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Modulation of sensorimotor rhythm (SMR) power, a rhythmic brain oscillation physiologically linked
to motor imagery, is a popular Brain–Machine Interface (BMI) paradigm, but its interplay with slower
cortical rhythms, also involved in movement preparation and cognitive processing, is not entirely under-
stood. In this study, we evaluated the changes in phase and power of slow cortical activity in delta and
theta bands, during a motor imagery task controlled by an SMR-based BMI system. In Experiment
I, EEG of 20 right-handed healthy volunteers was recorded performing a motor-imagery task using an
SMR-based BMI controlling a visual animation, and during task-free intervals. In Experiment II, 10
subjects were evaluated along five daily sessions, while BMI-controlling same visual animation, a buzzer,
and a robotic hand exoskeleton. In both experiments, feedback received from the controlled device was
proportional to SMR power (11–14 Hz) detected by a real-time EEG-based system. Synchronization of
slow EEG frequencies along the trials was evaluated using inter-trial-phase coherence (ITPC). Results:
cortical oscillations of EEG in delta and theta frequencies synchronized at the onset and at the end of
both active and task-free trials; ITPC was significantly modulated by feedback sensory modality received
during the tasks; and ITPC synchronization progressively increased along the training. These findings
suggest that phase-locking of slow rhythms and resetting by sensory afferences might be a functionally
relevant mechanism in cortical control of motor function. We propose that analysis of phase synchroniza-
tion of slow cortical rhythms might also improve identification of temporal edges in BMI tasks and might
help to develop physiological markers for identification of context task switching and practice-related
changes in brain function, with potentially important implications for design and monitoring of motor
imagery-based BMI systems, an emerging tool in neurorehabilitation of stroke.
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1. Introduction

Brain–Machine Interfaces (BMI) translate neuronal
information, usually recorded by electroencephalog-
raphy (EEG), into control signals of external devices.
Several types of oscillatory activity in the brain
can be used: evoked oscillations (e.g. steady-state-
visually-evoked potentials), event-related potentials
(e.g. P300 response), or task-related modulation
of spontaneous EEG oscillations. In the past few
decades, the main topic in BMI research was com-
munication, specially in severely disabled patients.
Recently, BMI-based applications in rehabilitation
have attracted great attention, specially in stroke,
where promising results have been reported.1–4

A successful BMI paradigm has been mainly
focused on changes of sensorimotor EEG rhythms,
modulated during motor imagery.5–7 Sensory, cogni-
tive and motor processing can result in changes of
the ongoing EEG in form of an event-related desyn-
chronization (ERD) or event-related synchronization
(ERS). Unilateral voluntary upper limb movement
is accompanied by an ERD in the alpha (originally,
the ERD term was coined in this frequency) and
beta bands localized over the contralateral sensori-
motor area. Both phenomena are time-locked but
not phase-locked to the event and they are highly
frequency-band specific,8 facilitating real-time detec-
tion in BMI systems.

Slow cortical oscillations in δ frequency, classi-
cally associated with slow-wave sleep and anesthe-
sia,9 also play a relevant role in wake cognitive pro-
cesses (for review, see Refs. 10 and 11), mainly in
decision-making and attentional processes, both in
animal12,13 and humans.14–16 Slow rhythms are also
related to task-switching and general preparation
processes, showing different spatial activation and
time courses.17

Interest in slow cortical rhythms is renewing
in the BMI field, although, in fact, cortical slow
rhythms have been used for BMI control18,19 for
a long time now. Since Kornhuber and Deecke
(1964) discovered the Bereitschaftspotential (Readi-
ness Potential) preceding volitional movements in
humans, a number of studies investigated the physi-
ological and functional substrates of cortical slow
rhythms involved in movement preparation, and were
described in early descriptions of EEG activity before

volitional movements20,21 that later became sum-
marized under the term movement-related cortical
potentials (MRCP).22 However, the physiological
significance of each identifiable MRCP component
has not been fully understood yet,20,23 and a bet-
ter understanding of the underlying mechanisms
of MRCP will be important for improving single-
trial BMI paradigms.24–26 Information obtained from
phase and synchronization of slow rhythms dur-
ing motor tasks might be useful for BMI control,27

because phase of cortical slow rhythms may contain
relevant movement-related information,26,28–31 and
delta activity carries information about hand or arm
kinematics (position and velocity).32

