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Abstract
For a single fermionic field, an interpretation of the Fierz identities (which establish relations between
the bilinear field observables) is given. They appear closely related to the algebraic class (regular or
singular) of the spin 2-form S associated to the spinorfield. If S≠ 0, the Fierz identities follow from the
3+ 1 decomposition of the eigenvector equations for Swith respect to an inertial laboratory, which
makes this interpretation suitable for fermionic particle physicsmodels.When S= 0, the Fierz
identities reduce to three constraints on the current densities associatedwith the spinorfield, saying
that they are orthogonal, equimodular, the vector current being time-like and the axial one being
space-like.

1. Introduction

A fermionicfield is usually described by a four-component spinorΨ, Y Îx 4( ) at each space-time event x.
Given a basis of the space-time exterior algebra, say G =

A
A 1
16{ } , a set of sixteen bilinear forms,Ψ†ΓAΨ, can be

constructed fromΨ, whereΨ† is the hermitian conjugate spinor ofΨ. These bilinear forms reveal physical
properties of thefield and behave in a specific tensorialmanner under Lorentz transformations. Substituting the
hermitian conjugate spinor by theDirac adjoint gY = Y 0¯ † , these bilinear forms are called bilinearDirac
covariants (or local electron observables), where γ0 is theDirac conjugationmatrix (see, for instance, [1]).

Reciprocally,Ψ can be obtained (up to a global phase factor) from its 16 bilinear concomitants, which are not
generically independent. This is the spinor reconstruction theorem (see [2] and references therein). In fact, in every
space-time event, the bilinear forms are algebraic quantities, in the sense that their definition does not depend on
the dynamics (Dirac, Klein–Gordon equations) associatedwith the field.Moreover, the products of any two
bilinear forms, when expressed in terms of linear combinations of all of them, satisfy certain algebraic relations,
which are usually referred as Fierz identities or Pauli-Fierz-Kofink identities [3, 4]. They are derived from the
completeness relations that give the canonical basis of the exterior algebra in terms of the basis under
consideration G =

A
A 1
16{ } (see, for instance, [5–7]).

Fierz identities aremeaningful to describe fermionic fields from aminimumnumber of significant degrees
of freedom. Roots and branches of this topic are based on relativistic field theory, and they have been extensively
analyzed inmanyworks fromdiverse perspectives. However, to our knowledge, a complete and not redundant
algebraic interpretation of these identities has not beenwholly accomplished, despite the amount of studies on
the subject.

Incidentally, a complete and unambiguous algebraic interpretation of the Fierz identities could enhance the
field of their applications or, at least, improve them. For instance, in Particle Physics theory, a better theoretical
understanding can be useful when dealingwith vector and axial density currents andwhen reducing invariant
expressions for the Lagrangian (orHamiltonian)density terms describing fermionic interactions. As it will
shownbelow, the fermionic currents are closely connectedwith the light-like directions of a regular spin 2-form.
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This fact provides a physicalmotivation for the current study inmathematical physics: to understand Fierz
identities from the sole algebraic structure of a space-time 2-form.

A similar type of relations involving two different spinors, in particular a field and its derivative [8], appears
when the energy tensor of thefield is analyzed [9], or in the formulation of theMaxwell-Dirac equations based
on the bilinear covariants [10]. For a compendiumof historical references on this topic, see the introduction in
[6], and also in [11], where a continuousmediamodel governed by theDirac equation is studied.Moreover, in
[12, 13], bilinear Fierz identities for a pair of spinors have been considered to deal with the coupling of a dynamic
spinorwith a background spinor field. And, in [14] the linear reconstruction of a four component spinor from a
spin 2-form, and the subsequent interpretation of the degrees of freedom involved in this kind of inverse
problem are treated.

Originally, in the case of theβ-decay, the Fierz identitities involved four interacting fermionic fields [15, 16].
An exhaustive treatment of the generalized Fierz identities, that is, for a quadruple of fermionic fields in an
arbitrary dimension—with application beyond the StandardModel of particle physics— is given in appendix B
of [17]. Applications of some generalized Fierz relations for fermion interaction processes, including numerical
implementations by hand, are reported in [18].

The geometry attached to a spin 2-form is tacitly used in Particle Physics theories [19]. In fact, the
Hamiltonian constructed from four interacting fermions takes into account the light-like currents when the
symmetry under parity is broken by the interaction. The light-like currents of the spin 2-form associatedwith a

charged lepton and its associated neutrino enter in theHamiltonian bymeans of the operators gº C I1

2
5( ).

