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ABSTRACT

Permutation entropy measures the complexity of a deterministic time series via a data symbolic quantization consisting of rank vectors
called ordinal patterns or simply permutations. Reasons for the increasing popularity of this entropy in time series analysis include that (i)
it converges to the Kolmogorov–Sinai entropy of the underlying dynamics in the limit of ever longer permutations and (ii) its computation
dispenses with generating and ad hoc partitions. However, permutation entropy diverges when the number of allowed permutations grows
super-exponentially with their length, as happens when time series are output by dynamical systems with observational or dynamical noise
or purely random processes. In this paper, we propose a generalized permutation entropy, belonging to the class of group entropies, that is
finite in that situation, which is actually the one found in practice. The theoretical results are illustrated numerically by random processes
with short- and long-term dependencies, as well as by noisy deterministic signals.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0023419

Measuring the complexity of a time series is usually about count-
ing distinct blocks of a given length along the series. If the entries
belong to a finite set of numbers or symbols (called alphabet), then
the number of blocks can grow at most exponentially with length,
so taking the logarithm is a good idea to distinguish between
polynomial and exponential growth. Moreover, the limit of the
growth rate with increasing lengths produces a finite number that
is independent of length and, hence, intrinsic to the time series.
Otherwise, if the alphabet is continuous (think of an interval of
real numbers), the situation is more complicated. Such is the
case with observations from nonlinear processes and continuous-
valued random processes. In this event, one usually divides the
alphabet into bins or, as envisaged in this paper, represents each
block by the permutation obtained by ranking the numbers in the
block. The problem is that the growth rate of the permutations
with length becomes super-exponential in the case of noisy and
random signals, which prevents a theoretical definition of com-
plexity (“permutation entropy”) along the standard lines. In this
paper, we borrow ideas from statistical physics and complexity
theory to remedy this shortcoming.

I. INTRODUCTION

In general, time series result from observing real-valued ran-
dom processes or dynamical flows at discrete times. A further step
may be the discretization of the data, a procedure called sym-
bolic representation. Such representations simplify the mathemat-
ical tools needed for the data analysis and, what is more interesting
for practitioners, may be sufficient for the application sought. In
this regard, ordinal patterns and permutation entropy have become
increasingly popular in nonlinear time series analysis since their
introduction by Bandt and Pompe in 2002.1 The reasons are multi-
ple. Perhaps most importantly from a theoretical point of view, ordi-
nal patterns, which are formally permutations, preserve the tempo-
ral structure of a time series and, therefore, its dynamical complex-
ity. In fact, in one-dimensional dynamics, the permutation entropy
per symbol converges to the Kolmogorov–Sinai (KS) as the pattern
length grows,2–4 which makes it a proxy of dynamical entropy.

From a practical point of view, the computation of permutation
entropy dispenses with ad hoc partitions, not to mention the search
for generating ones.5 But even with real-world series, which are
finite and usually rather noisy, tools such as permutation entropies
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of finite order,6,7 the decay rate of missing ordinal patterns,8

complexity-entropy causality planes,9,10 ordinal networks,11 or sim-
ply empirical distributions of ordinal patterns12 have proved very
handy. The potential advantages of the ordinal approach in the
analysis of time series include speedy calculation, the possibility
of multiscale analysis through a varying pattern length, and high
discriminatory power in the classification of data, especially in com-
bination with other complexity indicators.13 Needless to say, practice
also shows some limitations, e.g., in the analysis of short time series
with low signal-to-noise ratio, as demonstrated by the study of heart
period variability in Ref. 14 with permutation entropy of order
3. Currently, ordinal techniques, alone or complemented by other
methods, are being applied in plenty of fields, e.g., chaotic dynam-
ics, earth science, computational neuroscience, biomedicine, and
econophysics; see Refs. 15–17 for recent surveys.