For extracting phase-based information from
brain signals, providing information about timing of
frequency-band-specific activity, several techniques
are being used. Kolev et al.33 used single-sweep
wave identification histograms to analyze phase-
locking. Tallon-Baudry et al.34 defined a method
called phase-locking factor, while a practical method
for evaluation of spatial phase coherence was intro-
duced by Lachaux.35 Event-related phase consis-
tency across trials is an important method allowing
to see how phase information varies between trials.
Delorme et al. introduced a method called inter-trial
phase coherence (ITPC), implementing it in a freely
distributed software.36

Experimental paradigms in BMI usually include
several tasks that BMI-users have to complete
sequentially, changing the state of movement and
brain activity at temporal edges of the trials.
Recently, phase locking in the δ–θ frequency bands
related to the initiation of motor tasks has been
described,37,38 which might be a relevant mechanism
of cortical function at temporal edges of a task.

In the current study, we decided to evaluate
whether analysis of phase information from cortical
slow rhythms during a motor imagery-based BMI
control paradigm, in basal conditions and under
sensory modulation, might increase our knowledge
about EEG-correlates of task switching and about
temporal structure, e.g. onset and ending of the tri-
als. These objectives might aid in developing valu-
able measures to improve reliability and safety of
BMI control, and for improving BMI-based tools for
neurorehabilitation of stroke.
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Synchronization of Slow Cortical Rhythms During Motor Imagery-Based BMI Control

2. Material and Methods

2.1. Study design

2.1.1. Participants

A total of thirty healthy volunteers participated
in this study. EEG human recordings used in this
study were approved by the ethics committee of the
Miguel Hernández University of Elche, Spain. All
participants gave written informed consent before
the session. Subjects were naive for BMI systems and
right-handedness, because the motorized orthosis
was designed for the right hand, so left-handedness
or with some alteration of the comprehension sub-
jects were excluded.

2.1.2. Description of the experiments

Participants were invited to collaborate in 1-h experi-
mental sessions, in the context of a BMI project with
objectives including the design and implementation
of an inexpensive and simple to use BMI-controlled
motorized exoskeleton. Sessions were distributed in
two independent experiments with different subjects
(experiments I and II). Experiment I (20 subjects)
was performed in a 1-h unique session and included
only the Visual task. Experiment II (10 indepen-
dent subjects) included 1-h sessions in five suc-
cessive training days. All the sessions began with
Visual task, and in days 4 and 5 also included Hap-
tic and Auditory tasks performed in random order.
The motorized orthosis used in experiment II has
been developed by the Biomedical Neuroengineering
research group (nBio) at the Miguel Hernández Uni-
versity39 1).

2.2. Description of the tasks

After a 15 min guided relaxation session, a detailed
explanation of the experiment, and the attachment
of the electrodes, participants were instructed to
use visuo-kinesthetic motor imagery (MI) of mov-
ing their right hand to generate contralateral ERD
(CLOSE task) or rest (RELAX task) following a
visual cue (a white text label on a black screen, say-
ing RELAX or CLOSE, respectively) displayed on a
computer screen. Subjects were asked to avoid blink-
ing during the trial, intending to gaze at the center
of the screen. Visual indications were separated by
inter-trial-intervals (ITIs) of 5 s.

