [0, +00), ¥ ((Br)) = ¢((Bn+ay,)). Then i is increasing and unbounded on
any non-empty open subset of @®. Indeed, let 8 = (8,) € @ andm € w. Lety; = B + «;
forl <i <mand A = {(X) € ©® : XAi > Ajtm,i € w}. Then v ({(B1,...,Bm)} X
NNy = o({(y1, ..., ¥m)} x A) and for any (&) € ®wehave p((y1, ..., Ym, A}, A),..)) <
(V1o oy Vs My F gt My Famgr, o)) and (Vi oo Vs A et My F g, L) €
{1, - v} x AL Thus Y ({(Br, - .., Bn)} X ©°) = ({(y1, ..., ¥m)} X A) is unbounded,
since e({(y1, - - -, Ym)} X @*) is unbounded. It follows that ¥ is unbounded on any non-empty
open subset of w®, a contradiction with Lemma 17.

(2) For @ € w® let m(«) be the least integer such that ¢ is bounded on {(«1, . . ., K@)} X
o®. Put Vo = {(@1, ..., 0n@))} X @ for any o € o®. Clearly,  {Vy : o € 0®} = o®.
For all o, B € w®” we have V,, = Vg or V, N Vg = (. Indeed, if m(a) = m(B) and o; = B;
for 1 <i < m(a), then V, = Vg;if m(a) = m(B) and ; # B; for some 1 < i < m(a),
then V, N Vg = ; if m(a) # m(B), then o;; # B; for some 1 < i < min{m (), m(B)} and
Vo N Vg = (. Thus for some W C ® the family {V,, : @ € W} is a partition of @® on non-
empty clopen subsets such that ¢ is bounded on V,, for every « € W. Let t, = sup ¢(V,,) for
a € W.Letg : o — [0, +00) be the function such that g(8) = t, forany 8 € V,,a € W.
Then g > ¢ and g is locally constant, so it is continuous. m]

First proof of Theorem 16 By Corollary 14 fix a fundamental resolution of functions {f, :
a € w”} for X. Let x € X. Then ¢, : ®® — [0, +00),a¢ — f,(x) is increasing. By
Lemma 18 there exists a locally constant function g, : ®* — [0, +00) with g, > ¢,. Let
g w?x X — [0,400), g(a, x) = gy(a). Clearly, for any x € X the function v® —
[0, +00), & — g(a, x) is locally constant. Moreover for any function f € C,(X) there is an
o € w® with [ f(x)] < fo(x) = o (@) < gx(a) = g(a, x) forevery x € X. Forany o« € o®
the set Fy = [[,cx[—g(a, x), g(a, x)] in RX is compact. Put Z = (J{Fy : & € @®}. Then
Cr(X)SZC RX. Using the continuity of g with respect to the first variable it is easy to see
that F : a +— F, is an upper semi-continuous (usc) set-valued map from »® with compact
values in Z. Thus C),(X) is K-analytic-framed in RX. O

We propose another proof of Theorem 16, which uses an idea included in the proof of [2,
Proposition IV 9.3]. First we prove the following

Lemma 19 If X has a nice framing, there exists a countable nice framing {Wy , : (@, n) €
w® x w} for X.

Proof Let {Uy,, : (o, n) € @” x w} be a nice framing for X. For each (o, n) € o® X w,
define the closed set

Wan = {Upn: Bew® Bli) =a (). 1 =i <n}.

Observe that Wy, C Wy ;41 for each o € 0® and Wy, € Wy, for each n € w whenever
o < B. We claim that Unew Weq.n = X for each o € w®. Indeed, suppose otherwise that
there exists x ¢ |J,c,, Wa,n for some & € w®. For every n € w choose 8, € w® with
Bn (i) = a(i) forl <i < nsuchthatx ¢ Ug, ,. Put y := sup{B, : n € w}. Then, for
every n € , B, < y and hence x ¢ U, , since U, ,, C Ug, , by the definition of framing.
Hence x ¢ Unew Uy, » = X, a contradiction. All this means that {W , : (@, n) € ©® x w}
is a framing for X. Note that the family {W, , : (@, n) € ©»® x w} is countable since Wy ,
depends only on (1), ..., a(n). Finally, if f € C (X), by Theorem 13 there is y € w® such
that | f (x)| < nforeveryx € Uy ,andalln € w.So |f (x)| <n,x e W), ,,n € w O
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Second proof of Theorem 16 By Lemma 19let F = {U,., : (@, n) € ®” x w} be a countable
nice framing for X. First we prove that C, (X) is Lindeldf X-framed in RX. Let us say that
a function f € RX is F-bounded if for each x € X there exists (&, n) € @® X w such that
x € Uypand f(Uy,,) € [—n,n] . Let us denote by Z the subset of RX consisting of all
F-bounded functions on X. We claim that C (X) € Z. Indeed, if f € C (X) there exists
8 € w® such that f(Us,) C [—n,n] for every n € w. Since {Us, : n € w®} covers X,
given x € X there exists m € NN with x € Us m and f(Usm) < [—m, m], which shows
that f € Z. Thus C (X) C Z, as stated. Now we prove that Z is a Lindelof X-space. If R

