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ABSTRACT Automated vehicles make use of multiple sensors to detect their surroundings. Sensors have
significantly improved over the years but still face challenges due to the presence of obstacles or adverse
weather conditions, among others. Cooperative or collective perception has been proposed to help mitigate
these challenges through the exchange of sensor data among vehicles using V2X (Vehicle-to-Everything)
communications. Recent studies have shown that cooperative perception can complement on-board sensors
and increase the vehicle’s awareness beyond its sensors field of view. However, cooperative perception
significantly increases the amount of information exchanged by vehicles which can degrade the V2X
communication performance and ultimately the effectiveness of cooperative perception. In this context,
this study conducts first a dimensioning analysis to evaluate the impact of the sensors’ characteristics and
the market penetration rate on the operation and performance of cooperative perception. The study then
investigates the impact of congestion control on cooperative perception using the Decentralized Congestion
Control (DCC) framework defined by ETSI. The study demonstrates that congestion control can negatively
impact the perception and latency of cooperative perception if not adequately configured. In this context,
this study demonstrates for the first time that the combination of congestion control functions at the
Access and Facilities layers can improve the perception achieved with cooperative perception and ensure
a timely transmission of the information. The results obtained demonstrate the importance of an adequate
configuration of DCC for the development of connected and automated vehicles.

INDEX TERMS Cooperative perception, collective perception, cooperative sensing, message generation,
CPM, connected automated vehicles, CAV, automated vehicles, autonomous vehicles, V2X, vehicular
networks, C-ITS, ITS-G5, congestion control, DCC, ETSI.

I. INTRODUCTION
Automated vehicles use embedded sensors to drive
autonomously with low or no human intervention. To this
aim, the vehicle’s planning system uses perception and
localization data to determine the travel path and driving
actions (e.g. lane changes, acceleration or braking) that are
executed by the vehicle’s control platform. For perception and
localization, automated vehicles equip multiple exteroceptive
sensors (e.g. lidars, radars and cameras) that locally perceive
the driving environment [1]. This environment includes static
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elements (e.g. road shape and curvature, lanemarks and trees)
and dynamic ones (e.g. other vehicles, bicycles, pedestrians).
Sensors for automated vehicles have significantly improved
their perception range and detection accuracy over the last
years [2]. However, the capabilities of these sensors can still
be impaired due to the presence of obstacles, adverse weather
conditions, or sensitivity to lighting conditions among other
factors [3]. These limitations can negatively influence the
safety and efficiency of automated vehicles. V2X (Vehicle-
to-Everything) communications can reduce this negative
impact and improve the perception or sensing capabilities of
Connected and Automated Vehicles (CAVs) by facilitating
the exchange of sensor data among vehicles. This process

VOLUME 8, 2020 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 197665

https://orcid.org/0000-0001-9061-859X
https://orcid.org/0000-0003-0064-0772
https://orcid.org/0000-0003-3234-5719
https://orcid.org/0000-0001-9025-0529


G. Thandavarayan et al.: Cooperative Perception for CAVs: Evaluation and Impact of Congestion Control

FIGURE 1. Basic architecture of cooperative perception.

is generally referred to as cooperative perception, collective
perception or cooperative sensing [4], [5]. Figure 1 depicts the
basic architecture for cooperative perception [6]. On-board
sensors locally perceive the environment and perform the
necessary processing, fusion and detection tasks to support
the automated driving functions. The information gathered
by the sensors is also used as an input for the cooperative
perception component. This component selects the informa-
tion to be exchanged among vehicles. For example, it decides
which detected objects should be included in a cooperative
perception message and how often these messages should
be transmitted. Congestion control protocols may adapt the
rate at which cooperative perception messages are generated
and transmitted to control the communications channel load.
It should be noted that the received cooperative perception
messages are fused with the information obtained from the
on-board sensors to improve and extend the vehicles’ percep-
tion of the driving environment.

Cooperative perception enables vehicles to exchange their
sensors’ data. This provides vehicles with additional sensor
data about the driving environment, including data beyond
their on-board sensors’ field of view (FoV). Cooperative or
collective perception can also help improve the vehicles’
sensor detection accuracy and increase the confidence about
the detected objects. This is the case because vehicles can
correlate and compare the information from their on-board
sensors with sensor information gathered from nearby vehi-
cles usingV2X communications. Cooperative perception also
helps mitigating the negative impact of adverse weather con-
ditions or the negative effect of lighting conditions on the
sensitivity.

Cooperative perception relies on V2X communications
for vehicles to exchange sensor data. The development of
V2X communications was initially focused on the so-called
Day One Services [7]. These services include, among others,
a basic cooperative awareness service where vehicles regu-
larly broadcast their position, speed and basic status infor-
mation through CAMs (Cooperative Awareness Messages)
based on ETSI (European Telecommunications Standards
Institute) standards [8] or BSMs (Basic Safety Messages)
based on SAE (Society of Automotive Engineers) stan-
dards [9]. This basic cooperative awareness service improves

the awareness of vehicles, but the information exchanged is
limited and does not exploit the rich sensor data gathered by
CAVs. ETSI [4] and SAE [5] have then recently launched
activities to define new V2X standards to implement collec-
tive or cooperative perception for CAVs to exchange sensor
data. ETSI has recently finalized a Technical Report to define
the so-called Collective Perception Service (CPS). This ser-
vice includes the definition of the Collective Perception Mes-
sage (CPM) format and the generation rules to decide when
a new CPM should be generated and what information it
should include. These efforts highlight the industrial inter-
est and potential of V2X communications to support the
development and deployment of connected and automated
vehicles. However, the work is still at its early stages, and
has initially focused on drafting a framework to develop
cooperative perception and define first CPM messages and
generation rules. It is then necessary to better understand the
operation of cooperative perception and optimize the related
V2X communication protocols to maximize the effective-
ness of cooperative perception while ensuring the network’s
scalability. This is important since exchanging sensor data
significantly increases the communication channel load.

This study goes beyond the state-of-the-art and presents
a dimensioning study that analyzes the performance and
effectiveness of cooperative perception using V2X commu-
nications. The study first shows how cooperative perception
mitigates the perception limitations of on-board sensors. The
study then analyzes the impact of the market penetration
rate and different sensor configurations on the operation and
performance of cooperative perception. This analysis shows
that cooperative perception can significantly increase the
communication channel load and activate the operation of
congestion control protocols. The study investigates then the
impact of these protocols on the performance and operation of
cooperative perception. The study is based on ETSI’s Decen-
tralized Congestion Control (DCC), one of the most impor-
tant congestion control frameworks to date that operates
across multiple layers of the V2X communication protocol
stack. The study demonstrates that using congestion control
protocols only at the Access layer augments the latency (or
information age) of cooperative perception messages. This
negatively impacts connected automated driving that requires
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low latency for a safe driving. This study demonstrates then
for the first time that this challenge can be addressed through
the combination of congestion control functions at the Access
and Facilities layers. This combination increases the percep-
tion and reduces the latency through the dynamic adaptation
of the rate at which cooperative messages are generated and
transmitted.

II. STATE OF THE ART
Perception of automated vehicles has advanced significantly
over the past years [2], [10], [11]. However, there are still
relevant perception challenges that need to be solved [3], [11].
For example, the detection accuracy under poor weather and
lighting conditions must be improved to reduce uncertainty.
This is particularly the case of lidars and cameras. Lidar
sensing can be restricted by high refraction and reflection
caused by dense fog, smoke and rain [3]. Also, high sun
angles may increase the noise level in lidar pulses which
will affect the perception. In addition, their detection range
depends on the reflectivity of the objects that are reached by
the laser beams [2]. Cameras are very good for classifying
objects and provide additional information about the envi-
ronment (color, texture, etc.) [3]. However, cameras also see
their performance degrade under adverse weather conditions
and are very sensitive to lighting conditions. In addition, they
require intensive and diverse training data for their AI-based
image processing [10].Moreover, velocity and distance infor-
mation to detected objects cannot be directly measured with
cameras but must be calculated [3]. Radars perform better
than lidars and cameras in poor weather conditions (rain,
snow, fog, etc.) [3], and some radars can detect objects at
250 m distance [12]. However, they provide lower resolution
than lidars, and their field of view is limited [3]. In fact, the
range and speed resolution of a radar is determined by its
bandwidth. Products available on the market provide accura-
cies of 10 cm up to 1% to 5% of the distance to the object [12].
Radars also suffer from multipath fading, which reduces the
accuracy of the detected objects [3]. The perception of auto-
mated vehicles also needs to be improved in complex urban
environments. In particular, it is necessary to improve the
accuracy, certainty and reliability of the sensors’ perception.
This is especially the case due to the presence of occluding
objects (e.g. other vehicles or buildings) that can limit the
sensor’s range [11]. Lidar, radar and cameras can only work
under Line-of-Sight (LOS) conditions. All these challenges
and constraints limit the perception capabilities of automated
vehicles that exclusively rely on their on-board sensors. This
can in turn impact their safety and driving efficiency.

