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Abstract: Short-Term Load Forecasting is a very relevant aspect in managing, operating or 

participating an electric system. From system operators to energy producers and retailers knowing 

the electric demand in advance with high accuracy is a key feature for their business. The load series 

of a given system presents highly repetitive daily, weekly and yearly patterns. However, other 

factors like temperature or social events cause abnormalities in this otherwise periodic behavior. In 

order to develop an effective load forecasting system, it is necessary to understand and model these 

abnormalities because, in many cases, the higher forecasting error typical of these special days is 

linked to the larger part of the losses related to load forecasting. This paper focuses on the effect that 

several types of special days have on the load curve and how important it is to model these 

behaviors in detail. The paper analyzes the Spanish national system and it uses linear regression to 

model the effect that social events like holidays or festive periods have on the load curve. The results 

presented in this paper show that a large classification of events is needed in order to accurately 

model all the events that may occur in a 7-year period. 

Keywords: load forecasting; special days; regressive models 

 

1. Introduction 

Short-term load forecasting (STLF) is a determining factor for operation of an electric system. It 

is a necessary process in order to ensure the balance between generation and demand. The system 

operator needs to know the expected load to make decisions and to perform an optimal control of the 

electrical system. Many countries have liberalised electrical markets, which promotes the 

participation of multiple agents. This participation yields a competitive system, which leads to 

reduced costs to the final consumer. The accuracy of load forecasting leads to an optimization of the 

power generation and of operation of the system and a consequent reduction of the costs. In addition, 

a good STLF leads to a better share of renewable energy in the electric system, therefore reducing 

CO2 emitted to the atmosphere conforming with the Paris Agreement [1], which has been ratified by 

several countries. This reduction helps to avoid the emission of excess CO2 for countries like those of 

EU, Iceland, Liechtenstein and Norway, which must comply with the EU Emissions Trading System 

[2]. The optimization of the electric generation reduces its cost, improving competitiveness among 

companies and subsequently, the economical and industrial development of a country. 

Several works have been published about STLF models in the last decades [3]. These methods 

split into three large groups: artificial intelligence [4–19], statistical [20,21] and hybrid models [22–

24]. Regarding artificial intelligence, these techniques have been successfully applied for STLF, such 

as artificial neural networks (ANN) [4,5], extreme learning machine (ELM) [6,7], support vector 

machine (SVM) [8,9,11], adaptive neuro-fuzzy inference system (ANFIS) [10–14], fuzzy logic (FL) [14–

16], genetic algorithm (GA) [16] and self-organizing map (SOM) [17–19]. On the other hand, statistical 
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models such as autoregressive (AR) model [20,21], autoregressive integrated moving average 

(ARIMA) [21] and exponential smoothing (ES) [25,26] have been extensively used in STLF. Other 

forecasting methods are considered hybrid models [23,24], which use the combination of various 

techniques (statistical models and/or artificial intelligence) to obtain forecasting load. 

One of the most used methods of AI for the STLF is Neural Networks (NNs), and the amount of 

research work on this topic found in reference databases like SCOPUS is much higher than for the 

rest of artificial intelligence techniques. This technique has been used over the last decades obtaining 

successful results. In the early days, a review [4] of different works published between 1991 and 1999, 

reports the use of different models of NNs for STLF describing the doubts suggested by some authors 

about adopting this technique for STLF. This study concludes that many research groups used small 

data sets with only one NN for STLF. However, other groups have over-parameterized, increasing 

the complexity of the forecasting model and decreasing the accuracy. In conclusion, further 

investigations are needed to perform an NN prediction model that clears the controversy in the 

scientific community. 

In recent years, different techniques based on NNs have provided good results forecasting load 

due to the increase of the historical data used. In [5], different NN methodologies are compared, 

multilayer perceptron (MLP) [27], radial basis function neural networks (RBFNN) [28], generalized 

regression neural network (GRNN) [29] and counter-propagation neural networks (CPNN) [30] 

which learn from patterns that represent the daily load curves. The results showed that the STLF of 

a GRNN model is more accurate than the rest of NN models analysed in this work. 

The ELM technique shown in [6] is a different forecasting model of AI. The method shown in [7] 

is used to prove the accuracy for STLF versus other NN models. An ELM model provides a better 

efficiency of the training and a better accuracy of the predictions. 

Another technique based on AI is SVM, which is described in [8]. This method is used in [9] to 

forecast load by combining four SVM models according to certain values of temperature and 

demand. In [11], a comparison between SVM and ANFIS [12,13] is presented. The comparison uses 

essential information about the days of a week, achieving much closer results to the actual load by 

the SVM model. 

The performance of the FL model was also compared to that of the ANFIS model using the same 

parameters and data [14]. The predictions obtained in both cases were successful, although the ANFIS 

model was more accurate than the FL model. The latter technique was used to obtain the STLF by 

using different parameters in [15] (e.g., weather, time, historical data), demonstrating that this 

method can provide a more accurate prediction than conventional models. 

In most cases, the artificial intelligence technique called genetic algorithm was used to select the 

most important parameters for forecasting electricity demand. A genetic algorithm like simulated 

annealing is used with other technique like FL to obtain the optimal parameters [16] by means of the 

back propagation method. This method improves the accuracy of the predictions. 

Kohonen’s Self-Organizing Map (SOM) [17] was also used to successfully obtain forecasting 

loads [18]. Moreover, the SOM model was a very useful tool for classifying the data of the parameters 

used to forecast the load. The classification of the meteorological data [19] by using the SOM model 

to cluster the data provided a prediction of demand through nonlinear autoregressive network with 

exogenous inputs (NARX) [31]. 

The autoregressive models are the most commonly used statistical models. Many research 

articles employ these statistical methods for STLF. In [20], Baharudin et al. analised autoregressive 

(AR) model and autoregressive–moving-average (ARMA) [32] to obtain forecasting load, concluding 

that the performance of AR model was more accurate. 

A comparison of different statistical models was studied by Taylor et al. [21]. It compared 

methods such as autoregressive (AR) models, autoregressive integrated moving average (ARIMA) 

[33], a regression method with principal component analysis (PCA) [34], exponential smoothing (ES) 

[25] and the Holt-Winters exponential smoothing method. The best performing method was double 

seasonal Holt-Winters exponential smoothing. 
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Regarding the hybrid models, which use the techniques from two different methods to obtain 

the demand prediction, Fan et al. [23] analysed a SOM Neural Network to cluster each data set into 

subsets. In addition, 24 SVMs are used to adjust each subset to the next day’s load profile. Hybrid 

models can use several forecasting models, where the final forecast is provided by the combination 

of both models. In previous research [24], the authors stated that, AR and NN methods provide 

separate forecasts and a final result given by the linear combination of both methods. A linear 

combination was implemented in order to enhance forecasting accuracy. 

One issue that has not received as much attention as the forecasting engine is the forecasting of 

special days. Several days throughout the year show a profile that does not match the expected profile 

for its weekday. These differences may be caused by temperature [26] but, the more extreme cases 

are caused by socio-economic effects of the calendar. In Figure 1, we can see how the load profile for 

a special day (1 November, a national holiday in Spain) has lower demand values with respect to any 

normal day. This and other special days are harder to forecast and incur higher forecasting errors 

that increase forecasting losses. This is especially important because a low average forecasting error 

with large peak errors may be costlier than a slightly less accurate forecast that has smaller peak 

errors. This research focuses on how to provide the proper information about these special days so 

that a forecasting engine may be able to forecast them more accurately. 

 

Figure 1. Hourly electricity demand in Spain from 23 October 2017 to 5 November 2017. 