More generally, the permutation entropy of a real-valued time
series, whether deterministic or random, is just the Shannon entropy
of its ordinal representation, i.e., the symbolic time series that results
from replacing data strings of a fixed length L ≥ 2 by the corre-
sponding ordinal patterns of length L. There is a twist, though.
Shannon’s entropy was incepted in the setting of finite-state ran-
dom processes (information sources with finite alphabets) so that
the number of states (words) grows exponentially with the length
of the output (message). But in the ordinal representation of time
series, each word of length L is replaced by a permutation of
{0, 1, . . . , L − 1}; if all permutations are allowed, as happens in gen-
eral with real-valued random processes (including noisy chaotic
signals), then the number of words grows super-exponentially with
L because L! ' eL ln L. Similarly, the number of microstates grows
super-exponentially with the number of particles in some models of
statistical mechanics, the realm of the Boltzmann–Gibbs entropy.18

For this super-exponential class of processes and many-particle sys-
tems, the Boltzmann–Gibbs–Shannon (BGS) entropy is not exten-
sive, meaning that it does not scale linearly over uniform probability
distributions. Consequently, the BGS entropy per symbol or particle
is unbounded and, in general, diverges. This is the case, in partic-
ular, with the permutation entropy for random processes, where
here and hereafter we tacitly include noisy deterministic signals
for brevity. Therefore, what is missing to close the conceptual gap
between deterministic noiseless and random signals is a definition
of permutation entropy rate for the latter.

In this paper, we propose a generalization of permutation
entropy that is finite for random processes. To this end, we resort in
Sec. IV to a new entropy belonging to the class of group entropies,19

which is extensive and has several interesting properties (Theorem
2). But before reaching that point, we need to delve into permutation
complexity in Sec. II, which stands for the complexity of discrete-
time, continuous-state deterministic, or random processes and their
realizations in ordinal representations,20,21 as well as deepen into the
very concept of group entropy and related universality classes in
Sec. III. The theoretical results will be illustrated numerically with
random processes of different natures.

II. PERMUTATION COMPLEXITY

Given a time series (xt)t≥0 = x0, x1, . . . , xt, . . ., with t being
discrete time and xt ∈ R, let L ≥ 2 and denote by rt the rank vector

of the string (word, block,. . . ) xL
t := xt, xt+1, . . . , xt+L−1. That is,

rt = (ρ0, ρ1, . . . , ρL−1), (1)

where ρ0, ρ1, . . . , ρL−1 is the permutation of 0, 1, . . . , L − 1 such that

xt+ρ0 < xt+ρ1 < . . . < xt+ρL−1
(2)

(other rules can be found in the literature). The rank vectors rt are
called ordinal patterns or permutations of length L, as well as ordinal
L-patterns for short; the string xL

t is said to be of type rt. In the case
of two or more ties in xL

t , one can adopt some convention, e.g., the
earlier entry is smaller. We suppose tacitly that such occurrences are
rare. As a result, the alphabet (set of symbols) of (rt)t≥0, the ordinal
representation of the original time series (xt)t≥0, is the group of the
L! permutations of 0, 1, . . . , L − 1, which will be denoted by SL.

Consider a stationary, discrete-time deterministic, or random
process X = (Xt)t≥0 taking values on a closed interval I ⊂ R. By
a deterministic process, we mean that every output (xt)t≥0 of X
is the orbit of x0 generated by the same mapping F : I → I, i.e.,
xt+1 = F(xt) = Ft(x0) for t ≥ 0. Therefore, random processes
include deterministic ones with observational or dynamical noise.
Let p(r) be the probability that a string xL

t output by X is of type r
and p = {p(r) : r ∈ SL} the corresponding probability distribution.
If p(r) > 0, then r is an allowed pattern for X; otherwise, r is a for-
bidden pattern. The Shannon entropy (or the BGS entropy for that
matter) of p is called the (metric) permutation entropy of order L:

H∗(XL
0) = −

∑

r∈SL

p(r) ln p(r), (3)

where XL
0 := X0, X1, . . . , XL−1 and 0 · ln 0 := 0 by continuity. In the

event that X is a deterministic process, p(r) = µ({xt ∈ I : xL
t is of

type r}), where µ is the physical measure of X, which is an F-
invariant measure that coincides with the empirical probability
distribution.22 If X is otherwise a random process, then the proba-
bilities p(r) can only exceptionally be derived from the probability
distribution of XL

t , see e.g., Ref. 23. This means that, in general, the
probabilities p(r) of random processes have to be estimated, e.g.,
by the relative frequencies of each r ∈ SL in a finite time series
x0, x1, . . . ., xT,

ν(r) =
#{xL

t of type r ∈ SL : 0 ≤ t ≤ T − L + 1}

T − L + 2
, (4)

where # stands for “number of” and T � L! (maximum likeli-
hood estimator). Then, p(r) = limT→∞ ν(r), where this limit exists
with probability 1 when the underlying random process fulfills the
following weak condition.1

Stationarity Condition. For k ≤ L − 1, the probability for
xt < xt+k should not depend on t.

Random processes that meet this condition include, in addi-
tion to stationary ones, non-stationary processes with stationary
increments such as fractional Brownian motion.24 Notice for future
reference that fractional Gaussian noise, being defined as the incre-
ments of a fractional Brownian motion,24 is, therefore, a stationary
random process. From now on, we assume the Stationarity Condi-
tion so that the estimations of p(r) converge as the amount of data
increases.
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The topological permutation entropy of order L is the tight upper
bound of H∗(XL

0). It is formally obtained by assuming that all allowed
L-patterns are equiprobable,

H∗
0(X

L
0) = ln NL(X), (5)

where NL(X) is the number of allowed patterns of length L for X.
In turn, the metric and topological permutation entropies of a pro-
cess X, h∗(X), and h∗

0(X) respectively, are obtained by taking the
corresponding entropies of order L per variable and letting L → ∞,

h∗(X) = lim
L→∞

1

L
H∗(XL

0), h∗
0(X) = lim

L→∞

1

L
H∗

0(X
L
0), (6)

so that dependencies of any length among variables are taken into
account. To ensure that these and the forthcoming limits converge
or otherwise diverge to +∞, one can use “lim sup” (limit superior)
instead of “lim.” We elaborate next on the fact that permutation
entropy is finite for deterministic processes while diverging for
random processes, in general.

A mapping F : I → I is said to be piecewise monotone if there
is a finite partition of I such that F is continuous and monotone on
each subinterval of the partition. Let h(F) be the KS entropy of F,
and h0(F) its topological entropy.25 The following theorem holds.2

Theorem 1. If F is piecewise monotone, then (i) h∗(F) = h(F)

and (ii) h∗
0(F) = h0(F).

All one-dimensional mappings encountered in practice are
piecewise monotone, so we may assume this property for the
mappings underlying deterministic processes. Therefore, h∗(X) ≤

h∗
0(X) < ∞ for deterministic processes since h0(F) < ∞ for piece-

wise monotone mappings.26 Incidentally, Theorem 1(ii) implies
NL(X) ∼ eh0(F)L (∼ stands for “asymptotically”), meaning that such
processes have only exponentially many allowed L-patterns for ever

larger L’s, despite the fact that there are L! ∼ eL ln L = LL (Stirling’s
formula) possible ordinal L-patterns. The upshot is that the num-
ber of forbidden patterns for deterministic processes grows super-
exponentially with L, see Ref. 27. Also, higher dimensional dynamics
along with their lower dimensional projections may have forbid-
den patterns.28 However, if the dynamics takes place on an attractor
so that the orbits are dense, then the observational or dynamical
noise will “destroy” all forbidden patterns in the long run, no mat-
ter how small the noise. Theorem 1 has been generalized to include
countably many monotonicity intervals.29