Cooperative perception has been proposed to improve
the perception capabilities of CAVs. Cooperative percep-
tion makes use of V2X communications so that vehicles
can exchange sensed data. Most of the studies conducted
to date consider that vehicles exchange information about
the detected objects (e.g. their position, speed and size).
Recent studies have analyzed what information should be
exchanged about detected objects in cooperative perception.

Günther et al. propose in [13] to include in cooperative per-
ception messages not only basic information about detected
objects (e.g. their speed and position) but also information
about the on-board sensors and the characteristics of the
transmitting vehicle. This allows the receiving vehicles to
understand the capabilities of the transmitting vehicles and
better identify free-space and unknown areas. The authors
show in [13] that their proposal allows earlier detection of
possible obstructions and hence augment the driver’s reaction
time in the presence of a potential safety risk. The proposal
from [13] was evaluated in [14]. This study compares the
perception achieved when the information about the detected
objects is attached to existing CAMs or is transmitted in
separate messages that are transmitted following the CAM
generation rules. Authors of [15] propose a message format
to decrease the transmitted information without affecting
the accuracy of the perception system. The proposed format
includes information about the correlation and higher order
derivatives (e.g. the acceleration or yaw rate) of the detected
objects, and this information is transmitted less frequently.
The work in [16] proposes and evaluates different content
control schemes for cooperative perception. The study con-
cludes that cooperative perception should prioritize the trans-
mission of content related to objects that are located farther
away from the transmitting vehicle but near the edge of
its on-board sensor range in order to optimize the tracking
error. The authors show that coupling this proposal with a
multiplicative decrease and additive increase transmit rate
control can also control the communication channel load and
improve the channel utilization.

Controlling the channel load is critical for the performance
of V2X communications and hence for the effectiveness of
cooperative perception. Recent studies have then focused
on optimizing the exchange of information about detected
objects in cooperative perception. For example, the work
in [17] proposes the concept of value-anticipating networking
so that an object is included in a cooperative perception
message and transmitted only if the transmitter estimates that
it could have value for potential receivers. This approach
reduces the transmission rate of less valuable information
and can help control the channel load in congested scenarios.
The challenge is to obtain an accurate estimation of the
value of the information. This challenge has been partially
addressed in a recent study by the same authors in [18]
where they propose the use of deep reinforcement learning to
select the data to transmit. A similar concept was proposed
in [19] where authors present a method for each vehicle
to dynamically adapt the message transmission rate taking
into account the area covered with their sensors and that
is not covered by nearby vehicles. In [20], authors evaluate
the impact of congestion control on cooperative perception.
To this aim, authors consider the Reactive approach that is
part of ETSI’s DCC framework at the Access layer, and
evaluate the impact of considering different DCC Profiles (or
DPs) for the collective perception messages. This study was
one of the first to consider the impact of congestion control.
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The authors demonstrate that congestion control does impact
the performance and operation of cooperative perception, and
should hence be carefully designed. This should include the
congestion control functions at the Access layer that were the
focus of the study in [20]. However, it should also consider
those functions that control and adapt the generation rate
of cooperative perception messages, since the message rate
has a notable impact on the communication channel load.
The same authors recently proposed in [21] message gener-
ation rules for cooperative perception based on the dynam-
ics of vehicles. These generation rules decide when a new
cooperative perception message should be created and what
should be its content. The message generation rules proposed
in [21] have been adopted within the ETSI Technical Report1

for collective perception [4]. These generation rules were
evaluated in detail in [22] where authors found that they
can frequently generate messages with a small number of
objects. This increases the channel load since packets with
a small payload create a relatively high overhead due to
the message headers. The study also found that the ETSI
generation rules for cooperative perception can significantly
increase the number of updates received per second about
the same object. It is unclear whether this really benefits
perception while it significantly increases the communication
channel load. Similar conclusions were reached by authors
of [23], [24] and [25] that also argue for the need to control the
information exchanged with cooperative perception in order
to avoid exceeding the communication channel capacity.

Existing studies demonstrate the industrial interest and
potential of cooperative perception to improve connected
automated driving. However, a more comprehensive under-
standing of cooperative perception is necessary for its correct
dimensioning and configuration. This is exactly the objec-
tive of this study that first looks into the impact of the
type of sensors and market penetration rate on cooperative
perception. This study analyzes then in detail the impact
that V2X congestion control has on cooperative perception.
This is important since congestion control protocols mod-
ify the transmission of messages, and this can significantly
impact the effectiveness of cooperative perception. The study
demonstrates for the first time how a careful combination of
congestion control functions at different layers of the protocol
stack can improve the performance of cooperative perception.

III. COLLECTIVE PERCEPTION SERVICE
ETSI has recently approved the Technical Report [4] that
proposes the Collective2 Perception Service (CPS) and that
will serve as a baseline for the Technical Specification TS
103 324. The following subsections describe the current

1This Technical Report has been recently approved and will be used as a
starting point for the ETSI Technical Specification of collective perception.

2ETSI generally refers to cooperative perception as collective perception.
We will then maintain the term collective perception in this section and when
referring to ETSI content or discussions.

Collective Perception Message (CPM) format and the CPM
generation rules defined in [4] and that are used in this study.

A. COLLECTIVE PERCEPTION MESSAGE
The CPM is a broadcast message that includes an ITS (Intel-
ligent Transport System) PDU (Protocol Data Unit) header
and 5 types of containers: a Management Container (MC),
a Station Data Container (SDC), a Sensor Information Con-
tainer (SIC), a Perceived Object Containers (POC) and a
Free Space Addendum Container (FSAC). It also contains a
data element that specifies the current number of perceived
objects. This number does not necessarily match with the
number of objects included in the CPMbecause all objects are
not included in all CPMs, as explained in the next subsection.
The main containers and data elements are next described.

1) ITS PDU HEADER
The ITS PDU header was specified in [26] and includes data
elements such as the protocol version, the message ID and the
station ID.

2) MANAGEMENT CONTAINER
The MC is mandatory in the CPM and contains basic infor-
mation about the transmitter, including its type (e.g. vehicle
or RSU) and position. The MC also includes an optional
container to inform about whether the data of a CPM has
been split up into multiple messages due to message size
constraints.

3) STATION DATA CONTAINER
The SDC is optional and includes additional information
about the originating vehicle or RSU. The SDC can include
the Originating Vehicle Container (OVC) or the Originating
RSU Container (ORC) depending on whether a vehicle or
RSU generates and transmits the CPM. The OVC describes
the vehicle data elements, such as the heading, speed and
angle, and its size. The ORC includes information such as
the Intersection Reference ID or Road Segment ID. This
information is useful for the receiver to match the received
objects to the defined intersection or road segment.

4) SENSOR INFORMATION CONTAINER
The SIC is optional and describes the sensing capabilities of
the transmitter. The SIC is used by the receiver to derive the
areas that are currently sensed by the transmitter. For each
sensor, the SIC includes data elements such as the sensor ID,
sensor type (e.g. radar, lidar or a sensor fusion system) and
its detection area. The SIC can optionally specify for each
sensor its Free Space Confidence, which is the isotropic free
space confidence that can be assumed for its entire detection
area. When sensor fusion is not used, the SIC includes the
capabilities of each of the on-board sensors; the CPM can
report about up to 128 sensors. When using sensor fusion,
all the sensors capabilities are combined and reported in the
SIC as a single sensor.
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5) PERCEIVED OBJECT CONTAINER
The POC is set optional and describes the dynamic state
and properties of the detected objects. The POC contains
information about up to 128 detected objects. For each object,
the following data elements are included in the POC: (1)
the object ID that identifies the object and can be used for
tracking purposes; (2) the Time ofMeasurement that provides
the time difference between the message generation time and
the object measurement time3; (3) the IDs of the sensors that
have detected the object; (4) the position, speed, acceleration
and size of the object (among other fields); (5) the confidence
associated to the object; (6) and its classification (vehicle,
person, animal, other). These and other data elements provide
a detailed description of the detected object and enable the
receiver to coordinate and track the detected object in a
three-dimensional space.