There are several ways in which the calendar affects load profiles. Figure 1 already shows that a 

national holiday has a profile more similar to a Sunday than to a typical weekday. However, this does 

not mean that all national holidays share the same profile. In addition, the demand pattern of normal 

days can be altered by the proximity of special days (see Figure 2) such as the Monday before a 

holiday or the Friday after a holiday. The load profiles of special days do not have the same demand 

pattern, it can be seen in Figure 2 that the load profile of 12 October is different to the load profiles of 

normal days. In addition, the demand pattern on 13 October is lower than the demand pattern of a 

normal Friday, which is because it happens after a holiday. If we consider all special days belonging 

to only one kind of day, the accuracy of the demand prediction will be affected. 
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Figure 2. Hourly electricity demand in Spain from 2 October 2017 to 15 October 2017. 

Each day of the week may have its own profile and, in many cases, there are interactions causing 

the type of special day to be conditioned by its weekday. The same special day may have different 

demand patterns depending on the day of the week. Figure 3 displays the profile load of the special 

day 7 December for the period 2010 to 2017. The day before and after 7 December is a holiday. 

However, the demand load for Monday, Saturday and Sunday are very different from the other days, 

as well as the first hours of Thursday and the period between 9 am and 7 pm on the same day. Special 

days are classified into several types depending on the day of the week. 

 

Figure 3. Hourly electricity demand for December 7th, which fell on Tuesday (2010), Wednesday 

(2011), Friday (2012), Saturday (2013), Sunday (2014), Monday (2015), Wednesday (2016) and 

Thursday (2017). 
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However, this classification of special days is not enough to obtain all the information that lies 

within the profiles of the special days. A deeper classification of the special days is necessary to 

improve forecasting accuracy, which has been the subject of this work. All demand patterns different 

from the demand patterns of normal days should be analyzed, taking into account the influences on 

demand described in this paper. Special days with similar demand patterns are grouped to reduce 

the complexity and computing times of the forecasting model. 

The contribution of this research line in: 

 This paper proposes a classification for special days that includes more than 40 types of day, 

while most published articles limit their classification to 15 or less. 

 The performance of this classification is tested against less extensive classifications, proving that 

its use provides a more accurate forecast for each type of day. 

 Non-linearities present in special days load profiles are overcome by using separate models for 

each hour and categorical variables for each type of day. 

 A detailed analysis of special days in Spain is provided, which can help to replicate this 

classification in other systems. 

 The benefits of this approach stem not only from the reduction of the average forecasting error 

but especially on the reduction of error peaks which usually happen on these special days. 

This paper is organized as follows: Section 2 describes the state of the art and previous work 

related to forecasting special days. Section 3 shows the available data for the analysis, the 

characteristics of the mathematical model used, the treatment to the input variables in order to be 

processed by the model and the different experiments carried out. Section 4 includes the results of 

these experiments, analyzing how each classification of days affects modeling accuracy. Section 5 is 

a brief conclusion expressing the relevance of using complex classification schemes for the different 

types of days in order to achieve accurate forecasts. Appendices A and B include a more extensive 

review of the results. 

2. State of the Art and Related Work 

The aim of this study is to improve STFL accuracy for special days by defining a more detailed 

classification. Load profiles of the different days do not follow the same pattern and if we group the 

most similar demand patterns, the accuracy of the prediction will increase. Demand patterns of 

special days and demand patterns of normal days are very different. If our forecasting model does 

not differentiate between normal and special days, the results obtained will be inaccurate on these 

special days. 

In most of the research works related to STFL, all days are classified into two or three large 

groups such as weekdays, weekends and holiday periods [23,35–37]. Some research articles, where 

special days are classified according to the demand pattern, they are grouped into 5 [38] and 15 [39] 

different days, obtaining better results than choosing only three types of days. The profile loads on 

special days do not have the same demand pattern (i.e., days adjacent to holidays, period of 

Christmas, Easter, national holidays, week before Christmas) [26,38], consequently the forecasting 

uncertainty is greater for these days. The day of the week is also an important factor in the load 

profiles of special days [40–42]: the same special day may have different demand patterns depending 

on the day of the week. In addition, demand pattern of normal days can be altered by the proximity 

of special days [38,40,41,43]. 

Several works have been published for anomalous load forecasting [26,38–44]. In the case of 

research [42], it only takes into account the days with the greatest errors in the prediction. These days 

are the holidays that fall on a Saturday or a Monday. This research was done in Korea where Sundays 

are holidays. Special days are classified into four categories (Tuesday, Wednesday, Thursday and 

Friday; Saturday; Monday; Sunday). This research only classifies special days depending on the day 

of the week they fall on. This method reduces the highest prediction errors. However, the accuracy 

of the prediction can be improved if a deep classification of special days is performed. In [43], the 

different types of day are classified based on the shape of the load curve into three categories 
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(weekdays (Monday to Friday); Saturday; Sunday and Holidays). Due to the application of special 

rules, the proximity of the forecast day to a holiday is taken into account. This classification does not 

differentiate special days from each other. In [26], data are classified according to the type of day and 

month, to capture the effects of seasonality on the load profile. In addition, three variables are added 

to check the impact on electricity consumption of holidays, days following a holiday and Easter. In 

[38], special days are classified into five different types of day (weekday, Saturday, Sunday, Monday 

and special holidays), but a neural network is necessary for each type of special day. In addition, a 

fuzzy inference model forecasts the maximum and the minimum loads of a special day. Therefore, if 

the number of types of special days increases, the forecasting model will be more complex. In [39], 

SOM is used to group the days with similar load profiles and STFL is performed by means of an NN. 

SOM performs the classification of the different types of days into groups that can vary between 11 

and 15. This technique has been discarded, because the separation of the different types of days 

requires prior knowledge that is difficult to assemble and whose result is not clear. The classification 

proposed in this research is similar to the classification described in [40]. Special days are treated 

according to whether they fall on the same date, the same day of the week, the day of the week is 

weekday or weekend. However, the classification of special days must be greater as well as the 

number of days considered as special days. In [41], a variation of the forecasting model described in 

[40], is used, increasing training period to 8 years and formulating a specific rule to be applied in 

France. However, the classification of special days into seven categories is still insufficient. In [44], 

special days are classified into four categories such as common holidays (some national holydays and 

all local and regional holidays) and three special national holidays. 

The use of categorical variables to formulate such classifications in linear regression models is 

very common [26,41,44–46] and it is the same approach used in this paper. These categorical variables 

define the type of day and are translated into dummy binary categories that allow the regression 

model to estimate each type of day individually without any linear assumption among normal or 

special days. 

3. Methodology 

The starting point of this study is a load forecasting system currently in use at the Red Electrica 

de España (REE) headquarters. REE is the Transport System Operator for the Spanish system. The 

following paragraphs aim to describe the available data, the variables actually introduced in the 

system and the mathematical aspects of the model. In addition, this section will describe the different 

experiments carried out to determine how the variety of special days can be classified and the type 

of information used to characterize each type of day. 

3.1. Available Data 

The input data can be grouped as load, temperature and calendar data: 

 Load: The load data are hourly values from the whole Spanish inland system. Data covers the 

period 2010 through 2017. The data have been filtered to discard incoherent outliers and fill in 

missing data. Only 0.01% of the data points were affected. 

 Temperature: The temperature data consists of maximum and minimum daily values from 59 

stations scattered throughout the country. As described in [24], only the most relevant locations 

are actually included in the model. 