On the other hand, random processes may have forbidden pat-
terns too. For the sake of our analysis, though, we will consider
the general or “worse” scenario in which all ordinal patterns of any
length are allowed. A necessary and sufficient condition for this is
that, for k ≤ L − 1, the probability for xt < xt+k is neither 0 nor
1 (so that the same holds for xt > xt+k), which amounts to a mild
addendum to the Stationarity Condition. With this proviso, we may
assume hereafter NL(X) = L! for all random processes X. Then,

h∗
0(X) = lim

L→∞

1

L
ln L! = lim

L→∞
ln L = ∞ (7)

by Stirling’s formula. We conclude from (7) that permutation
entropy, unlike Shannon’s entropy, cannot be applied to random
processes in general. In particular, H∗(XL

0) does not scale linearly
when L → ∞ over flat probability distributions.

Numerical evidence is shown in Fig. 1. Here, we have numer-
ically generated 10 realizations of size T > 50L! [see (4)] of the
following processes: (i) white noise (WN) in the form of an inde-
pendent and uniformly distributed process on [0, 1]; (ii) fractional
Gaussian noise (fGn) with Hurst exponent H = 0.5 (Gaussian white

FIG. 1. The average of H∗(XL

0 )/L over 10 realizations, 〈H
∗(XL

0 )/L〉, is plotted vs L for 1 ≤ L ≤ 8 and the random processes listed in the inset. See the text for detail.
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noise);24 (iii) noise with an f−1 power spectrum (PS); (iv) frac-
tional Brownian motion (fBm) with H = 0.25 (anti-persistent pro-
cess), H = 0.5 (classical Brownian motion), and H = 0.75 (persis-
tent process);24 (v) logistic map iterations with additive white noise
of amplitude 0.25 (noisy LM), i.e., xt = yt + zt, where yt = 4yt−1(1 −

yt−1), 0 < y0 < 1, and (zt)t≥0 is WN with −0.25 ≤ zt ≤ 0.25. Com-
putations were done with MatLab.30 The average of H∗(XL

0)/L over
the 10 realizations of each process, denoted 〈H∗(XL

0)/L〉, is then plot-
ted against L, 3 ≤ L ≤ 8. We see in all cases that 〈H∗(XL

0)/L〉 follows
a seemingly divergent trajectory as L grows.

III. GROUP ENTROPIES

The theory of group entropies31–34 is an axiomatic approach,
which allows us to construct information measures with math-
ematical properties that make them suitable to describe specific
universality classes of complex systems.35 We recap here some basic
definitions.

Let PW be the set of all discrete probability distribu-

tions with W entries, i.e., PW = {p = (pi)i=1,...,W : 0 ≤ pi ≤ 1,
∑W

i=1

pi = 1}. Let S be a non-negative function on P := ∪∞
W=1PW so that

S is defined on any probability distribution p and S(p) ≥ 0. The
Shannon–Khinchin (SK) axioms are a set of requirements first con-
sidered in Refs. 36–38 to uniquely characterize the BGS entropy. The
first three SK axioms amount to the following properties:

(SR1) S(p) is continuous with respect to all variables p1, . . . , pW.
(SR2) S(p) takes its maximum value over the uniform distribution.
(SR3) S(p) is expansible: adding an event of zero probability does

not affect the value of S(p).

These axioms represent a minimal set of “non-negotiable”
requirements that such functions S(p) should satisfy necessarily to
be meaningful, both from a physical and information-theoretical
point of view. Non-negative functions on P that verify axioms
(SK1)–(SK3) are called generalized entropies and their structure is
only known under additional conditions.19,39,40 Thus, the fourth SK
axiom, requiring specifically additivity on conditional distributions,
leads to the BGS entropy,38

SBGS(p) = −k

W
∑

i=1

pi ln pi, (8)

where k is a positive constant that we equate to 1 for definiteness [as
in Eq. (3)]. Instead, the more general axiom of composability (see
below) leads to the concept of group entropies. As we will discuss
shortly, this new class of entropies, which includes SBGS(p), is better
suited to deal with the diversity of themodynamical and complex
systems. Another independent approach is based on the concept of
pseudo-additive entropy.41

An entropy S(p) is said to be composable if there exists a
(sufficiently regular) function 8(x, y) such that

S(pA × pB) = 8(S(pA), S(pB)) (9)

for any probability distributions pA and pB, where pA × pB is the
product probability distribution of both. Equivalently, (9) can be
written as S(A ∪ B) = 8(S(A), S(B)), where A and B are two statisti-
cally independent subsystems of a complex system, defined over any

arbitrary probability distributions pA and pB, respectively, and A ∪ B
is the system composed of A and B. All quantities are assumed to be
dimensionless.