Bilinear covariants of the form gY Ym
C1 2

¯ are proportional to the sumor the difference of the time-like current
Jμ and the space-like currentKμ associatedwith Y Y2 1

¯ . Thus, Jμ± Kμ provide the light-like leptonic currents, l
and n, which are associatedwith the fundamental directions of the regular spin 2-form corresponding to the pair
of leptons (for instance, an electron,Ψe, and its associated neutrino Yne

). The notation used is introduced in next
section.

This paper is devoted to establish the essential set of relations between the bilinear covariants attached to a
single spinorfieldΨ. By ‘essential’wemeans non redundant,mathematicallymanageable, and able to retain the
whole physical information of the Fierz identities. There exists a lot of references concerning Fierz identities and
its applications. Nevertheless, to our knowledge, the essential algebraic nature of the Fierz identities for a sole
spinor has not been firmly stated up to now.Wefind that it is a small, but perhaps important, gap concerning the
standard statements of the Fierz identities. Particle Physics situations (inwhich Fierz identities are applied) is the
environment where the results of this research could contributed, having practical use and gaining some new
insight.

In [6],Minogin obtained a reduced set of 21 Fierz type relations, providing six different geometric
representations for the 16 electron observables, depending on the chosen laboratory frame and the spinor field
parameterization. The 21 relations in [6] are not exactly the same as the 21 relations deduced directly from the
algebraic structure of a regular spin 2-form S in this work.Here, both sets of 21 identities are compared,
establishing that are linearly related between them and deduced from the sixteen essential relations given by the
algebraic structure of S. [6–8] arewritten in a clear 3-dimensional Euclidean notation and go beyond earlier
works.A4-dimensional Lorentzian representation of the Fierz identities is done in [2, 3, 20], where an
overcomplete set of Fierz type relations is reported. This Lorentzian approachwill be here revisited and
reinterpreted in terms of the invariant algebraic elements of the spin 2-form S.

The paper is distributed as follows. To beginwith, in section 2 the necessary terminology and notation to
read the paper and some previous results, which are related to algebraic properties of a Lorentzian
antisymmetric covariant two-tensor (2-form) and to the bilinear covariants associated to a spinor, are
summarized. In section 3, the eigenvector equations for the spin 2-form and its (star orHodge) dual 2-form are
decomposedwith respect to an arbitrary observer. In section 4, the complete independent set of identities
between the local electron observables is written in a covariant form and its equivalence to the eigenvector
equations for the spin 2-form is established. In section 5, our result is comparedwith the set of relations
presented in [6], where the standard 3-dimensional Euclidean notation is used. In section 6, the algebraic
classification of a spinorfield is revisited, laying stress on the role played by the character (regular or singular) of
the spin 2-form and the Fierz identities for this classification. A discussion about the results concerns to
section 7, which contains our conclusions.

2. Terminology and preliminaries

Themain sign conventions and notation adopted in this paper are as follows:
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(i) g is the metric of the Minkowski space-time, with signature (−,+ ,+ ,+ ). Let m m=e 0
3{ } be a space-time basis,

and qm m=0
3{ } its algebraic dual, q d=m

n n
me( ) , with dn

m the Kronecker delta. In concordance withHestenes’s

Space-TimeAlgebra terminology [21], in biunivocal correspondencewith qm m=0
3{ } , there exist four γ-

matrices, gm m=0
3{ } , that satisfy theClifford algebra anti-commutation relations:

g g g g+ = -m n n m mng I2 , 1( )

where gμ ν= g(θμ, θν) and I is the 4× 4 unitmatrix.4 Notice that there is no limitation on the causal character
of the vectors in the basis.5

(ii)The bilinear covariants associatedwith a spinorΨ and its Dirac adjoint gY = Y 0¯ † are defined by (cf [6, 28]),

g

g g g g

g g
g

W = YY
= Y Y

= Y - Y

= Y Y
W = Y Y

m m

mn m n n m

m m

J

S

K

,

,
i

2
,

,

i , 2

1

5

2
5

¯
¯

¯ ( )

¯
¯ ( )

where = -i 1 , and γ5=− iγ0γ1γ2γ3. Here,Ψ and its adjointΨ† are represented by a column and a row
complexmatrix, respectively.