Visual task: Composed of 20 trials (10 RELAX, 10
CLOSE, in randomized order). In this task, two cues
appeared, Close, indicating onset of motor imagery,
or Relax, where the participants were instructed to
keep quiet. A Pacman animation appeared on the
black screen acting as a visual feedback of SMR (the
mouth of animation kept opening while the online
BMI system detected an ERD; see Fig. 1(c)). This
task was performed in experiments I and II. For this
task, that was always performed before the other
two, we considered that first session of experiment II
(10 subjects) and unique session of experiment I (20
subjects) were analogue: subjects were of similar age,
setup and tasks were identical, basal condition of the
subjects were also the same (naive), and statistical
differences in studied parameters were not found, so
results of the 30 subjects were pooled for the visual
task.

Haptic task: Same setup than Visual task, but
SMR feedback was indicated only by movement of
the motorized orthosis attached to right arm, with-
out animation in the screen, asking to the sub-
ject to avoid looking to the arm. After the end of
the CLOSE trials, motorized orthosis had to reopen
again, passively moving the hand to the subject dur-
ing 1-2 s. This task was performed only in experi-
ment II.

Auditory task: Same setup than Visual task, but
SMR feedback was indicated by noise produced by
a buzzer in the motorized orthosis, situated outside
the visual field of the subject. After the end of the
CLOSE trials, motorized orthosis had to open again,
producing an audible sound for 1–2 s. This task was
performed only in experiment II.

2.3. EEG recording

Subjects sat in a comfortable chair, facing a
computer monitor that displayed the trial-based
paradigm. Because of the objectives of the ongo-
ing project, oriented to the design and implemen-
tation of a simple to use BMI system, only SMR
brain oscillatory activity of contralateral hemisphere
to the orthosis was obtained, so EEG was recorded
only from five conventional EEG recording sites (F3,
T7, CZ, C3 and P3 according to the international
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J. A. Barios et al.

Fig. 1. Graphical summary of the experimental setup. (a) Graphical description of the tasks and stimulation modalities.
(b) Elements used in the experiments. (c) Example from a subject of event-related desynchronization (ERD) of electroen-
cephalographic (EEG) sensorimotor rhythm activity (SMR, 8–15 Hz) during a CLOSE (left part) and RELAX trial (right
part). (d) Calculation of threshold.

10/10 system) using an EEG neoprene cap (Eno-
bio, Neuroelectrics, Barcelona, Spain) with a ref-
erence electrode placed at Fz. Skin/electrode resis-
tance was kept below 12kOhm. EEG was recorded at
a sampling rate of 200Hz, bandpass filtered at 0.4–
70Hz and pre-processed using a small Laplacian fil-
ter. Horizontal eye movements were recorded by elec-
trooculography (EOG) in accordance to the standard
EOG placement at the left and right outer canthus
1. For EOG calibration, participants were asked to
look to the left or right in analogy to Soekadar et al.7

2.4. Description of the BMI system

Biosignals recorded by EEG and EOG were used to
control the SMR-based BMI system during all the
experiments. A real-time system was implemented

using BCI2000, a freely distributed software platform
that consists of four modules (source, signal pro-
cessing, user application, and operator interface)
and incorporates customizable signal filtering as
well as extraction of signal features for translation
into device control signals. Computation of ERD
involved the power spectrum estimation (an autore-
gressive model of order 16 using the Yule-Walker
algorithm implemented by signal processing mod-
ule of BCI2000) of the ongoing EEG signal asso-
ciated with the specified SMR rhythm frequency
range (1114Hz) during the tasks, calculated from C3
electrode. Based on the maximum values for basal
ERD, a subject’s individual motor imagery and EOG
discrimination threshold were set at two-standard
deviations above average SMR-ERD variance at rest,
and used for later online BMI control, calculated

1850045-4
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Synchronization of Slow Cortical Rhythms During Motor Imagery-Based BMI Control

after the end of the calibration task. Calibration of
the BMI system and calculation of threshold was
performed once at the beginning of the session and
kept unvaried for the rest of the session. Through
the use of an interface that the user controlled using
EOG, the system controlled several external devices:
an animation in a computer monitor, a buzzer, and
a robotic hand exoskeleton.39