In addition to Eq. (9), we shall also require the following
properties for the composition law 8:

(C1) Symmetry: 8(x, y) = 8(y, x).
(C2) Associativity: 8(x, 8(y, z)) = 8(8(x, y), z).
(C3) Null-composability: 8(x, 0) = x.

We shall say that an entropy satisfies the composability axiom
if it fulfills Eq. (9) and the requirements (C1)–(C3). Observe that,
indeed, requirements (C1)–(C3) are crucial: they impose the inde-
pendence of the composition process with respect to the order of A
and B, the possibility of composing three independent subsystems in
an arbitrary way, and the requirement that, when composing a sys-
tem with another one having zero entropy, the total entropy remains
unchanged. In our opinion, these properties are also fundamental:
no thermodynamic or information-theoretic applications would be
easily conceivable without these properties. For 8(x, y) = x + y, we
obtain from (9) the additivity of the BGS entropy (8) with respect to
the composition of two statistically independent subsystems.

From an algebraic point of view, the requirements (C1)–(C3)
define a formal group law for a function (infinite series) of the form
8(x, y) = x + y + O(2), where O(n) stands for terms of degree ≥ n.

Definition 1. A group entropy is a function S : P → [0, ∞),
which satisfies the Shannon–Khinchin axioms (SK1)–(SK3) and the
composability axiom.

A well-known group entropy, introduced by Tsallis,42 is

Sα(p) =
1

1 − α

(

W
∑

i=1

pα
i − 1

)

(10)

for α > 0, α 6= 1, and S1(p) := limα→1 Sα(p) = SBGS(p), whose com-
position law is

8(x, y) = x + y + (1 − α)xy (11)

so that Sα(pA × pB) = Sα(pA) + Sα(pB) + (1 − α)Sα(pA)Sα(pB).
Except for the Tsallis entropy, group entropies are, in general, non-

trace functions,43 that is, they cannot be written as
∑W

i=1 g(pi), where
g : [0, 1] → [0, ∞) is a mapping with suitable properties, usually39

continuity, ∩-convexity, and g(0) = 0.
As has been shown,19,35 one can classify complex systems

according to their state space growth rate W (N), which counts
the number of microstates allowed as a function of the number
N of particles or constituents of a given system, for large N. Gen-
erally speaking, we distinguish sub-exponential, exponential, and
super-exponential regimes with regard to the state space growth rate
(which can be further discriminated if necessary). All systems that
are characterized by the same asymptotic behavior of W define a
universality class. According to Theorem 1 of Ref. 19, under mild
hypotheses one can explicitly construct a suitable group entropy
associated with a given universality class of systems, which would
play the role of information or complexity measure for the class con-
sidered. This specific entropy (actually, a one-parametric family of
entropies) is called a Z-entropy32 and is denoted by ZG,α(p), where
G refers to the group-theoretical structure associated with it, α > 0,
p ∈ PW, and W = bW (N)c.

Chaos 31, 013115 (2021); doi: 10.1063/5.0023419 31, 013115-4

Published under license by AIP Publishing.

https://aip.scitation.org/journal/cha


Chaos ARTICLE scitation.org/journal/cha

To be more precise, one can construct a suitable ZG,α(p)
entropy which is extensive for the systems of a given class, that is,

if ZG,α(N) := ZG,α

(

1
W

, . . . , 1
W

)

is the Z-entropy over the uniform

distribution (the most “disordered” situation), then

lim
N→∞

ZG,α(N)

N
= const. (12)

In other words, ZG,α(N), the topological version of ZG,α(p), scales
linearly with N, at least for N sufficiently large. According to (SK2),
ZG,α(p) ≤ ZG,α(N) for all p ∈ PW.

