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ABSTRACT High-Power electric grid networks require extreme security in their associated telecommuni-
cation network to ensure protection and control throughout power transmission. Accordingly, supervisory
control and data acquisition systems form a vital part of any critical infrastructure, and the safety of
the associated telecommunication network from intrusion is crucial. Whereas events related to operation
and maintenance are often available and carefully documented, only some tools have been proposed to
discriminate the information dealing with the heterogeneous data from intrusion detection systems and
to support the network engineers. In this work, we present the use of deep learning techniques, such as
Autoencoders or conventional Multiple Correspondence Analysis, to analyze and prune the events on power
communication networks in terms of categorical data types often used in anomaly and intrusion detection
(such as addresses or anomaly description). This analysis allows us to quantify and statistically describe high-
severity events. Overall, portions of alerts around 5-10%have been prioritized in the analysis as first to handle
bymanagers.Moreover, probability clouds of alerts have been shown to configure explicit manifolds in latent
spaces. These results offer a homogeneous framework for implementing anomaly detection prioritization in
power communication networks.

INDEX TERMS Telecommunication security, intrusion detection, deep learning, high power, power
communication, latent variables, alert prioritization, alert manifolds.

I. INTRODUCTION
Red Eléctrica de España (REE, or Spanish Power Grid in
English) is the transmission and management operator of the
Spanish high-voltage power grid. One of the main respon-
sibilities in this electric grid operation is ensuring the high
reliability of the vast set of associated telecommunication
assets, thanks to a highly reliable telecommunication network
containing around 30 000 km of optical-fiber cables built
throughout the country. This network covers all needs arising
from the conveyed information continuously interchanged
among relays and installations. This associated fiber network
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constitutes the backbone of the company telecommunication
network.

REE holds a maintenance team whose mission is to ensure
the continuity and quality of the telecommunication services.
In addition, highly qualified personnel manage and supervise
the REE network, acting as a single command for incidents,
failures, redirection of traffic, security attacks, provision and
service start-up, problem resolution, and work coordination.
One of its primary functions is monitoring, evaluating, regis-
tering, and managing any alerts related to intrusion attempts
and security breaches throughout the year. This information
is obtained by implementing an intrusion detection system
(IDS) that monitors the extensive network of thousands of
computerized devices and IP-connected resources extending
over hundreds of kilometers. A sheer number of events is
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generated throughout the day on one single network of this
size. Identical circumstances can be found in other industries
and networks, such as distribution companies, transmission
companies, or large entities that manage public infrastruc-
tures. In the case of REE, the alerts are generated by the
IDS system and then recorded for subsequent monitoring.
Finally, a report is automatically generated for each one of
the events. However, the extensive reports generated and
the massive number of them do not facilitate an adequate
interpretation or proper use to prioritize the necessary actions
to be carried out. For these reasons, organizations with this
type of reality should refrain from restricting themselves to
producing summary reports based on existing systems and
reports, rather, they require additional actions to be taken.
Therefore, this is an actual and shared problem in all large
network infrastructures. Proper management requires either
large deployments of human resources or additional algorith-
mic developments, allowing more efficient alert handling and
prioritization.

Over the last few years, organizations, companies, and
institutions have created human teams devoted to detecting
cybersecurity threats. These groups are commonly organized
around divisions referred to as Security Operation Centers
(SOC). A SOC is a department or unit focusing on secu-
rity at a technical level. The goal of a SOC is to detect
security incidents through network monitoring for abnormal
behavior that may reveal that security has been compro-
mised. SOC activities may include reverse engineering to
study the incidents, as well as many other proposed tools
for statistical analysis of the dynamic characteristics of the
network. This reality and its challenges have been collected
and published in some works [1], [2]. This literature tells us
how the activities and initiatives taken by the work members
of the SOC are exhausting and stressful. Moreover, given the
enormous amount of information and the absence of adequate
tools for its analysis and management, often they do not
lead to being able to anticipate breakdowns caused by these
eventualities. To the extent that this analysis is overloaded
with clutter and tedious tasks, there is a need to create more
sophisticated tools to scale detected events, as automated or
semi-automated premature alarm detection becomes virtually
impossible inside SOC. In particular, REEmanagement states
that finding several thousand waves of alerts in a single day
is relatively standard. An identified bottleneck is the human
cognitive ability to process information, and a pernicious
side effect is the consequent burnout of staff working in
these units. For these reasons, we analyzed here the events
generated in the communications network that supports the
Spanish power grid backbone, where practical and adequate
management becomes essential to supply an essential service
such as electricity countrywide.