The bilinear covariants (2) are phase independent and represent physical observables. In an orthonormal
inertial frame,6 they are interpreted as density quantities that transform in a specific tensorial way under the
action of the Lorentz group. They are called: the scalarΩ1, the vector current J= Jμθ

μ, the spin 2-form
q q q q= Ä = mn
m n

mn
m nS S S1

2
, the axial currentK= Kμθ

μ and the pseudoscalarΩ2, densities. Themetric

g is used to lower and rise indices.

(iii) η is themetric volume element of g, defined by h = - -abgd abgdgdet , where gdet is the determinant of
themetric g in the considered basis and òαβγδ stands for the Levi-Civita permutation symbol, ò0123= 1. The
Hodge (or star)dual operator associatedwith η is denoted by an asterisk ∗. For instance, the dual spin 2-form
∗S has components h* =mn mnlr

lrS S1

2
( ) , and if x, y, z are space-time vectors, one has that

h*   =a abgd
b g dx y z x y z , 3[ ( )] ( )

where∧ stands for thewedge or exterior product (antisymmetrized tensor product of totally antisymmetric
tensors).

(iv)Given P andQ second order tensors, the tensor P×Q denotes its matrix product, or contraction of adjacent
indices, that is

´ =m
n

mr
rnP Q P Q .( )

The trace ofP is º m
mP Ptr( ) . Then, for the spin 2-form S one has

= ´ = - mn
mnS S S S Str tr , 42( ) ( ) ( )

4
Dirac electron theorywas originally presented in a γ-matrix representation related to an orthonormal basis [22]. Later, Derrick [23]

analyzed theDirac equation in some unusual basis constituted by fourmetrically symmetric vectors (or symmetric frame), and he used their
attached γ-matrix representations. A frame =eA A 1

4{ } is said to be a symmetric frame (for themetric g) if gAA = g(eA, eA) = μ and gAB =
g(eA, eB) = ν,A ≠ B. Derrick’s workwould be further developed due toDerrick basis are representative of seven symmetric causal classes of
relativistic frames [24]. Thus, starting from aDerrick’s symmetric frame [23, 24], one obtains four γ-matrices that aremetrically
indistinguishable.
5
Froma causal point of view, the relativistic space-time frames (and coordinate systems) have been classified in 199 causal classes [25, 26].

Then, in accordance with theClifford anti-commutation relations given by equation (1), there exists 199 causal classes of γ-matrix
representations. Such an abundance of γ-matrix representations could be used to describe fermion processes in non inertial frames, in order
to develop further the research presented in [27].
6
Accordingly with equation (1) and the chosen signature (−,+ ,+ ,+ ), theDirac representation for the γ-matrices associatedwith an

orthonormal basis is taken as

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

g g
s

s
=

-
=

-
I

I
0

0
,

0
0

,D D
0 2 2

2 2

2

2






where I2 (02) is the 2 × 2 unit (zero)matrix, and s s s s= , ,1 2 3( )
stands for the Paulimatrices,

s s s= = - =
-

i
i

0 1
1 0

, 0
0

, 1 0
0 1

.1 2 3( )( ) ( )
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´ * = - *mn
mnS S S Str . 5( ) ( ) ( )

(v)For a space-time observer of unit velocity u, u2≡ g(u, u)=− 1, any vector x splits as:

= + ^x x u x , 60 ( )

where x0=− x · u≡− g(x, u) and x⊥ is orthogonal to u, g(u, x⊥)= 0. Fromnowon, wewrite =x x x,0( ) ,
where x0 and Î ^x E


are the time-like and space-like components of x relative to u, respectively, and E⊥

denotes the three-space orthogonal to u. Given two vectors x

, Î ^y E


, their vector or cross product is
expressed as

´ = *  x y u x y . 7( ) ( ) 

The interior or contracted product by u is denoted by i(u). For instance, if S is a covariant 2-tensor, one has
that =n

m
mni u S u S[ ( ) ] is a covector but if S is amixed 2-tensor, then =n m

m
ni u S u S[ ( ) ] is a vector.

A 2-form S is decomposed as

=  - * S u e u h , 8( ) ( )

where e=− i(u)S and h=− i(u) ∗ S are the electric andmagnetic part of Swith respect to u, respectively.
Then,7

* =  + * S u h u e . 9( ) ( )

Note that to change S by ∗S, S↪ ∗ S, is equivalent to change the electric andmagnetic parts of S as
(e, h)↪ (h,− e).