 Calendar: The information on special days is initially extracted from the B.O.E. (National Official 

Gazette) [47]. This document includes all national and regional holidays for each year. However, 

even though these dates present a specific load profile, they are not the only ones that need 

special treatment and, therefore, additional information will be needed to establish a definite 

classification of special days. This additional information can be extracted from the 

characteristics of the load but in this case, the forecasting model was designed by an expert in 

the field. 
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3.2. Mathematical Model 

The forecasting model used as starting point is thoroughly described in [24]. It includes a neural 

network and an autoregressive model whose output is combined to provide a single forecast. The 

combination of both outputs is more accurate than both of them, therefore, both techniques have 

advantages and are useful as forecasters. However, the black-box characteristics of the neural 

network makes it less useful to extract conclusions about the model and it is consequently discarded 

for this study. In addition, the limitation that regression models impose of linearity between each 

variable and the output can be overcome by linearization methods (temperature) or other techniques. 

The abnormalities that special days cause in the daily profiles are non-linear because each hour is 

affected differently and, therefore, the resulting profile is not a scaled copy of the profile of a regular 

day. In addition, there is no linear relation between the nature of each special day and its effect on 

the load. The regression model used allows us to include these abnormalities by using individual 

models for each hour, whose coefficients, therefore, are not restricted in any way and by using 

separate binary categories for each type of day. The model then provides specific profiles for each 

category without any relation between the hours within a profile or between profiles of different 

categories. 

The autoregressive model is described by Equation (1), where a given output yt is a linear 

combination of the model’s p previous known errors (et-i), a number of exogenous variables included 

in Xt and a random shock εt: 

�� =��� ∙ ���� + �� ∙ � + ��

�

���

 (1) 

This type of process is useful for characterizing time series which are self-correlated to some 

extent. However, the autoregressive part may also cover up the effect of the exogenous variables. 

Therefore, in our study, the autoregressive part of the model has been eliminated as shown in 

Equation (2): 

�� = �� ∙ � + ��  (2) 

The effect that any exogenous variable may have on the load may vary throughout the day, 

which means that the coefficient for each variable may take different values at different times. In 

order to meet this requirement, the 24 h profile is obtained by using one model for each hour. The 

input structure for each model is the same. In addition, the output used is the natural logarithm of 

the load, which experimentally shows a lower modeling error than the actual load. 

3.3. Input for the Model 

The exogenous variables used in the model stem from the available data described above. 

However, due to the non-linearities present in most load-variable relations, a pretreatment is 

necessary to conform the definite variables going into the exogenous variables matrix: 

 Load: The initial model contained two variables used to model the long-term trend as a quadratic 

function of time. This approach may be valid for shorter periods of time (3 years) but for longer 

periods, the long-term behavior is not reproduced by a quadratic function. Therefore, these 

variables are substituted by a 52-week moving average of the previous load for each model. In 

addition, the initial model included the last known load value at the time of the forecast. This 

variable, as mentioned above about the autoregressive terms, may hide the effect of other 

variables like temperature or special days. Therefore, it is also removed from our study. 

 Temperature: The effect of temperature is non-linear as both hot or cold temperatures cause an 

increase in electricity consumption. Moreover, it has a certain inertia and temperature during 

previous days also has an influence on current demand. In addition, for large regions with a 

diversity of climates, it is not desirable to use a calculated average temperature for the whole 

region as it masks the extreme temperatures that may trigger high demands locally. To account 

for all these factors, the temperature variables are first selected from all available locations: Only 
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5 (Madrid, Barcelona, Seville, Bilbao and Zaragoza) of the 59 available series are used 

representing the different climate areas in Spain. Linearity is achieved by using the Hot and Cold 

Degree Days (HDD, CDD) method [44].This technique splits the data series into two different 

series each one accounting for demand increases for hot and cold temperatures. It requires 

defining two thresholds splitting the temperature range into three parts: cold days below the 

cold threshold, neutral zone in between thresholds and hot days above the hot threshold. 

Therefore, this method models the load-temperature relationship as a piecewise linear function 

that calculates different slopes for cold and hot days while it sets the slope for the neutral zone 

to zero. Figure 4 illustrates this methodology.  

 

Figure 4. Scatter plot of load from the region of Madrid against temperature from the Madrid weather 

station. The linearization through HDDs and CDDs is shown in green. 

In order to model temperature inertia, the model includes the current value and lagged variables 

from all locations for the last two days. To sum up, the temperature variables include HDD and 

CDD series from five locations with the current and two lagged values. This treatment adds up 

to 30 variables. 

 Calendar data: The information about the type of day is critical as load profiles vary greatly 

from regular Mondays, to Fridays, Sundays, and even among holidays and special periods 

throughout the year. Therefore, a detailed classification is key to forecasting these special days 

accurately. In the starting model, 53 variables are used to classify the type of day along with 

eleven more to assign the month. The variables included in the model from these 53 variables 

are described in Tables 1-5. 

A set of 24 variables is used to identify 24 specific days that are considered to have a profile of 

their own, incompatible with any other day. These cases are described in Table 1: 
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Table 1. National special days. 

Type 1 (6) Type 2 (5) Type 3 (13) 

All instances are 

included 

regardless of the 

day of the week.  

(6 variables) 

1 Jan 

Only whenever 

the day of the 

week is Mon-Fri. 1  

(5 variables) 

2 Jan 
Each day from 

Mon. before Good 

Friday to Sat. after 

Easter Monday  

(13 variables) 

6 Jan 5 Jan 

1 May 7 Dec 

24 Dec 26 Dec 

25 Dec 30 Dec 

31Dec  

1 Weekend instances may qualify into other categories. 

The three variables used to classify the rest of national holidays from the B.O.E. are described in 

Table 2: 

Table 2. Regular national holidays. 

Weekend Monday Tuesday-Friday 

Days included as holidays 

in BOE: 

Typically: 

15 August 

12 October 

1 November 

6 December 

8 December 

Days adjacent to a holiday or special day may show a different load profile depending on the 

day of the week. Table 3 shows the four variables used to model this phenomenon. 

Table 3. Days before and after a holiday. 

Before After 

Tuesday to Friday Monday 1 Monday to Thursday Friday 1 

1 Typically, the profile is more affected if the day is in between the weekend and the holiday. 

The classification of regular days is done through six variables for days Monday to Saturday. 

Variables from Tables 1–3, described categories defined as exclusive: each day belonging to any of 

these categories may not belong to any other. However, the following categories are thought of as 

modifiers to the day of the week and may be active at the same time as the day of the week. 

Religious holidays are widely observed in Spain and the work and school calendar includes two 

periods besides the summer-time in which people concentrate their vacation days. The effect of Easter 

was included in the exclusive variables because, by definition, it happens on the same weekday every 

year, however, the period around Christmas presents a complexity that forces the use of the following 

modifiers shown in Table 4: 

Table 4. Periods affected by Christmas. 

Week before 

Christmas Day 

Week after  

Christmas Day 

Week after  

New Year Day 

Four variables 1 

each for one day: 

One variable for days 

only Monday to Friday 

One variable for days 

only Monday to Friday 

20 December 

27–29 December 2–5 January 
21 December 

22 December 

23 December 

1 Days from the week before seem to be differently affected among them while the days in other 

periods are all equally affected within their own period. 
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The summer period is affected by a lower demand from industry due to holidays but a higher 

demand from services due to tourism. This fluctuation is not constant throughout the summer, but 

may vary weekly. The inclusion of the month variables helps modeling this behavior but, in the case 

of August, three additional variables have been added to model differences among weeks. 