Deep Learning techniques are considered valuable tools to
deal with the inherent messiness of the heterogeneous data
available in these and in other scenarios. Deep Learning is a
set of structured algorithms that perform automatic learning
to gain insight and knowledge. It stands out because it does

not require programmed rules, as the algorithms can learn
to perform a task through a training phase. It is also char-
acterized by usually being composed of intertwined layers
for information processing. It is mainly used for the automa-
tion of classification and regression problems learning from
datasets available in the organizations [3], [4].

To carry out this work, we evaluated a significantly large
dataset with actual records obtained from the REE system.
The information in this dataset has been obtained from the
IDS tool deployed per international and sectorial standards
applicable to the discipline. The stored information con-
sists of a set of records based on maintenance forms that
reflect anomalies in the telecommunications network, where
a set of attributes is associated with each record. These
attributes include the time of occurrence, their related IP
and MAC addresses, their geographical location, and the
equipment involved. The systematic and advanced exploita-
tion of this knowledge, despite the inherent complexities
of the data typology, has been the main objective of this
work. For this study, we applied simple Deep Learning tech-
niques, namely several different autoencoders (AE) imple-
mentations, and compared their performance with a classical
and extended analysis method, the Multiple Correspondence
Analysis (MCA), for categorical variables. We determined
that low-dimensional latent variable spaces can provide us
with efficient representations of IDE-generated alerts, which
allow us to prioritize those alerts and improve their manage-
ment and reporting.

The main findings of this work are highlighted here below:

• It is possible to improve and prioritize the thousands of
alerts of potential security and intrusion risks generated
by the powerful management tools of large electricity
infrastructures

• The analysis of the heterogeneous information, mostly
categorical, based on anomaly detection strategies, has
been of interest when: (i) on the one hand, detecting
events of potential risk, (ii) and on the other to prioritize
the thousands of events that occur daily and make their
segmentation unfeasible by the human team responsible
for network security

• The visualization of latent spaces in the intermediate
stages has proven useful for the classification of varieties
of alerts that will eventually lead to a more efficient
analysis

• The identification of anomalies based on automatic
encoders improved traditional multivariate methods
(MCA), while beyond the detection of potential security
risks, they have also expressed interest in detecting other
types of network incidents of interest for infrastructure
management.

This document is structured as follows. In Section II,
we include a systematic review of the literature related to
this work. In Section III, we present the framework and
application techniques used in the proposed experiments.
Section IV describes the dataset and collects the experiments
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FIGURE 1. Network tap listening point.

and results, while Section VI compiles the main conclusions
and discussion of the work.

II. BACKGROUND AND PROBLEM SCOPE
A. CRITICAL-INFRASTRUCTURE PROTECTION
Essential infrastructures are currently facing new circum-
stances and risks that they must face from a global per-
spective. On the one hand, the fundamental advances and
undoubted innovations offered by new technologies in all
facets of business activity are no exception in the case of
electrical infrastructures. Furthermore, neither are the intrin-
sic vulnerabilities that come with these new technologies [5].
As a consequence, cybersecurity has become a severe con-
cern for electricity companies, given that these a priori non-
essential new elements of the power grid, but undoubtedly
now required for better management and efficient develop-
ment, have revealed the opening of security gaps that hackers
take advantage of to put entities, companies, and administra-
tions in check. An example of this can be found in the events
that recently took place in Ukraine [6]. It should be known
that in the recent past, the planning and design of networks did
not foresee the existence of multiple networks and related ser-
vices. For this reason, the systems were developed under the
perspective of a single isolated network. Therefore, the due
precautions for potential concurrences were not established.
The rapid technological evolution and the long useful life of
these devices tell us that these initial premises are no longer
valid nowadays. Current networks incorporate additional pro-
tection layers on top of the existing infrastructure to cope with
this reality. However, they do not always manage to eliminate
vulnerabilities, and eventual risks of cyberattacks [7].

New and more powerful tools are being developed in
different industries to respond to this reality. In the case of
the power industry, these IDS tools combine software and
hardware to identify potential anomalies or incidents that may
or may not be related to fraudulent or pernicious activities.
Figure 1 presents a diagram of the IDS deployment imple-
mented in REE. IDS provides comprehensive inspection of
packets and information units, thus protecting them against
attacks. Additionally, IDS allows the detection of network
elements, denial of service attacks, and access attacks. IDS

FIGURE 2. REE IDS graph.