2.5. Processing of recordings

A number of pre-processing steps were performed
after recording and storing of EEG data. First, after
band-pass filtering in the frequency band 0.5–48Hz
(to avoid aliasing artifacts), EEG was down-sampled
from 500 to 128Hz. Next, the raw EEG data were
visually inspected for paroxysmal and muscular arti-
facts not related to eye blinks so that noisy portions
of the EEG signal were excluded from further anal-
ysis. In the next step, the EEG recordings were seg-
mented to single trials, i.e. they were subdivided into
intervals of 11 s, from 3 s before the visual cue mark-
ing the onset of task to 8 s after, and 3 s after the
second visual stimulus marking the end of the task.
The length of the EEG epochs (−3 to 8 s) encom-
passed time points beyond the period of interest in
order to include sufficient data before and after the
edges of the period of interest (0 and 5 s related to
the onset of the task). The reference point (time
zero) was assigned to the start of the visual stim-
ulus (text label on screen). In this way, both condi-
tions (RELAX and CLOSE) could be compared. The
length of the intervals before and after the reference
point was chosen such as to take the length (approx.
2 s) of the MRCP. After subdividing the data into
single trials, they were further corrected for arti-
facts. All trials with an amplitude larger than 100uV
in any of the recorded channels or showing a drift
that exceeded 75 uV over the whole interval (abnor-
mal drift) were automatically rejected. Trials with
other artifacts (blinks, eye movements, muscle activ-
ity, and infrequent single-channel noise) were iden-
tified and trials rejected by means of visual inspec-
tion of data aided by simultaneous presentation of
results obtained by the EEGLAB plugin adjust, an
algorithm that identifies artifacts-containing compo-
nents combining stereotyped artifact-specific spatial
and temporal features of ICA.40 ICA was calculated
with the Info-Max ICA algorithm implemented in

EEGLAB. Finally, the trials were baseline-corrected
taking the first 500ms of each interval as baseline.
In order to improve the spatial resolution and to
eliminate the influence of distortions due to the ref-
erence electrode, we used the common average mon-
tage.41,42

2.5.1. Calculation of ITPC

An important indicator of the phase dynamics
between trials is the ITPC. ITPC is a frequency-
domain measure of the partial or exact synchroniza-
tion of activity at a particular latency and frequency
to a set of experimental events to which EEG data
trials are time locked. The measure was introduced
in Ref. 34 and termed as phase locking factor’, a con-
cept related to the extent to which a distribution of
phase angles at a time point is non-uniformly dis-
tributed in polar space.43 The ITPC measure takes
values between 0 and 1. A value of 0 (not expected in
practice based on a finite number of epochs) repre-
sents absence of synchronization between EEG data
and the time-locking events; a value near 1 indi-
cates their perfect synchronization (i.e. near perfect
EEG phase reproducibility across trials at a given
latency). For calculation, instantaneous phase and
power for each frequency were calculated applying a
complex Morlet wavelet analysis to the EEG epochs
time locked to the cue onset. Then, a complex vec-
tor of amplitude = 1 and phase φ(t) of the signal is
first averaged across all the trials (1 . . . Tr) and then
normalized as follows

ITPC(t) = Tr−1

�����
Tr�

1

eiφ(t)

�����.

Thus, ITPC measures the degree of intertrial
variation in phase between the responses to stim-
uli and thereby quantifies phase locking of the oscil-
latory activity irrespective of its amplitude. Band-
power and ITPC were computed for all recorded
channels (electrodes) in the frequency range from
2 to 48Hz. For preprocessing and analysis of the
EEG data, we used the EEGLAB toolbox36 and in-
house scripts developed in Matlab R2016b (Math-
Works Inc.).