Finally, regional or local holidays are published in regional gazettes and identified by a variable 

which, in this case, is not binary but equivalent to the fraction of the National Gross Product that the 

particular region represents. 

The effect of Daylight Savings Time is also considered in the initial forecasting model in two 

ways. Firstly, it relies on the autoregressive part to phase out the error from the time shifts in March 

and October and secondly, in order to ease the transition, the first three days from each season are 

considered as special. These special days are not considered in this study because the autoregressive 

part is removed. To sum up, Table 5 summarizes all variables for the type of day. 

Table 5. Types of day category summary. 

Type of 

Category 
General Description Specifics 

Number of 

Variables 

EXCLUSIVE 

Special days with 

specific profiles 

Easter 13 

Any day of the week 6 

Only weekdays 5 

National holidays with 

generic profile 

Weekend 1 

Monday 1 

Tuesday to Friday 1 

Days adjacent to 

holidays 

Before 2 

After 2 

DAYS OF THE WEEK 6 

MODIFIERS 

Christmas periods 

Before Christmas day 4 

After Christmas day 1 

After New Year’s day 1 

Summer vacation 

(August) 
Week number 3 

Regional holidays GNP fraction 1 

In summary, the model includes one long-term load variable, 30 temperature variables, 11 

binary variables for the month and 53 binary variables for the type of day. The output variable is the 

natural logarithm of the load. 

3.4. Experiments and Results 

The aim of this study is to determine the different load profiles that a given day may have 

depending on social- and labor-related characteristics. To determine whether the classification above 

is adequate, simplistic or overly complex, this study proposes a series of tests to determine how the 

accuracy of the model varies as the complexity of the classification increases. These experiments are 

based on eight different classifications starting from the most simplistic, in which only the day of the 

week is observed and finishing with the most complex, in which all categories described above are 

considered. The different models are incrementally defined in Table 6, in which each incremental 

change is described. 

Special days are scarce and certain types may only happen every two or three years. This causes 

a problem when splitting the data set into training data and out-of-sample testing data. In order to 

solve this, all experiments have been carried out using each one of the 8 years as the testing period 

and the other 7 as training data. Therefore, the results provided for each model correspond to an 8-

year period for which every year is obtained as an out-of-sample test of the model trained with the 

other 7 years. 
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Table 6. Summary of incrementally complex models. 

Number 

of Model 
General Description 

0 Only six variables are included which are used to describe the day of the week. 

1 
Three variables 

are added 

Holidays 
Type 1 of special holidays, Maundy Thursday, Good Friday, Easter 

Monday and all regular national holidays 

Days before 

holidays 

Jan 5th, Dec 7th, Dec 30th, Good Wednesday and all days from the 

before-holiday final category 

Days after 

holidays 
Jan 2nd, Dec 26th and all days from the after-holiday final category 

2 
Five variables are 

added 

Regional As described in the final classification 

Week before 

Christmas 
Dec 20th to Dec 23rd in one single category 

Week after 

Christmas 
Dec 27th to Dec 29th in one single category 

Week after 

New Year’s 
Jan 2nd to Jan 5th in one single category 

Easter 
Monday and Tuesday prior to Good Friday and Wednesday to Saturday 

from the next week 

3 
One variable 

added 

Summer 

holiday 
First three weeks of August 

4 
Four variables are 

added 

Holidays is 

split into 

three 

categories 

Holidays I.P.M. that happen on weekend 

Holidays I.P.M. that happen on Monday. 

Holidays I.P.M. that happen on Tuesday to Friday 

Days before 

holidays is 

split into 

two 

categories 

Days before holidays I.P.M. that happen on Monday. 

Days before holidays I.P.M. that happen on Tuesday to Friday 

Days after 

holidays is 

split into 

two 

categories 

Days after holidays I.P.M. that happen on Friday. 

Days after holidays I.P.M. that happen on Monday to Thursday 

5 
Thirteen variables 

are added 

Easter 
Easter I.P.M. each day gets its own category (6) 

Saturday and Sunday after Good Friday each get their own category (2). 

Week before 

Christmas 
Dec 20th to Dec 23rd each get their own category (3) 

August Each week gets its own category (2) 

6 
Eleven variables 

are added 

Specific 

holidays 

All type one (6) and type 2 (5) national special days are assigned their 

own category. (11) 

7 
Four variables are 

added 
Easter 

Wednesday, Thursday, Good Friday and Easter Monday each get their 

own category (4) 

 

Each model provides a different output which differs especially on days for which other models 

use a different classification. It is obvious that when a model includes a new category to better suit a 

type of day, the days falling under said category are expected to be more accurately modeled. 

However, it is worth mentioning that by “cleaning up” the category in which these days were before, 

the remaining days in the category also experience a change in their profile that should be for the 

best. Therefore, even among models that apparently have the same definition of a category, i.e., all 

models have a regular Monday category, there may be differences in these categories among these 

models. 

The measure of reported error is the Mean Average Percentage Error (MAPE) and it is 

categorized by type of day to focus on the specific changes among models. For each general category 

of type of days, the error from each model that introduces a significant change in the definition of 

said category is reported. Models that treat a category in the same way and that may only experience 

collateral changes are not reported for clarity reasons. 

In addition to the accuracy of a given classification, it is important to understand how each 

classification models the load profile. This will help us in determining not only which classification 
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is more accurate but also, and more importantly, how each special day’s profile is different from each 

other and learn the expected load from each of them. 

Since the output of each model is not the actual load but the natural logarithm, the effect of each 

coefficient on the load can be considered not as an addend but as a multiplier to the expected load. 

Considering the way that the type of day categories are defined, the base profile is that of a regular 

January Sunday. Therefore, a category coefficient higher than 1 means that the typical load at that 

particular hour for that particular category is larger than the load expected for a regular January 

Sunday controlling for other factors like temperature. 

The coefficient profile calculated for each category by each model is the second result of this 

study and it provides a useful tool for understanding the nature of each type of special day and the 

behavioral changes of the consumer on such types of day. These profiles are included in the results 

section if they are relevant but all of them are also included in appendix A for the reader’s reference. 

4. Results 

The following section describes the results obtained by each model for every category of type of 

day. These results include the MAPE results for each model to assess the accuracy improvement that 

the refining of each category adds to the model. In addition to the error, it also includes the coefficient 

profile so that the accuracy change can be interpreted based on how the category is differently 

modeled. 

4.1. Regular Days 

Even though the aim of this study is not regular days, it will help understand the rest of the 

results if this category is analyzed. The definition of the category remains unchanged through all 

eight models; however, more and more special days are removed from the category from model 1 to 

model 7 and, therefore, the modeling of regular days is more accurate. Figure 5 shows the changes in 

MAPE on each day of the week through all models. The largest improvement occurs from model 0 

to model 1. This model is the first one to acknowledge the existence of special days. Nevertheless, 

accuracy increases continuously through model 7, especially on Sundays, Mondays and Saturdays. 

 

Figure 5. MAPE error of all seven models for the seven days of the week. 

The change in the models can be seen in Figure 6a, in which the load profile and the reported 

MAPE for each model is shown for regular Mondays. The graph shows how the model 0 profile is 

lower than the other two, which are essentially equivalent. This is because model 0 models regular 

Mondays after all Mondays in the data set while models 4 and 7 exclude most or all special days, 

which have a lower profile. The rest of the regular days’ results are shown in appendix A1. In Figure 
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6b the profile for all days of the week from model 7 can be seen and how Monday has a lower start 

while Friday has a lower finish. Saturday has a unique profile and Tuesday, Wednesday and 

Thursday are very similar. 