(vi)The characteristic equation of a space-time 2-form S is

l l- - =A
B

4
0, 104 2

2

( )

whereA andB are quadratic algebraic scalars defined as:

º = - º ´ * =A S e h B S S e h
1

2
tr ,

1

2
tr 2 . 112 2 2( ) ( ) · ( )

From (10), the eigenvalues of S are±α and±iβ, with

a = + +A B A
1

2
122 2∣ ∣ ( )

and

b = + -A B A
1

2
. 132 2∣ ∣ ( )

Consequently,

a b ab= - =A B, 2 . 142 2 ( )

(vii)A 2-form S is said to be regular if A2+ B2> 0. Otherwise, A= B= 0, and S is said to be singular. In terms of
the eigenstructure of S one has the following characterization:

(a) A 2-form S is regular if, and only if, there exist two vectors l, n and two algebraic invariants α, β, with
α2+ β2≠ 0 such that8

a a
b b

=- =
* = * = -

i l S l i n S n

i l S l i n S n

, ,

, . 15

( ) ( )
( ) ( ) ( )

Then l and n are necessary null (light-like) vectors, l2= n2= 0, and are called the principal directions of S.
Moreover, S and ∗S admit the following canonical expressions

a b=  + * S n l n l , 16( ) ( )

7
For any space-time 2-form F, ∗( ∗ F) = − F . An extensive treatment on the algebraic properties of a space-time 2-form can be seen in

[29, 30]. In [30], the covariant determination of the eigendirections of F is applied to characterize the differential conditions allowing the
permanence of the null character ofMaxwell fields. For the physicalmeaning of the electric andmagnetic parts of the spin 2-form S,
see [31, 32].
8
Vectors and covectors that aremetrically equivalent are denotedwith the same symbol without chance of confusion. For instance,

lμ = gμνl
ν is the covector associated to the vector l by themetric. So, in the equation i(l)S = − αl, the l of the left side of the equation is a

vector while the l of the right side is a covector, whenwe consider S as an antisymmetric covariant 2-tensor.

4
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b a* =  - * S l n l n , 17( ) ( )

where, without loss of generality, we have chosen a parameterization of l and n such that l · n=− 1.

(b) A2-form S is singular if, and only if, there exists a vector l such that

= * =i l S i l S 0. 18( ) ( ) ( )

Then l is necessarily null, l2= 0, and defines the fundamental direction of S, which can be expressed as

= S l p, 19( )

where p is a determined space-like vector, up to the transformation p↪ p+ μl.

3. Spin eigenvector equations: relative formulation

In this sectionwe express the eigenvector equations of a spin 2-form Swith respect to a given observer u. For a
regular S, equations (15) give the eigenstructure of S and ∗S, whereα andβ satisfyα2+ β2> 0 and l and n are the
principal directions of S. For the observer u, l and n decompose as

= + = +l l u l n n u n, . 200 0 ( )
 

Then, the relation i(l)S=− αl is equivalent to:

a a= = + ´l l e l l e l hand , 210 0· ( )
     

and the relation i(n)S= αn can bewritten as

a a= - = - - ´n n e n n e n hand , 220 0· ( )     

e

and h


being the electric andmagnetic part of Swith respect to u, respectively.

Replacing e

by h

and h


by-e


bymeans of theHodge duality, the relations i(l) ∗ S= βl, i(n) ∗ S=− βn in

(15) lead to

b b= = - ´l l h l l h l eand , 230 0· ( )
     

b b= - = - + ´n n h n n h n eand , 240 0· ( )     

respectively. Thus, the principal directions, l and n, of a regular spin 2-form S satisfy equations (21)–(24).
For a singular S, the relations given in (18) lead to

= + ´ =l e l e l h0 and 0, 250· ( )
    

= - ´ =l h l h l e0 and 0, 260· ( )
    

which can also be obtained justmakingα= β= 0 in (21) and (23). Thus, the fundamental direction l of a spin
2-form S satisfies equations (25)–(26).

Moreover, the eigenvalues,±α and±i β, of the spin 2-form Shave a direct relationwith the bilinearsΩ1 and
Ω2 defined in (2). In fact, from the definition of S in (2) one gets that9

= W - W ´ * = W WS S Str 2 , tr 4 .2
2
2

1
2

1 2( ) ( ) ( )

Then, from equations (11)–(14), one realizes that

a b= W = Wand . 272 1 ( )

These relations (27) are consistent with the common appellation used forΩ1 andΩ2 as scalar and pseudo-scalar
quantities, respectively. Let m m=e 0

3{ } an orthonormal tetrad adapted to the geometry of a regular 2-form S, that is,

= + = -l e e n e e
1

2
,

1

2
. 280 1 0 1( ) ( ) ( )

The parity transformation (e0, e1)↪ (e0,− e1) changes l by n and the space-time volume element changes its sign,
η↪− η. Then, (S, ∗ S)↪ (S,− ∗ S) and, according to equations (16) and (17), (α,β)↪ (− α,β), that is,

W W W -W, , , 291 2 1 2( )↪( ) ( )

under the considered spatial reflection.
In the next section the algebraic structure of the spin 2-form S is connected to the bilinear covariants

associatedwith the fermionic fieldΨ and the Fierz identities they satisfy.