Prototypical examples of Z-entropies are (i) the Tsallis entropy
Sα(p), Eq. (10), for the sub-exponential class and (ii) the Rényi
entropy44

Rα(p) =
1

1 − α
ln

(

W
∑

i=1

pα
i

)

(13)

for α > 0, α 6= 1, and R1(p) := limα→1 Rα(p) = SBGS(p), for the
exponential class. Notice that Sα(p) = 1

1−α
(exp[(1 − α)Rα(p)] − 1).

The Z-entropy for the super-exponential class is our next concern.

IV. A GENERALIZED PERMUTATION ENTROPY

In our context, where random processes are real-valued and
blocks xL

t of size L ≥ 2 are quantized by means of ordinal L-patterns
rt, discrete probability distributions p refer necessarily to the sym-
bols r ∈ SL and hence the growth function is W (L) = L! ∼ eL ln L

under very weak conditions. This being the case, we propose the
Z-entropy for the super-exponential class to measure permuta-
tion complexity. Such an entropy was introduced18 to describe the
thermodynamic properties of the so-called pairing model, which
represents an example of a Hamiltonian system possessing a super-
exponential state space growth rate. Precisely, we propose the
following:

Definition 2. The permutation Z-entropy of order L of a
process X = (Xt)t≥0 is the function

Z∗
α(X

L
t ) := Zα(p) = exp

[

L
(

Rα(p)
)]

− 1 (14)

for α > 0. Here, p ∈ PL! is the probability distribution of the ordi-
nal L-patterns of XL

t , Rα(p) is Rényi’s entropy (13) with W = L!, and
L (x) denotes the principal branch of the real Lambert function.

L (x) is a smooth function that is defined for x ≥ −1/e and sat-
isfies the equation L (x) eL (x) = x, hence L (0) = 0 and L (x) > 0
for x > 0, see Ref. 45. The term −1 in (14) renders Zα(p) = 0 in
situations without uncertainty, i.e., when pi0 = 1 and pi = 0 for
i 6= i0.

From a conceptual point of view, Z∗
α(X

L
t ) can be interpreted to

be a suitable, extensive deformation of Rα(p), sharing with it many
fundamental properties, except additivity. For example, Z∗

α(X
L
t )

inherits from Rα(p) its ∩-convexity for 0 < α ≤ 1 and decreasing
monotonicity with respect to α, see Ref. 40; that is,

Z∗
α(X

L
t ) ≥ Z∗

β(XL
t ) for α < β , (15)

because the function eL (x) is strictly increasing and ∩-convex.

Remark. According to Eq. (4.13.5) of Ref. 45,

L (x) = x − x2 + O(3) (16)

for |x| < 1/e. Therefore,

eL (x) = 1 + x − 1
2
x2 + O(3). (17)

In view of Eqs. (17) and (14),

Zα(p) = Rα(p) − 1
2
Rα(p)

2 + O(3) ' Rα(p)

if Rα(p) < 1/e. Small values of the permutation Rényi entropy
Rα(p), 0 ≤ Rα(p) ≤ ln L! [see Eq. (13) with pi = 1/W and W = L!]
occur for probability distributions that peak around a single ordi-
nal pattern or a few ordinal patterns, i.e., in situations where the
uncertainty is low. We conclude that when the Rényi entropy of the
probability distribution of the ordinal L-patterns of XL

t is small, it is
a good approximation of the permutation Z-entropy of order L.