. . . . =X . . .
designates the usual two points compactification of R , then R™ is a compactification of Z.
For («, n) € w® x w define

Lon=1{f €R : f(Uyn) < [-n.nl}.

. . =X .
The sets L, , are compact since they are closed in R, and compose a countably family

because the framing F is countable. Choose f € Z and g € ﬁx \Z.As g € @X \ Z, there
exists y € X suchthat g (Uay,,) Q [—n, n]foreach («, n) € ®®” x w for which y € U, . Due
to f € Z thereis (y,m) € o x w withy € U, ;, and f(Uy,;u) C [-m,m],s0 f € Ly .

On the other hand g ¢ L, ,, since g (Uy,m) ¢ [—m, m] because y € U, . Since RYisa

compactification of Z, [2, 4.9.2 Proposition] applies to get that Z is a Lindelof X-space.
Next we show that C), (X) if K-analytic-framed in RX. Indeed, for each & € w® we set

Ay ={f eCX): SUPyey, , |f(x)] <nVn € w}and put By, = Ay, where the closure is in

R¥. Note that By is a compact set in RX. We claim that B, C Z. Indeed, if f € By thereisa
net {fg :d € D} in A, such that f; (x) — f (x) forevery x € X . So, given n € w, one has
in particular fg (x) — f (x) for every x € Uy, n, which implies that sup,.c; | f(x)] < n.
Hence f(Ugy,n) € [—n,n],sothat f € Z,and B, C Z. ’

Define Y = [ J{By : @ € »®} and note that, as a consequence of the previous claim, Z C
Y. Since Y quasi-Suslin [23, Proposition 3.11], there is a set-valued map T : ® — 2¥ with
UIT (@) 0 e w®} =Y and if o, > o in w® and x,, € T (v) for all n € w the sequence
{xn}52 ; has acluster point x € T (). By aresult of Cascales, we may assume T (o) € T ()
whenever « < g (see [23, Theorem 3.1]). Define S : w® — 2¥ by S () = T («), closure in
Z,and put Q = [ J{S (¢) : « € »®}. Then, the fact that Y is quasi-Suslin implies that T («)
is countably compact, hence functionally bounded in Y, so S («) is functionally bounded in
Z. Since Z is Lindelof, S (o) compact. So, the map S is compactly-valued. If o, — o in @®
and z, € S (ay), we may proceed as in the proof of [15, Theorem 57] to show that {z,,}52
has a cluster point z € S (). This proves that 2 is K -analytic. Since Cj, (X) € Q C R¥X, the
space Cp, (X) is K-analytic-framed in RX. Proof that C p(X) is angelic: By Okunev’s [27,
Theorem 3.5] the space vX is a Lindelof X-space, and then by Orihuela’s angelic theorem
[23, Theorem 4.5] the space C,(vX) is angelic, and the same holds also for C, (X), see [23,
Lemma 9.2]. O

Corollary 20 (/16, Theorem 1]) C, (X) has a bounded resolution if and only if C,, (X) is
K -analytic-framed in RX.

Corollary 21 If C,(X) and C,(Y) are linearly homeomorphic, X has a nice framing if and
only if Y has a nice framing.

Corollary 22 ([5]) Let X be o-bounded and Y metric, and assume that there exists a con-
tinuous linear surjection from C,(X) onto C,(Y). Then Y is o-compact.
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Remark 23 A countable infinite product X of metrizable non-compact spaces X, each with a
nice framing does not have a nice framing, since each X, is o-compact but X is not o -compact
(as X contains a closed copy of w®).