FIGURE 3. REE aggregation scheme.

tools also detect possible anomalies based on traffic analysis.
For this purpose, the system studies the existing pattern of
the traffic, considered normal and commonly recognized as
the baseline. It identifies anomalies or potential attacks based
on dissimilarities from the baseline. This network monitoring
and analysis modality is considered a non-intrusive system.

B. DETECTION ARCHITECTURE
Different frameworks and regulations are focused on
Cybersecurity implementations for critical infrastructures.
A particular practical framework is shown in the North Amer-
ica Electric Reliability Corporation (NERC) regulations. The
NERC is responsible for the secure and reliable functioning
of the electric grid of North America and is the regulatory
body for all users, owners, and operators of the Bulk Energy
Supply (BES) system. The standards defined by this orga-
nization and their cybersecurity applications are well con-
sidered worldwide as a guide for the electric industry and
for almost any mature organization seeking a secure digital
ecosystem [8].

In response to a good number of the recommendations
presented by the aforementioned organization, REE defined
a security architecture that establishes an electronic security
perimeter for each critical set of IEDs. In the same way,
IDS was deployed to the network, making a set of alerts and
incident information available to the team of professionals,
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as shown in Fig. 2. Particular interest has been placed on
the trunk nodes of the IP network to ensure a complete net-
work analysis. Additionally, the topology established at the
hierarchical level offers the IDS system visibility over each
significant element in the REE network. Our architecture
scheme is depicted in Fig. 3.

The IDS whole system architecture is passive with lis-
tening span ports. These span ports have no logical address
associated with being undetected by any potential intruder
and are used solely for monitoring, never for management or
transmission. Hence the system is immune to injection attacks
or tampering and reduces the attack surface. Moreover, this
ensured a fail open condition, leaving the corporate commu-
nications unaffected in case any device failed. The IP traffic
is collected in the power substations using switches with
mirroring ports enabled. Afterward this traffic is aggregated
in a middle layer through TAPs (Traffic Aggregation Points),
devices that assemble the whole IP trafficwithout the filtering
that a conventional switch would do, such as broadcasting
messages. As the number of installations is several hundred,
with this intermediate aggregation layer, the targeted traffic
is conveyed to a regional IDS. Subsequently, final aggregated
traffic is carried upwards from the regional IDS into the SOC
to be consolidated and redundancies eliminated.

C. SECURITY ALERT PROCESSING
The sensitivity and specificity of security alert systems are
crucial and a primarily debated issue. The rationale behind
it is twofold. On the one hand, more significant sensitivity
levels can imply low predicting capabilities of false negatives
while ensuring effective use of the always limited resources in
SOC. On the other hand, attempting to prioritize specificity
could limit the number of false negatives and dramatically
increase the number of false positives, thus limiting the
effective segmentation and management of the alerts inside
the SOC. The need to guarantee network security encour-
ages those managers responsible for these departments to
approach this second problem statement and, consequently,
to a massive volume of alerts to which the technicians must
respond. And the ever-increasing demands in terms of secu-
rity and the emergence of new techniques for breaching
almost any system are forcing SOCmanagers to take said sec-
ond approach regardless of the limitations of human resources
available for this matter and triggering a real challenge.

This work aims to respond to this reality by using novel
and powerful machine learning tools to prioritize the efforts
of security service operators to manage appropriately the vast
number of generated alarms.

D. RELATED WORKS
Event analysis based on packet scrutinization has been recog-
nized as a helpful tool for managing security and constitutes
an effective instrument for anomaly detection in telecommu-
nication networks. An example of this has been published
in [14], where the authors present a model for intrusion

detection. Similarly, authors in [15] describe how deep learn-
ing can help to identify main events related to cyberattacks.
Autoencoders have also been applied to predict successfully
several kinds of harmful intrusions [4], [16]. An overview of
intrusion detection can be seen in [17].

As seen from the growing number of publications, deep
learning offers a promising paradigm for modeling network
intrusion [9], [18]. This fact manifests itself in all domains
and is no less accurate in network security, where its impact is
just beginning. A classical attack modeled with deep learning
is the Mirai malware [3], [19]. Several other works illus-
trate this new reality and the potential that these techniques
offer in telecommunications, where these methodologies are
extended beyond classical prediction to specific security
applications [20], [21].