6) FREE SPACE ADDENDUM CONTAINER
The FSAC is optional and describes the free space areas
within the sensor detection areas. In addition, it includes their
associated confidence levels. This information can be used by
the receiver to better estimate the free space areas around the
transmitting vehicle.

B. CPM GENERATION RULES
The CPM generation rules define how often a vehicle should
generate a CPM and what information should be included
in each CPM. A vehicle should check every T_GenCpm if
a new CPM should be generated. T_GenCpm should be set
between 100 ms and 1000 ms. It is important to highlight that
the DCC can adapt T_GenCpm based on the channel load as
we will describe in detail in the next section. A vehicle should
generate a new CPM if it has detected a new vehicle, or if
any previously detected vehicles satisfy any of the following
conditions:
• its absolute position has changed by more than 4m since
the last time its data was included in a CPM;

• its absolute speed has changed by more than 0.5m/s
since the last time its data was included in a CPM;

• its absolute velocity has changed by more than 4◦ since
the last time its data was included in a CPM;

• the last time it was included in a CPM was 1 (or
more) seconds ago.

A vehicle includes in a new CPM all new detected vehicles
and those previously detected vehicles that satisfy at least one
of the previous conditions. The CPM generation rules prior-
itize then the transmission of information about the detected
vehicles that are moving faster or have higher acceleration.
These vehicles are included in CPMs more frequently so that
other vehicles can have an accurate and updated knowledge
of the driving environment.

We should note that a vehicle generates a CPM every sec-
ond even if none of the detected vehicles satisfy any of the

3This information is useful to accurately compute the information age for
each object at the receiver.

previous conditions. In this case, the CPM will not contain
the Perceived Object Container, but only the Management
Container, the Station Data Container, and the Sensor Infor-
mation Containers. In addition, the SIC is only included in a
CPM once per second since the sensor information does not
change.

IV. DECENTRALIZED CONGESTION CONTROL
Cooperative perception relies on the V2X exchange of infor-
mation about detected objects. Its effectiveness depends on
the correct reception of the exchanged V2X messages. The
performance of V2X communications is highly influenced by
the communication channel load since high channel load lev-
els increase the risk of packet collisions. Vehicular networks
integrate congestion control algorithms to control the channel
load and avoid channel congestion [27]. These protocols can
modify the rate or the power at which messages are trans-
mitted and even drop packets. Congestion control algorithms
can then alter the transmission of V2X messages and could
then impact the effectiveness of cooperative perception. This
paper studies this impact in detail using the Decentralized
Congestion Control (DCC) solution defined by ETSI. This
is one of the most complete solutions to control congestion
in vehicular networks since it defines DCC components and
functions at all relevant layers of the protocol stack.

A. ITS COMMUNICATIONS ARCHITECTURE
DCC is implemented over the ITS Communications Archi-
tecture defined by ETSI [28] and illustrated in Figure 2.
This architecture follows the principles of the OSI (Open
System Interconnection) model and is divided in different
layers. The Access layer covers the PHY (Physical) andMAC
(MediumAccess Control) layers of the protocol stack. It con-
trols the access to the radio channel and enables the wireless
transmission and reception of information. The Transport &
Network layer is used to multiplex messages from different
services and route them from source to destination nodes. The
Facilities layer includes components and services, such as the
Collective Perception Service, that are used to support V2X
applications. Applications are implemented on the top and
are abstracted from the underlying protocols. The transversal

FIGURE 2. ETSI ITS Communications Architecture with DCC components.
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Management layer is in charge of the management of the
communications and the protocol stack. The Security layer
provides the necessary security services, such as privacy or
encryption.

CPMs are generated by the Collective Perception Service
at the Facilities layer and sent down to the lower layers for
their transmission. At the Transport & Network layer, CPMs
make use of the BTP (Basic Transport Protocol) that mul-
tiplexes messages from different applications/services. In the
same layer, the GeoNetworking protocol configures the trans-
mission of the CPM in broadcast mode to all 1-hop neigh-
boring nodes. At the Access layer, CPMs can be transmitted
using the ITS-G5 [29] radio access technology. ITS-G5
is an adaptation of IEEE 802.11p, which was specifically
designed for vehicular environments. IEEE 802.11p uses
OFDM (Orthogonal Frequency Division Multiplexing) with
a channel bandwidth of 10 MHz. It supports data rates from
3 to 27 Mbps using coding rates of 1/2, 2/3 or 3/4 (convolu-
tional coding) and BPSK (Binary Phase Shift Keying), QPSK
(Quadrature Phase Shift Keying), 16-QAM (16-Quadrature
Amplitude Modulation) or 64-QAM modulations. The basic
radio channel access method of IEEE 802.11p is known
as Carrier Sense Multiple Access with Collision Avoidance
(CSMA/CA). In CSMA/CA, a node must sense the radio
channel before transmitting a packet. If the channel is sensed
as idle, the node can start its transmission. If the channel
is sensed as busy, the node defers its transmission until the
end of the current transmission. At the end of the channel
busy period, the node waits for a random backoff time.
This backoff is used to minimize collisions between multiple
nodes that also deferred their transmission since they also
detected the channel as busy. The node decreases the backoff
time when it senses the channel as idle and can start its
transmission when its backoff time reaches zero. To provide
different channel access times to different types of packets,
IEEE 802.11p makes use of EDCA (Enhanced Distributed
Channel Access) that differentiates 4 access categories. Each
category has different channel access parameters (e.g. backoff
times).

B. DCC FRAMEWORK
The generation and transmission of messages using the
ITS Communications Architecture is controlled by DCC.
DCC is a cross-layer function that spans over multiple lay-
ers of the protocol stack. In particular, ETSI has defined
DCC_ACC, DCC_NET, DCC_FAC and DCC_CROSS com-
ponents (see Figure 2). The DCC_ACC [30] component is
in the Access layer and has been the target of most of the
research conducted to date. It operates as a gatekeeper to con-
trol the traffic that is effectively transmitted by each vehicle.
DCC_NET [31] is optional and implemented at the Network-
ing & Transport layer. It enables vehicles to exchange infor-
mation about the channel load they sense so that each vehicle
is aware of the channel load experienced by its one-hop and
two-hop neighbours. The Technical Specification that defines
DCC_FAC [32] is still a draft and has not been approved

yet. In the current draft, DCC_FAC is defined as optional
and is implemented at the facilities layer when considered.
It controls the number of messages generated by each appli-
cation/service within each vehicle. The control takes into
account the messages’ traffic classes or DCC profiles (DPs).
Thus, DCC_FAC distributes access to the channel among the
different applications/services within each vehicle.

DCC_CROSS [33] defines the necessarymanagement sup-
port functions for DCC and the required interface parameters
between the DCC management entity and the DCC entities
in the Facilities, the Networking & Transport and the Access
layers. For all DCC components, the upper limits of the
maximum transmission duration and minimum time interval
between two consecutive transmissions are defined in ETSI
EN 302 571 [34]. In this study, we analyze the impact of
DCC_ACC and DCC_FAC on cooperative perception since
they contain the main mechanisms that control congestion
and that can affect the V2X communications performance.