4 Strong framings, o-compactess

One may expect that each nice framing for a separable and metrizable X should contain a
layer consisting of compact sets, so providing a o-compact cover of X. We prove however
the following

Theorem 24 Let O be the class of metrizable and separable spaces with a nice framing.

(1) If X € M, then X admits a nice framing such that for each o € w® the layer {Uy,, : n €
w} consists of compact sets.

2) If X € 9M is non-Polish, then X admits also a nice framing such that for each « € w®
there exists n € w such that Uy, is not compact.

(3) There exists a countable Polish space I" € 9 with the conclusion like in item (2).

First we show some auxiliary results. The first one, when dealing with X € 901, asserts
that X admits a nice framing each layer {U,,, : n € w} consists of compact sets. We need
also the following concept. For «, B € w® we write o < B, if there exists m € @ such that
on < By for every n > m. A nice framing is said to be a strong framing, if for all o, € w®
with o < B there exists p € w such that Ug , € Uy, for every n > p.

Proposition 25 For a topological space X the following statements are equivalent:

(1) X is o-bounded.

(2) X admits a strong framing such that for each o € w® the layer {Uy ,, : n € w} consists
of functionally bounded sets.

(3) X admits a strong framing such that there exists a € w® for which {Uy, : n € o}
consists of functionally bounded sets.

(4) X admits a nice framing such that for each o € w® the layer {Uy , : n € w} consists of
Sfunctionally bounded sets.

Proof Only (1) = (2) needs to be shown. Let X be a o-bounded space with an increasing
cover (X,)p>0 of functionally bounded (closed) sets, Xo = ¥J. Then X has a strong framing
{ an : (@, n) € w? x a)} such that {Uy ,, : n € w} = {X,, : n > 0} for every o € w®.

Indeed, let o = (a;) € w®. Letag =0and @, = n + max{kak 0 <k <n}forn>0.
Clearly &g = 0 and @, < &, foreveryn > 0. Leta = (@1, &2, @3, ...). Clearly, o € w?

Leta,B € w®. If @ < B, then @ < ,8 Moreover, if « < B, thenot =< ,8 Infact
there exists m € w such that «, < B, for every n > m. Put A = max{koy : 0 < k <
m}, B = max{kB; : 0 < k < m} and C = max{A, B}. Let n € w withn > C. Then
&, =n+max({A} U {kay : m < k <n}) =n+ max{kay : m < k <n} <n+ max{kpB :
m<k<n}=n+max({B}U{kBr :m <k <n}) = ,3,,. Thus @, < 3,[ foreveryn > C,
soq < /§ Let n € w. Then there exists m > 0 such that &,, < n < &y41. Put Uy, = X,
Then Uy,p € Ugpy1 foralln € wand (o) Ugn = Uy Xn = X.

Let f € C,(X). Then there exists & = (a;) € w® such that || f|Xy|lco < ay for every

k € w. Letn € w. Then there exists m > 0 such that &, < n < &+ and || f|Ugnllco =
1 f1Xmlloo < oty < &y < n. Thus

VfeC,(X)da€w™new: | flUpnlo <n.
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Leta, 8 € a) witha < B. Letn € w. Thenthereexistm, k > Osuchthat@,, <n < Q4
andﬂk <n< ﬂk+1 Clearly & </3 som > k. Thus Uy, = X,y 2 X = Ugp.

Leta, B € w® witha < B. Thena < /3 so there exists v € w such that &, < ﬂ,, for every
n=v. Letp ﬂv +1.Letn > p. Then there exist m, k > 0 such that &,, < n < &y,+1 and
ﬁk <n< ,3k+1 Since n > ,BU we infer that k > v. Hence a; < ,Bk <n,sok <m.

Thus Ug , = Xi € Xy = Ug,n, 50 Ugn C Uy, forevery n > p. O

Fact 26 A countable metrizable space X is scattered if and only if X is Polish. Indeed, if X
is scattered, it is Polish by [26, Lemma 8.1, Theorem 1.3]. Conversely, if X is not scattered,
it contains a closed copy of rationals Q, so X is not Polish. This applies to illustrate the
following example which will be used in the sequel.