From the more specific point of view of alert classifica-
tion noteworthy works has been made. In [22], a whole set
of methods quantifying IDS accuracy have been analyzed.
Remarkably the ratio employed has been derived from false
and true positives and negatives. Another approach in group-
ing alerts from an IDS is elaborated in [12] with the results
of alert clustering aiming to discover attack scenarios. In [23]
are presented various deployments related to using machine
learning classifiers and prioritization in IDS.

On Table 1, several recent and representative works related
to the present one are compiled and summarized [9], [10],
[11], [12], [13]. It can be noted that, to our knowledge,
no previous work has been driven with the orientation and
scope of our proposal, as far as it is a new risk management
discipline in data networks associated with critical infras-
tructures. We have not found precedents that either analyzed
information extracted from tools from an IDS cluster as
depicted them or dealt with instance volumes of about half
a million from the current activity of a critical power system
operator, whose registers can be far from synthetic ones. The
limitations of applicability of the past works for this present
application could be related to the inherent multidimensional
complexity of the supervision data and the difficulty to extract
patterns in this peculiar case. This effect is to be partially
eluded by a tailored methodology conforming an operational
technology framework that strengthens the results.

III. ALGORITHMIC FRAMEWORK AND METHODS
Anomaly detection is a machine learning process that iden-
tifies different events in any system that diverge from the
expected normal behavior. This well-known set of techniques
has been exposed frequently today due to the intense develop-
ment of digitization and the systematic registration of infor-
mation. Anomaly detection algorithms entail alerts, including
the additional information that gives rise to the anomaly. The
volume and characteristics of the anomalies or alarms may
drive the need for secondary efforts to verify the risk derived
from the detected anomalies and the actions to be taken,
where said actions may differ depending on how critical the
incidents are. Priority will be different if we run a critical
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TABLE 1. Related works during the last years.

service fault or some anomalous behavior of a key element.
Still, its detection does not limit the functionality or whether
it is a malicious intrusion with unforeseeable consequences.

This previous essential classification, together with the
increasing number of alarm records to avoid false nega-
tives, makes it necessary to develop new automatic or semi-
automatic tools that carry out this earlier segmentation. This
section describes the techniques evaluated here to achieve
this goal, namely, the conventional MCA and deep learning
AE with different configurations. Their mathematical foun-
dations are summarized next.

A. MCA FOR CATEGORICAL FEATURE DESCRIPTION
MCA is a data analysis technique for categorical data used
to detect and represent underlying structures in a low-
dimensional Euclidean space. MCA is a method in multivari-
ate statistical analysis that can be seen as the equivalent of
Principal Component Analysis (PCA) inmetric features since
both are based on matrix eigendecompositions of the input
data. The main difference between them is that the former
represents a variance orthonormalization, whereas the latter
represents a probability-space orthonormalization. MCA is a
multivariate statistical analysis technique for categorical data
that detects hidden relationships in a dataset. MCA searches
to provide an alternative description of the discrete obser-
vation matrix on a space of lower dimensionality. This new
representation would retain as much information as possible
about the original data matrix, having a lower number of
dimensions.

MCA transforms the categorical input variables to con-
struct a binary matrix X ∈ RI×J , being I and J the total
number of samples and categories in the dataset, respectively.
J is the sum of all the categories related to the categorical
features. Then, MCA decomposes thisXmatrix into a pair of
sets of projection matrices (also known as factor scores), one
for the dimension of the samples (rows) and another for the
dimension of the categories (columns), to project the samples
and features to points in a low-dimensional space, allowing
to establish intuitive relationships among them through dis-
tances in this projection space. In addition, let

B =
1
M

X⊤X (1)

denote the corresponding relative frequency matrix. B is
known as the Burt matrix, being M = I × J the number of
elements of the X matrix.
Furthermore, we define r and c as the vectors of the hori-

zontal and vertical sum of B, respectively, i.e., r = 1⊤B and
c = B · 1, where 1 is a column vector of ones. Then, let Dc
and Dr represent diagonal matrices whose diagonal entries
are the elements of c and r, respectively. The subsequent
decomposition of the normalized Burt matrix achieves the
projection matrices:

Dr
−

1
2 (B − rcT )Dc

−
1
2 = P1QT , (2)

being P and Q the left and right singular vector matrices,
respectively, and1 a diagonal matrix with the singular values
organized in decreasing order. Then 3 = 12 is the eigen-
values matrix. Since B is a symmetric matrix, P and Q are
identical matrices, being V = P = Q the eigenvector matrix,
and thus F is also equal to G.