It is clear that Zα(p) verifies the axioms (SK1)–(SK3) since
Rα(p) is a group entropy and eL (x) is strictly increasing. The
composability of Zα(p) for the growth function W (L) = eL ln L fol-
lows from Proposition 1 of Ref. 19 (with W −1(ξ) = exp[L (ln ξ)]).
Alternatively, one can directly check that if

8(x, y) = eL [(x+1) ln(x+1)+(y+1) ln(y+1)] − 1

= x + y − 1
2
x2 − 2xy − 1

2
y2 + O(3), (18)

then the composition law Zα(pA × pB) = 8(Zα(pA), Zα(pB)) holds
for any probability distributions pA and pB.

As with conventional permutation entropy, we can introduce a
topological version of Z∗

α(X
L
t ).

Definition 3. The topological permutation Z-entropy of order
L of a process X = (Xt)t≥0 is defined to be the tight upper bound of
Z∗

α(X
L
t ), which is obtained over the uniform distribution of ordinal

L-patterns,

Z∗
0(X

L
t ) := Zα(

1
L!

, . . . , 1
L!

) = exp
[

L
(

ln L!
)]

− 1. (19)

Here, we took into account that Rα(
1
L!

, . . . , 1
L!

) = ln L! for all α. The
notation Z∗

0 is justified because ln L! is formally obtained from (13)
by setting α = 0. It follows [use L (x ln x) = ln x for x ≥ 1/e]

Z∗
0(X

L
0)

L
=

eL (ln L!) − 1

L
∼

eL (L ln L) − 1

L
=

L − 1

L
∼ 1 (20)

so that Z∗
α(p) is indeed extensive in the regime of factorial growth we

are interested in.
Last but not least, we also define the corresponding entropy rate

per variable.
Definition 4. The permutation Z-entropy rate (or just permu-

tation Z-entropy) of a random process X is given as

z∗
α(X) = lim sup

L→∞

1

L
Z∗

α(X
L
0), (21)

where α ≥ 0: z∗
0(X) is the topological permutation Z-entropy, and

z∗
α(X) with α > 0 is the metric permutation Z-entropy.

Next, we prove two basic properties.
Theorem 2. The permutation Z-entropy rate z∗

α(X) satisfies
the following inequalities:
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FIG. 2. Same information as in Fig. 1 (but notice the different scale on the Y axis) for 〈Z∗
0.5(X

L

0 )/L〉 (a), 〈Z
∗
1 (X

L

0 )/L〉 (b), and 〈Z∗
2 (X

L

0 )/L〉 (c). See the text for detail.

(i) Normalized range: 0 ≤ z∗
α(X) ≤ 1, where z∗

α(X) = 0 for deter-
ministic processes and z∗

α(X) = 1 for white noise.
(ii) Hierarchical order: z∗

α(X) ≥ z∗
β(X) for α < β.

Proof. To prove that z∗
α(X) = 0 for deterministic processes,

we recall that, according to Theorem 1(ii), NL(X) ∼ eh0(F)L, where
h0(F) is the topological entropy of the mapping F that generates X.
Therefore, if p is the probability distribution of the L-patterns, then
R0(p) = ln NL(X) ∼ h0(F)L and

Z∗
α(X

L
0)

L
≤

eL [R0(p)] − 1

L
∼

eL [h0(F)L]

L
=

h0(F)

L [h0(F)L]
∼ 0, (22)

where we used eL (x) = x/L (x). Furthermore, the inequality
z∗
α(X) ≤ 1, with equality for white noise, follows from Z∗

α(X
L
0)

≤ Z∗
0(X

L
0) and lim supL→∞

1
L
Z∗

0(X
L
0) = 1, see (20).

The hierarchical order of z∗
α(X) is a direct consequence of (15).

�

As a way of illustration, Fig. 2 shows 〈Z∗
α(X

L
0)/L〉, the average of

the permutation entropy rate Z∗
α(X

L
0)/L over the same 10 time series

and for the same random processes as in Fig. 1, against L, 1 ≤ L ≤ 8,
where α = 0.5 (a), 1 (b), and 2 (c). Contrarily to Fig. 1, we see in all
panels of Fig. 2 that 〈Z∗

α(X
L
0)/L〉 follows a seemingly convergent tra-

jectory as L grows, upper bounded by the white noise. In agreement
with (15), 〈Z∗

0.5(X
L
0)/L〉 ≥ 〈Z∗

1(X
L
0)/L〉 ≥ Z∗

2(X
L
0)/L〉 for each process.