9
To obtain these results we use the fact that thematrix = YYZ 4 ¯ can be decomposed as

g g g g g g= W + + + - Wm
m

mn
m n

m
mZ I J S K

i

2
i ,1 4

5
2

5

sinceZ is not a generalmultivector but comes from the spinorΨ. Notice that =Z Z Ztr2 ( ) , with = WZtr 4 1.

5
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4. Algebraic interpretation of the Fierz identities

In [2], an overcomplete set of Fierz identities between the bilinear covariants for any S≠ 0 is reported. Using the
notation introduced in section 2, these identities arewritten as:10

a a= - = -i J S K i K S J, , 30( ) ( ) ( )
b b* = * =i J S K i K S J, , 31( ) ( ) ( )

a b b a- * =  + * = * S S J K S S J K, , 32( ) ( )
a b ab= - ´ * =S S Str 2 , tr 4 . 332 2 2( ) ( ) ( )

These overcomplete set can be reduced to an equivalent set of independent identities accordingwith the
following statements.

(a)For a regular spin 2-form, S≠ 0, the Fierz identities for the corresponding fermionic field are the eigenvector
equations for S and ∗S given by (15); they are a set of 16 one-component relations. Then, the spin 2-form can be
written as

a b=  + * S n l n l , 34( ) ( )

where l and n are the principal null directions of S, andα andβ provide the eigenvalues of S and ∗S.

(b) For a singular spin 2-form, S≠ 0, the Fierz identities for a fermionic field are the eigenvector equations for S and
∗S, i(l)S= i(l) ∗ S= 0; they are a set of 8 one-component relations. Then, the spin 2-form is given by

= S l p, 35( )

where l is the fundamental direction of S and p a space-like vector orthogonal to l.

(c) For a zero spin 2-form, S= 0, the Fierz identities for a fermionic field are equivalent to the existence of two non-
collinear density spinor currents, l and n, that are null, l2= n2= 0, andmay be parametrized by
taking l · n=− 1.

Note that equation (15) exclusively involves intrinsic algebraic elements associatedwith S: its eigenvalues
and eigendirections.Moreover, expressions in (15) can be applied for any spin 2-form S≠ 0, that is, when S is
regular or singular. The singular case corresponds to takeα= β= 0.On the other hand, when S= 0, the Fierz
identities reduce to three algebraic scalar relations that constrain the causal character of the spinor current
densities.

In the followingwe present the proof of these statements in separated subsections and comment on some of
their consequences.

4.1. Regular spin 2-form
In order to justify the statement (a), let us consider a regular spin 2-form S. From the principal directions l and n
and the invariantsα andβ appearing in equations (15), let us define

a bº + +x
x x-J e l e n

1

2
362 2( ) ( ) ( )

and

a bº + -x
x x-K e l e n

1

2
, 372 2( ) ( ) ( )

where ξ is a real parameter. Since l and n are null vectors, l2= n2= 0, and taking l · n=− 1 one has

a b- = = + > =x x x xJ K J K0, 0, 382 2 2 2 · ( )

for all x Î .Moreover, a direct calculation leads to that for every real value ξ, the double one-parametric family
of currents x x xÎJ K, {( )} satisfies the relations (30)–(33). Therefore, a regular spin 2-form S determines the
spinor currents J andK, up to a boost in the timelike plane {l, n} expanded by the principal directions of S, that is

x x
x x

= +
= +

x

x

J J K

K J K

cosh sinh ,

sinh cosh . 39( )

10
They are referred as equation (1.3) in [2], and apply for any (regular or singular) spin 2-form. A similar set of relations for these identities

has been also considered in [20] and [3] (pages 136, 137). These identities are the starting point to establish the spinor reconstruction
theorem (cf [11, 33–37]).