Once eigenvectors and eigenvalues are obtained, MCA
results can be studied. According to each category, normal-
ized eigenvalues could be used to display the dispersion
surrounding the gravity center. The eigenvectors represent the
different projecting directions, and their coefficients indicate
the relative relevance of each category for each factor.

To increase the interpretability of the MCA, Bootstrap
resampling techniques are used to obtain a point cloud that
implicitly represents the empirical distribution of these pro-
jections in the projected space. Visualizing overlapping confi-
dence regions allows for interpreting the statistical correlation
relationship between the analyzed categories. In contrast,
separate and distant regions indicate independent categories.

Bootstrap resampling [24], [25] is a technique that allows
the generation of a new list of statistical measurements from
a sampling with replacement of a dataset. If we denote the
operator that obtains the MCA eigenvector matrix by 2(·),
the computations described in Eqs. (1)–(2), as follows,

V = 2(X). (3)

Applying Bootstrap resampling, where the asterisk ∗ indi-
cates the resampled statistical element, we can define the
resampled data matrix as X∗

∈ RI×J after sampling with
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FIGURE 4. General architecture for an AE with a 3-unit intermediate layer.

replacement the X rows I times. This way, the X∗ matrix
is composed of rows of X, whose rows may appear once,
several, or zero times. Resampling B times, denoting X∗(b)
as the resampled matrix in the b-th iteration bootstrap, where
b = 1, . . . ,B, we obtain a bootstrapped representation of
the projection matrix over the resampled population, X∗(b),
as follows

V∗(b) = 2(X∗(b)). (4)

Hence, using these B repetitions, we can estimate the empiri-
cal distribution function of the statistical element [24], in this
case, of the projection vectors.

B. AUTOENCODERS
As mentioned before, Deep Learning technologies have
undergone strong development in recent years, and today they
constitute a promising battery of methods for extracting rele-
vant information from large data volumes. Said technologies
include a particular set of techniques called the AE [26],
which are neural networks designed to learn complex and
intrinsic relationships in the data. Typically, an AE consists of
multiple neural network layers trained to reconstruct the input
at the output. In contrast, different strategies are proposed in
the intermediate layers to approach a certain objective [27].
Specifically, the AE can be contractive or expansive depend-
ing on the number of dimensions of their middle layers related
to the input. One of the main advantages of using AE is their
expressive capacity to transform complex high-dimensional
input data into lower-dimensional structures in the interme-
diate layers. This reality, together with the expressive effect
of the successive layers that allow the initial dimensional
space to be generated at the output, offers a succinct and
compressed representation model of the reality of the input
in a lower-dimensional space. These spaces are known in the
literature as latent spaces, bottlenecks, embeddings, or feature
spaces. An example of a simple contractive AE can be seen in
Fig. 4, where the intermediate layer works like a bottleneck
to force some compression of the input data and to avoid
the input values being memorized through the network. This
AE has two components: the encoder (mapping the input
data to the intermediate layer) and the decoder (mapping
the intermediate layer to output data. Notice that within this

approach, and since the AE has to reconstruct the input using
a reduced number of nodes, it will try to retrieve only the
most essential aspects of the input, that is, and ignore meager
variations such as noise [27]. Although AE are trained to
attempt to copy its input to its output, they are designed to
achieve a copy that is approximate but not perfect. Using
an intermediate layer of lower dimension than the input data
(which is known as undercomplete AEs [28]), the model can
learn useful properties of the data because it is forced to
capture the most salient features of the training data, that is,
those correlated with patterns of normal behavior which tend
to form groups in a lower dimension space. Thus, new events
which show statistical deviation from these normal patterns
will be identified as anomalies.