To wrap up, let us point out that the curves of different pro-
cesses may cross, as happens in the three panels of Fig. 2 with the
processes fBm H = 0.50 and noisy LM when going from L = 3 to

L = 4. Similar intersections also occur with other parameter set-
tings and processes (not shown). The reason is that Z∗

α(X
L
0) can only

capture ranges of interdependence up to L. Put another way, larger
“window sizes” L unveil dependencies between farther variables that
can be measured by Z∗

α(X
L
t ). In particular, as L grows, Z∗

α(X
L
t ) can

become larger for a noisy chaotic signal, such as the noisy logistic
map of Fig. 2, than for a process with a longer, or an infinite, span
of interdependence between its increments, such as the fractional
Brownian motion with H = 0.50.

V. DISCUSSION AND CONCLUSIONS

This paper addresses the divergence of the permutation
entropy of finite order H∗(XL

0) for random processes X = (Xt)t≥0

(including noisy deterministic signals) when L → ∞, that is, the
lack of a permutation entropy rate for such processes. Therefore, its
main scope is to extend the concept of permutation entropy to the
realm of random processes. For this purpose, we studied the permu-
tation Z-entropy rate z∗

α(X), a group entropy defined in Eqs. (21)
and (14). To be more specific, z∗

α(X) measures the complexity of
a real-valued random process X through permutations, where X is
supposed to fulfill the Stationarity Condition and the mild assump-
tion that all permutations are allowed for each length or, at least, a
super-exponentially growing number of them. First and foremost,
z∗
α(X) is always finite, contrarily to what happens with the conven-

tional permutation entropy h∗(X), see Eq. (7). Therefore, we may
claim that z∗

α(X) extends h∗(X) to the realm of random processes
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although, needless to say, z∗
α(X) differs from h∗(X) when X is deter-

ministic. Among the features of z∗
α(X), we singled out in Theorem 2

its normalized range and hierarchical order. Figures 1 and 2 depict
the numerical experiments done. On the foregoing grounds, we pro-
pose z∗

α(X) as a suitable entropic measure to describe the complexity
of real-valued random processes in ordinal representations.

Applications include the analysis of data, in general, and the
characterization and classification of noisy signals, in particular. In
this regard, the parameter α is an asset because it enhances the dis-
crimination capability of the ordinal approach, as exemplified in
Fig. 2. Since real-world series are finite, one has to use permuta-
tion Z-entropies of finite order Z∗

α(X
L
0) in that case, where L should

be chosen so as to avoid undersampling of the ordinal L-patterns.46

From its definition, Eq. (14), it follows that Z∗
α(X

L
0) and the permu-

tation Rényi entropy Rα(p), where p is the probability distribution
of the ordinal L-patterns, are functions of each other, the difference
being that Rα(p) is in general unbounded when L → ∞. There-
fore, Z∗

α(X
L
0) and Rα(p) share the same strengths (say, discriminatory

power) and weaknesses (say, dependence on L); computation time is
virtually the same. As a general rule, it is good practice in time series
analysis to use multiple tools and parameter settings to obtain more
accurate diagnoses from the data.

In conclusion, it is the concept of the Z-entropy rate of a ran-
dom process X that makes the difference. Like the Shannon entropy
of a finite-valued process and the Kolmogorov–Sinai entropy of a
dynamical system, which are limits on extensive parameters, z∗

α(X)

defines an intrinsic characteristic (of X in this case) because it is also
such a limit. Since finite time series are modeled by infinitely long
processes, the theoretical study of the latter can provide insights into
the properties of the former. For this reason, the numerical evalua-
tion of z∗

α(X), although challenging, deserves further thought and
effort and will be the subject of further research.
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