6
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For ξ= 0, the spinors currents J0≡ J andK0≡ K are the associated to the spinorΨ0≡Ψ as given in (2); and the
relations (38) are called the bilinear Pauli identities (see [33, 38, 39]). In addition, the pairs (Jξ,Kξ) satisfy
equations (38) and are the currents for a family of spinors Yx xÎ{ } , which share the same spin 2-form S for any
value of ξ.

Note that, at each space-time event, for an observer e0 in the 2-plane {l, n} and a unit space-like vector in this
plane, e1 , orthogonal to e0, the parity transformation (e0, e1)↪ (e0,− e1) interchanges the light-like currents l
and n each in another and tranforms the functions (α,β) into (−α,β). Consequently, from equations (34) and
(35), the family of currents x x xÎJ K, {( )} remains invariant under the above parity transformation, but its
individual currents transform as Jξ↪ J−ξ andKξ↪− K−ξ. On the other hand, from the time inversion
(e0, e1)↪ (− e0, e1) one has (l, n)↪ (− n,− l), and then (Jξ,Kξ)↪ (− J−ξ,K−ξ).

The spinor reconstruction theorem could be reformulated (for the regular case) in terms of a set of seven
elements (the 6 quantities of S and a real boost parameter ξ).Moreover, this reformulation could be expressed
explicitly in terms of the eigenstructure of S and the ξ parameter. In fact, the eigenvalues of S are explicitly
obtained in terms of S from (12) and (13). Nevertheless, the explicit obtention of l and n in terms of S requires to
apply the projectionmethod (used in [29, 30]), which is based on theminimal polynomial equation that S
satisfies.

4.1.1. Relative formulation of the Fierz identities
Fromnowon, the index ξwill be omitted in the spinor currents without loss of generality, since the relations
(30)–(33) are satisfied for any x Î , for the given regular spin 2-form S.

Note that the statement (a) also allows to express the Fierz identities in a 3-dimensional formulation. In
order to do it, let us split J andK as =J j j,0( )


and =K k k,0( )


, for a given observer u. Then, by addition and

subtraction of the scalar equations (time-like parts) in equations (21), (22), (23) and (24) between them, one gets:

a =j k e , 400 · ( )
 

a =k j e , 410 · ( )
 

b =j k h , 420 · ( )
 

b =k j h , 430 · ( )
 

wherewe have taken into account thatα2+ β2> 0. Similarly, for the space-like parts of the same equations (21),
(22), (23) and (24), one obtains

a = + ´j k e k h , 440 ( )
   

a = + ´k j e j h , 450 ( )
   

b = - ´j k h k e , 460 ( )
   

b = - ´k j h j e . 470 ( )
   

Then, equations (40)–(47) provide the local physical interpretation (i. e. the relative formulationwith respect
a local space-time observer) of the eigenvector equations for a regular spin 2-form. In section 5, this result is
comparedwith the one obtained in [6].

4.2. Singular spin 2-form
In order to justify the statement (b), let us consider a singular spin 2-form S and its fundamental direction l,
which satisfies equations (25)–(26). Now, l is the unique fermionic light-like density current. Then, the singular
casemay be understood as a limit situation of the regular casewhenα2+ β2→ 0. These can be interpreted in
two different ways from expressions (38):

(b1)The two fermionic currents are light-like and collinear. This is equivalent to consider that ξ→±∞ in
expressions (39) and corresponds to take a boost in the 2-plane {l, n}whose velocity goes to the light
velocity ( x  tanh 1).

(b2)One of the currents becomes light-like and the other one goes to zero, that is, Jξ≡ l andKξ= 0, or
reciprocally. In fact, equation (25) is equivalent to equations (43) and (47) by takingα= 0, or =k k, 00( )


, and

replacing j j l l, ,0 0( )↪( )
 

. In a similar way, equation (26) is equivalent to equations (43) and (47) by takingβ= 0

and the above replacement, j j l l, ,0 0( )↪( )
 

.
Thus, for the singular case, only the 8 relations given in (25)–(26) are non-trivial and significantly encode the

Fierz identities.
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4.3. Zero spin 2-form, S= 0
Statement (c) says that there exist two density equimodular and orthogonal four-currents, J andK, one being
time-like and the other one being space-like, that is J2=− K2< 0 and J · K= 0. In fact, one can realize that the
21 relations obtained in [6] reduce to the three constraining relations on the vector and the axial density currents
associatedwith the spinor field (see equations (54) and (55) later, in the next section). Actually, there exist a one-
parameter family of spinors having S= 0 and two currents (39) defining the same timelike 2-plane.