AE architectures can be used for supervised and unsuper-
vised learning. Unsupervised learning is a self-learning set of
techniques trying to discover the intrinsic features of the input
samples on its own, and no initial set of known categories is
used for this purpose. This kind of approach has interest for its
application in specific fields such as cybersecurity, where the
wide variety of possible attacks makes their reality unknown
concerning the characterization of regular network traffic.
In this work, we propose establishing a framework based
on intrinsic statistical descriptors of the available IDS data.
However, the heterogeneity of the existing variables and their
prevalent categorical nature makes it necessary to adequately
manage and transform them before their analysis [26]. Also,
for this particular application, it was deemed appropriate to
use unsupervised learning as the problem of selecting the
most critical alerts is new without proper knowledge, as the
IDS implementation is brand new. Labels, which indicate
explicitly whether an alert can be crucial, are not available.
Therefore, we aimed to establish a similar framework for
all of them while making the results and interpretability
readily available to network administrators. Recall that the
application field of the proposed machine learning solution
is a telecommunication network embedded in a high-power
grid and used to convey critical services such as electrical
protection and supervision, whose security against intrusions
needs to be extremely high. The availability of an essential
collection of events from IDS forms has made possible its
systematic analysis here.

The equation describing the first half of the AE, known as
the encoder, can be expressed as follows,

hi = f (x) = φ(Wexi + be), (5)

where hi ∈ Rd is the resultant vector in the feature space
that maps the input xi ∈ Rd , f (x) is the transformation from
the input to the new space, φ(·) is the activation function,
We is the weight matrix, and be is the bias. Seamlessly, the
second side of the AE, called the decoder, can be expressed
mathematically using the following expression,

zi = g(hi) = ϕ(W′hi + b′), (6)

where g(·) is the nonlinear transformation from the present
space to the original space ϕ(·) denotes the nonlinear
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FIGURE 5. Overall scheme of the processing system.

activation,W′ is the weight vector, b′ is the bias vector, and zi
is the estimated output. The objective is to estimate f (·) and
g(·) from a set of samples, therefore, the estimated weights
and biasesW,b so that zi = x̂i.
AE have been used for many different machine-learning

tasks, and in this paper, we are interested in using autoen-
coders for alert prioritization. The main objective has been to
train an autoencoder with an inner layer of three dimensions
so that an intuitive representation of data was also possible
in addition to the descriptive capability. As mentioned, with
the appropriate constraints, AE can learn nonlinear and non-
Euclidean projections of the data that are more interesting
than other fundamental techniques. Our implemented AE
network consists of an encoder and a decoder, where the
encoder maps the input to a hidden representation that implies
dimensional reduction. The decoder endeavors to map this
representation back to the original space. Once the system
is adequately trained using customary standard data, spe-
cial consideration should be raised if a relevant difference
between the coded and decoded data is observed. In other
words, the data with a relevant reconstruction error become
suitable candidates for further analysis as they do not match
the standard patterns.

A relevant architecture of AE is the so-called Varia-
tional autoencoder (VAE), which can learn a continuous and
statistically-principled latent variable model from its input
data ( [29]). For doing so, instead of letting the neural network
learn an arbitrary function, the parameters of a probability
distribution modeling the data are learned in the latent space.
If points from this distribution are sampled, it is possible
to generate new input data samples. A VAE is a generative
model, meaning that VAE can encode inputs as distributions
instead of points, and the obtained latent space structure is
regularised to be parameterized by standard Gaussian distri-
butions [30].

The following steps were implemented in the present appli-
cation to benchmark the VAE capabilities. First, an encoder
network turns the input samples x into two parameters in
a latent space, which we will note zmean and zlog_sigma.

Then, we randomly sample similar points from the latent
normal distribution that is assumed to generate the data via
z = zmean + ε · e(zlog_sigma), where ε is a random Gaussian
tensor. Finally, a decoder network maps these latent space
points back to the original input data. The VAEmodel param-
eters can be trained via two loss functions: a reconstruc-
tion loss forcing the decoded samples to match the initial
inputs (like in other AE); and the Kullback-Leibler (KL)
divergence between the learned latent distribution and the
prior distribution, which is acting as a regularization term.
Being ŷ and y two different probability distributions, their KL
divergence [31] is defined as follows on their observations,

KL(ŷ||y) =

M∑
c=1

ŷc log
ŷc
yc

, (7)

Note that a KL divergence close to 0 indicates that the two
distributions in question have strongly similar information.

C. SYSTEM MODELING
The following phases were followed for system modeling
purposes: data collection, data preprocessing, training and
testing, algorithm application, and exploitation. Figure 5
shows the architecture of the running processing system.
It consists of several subprocesses: the interface with the
IDS for data collection, data preprocessing, data analysis,
training, the algorithmic fabric, and the eventual exploitation
in the company context. Some crucial issues are spotting the
graphic results and adjusting the model to ensure practical
results.