Example 27 There exists a countable Polish subspace I of R which is not open in its com-
pletion I" and admits a nice framing such that for every o € w® there exists n € w such that
Uy, 1s not functionally bounded.

Proof Let x,; = 27"(1 +27%) forall n,k € w. Set X, = {x,x : k € w) forn € w.
The set T' = [J°2, X, U {0} endowed with the topology induced from R is a metrizable
and separable space. For any n € w the set X,, is infinite, discrete and closed, so it is not
functionally bounded in I'. Note that I" is a Polish space by applying Fact 26.

Let Ao =Vand A,, = {xp : 1l <n,k <m}form € w. Then | J,_oAn = U2 Xn.
Leta = (a,) € w®. Letag = 0and &, = Z;”:O ajform > 0.Letn € w. Then there exists
m > 0suchthat@, <n < &u41.PutUy, = Agifn < ajand Uy, = Ay UYy, ifn > o.
Clearly Uy, is not functionally bounded in I', if n > o, since Uy, 2 X, n > o1

Let f € Cp(I'). Since supY,, = supX,, = 3 - 21=n 5 0, there exists s € @ with
I ¥slloo < [fO)] +1 < s.Leta = (ay) € 0” with oy > s and o > || f|Aklleo for
kew Ifn <aj,thenUy, = 0,50 || flUgnlloo =0 < n.Letn > . Then || f|Anm]loo <
o < by <nand || f1Yg lloo < I f¥slloo <5 < i <n.Hence || f|Ugnlloo < n. Clearly,
Usn € Ugnyi foralle € 0, n € wand | J52 | Uyn = Upe ) XnU{0} =T foralla € »®.
Leta, B € w” witha < B.If n < By then Uy, 2 ¥ = Ug ,. Let n > . Then there exist
m, k > 0 such that &, < n < @y and 3k <n< B\k+1. Clearly & < /§ som > k. Thus
Ugn = Ap UYy 2 A UYg = Up,. Thus (U, , : (a0, n) € ©* x } is a nice framing in
I" such that for every o € w® there exists n € w such that Uy, is not functionally bounded.
Note that P\ ' = {27" : n € ). O

Lemma 28 [f a metrizable space Z is not open in its completion Z, then Z has a closed copy
of I'. Hence a separable metrizable non-Polish space contains a closed copy of T.

Proof Assume Z isnotopenin 7. Then there exist z0 € Z andasequence (z,), C 7 \ Z thatis
convergent to zo in 7. We can assume that Zn # Zm-ifn # m.Lets, = infy, 4, d(zn, Zm), n €
w, where d is the metric in Z. Clearly, s, > 0 for any n € w. Let (r,), be a sequence
of positive numbers that is convergent to 0 such that r, < 27 's,, n € w. Clearly, the
balls K (zn, 1), n € o, are pairwise disjoint. For every n € o there exists a sequence
(Zn.m)m S Z N K4 (zn, ry) which is convergent to z, and such that z, » # zn, if m # k.
Set Z, = {zgm : m € w} forn € wand Zy = UZOZI Z, U {z0}. Clearly Zj is a closed
subspace of Z and the map h : I' — Zj such that 2(0) = zo and h(x, ,) = 2n,m for all
n,m € w is a homeomorphism. O

The next result follows from Lemma 28 and Example 27.
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Proposition 29 Let X be a metrizable space with a nice framing and which is not open in
its completion X. Then X admits a nice framing no layer of it forms a o -compact cover. In
particular, every separable metrizable space which is non-Polish enjoys this property.

Proof of Theorem 24 X € 9t is o-compact by Theorem 15. (1) follows from Proposition 25.
(2) follows from Proposition 29 and (3) follows from Example 27. O

5 More about strong framings

We introduce a class of Tychonoff spaces containing the Lindelof Cech-complete spaces
which are naturally related to the subject of the previous section. One may define a cardinal
function b on X as the least cardinality of a set A in C (X) such thataset B in X is functionally
bounded if f(B) is bounded for every f € A. We call this cardinal b(X) the functional
boundedness of X .

Definition 30 We say that a Tychonoff space X has countable functional boundedness if
b (X) = Ro, that is, if there exists a sequence {f,};°; S C(X) such that a set B € X is
functionally bounded if all f; are bounded on B.