(a) (b) 

Figure 6. (a) Coefficient profile and error chart for regular Mondays.; (b) Coefficient profiles for all 

regular days in model 7. Sunday is a straight line because it is the reference. 

It is also important to quantify whether two profiles are similar enough to be considered the 

same type of day. In order to do so, Table 7 presents the maximum difference between each profile 

and its most similar pair. This measure expresses the difference between the profiles for two types of 

days. Specifically, it is the maximum percentage difference between the two 24 h profiles. It is a 

measure of how two profiles may or may not be equivalent and represent the same type of day. Both 

type-of-day categories are named at the top and bottom of the table. In this case, there is less than 1% 

difference between Tuesday, Wednesday and Thursday and, therefore these three categories are 

candidates for a joint category. 

Table 7. Differences between days of the week. 

Date Sun Mon Tue Wed Thur Fri Sat 

Difference 17.11% 8.27% 0.93% 0.57% 0.57% 3.26% 17.11% 

Most similar Sat Tue Wed Thur Wed Thur Sun 

4.2. Special Days Type 1 and Type 2 

Special day types 1 and 2 include 11 fixed dates (see Table 1) that are considered to have specific 

load profiles. The models that introduce differences into these categories are 0 (all days are regular 

days), 3 (includes holidays and days before and after), 5 (distinguishes profiles for different days of 

the week) and 7 (each day is considered unique). Figure 7a shows the model accuracy of the category 

in these four models. Including these categories as general holidays or before/after holidays lowers 

the error from 15.6% to around 7%, but then considering each individual holiday yields a much better 

result of 2.8%. For these special days, assigning different profiles according to the day of the week 

(model 3 vs. 5) does not improve the result. 
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(a) 

 
(b) 

Figure 7. (a) MAPE for models 0, 3, 5 and 7 for all types 1 and 2 days. (b) Coefficient profile and MAPE 

for models 0, 3, 5, and 7 for Christmas Day. 

In addition, Figure 7b shows the example of Christmas day and how the coefficient profile 

changes in each model for this particular day. It is interesting how Christmas day shows a much 

lower load profile than most other special days and so it needs to be considered apart. The coefficient 

profile and error graphs for the rest of days within the category are included in Appendix A2. The 

maximum difference between the most similar profiles is detailed in Table 8 and it shows that all 

profiles are independent. 

Table 8. Differences between special days type 1 and 2. 

Date 1 Jan 2 Jan 5 Jan 6 Jan 1 May 7 Dec 24 Dec 25 Dec 26 Dec 30 Dec 31 Dec 

Difference 5.79% 11.2% 10.2% 6.65% 6.65% 10.2% 3.43% 1 5.79% 11.9% 10.8% 3.43% 

Most similar 25 Dec 7 Dec 7 Dec 1 May 6 Jan 5 Jan 31 Dec 1 Jan 31 Dec 7 Dec 24 Dec 

1 The most similar profiles belong to 24 Dec and 30 Dec, but the peak difference is almost 3.5%. 

4.3. Special Days Type 3 

Special days type 3 include the Easter period. Each day is considered to have its own profile but 

differently from types 1 and 2, these days do not happen on the same date each year. The models that 

affect this type of days are 0, 3, 5 and 7 and the overall accuracy for these days is shown in Figure 8. 

 

Figure 8. MAPE for models 0, 3, 5 and 7 for all type 3 days. 
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This type of special days includes some whose profile is deeply affected, like Good Friday, and 

others, like the Wednesday after Easter Monday, that are only slightly different to a regular day. 

Figure 9 shows the coefficient and error graph for these two examples while the rest are included in 

Appendix A3. For clarity reasons, days that happen in the same week as Good Friday are from now 

on referred to as A, while those that happen on the next week will be known as B. 

 
(a) 

 
(b) 

Figure 9. (a) MAPE for models 0, 3, 5 and 7 for Good Friday. (b) Coefficient profile and MAPE for 

models 0, 3, 5, and 7 for the Wednesday after Good Friday. 

While Figure 9a shows how accuracy on Good Friday increases as the classification is more 

complex, it does not happen the same way for the next Wednesday, as it is shown in Figure 9b. This 

may lead to the conclusion that such a Wednesday should not be considered special, as model 0 yields 

the most accurate result. However, as aforementioned, the profiles for regular weekdays from model 

0 are lower than actual regular days due to the presence of holidays that, in that model, are considered 

regular. The MAPE for such Wednesday if it was considered as a regular day in model 7 would go 

as high as 3.3%. Figure 10 shows these profiles and illustrates how the profile for that specific 

Wednesday is lower than both the profile of a regular Wednesday in models 0 and 7. This justifies 

the use of these specific categories. 

 

Figure 10. The profile for Wednesday B is lower than any of the regular day profiles calculated in 

models 0 or 7. 

Table 9 shows the similarities among the coefficient profiles within the category. In order to 

illustrate the fact that days like Wednesday B actually differ from regular days, the profiles for regular 

days from model 7 are included as candidates for most similar. The results show that Friday and 
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Saturday from week B have the most similarities with regular Fridays and Saturdays, but this 

difference is larger than two percent. 

Table 9. Differences between special days type 3. 

Date Mon-A Tue-A Wed-A Thu-A Fri-A Sat-A Sun-A Mon-B Tue-B Wed-B Thu-B Fri-B Sat-B 

Similarity 2.55% 4.24% 4.24% 8.02% 3.15% 9.55% 3.15% 11.27% 2.55% 2.81% 3.22% 2.17% 2.64% 

Most similar Tue-B Wed-A Tue-A Sat-B Sun-A Fri-A Fri-A Thu-A Mon-A Fri-B Wed-B Reg Fri Reg Sat 

4.4. Regular Holidays and Days Before and After 

Regular holidays are those that are considered to have a generic holiday profile. The days before 

and after include days which happen before or after a special day, not necessarily a regular holiday. 

The models that affect these days are 0, 3, 5 and 7. The overall accuracy for these dates and models is 

shown in Figure 11. In this case it is clear that taking into account the day of the week improves the 

accuracy (from model 3 to model 5) but also that removing the previously studied special days (some 

of which were holidays, but others were days before and after) also improves the generic ones (from 

model 5 to 7). 

 

Figure 11. MAPE for models 0, 3, 5 and 7 for generic holidays and days before or after a holiday. 

The coefficient profiles and errors graphs for all days in these categories are included in A4. In 

the case of holidays, the category is split into holidays on weekends, on Mondays and during the rest 

of the week. Figure 12 shows the coefficient profiles for these categories in the final model.  

 

Figure 12. The different profiles that a generic holiday may have depend on the day of the week. 
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The difference between them can be explained by considering the next and previous days. 

Holidays whose previous day was a weekday start with a higher profile and holidays whose next 

day is a holiday finish with a lower profile than a regular Sunday. 

A similar phenomenon happens regarding days before and after a holiday. Their coefficient 

profiles are shown in Figures 13a,b. In both cases, it is clear how, if the day is adjacent to both the 

holiday and a weekend, then the profile is lower and it is closer to a holiday’s profile. However, 

Figure 13a shows that if the day before a holiday happens Tuesday to Friday then it is more similar 

to a Friday than to the corresponding weekday. Similarly, Figure 13b shows that if the day after a 

holiday happens Monday to Thursday, then its profile is more similar to a Monday than to its 

corresponding profile. Nevertheless, in both cases the profile is slightly lower than a regular day. 

Table 10 shows these similarities that justify the use of these variables. 