C. DCC ACCESS
The DCC_ACC component is located in the Access layer.
It controls the traffic at the Access layer and acts as a gate-
keeper. To this aim, it adapts the amount of time that each
vehicle can access the channel as a function of the channel
load. The channel load used as input for the algorithm can
be the one locally measured by a vehicle or the one provided
by DCC_NET if vehicles share their channel load measure-
ments. ETSI defines in [30] the DCC_ACC component for
ITS-G5. It makes use of Prioritization, Queuing and Flow
Control, as described below.
Prioritization: The packets that are received by the DCC

Access component from the upper layers are first classified
according to their traffic class. The traffic class is defined
by the Facilities layer to provide different priority levels
to different types of messages. Four different traffic classes
are differentiated by DCC Access and mapped to four DCC
profiles (DPs): DP0, DP1, DP2 and DP3, where DP0 has the
highest priority. At the lower layers, these DCC profiles are
mapped to the EDCA access categories of ITS-G5 [35].
Queuing:DCC Access implements 4 different queues, one

for each traffic class or DCC profile. Each queue follows a
first-in-first-out (FIFO) scheduling policy so that the packet
that has been waiting longer in the queue is transmitted first.
The DCC Access queuing mechanism drops those packets
that have beenwaiting in the queue for a time longer than their
lifetime. When a queue is full, no more packets are accepted.
Flow control: Flow control is applied to de-queue packets

from the DCC queues and send them to the lower layers for
their radio transmission. Packets with higher priorities are
de-queued first. A packet is only de-queued if there is no
packet with a higher priority waiting in its corresponding
queue. As a result, lower priority packets can suffer from
starvation and never be transmitted.

DCC Access defines in [30] two approaches to con-
trol the rate of packets transmitted per vehicle: Reactive
and Adaptive. Both approaches adapt the time between
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consecutive packet transmissions based on the channel load
or CBR (Channel Busy Ratio). The CBR is defined as the
percentage of time that the channel is sensed as busy. These
two approaches are described below.

1) REACTIVE APPROACH
The Reactive approach makes use of a state machine for flow
control. Each state is mapped to a range of CBR values and
to a time Toff . Toff is the minimum time interval allowed
between message transmissions for each vehicle and is dif-
ferent for each state. Therefore, Toff is the inverse of the
maximum message transmission rate allowed per vehicle in
each state. When the CBR changes, the Reactive approach
switches to the corresponding state, changing the minimum
Toff and maximum message rate allowed per vehicle. As a
result, vehicles dynamically adapt their message rate to the
CBR.

The Restrictive state is the state associated with the highest
CBR and the Relaxed state is associated to the lowest one.
A number of intermediate states called Active states can also
be defined. Each state can only be reached by a neighbouring
state. Table 1 shows the mapping of CBR values to states
and Toff reported as Informative Annex in [30]. This table
is derived considering that the packet duration Ton is below
0.5 ms. Other configurations are possible but we have used
the one shown in Table 1 because it is the one adopted by the
C2C-CC (Car-to-Car Communication Consortium) [36].

TABLE 1. Mapping of CBR values to states and Toff for Ton < 0.5 ms [30].

2) ADAPTIVE APPROACH
The Adaptive approach uses a linear control process for flow
control. The process is designed so that each vehicle adapts
its packet transmission rate in order for the channel load
to converge to a target value CBRtarget = 68%. To this
aim, every 200 ms each vehicle adapts the parameter δ that
represents the maximum fraction of time that a vehicle is
allowed to transmit. The parameter δ is updated based on
the difference between the current CBR sensed and the target
CBR using the following equation:

δ = (1− α) ·δ+δoffset (1)

where

δoffset = β ·
(
CBRtarget − CBR

)
(2)

and

G−max ≤ δoffset ≤ G
+
max (3)

The values of the parameters are defined in [30] asα = 0.016,
β = 0.0012, G−max = −0.00025 and G+max = 0.0005.
The protocol computes then the time between packet trans-

missions (Toff ) after every transmission. To this aim, it takes
into account the duration of the current packet (Ton) and the
fact that 0.025s ≤ Toff ≤ 1s:

Toff =
Ton
δ

(4)

It is also recommended to update Toff when δ is updated. Dif-
ferent studies have demonstrated that the Adaptive approach
is able to converge to a stable solution in steady state [37].

D. DCC FACILITIES
DCC Access controls the total amount of messages that a
vehicle can transmit per second. DCC at the Facilities layer
(DCC_FAC) controls the number ofmessages that each appli-
cation/service can generate [32] to satisfy the DCC Access
limit imposed to each vehicle. To this aim, the DCC_FAC
makes use of the DCC Access limit, the message size and the
message interval from each application/service. The current
ETSI draft that defines the DCC_FAC component calculates
the minimum interval Toff min ij for each application/service
with index j and traffic class with index i. Based on this
minimum interval, each vehicle proportionally distributes
the channel resources to each application/service and traf-
fic class. Distributing the channel resources with ITS-G5 is
equivalent to distributing the channel access time. To perform
this distribution, each vehicle estimates for each applica-
tion/service j and traffic class i, the average message duration
Ton ij and the average message interval Toff ij from the latest
messages. The average message duration can be simply cal-
culated as the ratio between the average message size of each
application/service j and traffic class i and the data rate (by
default, the data rate is set to 6 Mbps [35]). Then, the average
channel resources consumed by each application/service can
be estimated as:

CRE ij =
Ton ij

Ton ij + Toff ij
(5)

Using equation (5), the total channel resources CRi from
all applications/services of traffic class i can be calculated as:

CRi =
∑
j

CRE ij (6)

The channel resources CBRa that the vehicle can use
depends on the current channel load and the specific DCC
Access algorithm. For the Adaptive approach, CBRa = δ,
i.e. the maximum fraction of time that a vehicle is allowed
to transmit. However, for the Reactive approach, CBRa =
1/Toff , i.e. the maximum number of messages that the vehicle
can transmit per second. CBRa is used by DCC Facilities as
an input to distribute the available channel resources among
the different traffic classes. The traffic class with the highest
priority is TC0, so the available channel resources for this
traffic class ACR0 is set equal to CBRa. If traffic class TC0
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does not consume all the available channel resources for the
vehicle, the remaining resources are assigned to the next
traffic class. As a result, ACRi for traffic class i is calculated
as:

ACRi = max(0,ACRi−1 − CRi−1) (7)

Equation (7) can be applied to both Reactive and Adaptive
approaches at the DCCAccess, butACRi represents a fraction
of time for Adaptive and a message rate for Reactive since
they use a different CBRa.

DCC Facilities then identifies the channel resources ACRij
that each application/service j belonging to the same traffic
class i can use. To this aim, it takes into account the average
channel resources consumed by each application/service cal-
culated with equation (5):

ACRij =
CRE ij
CRi

× ACRi (8)

For the Adaptive approach, the minimum interval Toff min ij
for each application/service with index j and traffic class with
index i can be then calculated as follows:

Toff min ij = Ton ij ×
1− ACRij
ACRij

(9)

For the Reactive approach, ACRij is a message rate and the
minimum interval Toff min ij can be directly computed as4:

Toff min ij =
1

ACRij
(10)

Toff min ij is then used to adapt the minimum time interval
between message generations of each application/service.
To this aim, the time interval used to check the message
generation rules of each application/service (e.g. T_GenCpm
for CPMs or T_GenCam for CAMs) is set equal to its cor-
responding Toff min ij. As a result, the time interval between
consecutive messages of each application/service is dynam-
ically adapted to satisfy the DCC Access limits imposed to
each vehicle.

We now illustrate the operation of DCC Facilities with an
example in a scenario where vehicles transmit CAMs and
CPMs with the same DCC profile. The average message size
at the facilities layer is 200 Bytes for CAMs and 300 Bytes
for CPMs, including the ITS PDU header and the payload
at the Facilities layer. Additionally, 80 Bytes of headers are
added by the corresponding protocols: 4 Bytes are added by
the Basic Transport Protocol (BTP) [38], 40 Bytes by the
GeoNetworking protocol [31], [39], 30 Bytes by the Medium
Access Control (MAC) and 6 Bytes by the PHY layer of
IEEE 802.11p [29]. The average message interval is 0.2 s for
CAMs and 0.1 s for CPMs. Let’s assume that DCC Facilities
is combined with the Adaptive approach at DCC Access
and that the total available channel resources per vehicle is
CBRa = δ = 0.005. In this case, each vehicle can use 0.5%

4 This is currently not specified in the current draft of ETSI TS 103 141 but
it is a change needed to combine the DCC Facilities algorithm with the
Reactive approach at DCC Access.

of the channel access time when using IEEE 802.11p or ITS-
G5. We consider that vehicles transmit at a data rate of 6
Mbps. The average channel resources consumed by CAM
and CPM messages can be estimated using equation (5) and
are equal to CRECAM = 0.0019 and CRECPM = 0.05
respectively. We can then compute the total consumption of
channel resourcesCR using equation (6):CR= 0.0069. Using
equation (8), we can estimate the available channel resources
for CAM (ACRCAM = 0.0013) and CPM (ACRCPM =

0.0037) messages. Finally, the minimum interval can be com-
puted for CAMs as Toff minCAM = 0.2763s and for CPMs
as Toff minCPM = 0.1383s following equation (9). We then
adapt the generation rate of CPMs and CAMs at the Facilities
layer so that T_GenCpm = Toff minCPM and T_GenCam =
Toff minCAM . A different solution would be obtained in this
example if DCC Facilities was combined with the Reactive
approach at DCC Access. The feedback provided by the
Reactive approach is the maximum number of messages that
the vehicle can transmit per second. Let’s assume in this
example thatCBRa = 10Hz. If we follow the same procedure
to compute the minimum interval for CAMs and CPMs using
equation (10) instead of (9), we obtain Toff minCAM = 0.3706s
and Toff minCPM = 0.137s.