2.6. Statistical procedures

All statistical analyses were performed using the
R package44 and statistic methods included in
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EEGLAB. All results are reported as the mean ±
SD, and considered significant if p < 0.05. For
evaluation of significant differences between groups,
Wilcoxon rank sum test was used. For comparison
of bandpower in EEG, permutation methods with
Bonferroni correction were used, as implemented in
EEGLAB toolbox.

3. Results

3.1. Classification accuracy

Average classification accuracy in CLOSE trials
for the three experiments (a two-choice task) was

72.4± 0.46. In experiment II, we also compared per-
formance between session 1 and 4 (in session 5, some
subjects would have already used the exoskeleton,
what might modify basal conditions) and we did not
find significant differences (72.4 ± 0.4 and 72.3 ± 0.4
respectively, p = 0.78).

3.2. Amplitude dynamics

First, we investigated the amplitudes (power) of the
wavelet transforms near the onset of the task. Our
results match with previous reports on ERD during
motor imagery6 (see Fig. 2), and as was expected we

Fig. 2. (a) Group average of the time-frequency representation of ITPC in experiment II (n = 10) is displayed for the
CLOSE (upper) and RELAX (lower) trials, in the three sensorial modalities (visual, haptic, auditive), showing ITPC
changes related to temporal edges of BMI task. Amplitude of ITPC changes was reduced at the end of somatosensory task
in CLOSE task; Up:CLOSE task, Down:RELAX task; C3 derivation is shown. (b) ERD during tasks. From left to right,
each column presents results from Haptic, Auditory and Visual task. Upper row, CLOSE task. Middle row, RELAX task.
Lower row, statistical significance of differences between RELAX and CLOSE task(green means p > 0.05). Notice that,
0–2 s after end of close trials, a significant ERD is observed in Haptic task. Averaging of 10 subjects (experiment II), two
sessions by subject, C3 derivation is shown. (c) ITPC modulation by sensory input and temporal frame was found (see
Results).
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Synchronization of Slow Cortical Rhythms During Motor Imagery-Based BMI Control

found a significant modulation of power in EEG in
the alpha (mu) band. Interestingly, slow frequencies
did not show any task-specific power modulations. In
the right part of the figure, statistical significance of
the differences between both tasks is presented. Note
that, 0–2 s after end of CLOSE trials, a significant
ERD is observed only in Haptic task, during the re-
opening of the motorized orthosis.

3.3. Phase dynamics

We found that ITPC of slow EEG frequencies consis-
tently increased during task switching in the context

of a BMI motor imagery paradigm, both at the onset
and at the end of trials, independent of the content of
the task (closing and relaxing tasks); the magnitude
of the changes was similar in RELAX and CLOSE
tasks. From inspection, and as statistical analysis
confirms, ITPC is higher at the end than at the onset
of the task (see Fig. 2(c)).

Although our main analysis was centered in cen-
tral EEG derivations, where motor-related EEG
modulations are usually studied, the same phe-
nomenon also appeared in other derivations. In
Fig. 3(b), derivations C3, F3, P3 and T7 are also
studied. It is shown that ITPC increases in δ

Fig. 3. (a) Group average of the time-frequency representation of ITPC over all participants (n = 30) is displayed for
the CLOSE (left) and RELAX (right) trials, in Visual task, showing ITPC changes related to temporal edges of BMI
task. Notice that amplitude of ITPC changes was similar in RELAX and CLOSE task, both at the onset and at the
end of the task; Left:CLOSE task, Right:RELAX task; C3 derivation is shown. (b) ITPC increases can be found across
several brain regions (frontal, central and parietal) indicating that ITPC increases at the temporal edges of BMI control
trials is a brain phenomenon spanning several cortical areas; C3, CZ, P3, T7 derivations are shown, during CLOSE trials.
(c) ITPC increases show different frequencies patterns in relax and close task (ITPC of θ frequency increases more and
earlier in RELAX task), suggesting the presence of different physiological mechanisms in both tasks. Averaging across 10
subjects (experiment II); Left:CLOSE task, Right:RELAX task; CZ derivation is shown, where these changes were more
prominent.
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J. A. Barios et al.