Clearly, R® has countable functional boundedness, since a subset B C R is functionally
bounded if and only if the canonical projections 7, : R® — R, (xq, x2,x3,...) — X,
are bounded on B . By Tietze-Urysohn’s Theorem any closed subspace of a space that has
countable functional boundedness, has countable functional boundedness. Hence each Polish
space has countable functional boundedness, as it is homeomorphic to a closed subspace of
R®. Recall (see [13, 5.5.9(a)]) that X is Lindelof Cech-complete if and only if X can be
mapped onto a Polish space under a perfect map. We prove the main result of this section.

Theorem 31 X has countable functional boundedness if and only if there exists a contin-
uous map T from X onto a Polish space Y such that T~'(A) is functionally bounded for
each functionally bounded A C Y. Hence, if X is a u-space, the following assertions are
equivalent:

(1) X has countable functional boundedness.
(2) X is a Lindeldf Cech-complete space.

If Cp(X) is a u-space, C,(X) has countable functional boundedness if and only if Cp,(X)
is isomorphic to R®.

Claim (for C, (X)) holds for example if X is metrizable [2, 3.4.12 Theorem], so a metric
separable X has countable functional boundedness if and only if X is Polish.

Proof of Theorem 31 If X has countable functional boundedness, it admits a fundamental res-
olution consisting of functionally bounded sets. Indeed, set K, = {x € X : | f,(x)| < a(n)},
a € w®, where {f,}72, € C(X) is as in the definition. Define a map 7 : X — R®,
T(x) = (fu(x)52, € R”, x € X.Let A C T(X) be functionally bounded. By properties of
T and X the set T 1(A) is functionally bounded. Hence, since 7 (X) is metrizable and sep-
arable, the closure (in 7 (X)) of the sets T (K, ) compose a fundamental compact resolution.
By Christensen’s theorem [23, Theorem 6.1] the image ¥ = T'(X) is Polish. The converse is
clear since any Polish space has countable functional boundedness. If additionally X is a
-space, then the preimage of any compact set of Y is compact in X, so T is perfect. Hence X
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is a Lindelof Cech-complete space. Each Lindelof Cech-complete space has countable func-
tional boundedness. Finally, recall that C ), (X) is Cech-complete if and only if X is countable
and discrete, see [30, S.265]. O

Next theorem characterizes those o -bounded spaces that have countable functional bound-
edness. In contrast to nice framings, each strong framing in a space X with countable
functional boundedness has a layer consisting of bounded sets.

Theorem 32 A space X with countable functional boundedness is o -bounded if and only if
it has a strong framing. If {Uy ,, : (@, n) € 0® X w} is a strong framing, there is & € w® with
all Uy, functionally bounded.

Proof Since X has countable functional boundedness, there exists a sequence {f,}02, C

C(X) as mentioned in the definition. If {U,, : (@,n) € o“ X w} is a strong framing,
for any k € o there exists o € @® such that [ filUgk yllo < n for every n € . Let
o, = max{oz,’i :1 <k <n}forn € w. Then @ = (a1, 2, 03,...) € & anda,’: < ay
for all k,n € w with n > k . Hence of < o for every k € w. Thus for every k € w there
exists ny € w such that Uy , 2 Uy, for every n > ni. Hence for any k € o we have
I filUanlloo < Il filUgk ,llco < n for every n > ny. The sequence (Uy,n)5e | is increasing,

SO | fklUgnlloo < 00, k,n € w. Thus U, ,, with n € w, are functionally bounded. The
converse follows from Proposition 25. O

A direct consequence of above Theorem 32 is Corollary 33. Note only that, by applying
[22, Remark 3.1 (i)], paracompact X is Lindelof if X has a nice framing.

Corollary 33 A paracompact Cech-complete space X is o-compact if and only if it has a
strong framing.

6 Around two problems

Being motivated by Proposition 3 one can formulate a natural question (¥):

Is it true that C,(X) has a bounded resolution if and only if C,(X) admits a stronger
metrizable locally convex topology?

This problem has been also posed in [17, Problem 9.3]. We show that this question has a
negative solution by applying Example 35 below. Observe first that the following claims are
equivalent.

(i) There exists a p-space such that the space Cj,(X) admits a bounded resolution but does
not admit a stronger metrizable locally convex topology.

(ii) There exists a u-space space X such that Cp,(X) is K-analytic framed in RX but X is
not o -compact.