 
(a) 

 
(b) 

Figure 13. (a) Coefficient profiles for days before a holiday with regular Mondays and Wednesday as 

references. (b) Coefficient profiles for days after a holiday with regular Fridays and Wednesday as 

references. 

Table 10. Differences between special days type 1 and 2. 

Date 
Holiday 

Sun & Sat 

Holiday 

Mon 

Holiday 

Tue-Fri 

Before 

Holiday & 

Monday 

Before 

Holiday & 

Tue-Fri 

After 

Holiday & 

Mon-Thu 

After 

Holiday & 

Friday 

Difference 4.14% 4.14% 6.2% 2.38% 4.26% 3.17% 2.38% 

Most 

similar 

Holiday 

Mon 

Holiday 

Sun & 

Sat 

Holiday 

Mon 

After & 

Friday 
Reg Fri Reg Mon 

Before & 

Monday 

4.5. Christmas Periods 

Three different periods are included in this category as described in Table 5. The models that 

affect the classification of these periods are 0, 1, 4 and 7. Model 1 only affects the last period because 

it considers Jan 2nd and 5th as special days, as described in Table 6. The overall accuracy for all the 

periods is shown in Figure 14. The error increases from model 0 to 1 because both consider all these 

days as regular, but model 0 assigns a lower profile because it includes more real holidays. Model 4 

introduces one category for each period and model 7 assigns one category for each of the four days 

of the first period. 
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Figure 14. MAPE for models 0, 1, 4 and 7 for all days included in the three Christmas periods. 

The first period (20–23 Dec) is defined by one variable for each day. These variables are 

modifiers, which means that, in addition to them, the day of the week is also active. The meaning of 

the coefficient profile of these variables is how a regular day is modified by having this variable 

active. Figure 15 shows the coefficient profiles associated with these four modifiers. It shows how, 

especially after noon, all days are different to a regular day (which would equal a straight line with 

a value of 1). In addition, the effect of Christmas is incremented gradually: each day closer to 

Christmas gets a lower profile than the one before. 

 

Figure 15. Coefficient profiles for the modifying variables of 20–23 Dec. Each day closer to Christmas 

day lowers the demand. 

The other two periods are defined by only one variable for each of them. Figure 16 shows the 

coefficient profiles and error for these two periods. It can be seen in Figure 16a how model 1 yields a 

worse result because regular days from model 1 have a higher, more realistic profile than in model 

0. Nevertheless, the even lower profiles from models 4 and 7 provide a much better model. Panel (b) 

shows that the last period is affected by the definition of special days in model 1. The lower error in 

this period from model 0 to model 1 is not obtained through a different general profile (the graph 

shows very similar profiles) but because two days in this period are affected by another variable. 
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(a) 

 
(b) 

Figure 16. (a) Coefficient profile and MAPE for models 0, 1, 4, and 7 for the Christmas period 27–29 

Dec. (b) Coefficient profile and MAPE for models 0, 1, 4, and 7 for the Christmas period 2–5 Jan. 

To determine whether any of these profiles can be joined together, or if any of them is sufficiently 

similar to a regular day, Table 11 shows the most similar profiles. 

Table 11. Similarities and differences among Christmas periods profiles. 

Date 27 D–29 D 2 J–5 J 20 D 21 D 22 D 23 D 

Difference 9.10% 5.46% 1.61% 1.61% 3.15% 5.46% 

Most similar 2 J–5 J 23 D 21 D 20 D 21 D 2 J–5 J 

The coefficient profiles and error graphs for all variables are included in Table A5. 

4.6. Summer Vacation 

The last period is the summer vacation during the month of August. As aforementioned, because 

vacations are usually assigned by full weeks it is possible that each week will have a specific profile. 

The results for models 0, 2, 4 and 7 are shown in Figure 17. Model 2 introduces the possibility of 

distinguishing between the first three weeks and the fourth while model 4 allows the distinction 

among all four weeks. Model 7 uses the same classification but it benefits from improvements from 

the definition of other special days (probably related to the national holiday of Aug 15th.). 

 

Figure 17. MAPE for models 0, 2, 4 and 7 for all days included in the summer vacation periods. 
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The different profiles for each week are shown in Figure 18. Weeks 2 and 3 show a profile around 

4% lower than weeks 1 and 4, indicating that the two middle weeks concentrate vacations more than 

the first and last. The coefficient profile and error graphs are included in A6. 

 

Figure 18. Coefficient profiles for days within the summer vacation period. Central weeks in August 

experience a lower demand than weeks 1 and 4. 

4.7. Overall Result 

The overall results for all the days that are considered special are shown in Figure 19. The 

boxplot shows the 5th, 15th, 50th, 85th and 95th percentile of the model errors for regular and special 

days from model 0 to model 7. 

 
(a) 

 
(b) 

Figure 19. (a) Boxplot of the distribution of the error on regular days (b) Boxplot of the distribution 

of the error on special days. 

The main conclusions that can be drawn from this are that the proposed special day classification 

yields an average error for special days of 1.84%, which is very near to the average error for regular 

days (1.78%). In addition, the 95th percentile for special days drops from 17.6% in model 0 to only 

4.56% in model 7. This means that only 5% of special days have a modeling error larger than 4.56%. 

This number is even lower for regular days (4.33%). These results, shown in Table 12, suggest that 
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the proposed classification is valid for modeling the special days present in the Spanish system almost 

as accurately as regular ones. 

Table 12. Differences between special days type 1 and 2. 

 %ile. Model 0 Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 
S

P
E

C
IA

L
 D

A
Y

S
 5th 0.80% 0.85% 0.84% 0.81% 0.82% 0.80% 0.78% 0.76% 

15th 1.17% 1.18% 1.13% 1.13% 1.11% 1.10% 1.03% 1.01% 

50th 2.43% 2.47% 2.24% 2.19% 2.11% 1.99% 1.88% 1.84% 

85th 7.89% 5.85% 5.01% 4.95% 4.54% 4.31% 3.50% 3.32% 

95th 17.61% 9.99% 8.86% 8.88% 8.68% 7.45% 5.18% 4.56% 

R
E

G
U

L
A

R
 D

A
Y

S
 

5th 0.77% 0.76% 0.77% 0.77% 0.76% 0.75% 0.74% 0.73% 

15th 1.09% 1.04% 1.03% 1.01% 1.01% 1.01% 0.99% 0.98% 

50th 2.07% 1.85% 1.80% 1.80% 1.81% 1.79% 1.78% 1.78% 

85th 4.17% 3.34% 3.25% 3.18% 3.17% 3.16% 3.09% 3.13% 

95th 5.62% 4.61% 4.48% 4.42% 4.38% 4.41% 4.31% 4.32% 

The extensive categorization presented may be exported to other electrical systems although not 

all categories may prove to be relevant and some others may be needed. Categories that are not 

relevant can be identified by assessing the difference between their profile and those of other 

categories. If two categories present similar profiles, then they may be joined together. However, in 

order to define new variables, it would be necessary to study the error profiles of the least accurately 

modeled days and search for a similar pattern in days that can be jointly described in their own 

category. 

5. Conclusions 

Load forecasting is a key activity to any electric system and a lack of accuracy leads to an increase 

in operating costs. These costs grow exponentially as the error increases which leads to high costs on 

days for which load is hard to anticipate. These special days are those on which working or social 

habits differ from the ordinary like on holidays, vacation periods or days adjacent to them. The 

importance of correctly modeling the behavior of consumers in these special dates is key to reducing 

the maximum errors of a forecasting system. This paper has tested the validity of a special day 

classification system with more than 40 variables. This large number of variables may seem excessive 

as most reported models use much fewer categories. However, the results of this system compared 

to simpler versions of itself show that in order to model accurately the extensive variety of effects 

that the calendar has on consumer behavior it is necessary to implement a complex classification 

system like the one tested in this research. The methodology described can be transferred to other 

electrical systems with some adjustments to the category definition, but it is within reason that it 

would prove useful at least in similar systems like France, Portugal or Italy. 
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Appendix A 

The coefficient profiles and error charts for all categories are included here: 

 

   
 

 

 

Figure A1. Regular days. 
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Figure A2. Cont. 