Fig. 4. Changes of ITPC in θ band (3–7 Hz) during CLOSE task (upper row) and RELAX task (lower row) along weekly
training sessions. Notice the progressive increase of coherence at the onset and at the end of the task from session to
session; C3 derivation is shown. In (a) grand average of 10 subjects (experiment II) is shown. In (b) numeric values are
shown.

and θ band in several brain regions simultaneously,
suggesting that ITPC increase during task switching
is a brain phenomenon spanning several cortical
areas.

To further elucidate the mechanisms underly-
ing this finding, we investigated whether all slow

frequencies share similar behavior. In Fig. 3(c),
ITPC increases show different frequencies patterns
in RELAX and CLOSE tasks (ITPC increase in
θ band) occurs significantly earlier, and is more
marked in RELAX task, suggesting that the physio-
logical mechanisms underlying modulations of θ and

1850045-8
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Synchronization of Slow Cortical Rhythms During Motor Imagery-Based BMI Control

δ band coherence at the onset of the tasks states
might be different depending on task content.

In subjects of experiment II, we also studied
whether magnitude of slow-waves synchronization
was affected by the modality of sensory feedback
during BMI control. In CLOSE task, where sensory
modulation is present (see Methods for description
of sensory modality included on each task), ITPC
amplitude at the ending edge of the task was signifi-
cantly modulated by sensorial modality employed in
the task, while during RELAX task no modulation
was observed (Anova analysis, p < 0.05).

In experiment II, we also evaluated session-to-
session differences in ITPC during BMI control (see
Fig. 4), and we found a progressive increase of phase
coherence at the onset and ending of the trials across
BMI sessions.

4. Discussion

The main finding of this study is that cortical oscilla-
tions in δ and θ bands synchronize at the onset and
at the end of a BMI task, independent of the con-
tent of the task (i.e. motor imagery versus relaxing).
The magnitude of this synchronization is modulated
by sensory modality of feedback received during the
task, and it is also modulated by practice, further
increasing along the BMI sessions.

Slow cortical oscillations in δ frequency are clas-
sically associated with anesthesia and slow-wave
sleep.9 Several generators of cortical δ oscillations
in human brain exist, mainly pyramidal neurons
through long-lasting hyperpolarizations,9 but the
role of glial cells is also being studied.45 Delta oscil-
lations are also present in subcortical regions, e.g.
ventral pallidum and the brain stem.10 Recently,
superficial cortical layers seem to play a key role for
generation of slow rhythms and integration of corti-
cal activity.46

Delta oscillations in wake also play a relevant
role in cognitive processes. Cortical slow rhythms of
EEG are related to attention, both in animal12 and
humans,10,14 and to decision making,47 as research
in monkeys also supports.16 The role of δ oscilla-
tions during cognitive processes is also supported
by several studies analyzing event-related δ oscilla-
tions of cognitively impaired patient groups during
cognitive stimulation. This supports the idea that
δ responses are involved in cognitive processes and

could be a general electrophysiological marker for
cognitive dysfunction. In several studies, cognitively
impaired subject groups (mild cognitive impairment,
Alzheimer’s disease, schizophrenia, bipolar disor-
der) showed reduced amplitudes of δ oscillatory
responses during cognitive paradigms (for a review,
see Ref. 10). Reduction of δ responses during aging
upon presentation of cognitive stimulation was also
reported during visual oddball paradigms48 and dur-
ing go/no-go tasks.49 On the other hand, elderly sub-
jects showed higher δ coherence upon presentation of
an auditory oddball paradigm.50