V. SCENARIO AND PARAMETERS
This study uses the network simulator ns-3 and the road
mobility simulator SUMO. The ns-3 simulator imple-
ments the ITS-G5 V2X standard based on IEEE 802.11p.
We extended ns-3 with a DCC Access module, a DCC
Facilities module, a CPS component and different on-board
sensors. The DCC Access module used in this study is
described in [40] and publicly available. The CPS component
implements the ETSI CPM generation rules defined in [4]
and described in Section III. By default, all vehicles in the
scenario are equipped with an ITS-G5 transceiver except
when we analyze the impact of the Market Penetration Rate
(MPR) on the effectiveness of cooperative perception. Vehi-
cles transmit CAMs and CPMs. The CAM size is set equal
to 350 bytes [41] and CAMs are generated following [8].
By default, the T_GenCpm parameter has been set to 0.1 s so
the maximum CPM rate is 10 Hz. The CPM size is dynam-
ically computed by the transmitting vehicle based on the
number of containers in each CPM, the size of the containers
reported in Table 2 and the number of objects included in a
CPM.5 Vehicles transmit messages using the 6Mbps data rate
(i.e. QPSKmodulation with 1/2 code rate) and always use the
same channel. The transmission power is set to 23 dBm and
the packet sensing threshold to−85 dBm. Radio propagation
is modeled using theWinner+ B1 propagation model follow-
ing the 3GPP V2X guidelines [42]. This model was used for
the simulation studies conducted during the V2X standard-
ization process of the 3GPP. Other propagation models could
have been used (e.g. [43]) but similar conclusions would

5The Free Space Addendum Container is optional and has not been
considered in this study.

197672 VOLUME 8, 2020



G. Thandavarayan et al.: Cooperative Perception for CAVs: Evaluation and Impact of Congestion Control

TABLE 2. CPM containers.

TABLE 3. Communication parameters.

be obtained since our study is comparative in nature and
a different model would affect similarly all configurations
being tested.

Table 3 summarizes the main communication parameters.
Unless specified, DCC is not enabled by default. When
enabled, DCC Reactive and Adaptive are analyzed at the
Access layer. We consider a queue length of 2 following [44]
and different DCC profiles for the CPM since the standards
have not specified them yet. The DCC profile for CPMs is
set to DP2 or DP3 and the DCC profile of the CAM is set
to DP2 following [45]. The DCC profile has an impact on
the priority of the packets at the access layer. We have also
implemented the current DCC Facilities defined by ETSI6

and described in Section IV.
We implement three different sensor configurations shown

in Table 4. In the forward sensors configuration, vehicles
are equipped with two forward facing sensors following [4].
The 360◦ sensor configuration considers a single circular
shape sensor with 360◦ field of view following [4]. The Tesla
sensors configuration follows [46] and equips vehicles with
seven sensors. In all sensor configurations, we assume that
the sensors can detect only the vehicles that are in their line-
of-sight. To this aim, we implemented in ns-3 a 2D sensor
shadowing effect in the XY-plane that considers the occlusion
caused by nearby vehicles. By default, this study assumes that
the information about objects detected by multiple sensors is
fused.

We consider a highway scenario with 5 km length and
two driving directions. We simulated three traffic densities:
low, medium and high as presented in Table 5. The low and
medium traffic densities follow the 3GPP guidelines for V2X
simulations [42] considering 6 lanes (3 in each direction) and
a different speed per lane following statistics of a typical

6 This implementation could be subject to modification since the standard
has not been finalized yet.

TABLE 4. Sensor configurations.

TABLE 5. Traffic scenarios.

3-lane US highway [47]. The high traffic density considers
8 lanes (4 in each direction) and amaximum speed of 50 km/h
[47]. To avoid boundary effects, statistics are only taken from
the vehicles located in the 2 km around the center of the
simulation scenario.

VI. EVALUATION OF COOPERATIVE PERCEPTION
We first evaluate the perception capabilities of different
sensor configurations without using cooperative perception.
In this case, perception is limited by occluding objects.
Figure 3 compares the object perception ratio experienced
with the three sensor configurations under low and high
traffic densities. The object perception ratio is defined as
the probability of successfully detecting an object at a given
distance. Sensors do not correctly detect a vehicle if their line-
of-sight is occluded by other vehicles. Figure 3 shows that
occluding vehicles can significantly degrade the perception

FIGURE 3. Object perception ratio achieved with different sensor
configurations under low and high traffic densities.
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capabilities, and the degradation increases with the distance
and the traffic density. This is the case because both factors
augment the probability that a vehicle blocks the sensors’
line of sight. Figure 3 shows that the perception capabilities
augment with the sensors’ FoV and range. In this case, using
forward sensors alone reduces the object perception ratio
since these sensors cannot detect vehicles in all directions.

Cooperative perception can mitigate the occlusion prob-
lems illustrated in Figure 3 and increase the perception
capabilities of connected automated vehicles. This is shown
in Figure 4 that compares the average object perception ratio
with and without using cooperative perception for the three
different sensor configurations. When using cooperative per-
ception, the metric is defined as the probability to success-
fully detect a vehicle within a time window thanks to the
exchange of CPMs. We consider that a vehicle successfully
detects an object if it receives at least one CPM with infor-
mation about that object during the time window. The time
window was set to 200 ms for the low traffic density scenario
and to 300 ms for the rest of the scenarios. These values
were chosen since they correspond to the time required by the
CPM generation rules for a vehicle to send an update about a
detected object considering the speed of the vehicles in each
scenario. The metric is represented in Figure 4 as a function
of the distance between the detected object and the vehicle
receiving the CPM. Results in Figure 4 were obtained assum-
ing 100% penetration rate of cooperative perception and that
DCC is disabled. This is done so that Figure 4 focuses on
the effect of the sensor configuration on the effectiveness of
cooperative perception. We also assume that the vehicles fuse
the information received from their multiple sensors. In this
case, if multiple sensors detect the same object, the vehicle
will only transmit once the information about the detected
object.

Figure 4 clearly shows that cooperative perception signifi-
cantly increases the perception capabilities of CAVs. In par-
ticular, it increases the distance at which objects can be
detected compared to when only using the on-board sensors.
Figure 4 shows that in these scenarios the sensor configura-
tion does not significantly affect the object perception ratio
when utilizing cooperative perception compared to when not
utilizing it (Figure 3). In fact, the Tesla and 360◦ sensor
configurations achieve similar perception rates, and the per-
ception with the forward sensor configuration only slightly
degrades at medium to large distances for low traffic densities
(Figure 4a). This is the case because cooperative percep-
tion compensates the perception limitations of sensors. For
example, a vehicle that uses only forward sensors can detect
objects behind when using cooperative perception thanks
to the CPMs received from other vehicles that detect these
objects. We should note that the slight perception degradation
observed in Figure 4 with the forward sensor configuration is
reduced for higher traffic densities. This is the case because at
higher densities more vehicles detect each object and cooper-
ative perception can better compensate the limitations of the
forward sensors.

FIGURE 4. Object perception ratio under different traffic densities. When
using cooperative perception, the x-axis represents the distance between
the detected object and the vehicle receiving the CPM. When cooperative
perception is not used, the x-axis represents the distance between the
detected object and the vehicle detecting it with its sensors.