   

   

  

 

Figure A2. Special days type 1 and 2. 
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Figure A3. Cont. 

   

   

   

 

 

 

Figure A3. Special days type 3. 
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Figure A6. Summer vacation. 

Appendix B 

All calculated coefficients from the final model for each variable are detailed here: 
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Table A1. Regular days. 

CAT H1 H2 H3 H4 H5 H6 H7 H8 H9 H10 H11 H12 H13 H14 H15 H16 H17 H18 H19 H20 H21 H22 H23 H24 

M 0.98 0.98 0.99 1.01 1.03 1.06 1.18 1.34 1.44 1.40 1.35 1.31 1.31 1.28 1.24 1.27 1.30 1.31 1.29 1.25 1.20 1.15 1.10 1.07 

T 1.06 1.06 1.08 1.09 1.11 1.13 1.23 1.38 1.47 1.42 1.36 1.32 1.32 1.29 1.25 1.28 1.30 1.32 1.29 1.26 1.21 1.16 1.10 1.08 

W 1.06 1.07 1.08 1.10 1.12 1.14 1.23 1.39 1.47 1.42 1.36 1.32 1.32 1.29 1.2 5 1.27 1.30 1.32 1.29 1.26 1.21 1.16 1.10 1.08 

Th 1.07 1.07 1.08 1.10 1.12 1.14 1.23 1.38 1.47 1.42 1.35 1.32 1.31 1.28 1.24 1.27 1.30 1.32 1.29 1.26 1.21 1.16 1.10 1.08 

F 1.07 1.07 1.09 1.10 1.12 1.14 1.23 1.38 1.47 1.42 1.36 1.32 1.31 1.28 1.24 1.26 1.28 1.29 1.26 1.23 1.18 1.12 1.08 1,07 

Sa 1.07 1.08 1.08 1.08 1.08 1.08 1.08 1.12 1.15 1.17 1.17 1.15 1.13 1.12 1.10 1.10 1.09 1.10 1.09 1.07 1.05 1.03 1.01 1.01 

Categories: (M) Regular Mondays, (T) Regular Tuesdays, (W) Regular Wednesdays, (Th) Regular Thursdays, (F) Regular Fridays, (Sa) Regular Saturdays. 

Table B2. Special days types 1 and 2. 

CAT H1 H2 H3 H4 H5 H6 H7 H8 H9 H10 H11 H12 H13 H14 H15 H16 H17 H18 H19 H20 H21 H22 H23 H24 

J1 0.90 0.95 0.95 0.93 0.90 0.88 0.87 0.84 0.80 0.76 0.77 0.80 0.83 0.85 0.85 0.84 0.84 0.87 0.90 0.88 0.88 0.87 0.88 0.88 

J2 0.89 0.89 0.90 0.91 0.93 0.97 1.08 1.24 1.33 1.31 1.27 1.25 1.26 1.24 1.21 1.23 1.25 1.27 1.25 1.22 1.17 1.12 1.07 1.05 

J5 1.05 1.06 1.07 1.09 1.10 1.13 1.21 1.35 1.42 1.38 1.31 1.28 1.27 1.25 1.20 1.22 1.24 1.24 1.18 1.13 1.08 1.05 1.01 1.03 

J6 1.00 1.00 0.98 0.97 0.97 0.97 0.96 0.95 0.93 0.93 0.93 0.94 0.94 0.94 0.92 0.91 0.92 0.94 0.96 0.94 0.94 0.95 0.96 0.97 

M1 1.03 1.03 1.02 1.01 1.01 0.99 0.98 0.98 0.98 0.99 0.99 0.98 0.98 0.97 0.96 0.95 0.95 0.94 0.93 0.93 0.93 0.97 0.95 0.96 

D7 1.00 1.00 1.01 1.03 1.04 1.06 1.14 1.25 1.32 1.31 1.26 1.22 1.21 1.20 1.17 1.19 1.21 1.22 1.19 1.15 1.11 1.07 1.03 1.03 

D24 0.99 0.98 0.97 0.97 0.97 0.97 0.99 1.04 1.10 1.12 1.11 1.08 1.06 1.03 1.00 1.00 1.02 1.03 1.03 1.01 0.94 0.86 0.81 0.85 

D25 0.89 0.92 0.92 0.89 0.88 0.87 0.85 0.83 0.81 0.80 0.82 0.85 0.88 0.87 0.85 0.82 0.82 0.83 0.85 0.86 0.86 0.86 0.88 0.89 

D26 0.86 0.86 0.86 0.86 0.87 0.89 0.94 1.00 1.05 1.07 1.07 1.06 1.05 1.04 1.02 1.01 1.02 1.02 1.02 1.01 0.99 0.97 0.96 0.95 

D30 0.96 0.95 0.96 0.96 0.97 0.99 1.05 1.14 1.23 1.24 1.21 1.18 1.16 1.15 1.11 1.12 1.13 1.13 1.11 1.09 1.05 1.02 1.00 0.99 

D31 0.96 0.95 0.95 0.94 0.94 0.95 0.97 1.01 1.06 1.09 1.09 1.07 1.06 1.04 1.01 1.01 1.01 1.02 1.03 1.02 0.96 0.89 0.84 0.87 

Categories: (J1) Jan 1st, (J2) Jan 2nd, (J5) Jan 5th, (J6) Jan 6th, (M1) May 1s, (D7) Dec 7th, (D24) Dec 24th, (D25) Dec 25th, (D26) Dec 26th, (D30) Dec 30th, (D31) Dec 31st. 

Table B3. Special days type 3. 

CAT H1 H2 H3 H4 H5 H6 H7 H8 H9 H10 H11 H12 H13 H14 H15 H16 H17 H18 H19 H20 H21 H22 H23 H24 

MA 0.97 0.98 0.99 1.01 1.02 1.05 1.15 1.28 1.37 1.36 1.31 1.28 1.28 1.26 1.23 1.25 1.28 1.29 1.26 1.21 1.16 1.12 1.06 1.05 

TA 1.04 1.04 1.05 1.06 1.08 1.10 1.17 1.29 1.37 1.36 1.31 1.29 1.28 1.26 1.22 1.25 1.27 1.29 1.26 1.20 1.16 1.11 1.06 1.05 

HW 1.05 1.05 1.06 1.07 1.08 1.10 1.17 1.29 1.36 1.35 1.30 1.26 1.25 1.23 1.19 1.21 1.24 1.25 1.21 1.16 1.12 1.08 1.03 1.03 

MT 1.03 1.03 1.03 1.03 1.03 1.02 1.03 1.07 1.08 1.09 1.08 1.07 1.06 1.05 1.03 1.02 1.03 1.03 1.01 0.99 0.99 0.97 0.95 0.96 

GF 0.95 0.95 0.94 0.95 0.94 0.94 0.94 0.94 0.93 0.94 0.94 0.94 0.93 0.93 0.93 0.93 0.93 0.93 0.92 0.91 0.91 0.91 0.91 0.93 