5. Fierz identities and electron local observables constraints

In [6] a set of 21 algebraic equations relating the 16 electron local observables (there denoted as j0, j

, f0, f


,b, g, c


and

d

) is given. In this section, this set of equations is comparedwith the ones obtained in theprevious section.Tomake

the comparison clearer,wefirst report the correspondencebetweenournotation and theoneused in [6]:

a  g , 48( )

b  b, 49( )

 -e d , 50( ) 

 -h c , 51( )
 

j j j j, , , 520 0( ) ( ) ( )
 

k k f f, , . 530 0( ) ( ) ( )
 

Next, the set of 21 relations established in section 4 is rewritten using this correspondence in notation and
conveniently ordered as:

(i) Currents constraining relations (3 equations):

- = + = - +j j b g f f , 54
0
2 2 2 2

0
2 2 ( )

 

=j f j f , 550 0 · ( )
 

which correspond to equations (38) since the scalar products are referred to an inertial frame, as well as
j0=− j0 and f0=− f 0, accordingwith the chosenMinkowskimetric signature. These three equations
correspond to equation (31) in [6].

(ii)The spin algebraic relations derived from S (2 equations):

=bg c d , 56· ( ) 

- = -b g c d , 572 2 2 2 ( ) 

which are equations (11) and (14). Thefirst equation, equation (56), corresponds to equation (26.2b) in [6],
and the second one, equation (57), results by subtracting (27.3) from (27.2) in [6].

(iii)The scalar relations among the 16 bilinear forms (4 equations):

= -gj f d , 580 · ( )
 

= -gf j d , 590 · ( )
 

= -bj f c , 600 · ( )
 

= -bf j c , 610 · ( )
 

that is, equations (40), (41), (42) and (43), which, in increasing numbered order, correspond to equations
(26.3b), (26.1b), (26.3a) (26.1a) in [6], respectively.

(iv)The 3-vectorial Euclidian relations among the 16 bilinear forms (12 equations):

= - - ´gj f d f c , 620 ( )
   

= - - ´gf j d j c , 630 ( )
   

= - + ´bj f c f d , 640 ( )
   

= - + ´bf j c j d , 650 ( )
   

that is, equations (44), (45), (46) and (47), which, in increasing numbered order, correspond to equations
(28.6), (28.2), (28.7), (28.3) in [6], respectively.
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Therefore, we have shown that the set of 21 equations given in [6] is equivalent to the specification of the
algebraic structure of S and ∗S. Furthermore, up to linear combinations, this set transforms into equations (36),
(37) and (38) in [6], which are, respectively, 6 scalar type equations, 9 vector type equations and 6 tensor type one
component relations.

6. The role of the spin 2-form in the spinor classification

The algebraic classification of a four component space-time spinor (Lounesto classification) [28] ismade by
means of its bilinear covariants, given by (2), taking into account the Fierz identities. This classification splits in
six algebraic types of spinors, which are characterized according to the possible nullities of the algebraic
invariantsα andβ, the spin 2-form S, and the currentK (the current J is taken nonzero) [28]:

(i) α≠ 0,β≠ 0.

(ii) α= 0,β≠ 0.

(iii) α≠ 0,β= 0.

(iv) α= β= 0, S≠ 0,K≠ 0.

(v) α= β= 0, S≠ 0,K= 0.

(vi) α= β= 0, S= 0,K≠ 0.

The Lounesto classification of a spinor points out the role played by the spin 2-form S in distinguishing the
general class towhich a fermionic field belongs. From an algebraic point of view, the generic class S≠ 0 splits
into two subclasses with different algebraic character (regular or singular) of S.

The regular class splits in the types (i), (ii) and (iii) of the Lounesto classification, and corresponds toDirac
fermionic fields while the singular class splits in the type (iv) offlag dipole spinors and the type (v) offlag pole-
spinors. Concretely, types (iv) and (v) are identifiedwith cases (b1) and (b2) obtained as a limit situation of the
regular case in subsection 4.2, respectively.11