Figure 4 also reveals that the object perception ratio sig-
nificantly decreases when the traffic density increases. This
degradation is due to the increase in channel load and inter-
ferences at higher traffic densities. The interferences augment
the packets losses due to packet collisions and degrade the
PDR (Packet Delivery Ratio) as it can be observed in Figure 5.
This figure also shows that the highest PDR under the highest
traffic density is achieved with the forward sensor configu-
ration. This is the case because each vehicle detects a lower
number of vehicles than with the 360◦ or Tesla configurations
and thus transmits less information. In fact, the sensor con-
figuration can have an important impact on the channel load.
Table 6 shows that the 360◦ and Tesla sensor configurations
can increase the CBR by around 40% compared with the
forward sensor configuration. Thanks to the lower channel
load generated, the forward sensor configuration is able to
provide higher cooperative perception ratios than the 360◦
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FIGURE 5. PDR (Packet Delivery Ratio) under different traffic densities
(low, medium and high) and sensor configurations.

TABLE 6. Average CBR (Channel Busy Ratio).

and Tesla sensor configurations for the high traffic density
scenario (Figure 4c).

Figure 4 has been obtained considering 100% penetration
rate of cooperative perception, i.e. all vehicles in the scenario
are CAVs and transmit CPMs. The effectiveness of coop-
erative perception depends on the number of vehicles that
detect objects and share their information. Figure 6 shows the
impact of the MPR (Market Penetration Rate) of cooperative
perception. The figure shows that the object perception ratio
increases with the MPR for low and medium traffic densities.
However, when the traffic density is high, the perception ratio
decreases for MPRs above 40% (Figure 6c). This degradation
is again due to the significant increase of channel load at
high traffic densities and the consequent increase in packet
loses due to collisions. Figure 6 also shows that the sensor
configuration does have an important effect on the perception
when the MPR is low. In particular, the 360◦ and Tesla sensor
configurations achieve significantly higher perception ratios
than the forward sensor configuration, especially for low
MPR. This is the case because cooperative perception cannot
compensate well the perception limitations of the forward
sensor configuration when there are few vehicles and not all
vehicles can detect objects and share their information. How-
ever, all the sensor configurations provide similar perception
ratios for MPR above 80%.

Figure 6 has shown that the sensors configuration has a
strong impact on the perception that can be achieved with
cooperative perception when the market penetration is low.
The sensor configuration also has a high impact on the chan-
nel load generated. In fact, the sensor configuration has a
strong impact on the amount of information sharedwith coop-
erative perception. This is the case because the sensor config-
uration affects the number of objects detected by each vehicle.

FIGURE 6. Object perception ratio under different traffic densities for
different market penetration rates and for distances up to 350m.

As a consequence, the sensor configuration influences the
amount of information transmitted by each vehicle. This
changes the number of updates about the same object received
by a vehicle under the observation time window. This number
is referred to as detected object redundancy, and is depicted
in Figure 7 as a function of the distance between the object
and the vehicle receiving the CPM. Figure 7 corresponds to
a 100% MPR.7 The figure shows that the 360◦ and Tesla
sensor configurations generate a significantly higher amount
of redundancy compared to the forward sensor configuration.
Despite the trends observed in Figure 7, all sensor configu-
rations provide a similar object perception ratio up to around
300m for low and medium densities and up to around 200m
for the high density (see Figure 4). This means that the higher
redundancy and number of objects detected by the 360◦ and
Tesla sensor configurations do not improve the perception

7Different redundancy values are observed with lower MPRs. However,
the trend is maintained, i.e. sensors with wider FoV and larger ranges are
characterized by higher redundancy levels.
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FIGURE 7. Detected object redundancy as a function of the distance
between the detected object and the vehicle receiving the CPM under
different traffic densities.

achieved with cooperative perception. Instead, they signifi-
cantly increase the channel load as shown in Table 6.

Figure 7 also shows an interesting effect produced by
the increase of the traffic density. When the traffic density
increases, more vehicles transmit information about the same
detected object and thus higher redundancy levels would be
expected. However, such increase of the object redundancy
is only produced at short distances. At medium and long
distances, the degradation of the PDR (Figure 5) due to packet
collisions reduces the detected object redundancy for medium
and high traffic densities.

The previous results have been obtained considering that
vehicles implement sensor fusion. In this case, if several
sensors detect the same object, their information is fused and
the object is reported only once in each CPM. If sensor fusion
is not used, an object detected by multiple sensors is reported

FIGURE 8. CPM size for medium traffic density and the forward and Tesla
sensor configurations. Similar trends have been observed with low and
high traffic densities for both sensor configurations.

multiple times in each CPM. This increases the message size
as shown in Figure 8. This figure compares the CPM size
with and without sensor fusion for the low traffic density
scenario and the forward and Tesla sensor configurations. The
results are presented as a box plot with the bottom and top
edges indicating the 25th and 75th percentiles and the mark
in the middle representing the median. Vertical lines show
the most extreme data points that are not considered outliers.
The results obtained show that the CPM size significantly
increases when sensor fusion is not used, especially for the
Tesla sensor configuration since it hasmore on-board sensors.
In fact, the generated payload sizes of the Tesla non-fusion
configuration exceed the maximum payload size [39]. In this
case, the CPMs would have to be segmented and this could
increase the risk of delaying the reception of the information
about certain detected objects. Another main concern related
with the increasing message size is that it significantly aug-
ments the channel load and the interference, and degrades
the PDR (Figure 9) without providing additional relevant
information to the receiving vehicles. Reducing the PDR
degrades the effectiveness of cooperative perception since it
reduces the probability to correctly receive CPM messages.
This is actually visible in Figure 10 that depicts the object
perception ratio when using sensor fusion and when not using

FIGURE 9. PDR (Packet Delivery Ratio) for medium traffic density and the
forward and Tesla sensor configurations. Similar trends have been
observed with low and high traffic densities for both sensor
configurations.
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FIGURE 10. Object perception ratio as a function of the distance between
the detected object and the vehicle receiving the CPM under different
traffic densities (low, medium and high). These results correspond to the
Tesla sensor configuration.

it. The figure clearly shows how the object perception ratio
degrades when sensor fusion is not applied. The degradation
is particularly relevant when the traffic density increases. The
perception degradation observed in Figure 10 when not using
sensor fusion is exclusively due to the degradation of the
PDR (i.e. the V2X communication performance) since each
vehicle can detect exactly the same number of objects when
implementing sensor fusion and when not implementing it.

VII. IMPACT OF CONGESTION CONTROL ON
COOPERATIVE PERCEPTION
The previous results have been obtained disabling the DCC
mechanisms for congestion control. This was done to focus
first on the impact of the sensors and market penetration rate
on the perception and effectiveness of cooperative perception.
The previous analysis has shown that cooperative perception
can increase the channel load quite significantly under certain
scenarios and configurations. Increasing the channel load can
degrade the PDR, and ultimately the performance of V2X
communications and the network scalability. To prevent this,
an increase of the channel load above certain threshold acti-
vates the DCC mechanisms for congestion control. DCC can
alter the performance and operation of collective perception.
This can occur for example if the DCC queues CPM mes-
sages. Queuing would increase the information age and alter
the regular reception of object updates. The DCC could also
drop CPMs when the CPM generation rate is higher than the
maximum transmission rate allowed by DCC Access. This
could also significantly impact the effectiveness of cooper-
ative perception. It is also important highlighting that CPM
messages might have to coexist with other messages in the
same channel. This increases the risk that DCC is activated
and impacts the operation and effectiveness of cooperative
perception. In this context, this section analyses the impact of
DCC on cooperative perception. We focus first on the impact
of DCC at the Access layer and then DCC at the Facilities
layer. These are the two DCC components that mostly affect
the transmission of CPM messages.

The scenario considered in this section is the high traffic
density scenario described in section V, with 240 veh/km,

a 100% MPR of cooperative perception and the 360◦ sensor
configuration. We also assume that all vehicles transmit
CAMs and CPMs in the same channel. This scenario is
chosen to make sure DCC is activated and we can then study
its impact on cooperative perception.

A. DCC ACCESS
In the considered scenario, the CBR experienced is equal
to 75% when DCC Access is not applied. The use of DCC
Access can significantly reduce the CBR as shown in Table 7.
These results show that the Reactive approach reduces more
aggressively the channel load and maintains the CBR around
37%. The Adaptive approach is designed to converge to the
target CBR of 68% and this results in higher CBR levels.
Table 7 also shows that nearly the same CBR is achieved
independently of the DCC profiles of the messages.