HS 0.94 0.94 0.94 0.94 0.94 0.94 0.95 0.97 0.99 1.02 1.03 1.03 1.02 1.01 1.00 1.01 1.01 1.01 1.00 0.99 0.98 0.97 0.95 0.96 

ES 0.95 0.94 0.94 0.93 0.93 0.93 0.93 0.92 0.91 0.92 0.93 0.93 0.93 0.92 0.92 0.92 0.92 0.92 0.92 0.91 0.92 0.94 0.94 0.94 

EM 0.92 0.92 0.91 0.92 0.92 0.94 1.00 1.08 1.13 1.13 1.11 1.09 1.09 1.08 1.06 1.07 1.08 1.09 1.08 1.06 1.06 1.04 1.01 0.99 

TB 0.97 0.97 0.98 0.99 1.00 1.03 1.14 1.30 1.39 1.36 1.31 1.28 1.27 1.25 1.21 1.24 1.27 1.28 1.26 1.22 1.19 1.14 1.08 1.06 

WB 1.04 1.04 1.05 1.07 1.09 1.11 1.20 1.34 1.42 1.38 1.31 1.28 1.28 1.25 1.21 1.24 1.27 1.28 1.25 1.20 1.17 1.13 1.08 1.07 
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Table B3. Cont. 

ThB 1.06 1.06 1.07 1.08 1.09 1.11 1.20 1.35 1.43 1.39 1.33 1.30 1.30 1.27 1.23 1.26 1.29 1.31 1.28 1.23 1.19 1.15 1.10 1.08 

FB 1.06 1.06 1.07 1.09 1.10 1.13 1.22 1.37 1.45 1.40 1.34 1.30 1.30 1.27 1.23 1.24 1.27 1.28 1.25 1.21 1.16 1.12 1.08 1.07 

SB 1.07 1.08 1.08 1.08 1.07 1.07 1.07 1.09 1.13 1.15 1.16 1.14 1.13 1.12 1.09 1.09 1.08 1.09 1.07 1.06 1.03 1.02 1.00 1.01 

Categories: (MA) Monday before Good Friday, (TA) Tuesday before Good Friday, (HW) Holy Wednesday, (MT) Maundy Thursday, (GF) Good Friday, (HS) Holy 

Saturday, (ES) Easter Sunday, (EM) Easter Monday, (TB) Tuesday after Easter Monday, (WB) Wednesday after Easter Monday, (ThB) Thursday after Easter Monday, 

(FB) Friday after Easter Monday, (SB) Saturday after Easter Monday. 

Table B4. Generic holidays and days before or after a holiday. 

CAT H1 H2 H3 H4 H5 H6 H7 H8 H9 H10 H11 H12 H13 H14 H15 H16 H17 H18 H19 H20 H21 H22 H23 H24 

HW 0.98 0.98 0.97 0.98 0.98 0.98 0.99 1.00 1.02 1.04 1.05 1.04 1.03 1.02 1.01 1.01 1.01 1.01 1.01 0.99 0.98 0.97 0.96 0.97 

HM 0.98 0.98 0.98 0.99 0.99 1.00 1.02 1.04 1.04 1.03 1.03 1.02 1.02 1.02 1.02 1.02 1.02 1.03 1.01 1.01 1.02 1.01 1.00 0.99 

HR 1.03 1.04 1.04 1.05 1.05 1.05 1.05 1.06 1.06 1.06 1.05 1.05 1.05 1.04 1.03 1.03 1.03 1.03 1.03 1.03 1.02 1.01 1.00 1.00 

BM 0.97 0.97 0.98 1.00 1.01 1.03 1.10 1.22 1.29 1.28 1.23 1.19 1.19 1.18 1.15 1.16 1.18 1.20 1.19 1.15 1.10 1.06 1.03 1.02 

BR 1.05 1.05 1.06 1.08 1.10 1.12 1.21 1.34 1.42 1.39 1.32 1.29 1.28 1.26 1.22 1.24 1.27 1.28 1.27 1.23 1.16 1.11 1.06 1.05 

AR 0.97 0.97 0.98 1.00 1.01 1.05 1.16 1.31 1.41 1.38 1.33 1.30 1.29 1.27 1.23 1.26 1.29 1.30 1.27 1.23 1.19 1.14 1.09 1.07 

AF 0.96 0.96 0.97 0.98 0.99 1.01 1.09 1.20 1.27 1.26 1.22 1.19 1.18 1.18 1.15 1.16 1.18 1.19 1.17 1.13 1.10 1.07 1.03 1.02 

Categories: (HW) Holiday on Weekend, (HM) Holiday on Monday, (HR) Holiday on Tuesday to Friday, (BM) Before a holiday and Monday, (BR) Before a holiday 

and Tuesday to Friday, (AR) After a holiday and Monday to Thursday, (AF) After a holiday and Friday. 

Table B5. Christmas periods. 

CAT H1 H2 H3 H4 H5 H6 H7 H8 H9 H10 H11 H12 H13 H14 H15 H16 H17 H18 H19 H20 H21 H22 H23 H24 

P1 0.91 0.90 0.89 0.88 0.88 0.88 0.86 0.83 0.85 0.88 0.90 0.90 0.89 0.90 0.90 0.88 0.88 0.88 0.88 0.88 0.89 0.90 0.91 0.92 

P2 0.96 0.95 0.94 0.93 0.93 0.92 0.91 0.89 0.90 0.93 0.94 0.94 0.94 0.94 0.94 0.94 0.94 0.94 0.95 0.93 0.93 0.94 0.96 0.96 

D20 1.00 0.99 0.99 0.99 0.99 0.99 0.99 0.99 1.00 1.00 0.99 0.99 0.98 0.98 0.98 0.98 0.98 0.98 0.97 0.97 0.97 0.98 0.98 0.98 

D21 0.99 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.99 0.99 0.98 0.98 0.98 0.97 0.97 0.97 0.97 0.96 0.96 0.96 0.96 0.97 0.98 0.98 

D22 0.98 0.97 0.97 0.96 0.96 0.96 0.96 0.95 0.97 0.98 0.98 0.97 0.97 0.96 0.96 0.96 0.96 0.95 0.95 0.95 0.95 0.95 0.97 0.97 

D23 0.97 0.96 0.95 0.95 0.95 0.94 0.93 0.91 0.92 0.94 0.94 0.93 0.92 0.92 0.921 0.91 0.91 0.91 0.91 0.91 0.91 0.92 0.93 0.94 

Categories: (P1) Dec 27th to Dec 29th, (P2) Jan 2nd to Jan 5th, (D20), Dec 20th, (D21) Dec 21st, (D22) Dec 22nd, (D23) Dec 23rd. 

Table B6. Summer vacation. 

CAT H1 H2 H3 H4 H5 H6 H7 H8 H9 H10 H11 H12 H13 H14 H15 H16 H17 H18 H19 H20 H21 H22 H23 H24 

W1 0.99 0.98 0.98 0.98 0.98 0.98 0.99 0.98 1.00 0.99 0.99 0.99 0.98 0.98 0.98 0.99 0.99 0.99 0.99 0.98 0.97 0.95 0.98 0.98 

W2 0.97 0.97 0.97 0.97 0.97 0.97 0.96 0.95 0.96 0.96 0.96 0.95 0.95 0.95 0.95 0.96 0.96 0.96 0.95 0.95 0.95 0.94 0.96 0.96 

W3 0.98 0.98 0.97 0.97 0.97 0.97 0.97 0.96 0.96 0.96 0.95 0.95 0.95 0.95 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.97 0.97 

Categories: (W1) 1st week of August, (W2) 2nd week of August, (W3), 3rd week of August. 
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