Phase synchronization between brain areas is a
key mechanism for large-scale integration through
synchrony, and constitute the basis for several
broader considerations about brain dynamics as
coordinated spatiotemporal patterns,51–54 which has
been extensively studied in attentional mechanisms.
For example, phase-reordering by visual and audi-
tory stimulation is an important mechanism in atten-
tion processes in the monkey brain,13 which could
also be called phase entrainment.46,55

One commonly accepted principle is that slow
rhythms coordinate activity across widespread neu-
ronal pools, whereas fast rhythms mediate local pro-
cessing. Synchronization of cortical slow rhythms
might be a marker of functionally relevant global
coordination mechanisms. For example, delta oscil-
lation phase changes have been reported for task-
switching56 and movement preparation.37,38 The
phase of cortical slow activity is reset by infrequent
stimuli, supporting a primary role of superficial slow
rhythms in generating the EEG and integrating cor-
tical activity.46 Delta phase entrainment also pre-
dicts behavioral performance.57,58 The role of phase
synchronization in motor control is also a well-known
issue.59,60

Recently, ITPC increase during a volitional move-
ment has been described,37,38 interpreted as a phase
locking in the δ–θ frequency band (2–8Hz), a
ubiquitous movement-related signal associated with
movement execution across different movement ini-
tiation contexts, a suggestive interpretation that
extends to the motor domain the emerging role of
slower rhythms as a temporal framing for succes-
sive cognitive moments of synchronous assemblies.51

These reports are in line with the main finding
of the present work (partially presented in a pre-
liminary report61), the presence of synchronization
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of slow rhythms on temporal edges of a motor
imagery-related task, supporting the hypothesis of
the delta phase locking mechanism acting as a func-
tional mechanism underlying the motor imagery, and
assigning a key role for its function to the resetting
of the slow waves by sensory afferences.

Careful analysis of reported phase-locking of slow
rhythms support the previously stated hypothesis.
First, it seems related to a widely distributed corti-
cal resetting of slow waves; as other reports previ-
ously have stated (see Refs. 37, 38 and 61, we did
not find an increase of power in δ–θ frequencies (see
Fig. 2(c)), but we found indeed a cortically-extended
ITPC increase at the onset of the trials indicating a
task-related phase alignment of θ and δ frequency
bands (see Figs. 3(a) and 3(b)). Second, the increase
of ITPC was also present at the end of the task
(higher than the former, see Fig. 2), and was present,
independent of the content of the task, both in active
and relaxing trials. So, we suggest that ITPC of cor-
tical slow rhythms might be not only related to move-
ment planning, but to a more general mechanism
related to task-switching. In fact, our subjects had to
decide in each trial between motor imagery or sup-
pression of motor imagery, which might be consid-
ered as a clear example of a GO/NO-GO task, where
an increase of coherence in δ band between different
cortical regions has been described earlier.16,56,59,62

We also report that somatosensory and, weakly,
auditory stimulation, reduce the observed synchro-
nization at the temporal edges of the task. Recent
findings associated resetting of delta-band oscilla-
tions in individual cortical areas with attention.12

In monkey primary visual cortex13 and human
motor cortex,14 delta-band oscillations entrain to the
rhythm of external sensory events in an attention-
dependent manner, although specific studies about
interaction between somatosensory areas and delta
waves are lacking. A possible explanation of the
reported somatosensory modulation of slow rhythms
synchronization, that could be studied in future stud-
ies, is that sensorial input during the motor task is
entraining or resetting cortical slow rhythms, reduc-
ing the possibilities of recording the phase-locking at
the temporal edges after averaging multiple trials.