TABLE 7. Average CBR (Channel Busy Ratio) with DCC Access for the high
traffic density scenario.

One interesting effect that cannot be observed in Table 7 is
the message transmission rate that DCC Access tolerates.
When DCC is not applied, the average rates at which CAMs
and CPMs are generated and transmitted are 3.3 Hz and
9.6 Hz, respectively. When DCC Access is enabled, the mes-
sage transmission rates are reduced due to message dropping
as shown in Table 8. Table 8 shows that the transmission
rates of CAMs and CPMs are lower than the generation
rates when both messages have the same DCC profile. When
they have different DCC profiles, only CPMs are dropped
because CAMs have higher priority.8 Table 8 also shows
that the Reactive and Adaptive approaches present nearly the
same message transmission rate despite experiencing a very
different CBR as shown in Table 7. This is the case because
with the Reactive approach vehicles tend to synchronize
with each other. This synchronization results in that vehicles
change their state (and thus their Toff ) nearly at the same time.

8This is the case because CAMs are prioritized since they are the basic
awareness messages for active traffic safety applications.

TABLE 8. Average CAM and CPM transmission rates with DCC Access.
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A change to a more relaxed state, immediately allows the
transmission of messages that were waiting in their queues.
As a result, vehicles transmit nearly at the same time [48],
which provokes that the Reactive approach generates a signif-
icant amount of packet collisions. Packet collisions reduce the
channel load (and CBR) because when packets collide they
overlap in time.

DCC Access can reduce the CBR and improve the PDR
at the radio level, i.e. the ratio between the received and
transmitted packets. This is particularly the case with the
Adaptive approach as shown in Figure 11. This figure rep-
resents the PDR at the radio level when CAMs and CPMs are
configured with the same DCC profile. The figure also shows
that the Reactive approach actually degrades the PDR at the
radio level despite reducing the CBR. This is due to the high
probability of packet collisions for the Reactive approach due
to the synchronization problem previously explained. Similar
results are obtained when analyzing the PDR at the radio level
when CAMs and CPMs have different DCC profiles.

FIGURE 11. PDR (Packet Delivery Ratio) at the radio level as a function of
the distance between transmitter and receiver without and with DCC
Access when CAMs and CPMs have the same DCC profile.

To better understand the effect of DCC Access on the
performance of collective perception, Figure 12 plots the
PDR for CPMs at the radio and application levels for Reactive
and Adaptive approaches. At the application level, the PDR
is defined as the ratio between the received and generated
CPMs. Thus, a CPM generated at the Facilities layer but
dropped by DCC Access is considered as a packet lost when
computing the PDR at the application level.9 Figure 12 shows
that DCCAccess degrades the performance at the application
level due to packet dropping. This degradation is observed for
both Reactive and Adaptive approaches. However, the Reac-
tive approach shows a significantly lower PDR at the appli-
cation level than the Adaptive one due to its lower PDR at
the radio level. The figure also shows that this degradation
produced at the application level due to packet dropping is
particularly relevant when CAMs and CPMs have different
DCC profiles. In this case, CPMs are the only messages
dropped by DCC since they have lower priority than CAMs.

9This packet loss would not be counted in the PDR at the radio level since
the packet was never transmitted.

FIGURE 12. PDR (Packet Delivery Ratio) for CPMs at the radio and
application levels as a function of the distance between transmitter and
receiver without DCC and with DCC Access when CAMs and CPMs have
the same or different DCC profile.

The PDR at the radio and application levels affect the
object perception ratio. However, the differences observed in
the PDR of Figure 12 are not directly transferred to Figure 13.
Figure 13 depicts the object perception ratio as a function
of the distance between the object and the vehicle receiving
the CPM. Figure 13a shows that the object perception ratio
significantly degrades with the Reactive approach following
the trend observed in Figure 12a where Reactive signifi-
cantly degrades the PDR at the application level. This once
again clearly proves that the Reactive approach degrades the
performance of cooperative perception despite reducing the
channel load. Figure 13b shows the perception achieved with
the Adaptive approach. For distances below 200m, the higher
PDR achieved at the application level without DCC does
not result in a significant improvement of the object per-
ception ratio. This is the case because the object perception
ratio is already close to 1 at distances below 200m when
DCC is applied. Therefore, without DCC the perception ratio
cannot be significantly improved despite its higher PDR at
distances below 200m. However, DCC Adaptive improves
the object perception ratio for distances beyond 200m when
CAMs and CPMs have the same DCC profile. A higher
perception is achieved despite having nearly the same PDR
at the application level than when DCC is not used. This
effect is produced due to the different nature of packet errors
with and without DCC. When DCC is not applied, more
packet collisions are produced due to the higher channel
load. When two (or more) packets collide, more than one
packet can be lost due to such collision. Therefore, when
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FIGURE 13. Object perception ratio as a function of the distance between
the detected object and the vehicle receiving the CPM without DCC and
with DCC Access.

DCC is not applied, consecutive packet loses are produced
with higher probability. This effect is not produced with the
packets dropped by DCC, since one packet drop does not
affect the reception of other packets. Consequently, packet
collisions can increase the time between consecutive object
updates. This effect can be observed in Figure 14 that plots
the time between object updates as a function of the distance
between the detected object and the vehicle receiving the
CPM in bins of 50 m. The time between updates shown
in Figure 14 corresponds to that measured with the Adaptive
approach.10 Results are presented using box plots with the
bottom and top of each box representing the 25th and 75th
percentiles. The median is represented inside each box with
the black horizontal line. The vertical lines plotted above
and below each box represent the 5th and 95th percentiles.
Results in Figure 14 reveal that there is higher variability
in the time between consecutive updates when DCC is not
applied due to the higher probability of consecutive packet
loses due to collisions. For example, the 95th percentile of
the time between updates is around 0.9 s at 300 m without
DCC, and around 0.6 s with DCC when CAM and CPM
have the same profile. However, the variability also increases
with DCC when CAM and CPM have different profiles for
distances higher than 200 m since CPMs have lower priority
than CAMs.

The previous results show that DCC Access has an impact
on the probability of receiving information about an object

10Similar trends are obtained with the Reactive approach, but with higher
times between updates (approximately 2x increase).

FIGURE 14. Time between object updates as a function of the distance
between the detected object and the vehicle receiving the CPM.

FIGURE 15. Average information age for CPMs received with and without
DCC Access. The bars represent the average values and the vertical lines
represent the 5th and 95th percentiles.

through CPMs and therefore on the object perception ratio.
However, they do not quantify if the information received
is outdated. This is important because connected automated
driving requires updated data and low transmission latencies.
However, queuing at DCC Access can significantly delay the
transmission of messages. To analyze the impact of DCC
Access on the freshness of the received information, we mea-
sure the information age that is defined as the difference
between the time the CPM is generated and the time the
CPM has been received. Figure 15 represents the informa-
tion age obtained without DCC and with DCC (Reactive
and Adaptive) when CAMs and CPMs are configured with
the same and different DCC profiles. The bars represent
the mean values and the vertical lines correspond to the 5th

and 95th percentiles. The distance between the transmitter
and receiver does not have a significant impact because the
propagation delay is negligible. The results obtained show
that DCC significantly increases the information age when
compared with the scenario without DCC. When DCC is not
used, all the generated CPMs are immediately transmitted.
However, with DCC, the generated CPMs must often wait in
the queue before transmission. This waiting time causes the
received information to be outdated by up to 0.4s (Adaptive)
or 0.5s (Reactive) when CAM and CPM have different DCC
profiles. This provokes a tracking error of up to around 5 m
when CAM and CPM have different DCC profiles. This
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is a non-negligible error that can degrade the effectiveness
of cooperative perception when implementing DCC. This is
despite the possibility to achieve a higher object perception
ratio (Figure 13) since detecting more objects is not useful if
the information about the detected objects is outdated or not
sufficiently fresh.

B. DCC FACILITIES
DCC Facilities is optional as defined in the current Tech-
nical Specification draft. However, it can help mitigate the
increase of the information age caused by DCC Access and
improve the perception capabilities as we demonstrate in this
section. DCC Facilities is being designed so that messages
are generated at the Facilities layer at the maximum rate
tolerated by DCC Access. This is done to reduce the queuing
time at the Access layer and limit packet drops. To this aim,
DCC Facilities distributes the resources among the different
services that generate messages with the same DCC profile.
We have therefore considered in this section that both CAMs
and CPMs have the same DCC profile, DP2.