Indeed, (i) = (ii): We apply [16] (see Corollary 20) and Theorem 5 to get that X is not
o-compact. (ii) = (i): Apply again Theorem 5.
The following problems have been posed in [4].

Problem 34 ([4]) Let X be a Tychonoff space.

(1) Is X o-compact if X is Lindelof and C,(X) is K -analytic-framed in RX?
(2) Let Cp(X) be K-analytic-framed in RX. Is X a o-bounded space?
(3) Let X be a Lindelof space such that C,(X) is K-analytic. Is X a o-compact space?
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Example 35, due to Leiderman [24], shows that the above problems (including question
(*)) have negative solutions. Later on, Banakh and Leiderman recalled this again in [10,
Proposition 3.8, Remark 3.9]. The present version of Example 35 provides a slightly stronger
claim than the original one from [24].

Example 35 There is a Lindel6f X-space X with a unique non-isolated point and:

(1) Cp(X) is K-analytic.

(2) X lacks a compact resolution, so X is not o-compact and does not have countable
functional boundedness.

(3) Every continuous metrizable image of X is countable.

(4) X has a nice framing; no nice framing has a layer with functionally bounded sets.

Remark 36 Leiderman’s example [24] is based on Talagrand’s paper [29] who constructed a
space X with aunique non-isolated point which is a Lindel6f ¥ but not K -analytic. Leiderman
proved that C),(X) is K-analytic. (3) follows from: Every disjoint covering of X by Gs-sets
is countable. Item (2) follows from [22, Lemma 2.3]: X is K-analytic if and only if X is
a p-space and X has a compact resolution. Clearly X does not have countable functional
boundedness by Theorem 31.

Note that if X is both separable and is a continuous image of a metrizable space, the
conclusion in (1) of Problem 34 still may fails.

Example 37 There exists a separable Tychonoff space X not being a w-space and

(1) X is a continuous compact-covering image of a metric space.

(2) X does not admit a compact resolution, in particular X is not o -compact.

(3) There exists a o-compact space L such that C,(X) € L C RX but Cp(X) is not K
-analytic. Hence X admits a nice framing.

(4) Cp(X) admits a quotient map onto the o-compact subspace (£x), = {(x,) € R? :
sup,, |x,| < oo} of R®, but Cj,(X) is not projectively o-compact.

Proof Denote the family of all infinite subsets of a countable set X by [X]?. Set w* =
Bw \ w. For each A € [w]®, choose an ultrafilter u4 € w* in the closure of A in Bw. Let
X =wU{uy : A € [w]*} be topologized as a subspace of Sw.

Proof of (1): It is known (Haydon [21]) that X is pseudocompact (separable) with car-
dinality of continuum and all compact subspaces of X are finite. Clearly, X is a continuous
compact-covering image of a metrizable space by [25, Theorem 1.1].

Proof of (2): Assume X admits a compact resolution {Ky, : o € w®}. Since X is uncount-
able, some K|, is infinite, [23, Proposition 3.7], a contradiction.

Proof of (3): By Proposition 4 the space C,(X) has the first property. For the next
one, assume C,(X) is K-analytic. Then by [18, Corollary 3.4] the Banach space cb(x)
of continuous bounded real-valued functions on X equipped with the Banach topology &
generated by the norm || f|| = sup,cyx|f(x)|is weakly K-analytic, i.e., the weak topology
o of C’(X) is K -analytic. Hence the weak topology of C?(X) admits a compact resolution
[23, Proposition 3.10]. Since X is separable, Cj,(X) admits a weaker metrizable topology.
But then o is analytic by [12, Theorem 15]. Hence Cchx) = C(BX) is separable, impossible
as BX is non-metrizable. X is not a u -space: Otherwise C),(X) = Cy(X) is barrelled by [23,
Proposition 2.15], so by the closed graph theorem the identity map 7 : Cx(X) — (C(X), &)
is continuous; hence X is compact, a contradiction.

Proof of (4): Since X is pseudocompact containing w, C*-embedded into X, we apply
[9, Theorem 1] to get a quotient map from C, (X) onto the subspace (£), of R”. Clearly
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(o) p is covered by the sequence [—n, n]” of compact sets. By construction of X it is clear
(by applying [3, Proposition 3.4]) that C},(X) is not projectively o -compact. O
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