We also observed that ITPC increases show dif-
ferent frequency patterns at the onset of RELAX
and CLOSE tasks (ITPC increase in θ band) occurs
significantly earlier, and is more marked in RELAX

task, see Fig. 3(c). This suggest that the physiolog-
ical mechanisms underlying modulations of θ and δ

band coherence at the onset of the tasks states might
be different. Executive functions like cognitive con-
trol and monitoring of movements have been shown
specifically associated with changes in θ power (4–
8 Hz) in the lateral and medial frontal cortex and
phase synchronization between frontal electrodes in
the θ band,63,64 while phase locking in the δ − θ

frequency band (2–8Hz) might be more related to
motor tasks.37

Our findings suggest some practical points
related to the BMI field. The presence of signifi-
cant ITPC changes at the end of the RELAX task
suggests that participants, although asked to relax,
were not “simply relaxing”, i.e. in an idle state,
but “actively relaxing”, somehow performing a sub-
tle cognitive task related to an expectation related
event, as contingent negative variation experiments
might suggest,18 or related to suppressing motor
imagery. Although more studies are needed, where
onset and end of the task are not anticipated, we sug-
gest that the ability to actively relax, which might be
quantified by ITPC changes, plays an important role
in BMI learning, an issue that should be considered
in the design of BMI paradigms.

A desired characteristic for usability of BMI sys-
tems is a short training time. Motor-imagery based
BMI systems usually show high performance from
initial sessions of training,65 and little or no improve-
ments are usually reported during training. Changes
in signal features related to practice, but not neces-
sarily related to performance, are expected and have
been reported previously. For example, modulation
depth of beta power during movement increases with
practice over sensory-motor areas in normal subjects
but not in patients with Parkinson’s disease, inde-
pendent of performance.66 We did not find significant
differences in performance between first and last ses-
sion of experiment II, but we found session-to-session
changes of ITPC with a progressive increase over
consecutive days, that might relate to brain changes
related to BMI learning (see Fig. 4), an issue that
should be investigated in future studies.

A third practical point is derived from modu-
lation of phase-locking by sensory modulation. A
main objective of stroke neurorehabilitation strate-
gies, where BMI-based strategies are increasingly
used, is the activation or inactivation of cortical areas
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in different tasks to improve long-term function of
brain. We have seen that somatosensory modula-
tion is able to modify brain activity during the task,
which suggests that the presence of absence of haptic
feedback using passive or motorized orthesis might
modify the results obtained by BMI-based strate-
gies. This is a fact that might be relevant in the
design of strategies for BMI-based neurorehabilita-
tion systems.

Our study has some limitations, that should also
be shortly discussed. As the onset and ending of tri-
als were indicated visually, with the appearance or
disappearance of a visual cue over a black screen,
it cannot be excluded that ITPC increase is related
to visual presentation of stimuli. This seems, how-
ever, unlikely due to the spatial distribution of ITPC
increase that is not restricted to posterior (visual)
areas, but also include signal changes in frontal areas
(suggesting the presence of associated cognitive pro-
cessing), and to the fact that another modality of
stimulation (somatosensory), which occurs during
the task (between temporal edges), is also able to
modulate it. A second limitation is the reduced num-
ber of subjects in experiment II, related to the prac-
tical limitations derived from temporal following of
the subjects. In spite of it, the use of non-parametric
statistical methods allowed us to obtain statistically
significant results.

5. Conclusion

In summary, we used phase-analysis of slow rhythms
of EEG for investigating the structure of temporal
edges in a motor imagery-based BMI session. We
found that cortical slow rhythms synchronized at the
onset and at the end of active and relaxing trials
and that this synchronization, quantified by ITPC,
was modulated by sensory feedback (sensory feed-
back reduced it) and progressively increased along
day-to-day training sessions. These findings suggest
that phase-locking of slow rhythms and resetting by
sensory afferences might be a functionally relevant
mechanism in cortical control of motor function. We
also propose that information extracted from phase
of slow cortical rhythms might improve identifica-
tion of temporal edges in BMI tasks and might help
to develop physiological markers for identification of
context task switching and for evaluation of practice-
related brain changes during motor imagery tasks.

These are findings with potentially important impli-
cations for design and monitoring of motor imagery-
based BMI systems, an emerging tool in neuroreha-
bilitation of stroke.
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