FIGURE 16. Average information age for CPMs received when CAMs and
CPMs have the same DCC profile. The bars represent the average values
and the vertical lines represent the 5th and 95th percentiles.

Figure 16 compares the information age obtained without
DCC, with DCC Access only and with the combination of
DCCAccess and DCC Facilities. The bars represent the mean
value and the vertical lines show the 5th and 95th percentiles.
As it can be observed, DCCAccess significantly increases the
information age as we previously showed. However, the com-
bination of DCC Access and DCC Facilities significantly
reduces the information age, especially when considering the
Adaptive approach. This improvement is achieved because
DCC Facilities controls the generation following the limits
provided by DCC Access so that messages are not generated
if they are going to be queued. The reduction of the informa-
tion age when DCC Access and DCC Facilities are combined
decreases the tracking error below 1.5 m with the Adaptive
approach. This error was under 2.3 m with DCC Access
(Adaptive) when CAM and CPM have the same profile and
below 0.17 m when DCC is not used. The information age
is not improved when the Reactive approach is used. This
is the case because the channel load variations do not allow
DCC Facilities to accurately track the packet transmission

rate allowed by the Reactive approach (Table 1) and hence
to reduce the queuing time.

DCC Facilities controls the generation of CPMs based on
the possibility to transmit them at the DCC Access. This
significantly reduces the percentage of CPMs dropped. The
percentage of CPMs droppedwith DCCAccess only is 41.6%
for Reactive and 37.5% for Adaptive. The combination of
DCC Access and DCC Facilities reduces the CPMs dropped
to 12.8% for Reactive and 8.7% for Adaptive. This effect is
produced because DCC Facilities reduces the packet genera-
tion rate at the Facilities layer following the limits provided
by DCC Access. This reduction is shown in Figure 17 that
shows the PDF of the number of CPMs generated at the
Facilities layer per second per vehicle. The figure also shows
that DCC Access generates the same number of CPMs than
the scenario without DCC (irrespective of whether using the
Reactive or Adaptive approach). This is the case because
DCC Access controls messages at the access layer and does
not modify the way CPMs are generated at the Facilities
layer. When DCC Access is combined with DCC Facilities,
the number of CPMs generated per second is reduced. As a
consequence, each CPM includes information about a larger
number of detected objects. This is the case because the time
interval between CPM generations is longer, and thus more
objects satisfy the conditions to be included in a CPM since
the last time a CPM was generated. This increase of the
number of objects in each CPM with DCC Facilities can be
observed in Figure 18. Despite the variation observed in the
number of CPMs generated per second and the number of
objects contained in each CPM, DCC Facilities is designed
to generate the load admitted by DCC Access, but not more.
The obtained results demonstrate that this goal is achieved
with the Adaptive approach. This is the case because the
combination of DCC Access and DCC Facilities is able to
maintain the CBR around 61.9%when the Adaptive approach
is considered. It is the same CBR than the one achieved in
the scenario where only DCC Access is used (Table 7). How-
ever, the percentage of packet drops is significantly lower
when DCC Facilities is used (7.5%) than when it is not used
(37.2%).

FIGURE 17. PDF of the number of CPMs generated at the Facilities layer
per second per vehicle when CAMs and CPMs have the same DCC profile.
When DCC Access is used alone, the same results are obtained for
Reactive and Adaptive approaches since DCC Access does not modify the
generation of CPMs.
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FIGURE 18. PDF of the number of objects included in each CPM when
CAMs and CPMs have the same DCC profile. When DCC Access is used
alone, the same results are obtained for Reactive and Adaptive
approaches.

The use of DCC Facilities with the Reactive approach
has a different effect on the CBR. It increases the CBR to
46.7% compared to the scenario when only DCC Access
is used (37.8%). This increase is produced because DCC
Facilities mitigates the synchronization problem that charac-
terizes the Reactive approach and that has been previously
explained. DCC Facilities mitigates the synchronization
problem because it allows each vehicle to generate (and
transmit) messages with different time intervals based on
their past generatedmessages.Mitigating the synchronization
problem increases the CBR because there are less packet col-
lisions and thus packets do not overlap in time. Consequently,
the implementation of DCC Facilities significantly increases
the PDR. This can be observed in Figure 19a for Reactive
and in Figure 19b for Adaptive. The PDR at the radio level
is especially improved with the Reactive approach due to

FIGURE 19. PDR (Packet Delivery Ratio) for CPMs at the radio and
application levels as a function of the distance between transmitter and
receiver when CAMs and CPMs have the same DCC profile.

FIGURE 20. Object perception ratio as a function of the distance between
the detected object and the vehicle receiving the CPMs when CAMs and
CPMs have the same DCC profile.

the mitigation of the synchronization problem. It is nearly
maintained for Adaptive since the same CBR is achieved. The
PDR at the application level is significantly improved for both
Reactive andAdaptive. This is due to the low number of pack-
ets dropped by DCC when DCC Access and DCC Facilities
are combined. Thanks to the improvement of the PDR, the
combination of DCCAccess andDCCFacilities improves the
object perception ratio. This is visible in Figure 20 that com-
pares the object perception ratio when not using DCC, when
using DCC Access only and when combining DCC Access
and DCC Facilities. Figure 20 reports the object perception
ratio for the Reactive and Adaptive approaches. The improve-
ment produced by DCC Facilities is particularly relevant for
the Reactive approach given the high PDR increase. In fact,
the Reactive approach slightly outperforms the Adaptive one
for distances beyond 300m. This improvement is produced
due to the higher PDR at the application level of the Reactive
approach at such distances (Figure 19) due to its lower CBR
and thus lower packet collisions. All these results clearly
show that the combination of congestion control functions
at the Access and Facilities layers can significantly improve
cooperative perception. This is the case because it augments
the object perception ratio, reduces the information age, and
improves the PDR compared with the scenario with DCC
Access only.

VIII. CONCLUSION
This paper analyzes in detail the effectiveness and operation
of cooperative perception in connected automated driving.
The study shows that cooperative perception significantly
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improves the perception compared to scenarios in which
vehicles exclusively rely on their on-board sensors. The effec-
tiveness of cooperative perception is analyzed for different
sensor configurations andmarket penetration rates. The study
shows that very high perception levels can be achieved with
penetration rates of only 40%. The perception achieved with
cooperative perception strongly depends on the sensors’ field
of view and range when the market penetration rate is low.
However, the impact of the sensors’ characteristics on the
performance of cooperative perception decreases with the
market penetration rate.

Cooperative perception can increase the channel load
in the network, which has the risk to reduce the V2X
communication performance and degrade the network’s scal-
ability. V2X networks control the channel load using con-
gestion control protocols. This study has then also analyzed
the impact of congestion control on cooperative perception.
To this aim, the study has focused on the DCC algorithm and
has evaluated the impact of congestion control functions at
the access and facilities layers. At the access level, the study
compares for the first time the performance achieved with the
Reactive and Adaptive solutions for cooperative perception.
The study demonstrates that the Adaptive approach signifi-
cantly improves the perception achieved but can increase the
information age (or freshness) of the exchanged messages
compared to scenarios where DCC is not used. This reduces
the value of cooperative perception since latency is critical in
connected automated driving. This study demonstrates then
for the first time that this challenge can be partially addressed
through the combination of DCC Access and DCC Facili-
ties. We demonstrate that the combination of DCC Access
and DCC Facilities increases the perception and reduces the
information age when compared with the DCC Access con-
figuration. This is achieved by dynamically adapting the rate
at whichmessages are generated. This reduces the probability
to drop cooperative perception messages (and hence informa-
tion about the detected objects) and the channel load, which
ultimately benefits the V2X network and the effectiveness
of cooperative perception. This study therefore demonstrates
how critical is the configuration of DCC Access and the
importance of DCC Facilities for the development of CAVs.
This is particularly relevant for DCC Facilities since it is
still a draft that is considered optional and that has not yet
been adopted by industry organizations like the C2C-CC. The
outcome of this study can provide them valuable knowledge
towards an efficient and effective V2X configuration and
deployment.
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