The non generic class S= 0 is the Lounesto type (vi) and contains theWeyl (ormassless)neutrino field.
The null eigendirections of S and ∗S does not change under a rotation of dualitity,

q q
q q

= + *
* = - + *

S S S

S S S

cos sin ,

sin cos , 66

˜ ( ) ( )
˜ ( ) ( ) ( )

butα andβ transform accordingwith:

a a q b q b a q b q= - = +cos sin , sin cos , 67˜ ˜ ( )

and keeping that a b a b+ = +2 2 2 2˜ ˜ . Consequently, the current family x x xÎJ K, { } given by (36) and (37) is
invariant under the transformation (66). But, the quadratic scalarsA andB, given by (11), transform as a rotation
of angle 2θ,

q q q q= - = +A A B B A Bcos 2 sin 2 , sin 2 cos 2 , 68˜ ˜ ( )
or equivalently,

a b a b q ab q
ab a b q ab q

- = - -

= - +

cos 2 2 sin 2 ,

2 sin 2 2 cos 2 . 69

2 2 2 2

2 2

˜ ˜ ( )
˜ ˜ ( ) ( )

For this reason, one has that a duality rotation does not change the regular or singular character of the
2-form S but it canmove the spinor fromone spinor type to another one inside the same subclass (regular or
singular) in the spinor classification. For the regular case, according to (67), the Yvon-Takabayasi angle12

changes by a rotation of duality.

11
This two types have been further analyzed in [40].Moreover, type (iv) has also been recently studied in [41, 42]where the possibility J = 0

is also contemplated, and type (v) contains theMajorana fermions and the Elko fermions, both being eigenspinors of the charge conjugation
operator [43–49]; for a recent physical discussion on this issue see [50, 51].
12

For a spin 2-form S, having invariantsα andβ, the Yvon-Takabayasi (YT) angle, τ, is defined as t a bº = W W- -tan tan1 1
2 1( ) ( ) (see

equation (23) in [52], and equation (210) in [11]). Notice that there exists an evidentmathematical similitude and correspondence beetween
the YT angle and the Rainich’s index [53]. This similitudewould help to clarify the physicalmeaning of the YT angle, if a conclusivemeaning
is definitively achieved. For some historical remarks and the state of the art about the physical interpretation of the YT angle see [54–57].
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7. Conclusions and further considerations

In particle physics, for example in theβ-decay theory or similar situations in electroweak interactions, Fierz
identities involve algebraic constraints between interacting fermionic fields. To deepen in the essential
information that such identities encode, we have considered the case of a single fermionic field. Then, expressing
the eigendirections of a Lorentzian 2-formwith respect to an inertial observer (section 3), the Fierz identities are
interpreted in terms of the eigenstructure of the spin density tensor S, both in the regular and the singular cases
(section 4). This study displays how large Fierz identities appear closely related to theHestenes space-time
algebra.

In [6] byMinogin, a set of 21 identities that the bilinear electron observables satisfy were obtained and
written in a suitable 3-dimensional Euclidean notation (see section 5, which summarizes sections 4 and 5 of [6]).
In this paper, a geometric interpretation of an equivalent set of identities based on the eigenvector relations
fulfilled by S and ∗Shas been performed. The differences between both sets have been analyzed. In section 6, the
relation of the Fierz identities and the duality rotationwith the algebraic types of the spinor classification has
been established.

The algebraic interpretation of the essential Fierz identities between the bilinear covariants constructedwith
two spinors in terms of their spin 2-forms requires further investigation. The existence or not of any connection
between the eigenstructures of a pair of interacting spin 2-forms should be the starting point to extend forward
the present research: (i) the interpretation of the Fierz identities for a pair of fermion fields, and (ii) the algebraic
classification of the energy tensor of a sole fermionic field [9], which involves the bilinear covariants constructed
from the field and itsfirst derivatives.

Originally, the Fierz identities come from the restrictions that a change of basis in the space-time induces on
the basis of theMinkowski exterior algebra (specified by four vectors, six 2-planes and four 3-planes). This
geometric vision of thewhole Fierz identities is relatedwith the causal classification of the the space-time frames
[25]. In fact, this classification results from the analysis of thewhole set of constraints between the causal
characters of the 14 geometric elements of a space-time frame: its 4 directions, its 6 two-planes and its 4 three-
planes. This considerationwill help to explore whether there exists a deeper connection between the Lorentzian
structure of the space-time geometry and the fundamental interactions between elementary particles.

At this point, wewould like to add a historical comment. In [58] (page 1396, footnote 17), Uhlenberg and
Laporte acknowledge a private communication by Rainich concerning some results and a ‘rigorous proof of the
fact that theDirac equations possess only two algebraic quadratic invariants’. In [59], this ideawas further
developed. It seems that Rainich [53] considered the possibility of describing the electron spin observables
constraints on the basis of the algebraic classification of electromagnetic fields inMinkowski space-time. This
work goes on this Rainich’s pioneering idea.
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