The core of the system is the machine learning algorithmia
used to create the latent spaces with the IDS-generated alerts
and to determine the prioritization in terms of the latent coor-
dinates. Note that the experiments were performed to identify
the best algorithmic implementation supporting the priori-
tization system among all the benchmarked and scrutinized
algorithms. A final validation by REE supervisory personnel
is needed. Tactical analyses by cybersecurity teams are made,
conclusions are drawn and substantially false positives are
elucidated.
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TABLE 2. Data setup and description of the main fields.

IV. DATA DESCRIPTION
Our dataset consisted of nearly half a million security alerts
detected by the IDS. Information on these episodes was col-
lected in the IP telecommunication network in REE. This
sample included present active alerts at a specific time.
Specifically, data selected for this work consisted of registers
with 53 fields each that are currently stored in a csv file with
the possibility to export to standard spreadsheets. Its structure
is one-dimensional in a single table with no relation to other
repositories. Table 2 shows a high-level description of some
fields associated with the most relevant variables.

Most of the variables recorded in our database are inher-
ently categorical or integer-valued numerical treated as cat-
egorical. In both cases, quantitative association measures
are of interest. In the feature processing phase, text values
were encoded by creating a mapping dictionary that mapped
categories to a token. Then categorical variables (except risk)
were replaced with their tokens, and data were converted to
list format to match the network structure. A re-scaling was
also made to adjust the data range. Redundant fields were
filtered.

Data were split into train, validation, and test sets. The
train set allows us to adjust the parameters of our model
directly. The validation set is the one that allows us to adjust
the hyperparameters of every model and to compare a large
number of different models to select the best of them. The test
set allows us to evaluate the final model performance.

V. EXPERIMENTAL RESULTS
In this section, we present the experimental results driving
the design of a system for prioritizing alerts. Special atten-
tion is paid to the intrinsic structure of the alert vectors
through several methods for generating latent spaces. Given
that related features are intrinsically categorical, we start by
scrutinizing the scope and limitations of MCA applied to this
field, which represents a reference of the performance and
information that can be retrieved from our problem using
classical multivariate methods. Subsequently, we present the
results with several AE structures, which can simultaneously
highlight the intrinsic structure of the vector data on low-
dimensional latent spaces, as well as provide information
about some of the alerts as being different from themost usual

states for these embedded spaces, thus representing usual and
atypical alerts. As different AE architectures provide us with
different system performances, the results with conventional
AE, based on error reconstruction of the input vectors, are
first presented. Then the advantages provided by using VAE
are scrutinized and summarized in a set of representative
experiments.

A. MCA AND DETECTION PERFORMANCE
As described before, MCA builds an eigenvector-based
decomposition of the observed vectors. Given that MCA can
be sensitive to loosely populated categories in the variables,
we first revised the input variables of the complete dataset
by category and grouped for each of them all the loosely
populated categories into a single category labeled as others,
which allowed the reduction in categories for variables Type
id (starting from 18 initial categories and retrieving finally
5 categories), IP source direction (from 114 to 40), IP des-
tination direction (from 189 to 10), MAC source direction
(from 139 to 40),MAC destination direction (from 146 to 15),
Protocol (from 36 to 6), andName (from 18 to 5). This means
that our data matrix finally included 649 categories from
7 variables.

As far as a large number of observations were available
(499 013 alert vectors), building a single Burt matrix and
inverting it was not viable. Instead, we can take advan-
tage of the large numbers available and generate statistical
instances of the Burt matrix and scrutinize the variability of
the eigenvectors and the projections. We present the results of
building a Burt matrix with 5000 randomly sampled alerts,
obtaining the statistical fluctuations of its eigendecomposi-
tion and its corresponding elements (eigenvectors, projected
features, and projected vector alerts), and repeating this pro-
cess 300 times.

A slowly decreasing spectrum of eigenvalues was obtained
(not depicted), showing strong correlations among categories.
Fig.6 shows the first six eigenvectors, restricting the repre-
sentation to a subset of categories to visualize the statistical
properties. The red vertical lines denote the significant cate-
gories for each eigenvector. We used up to three eigenvectors
to subsequently project the categories and the alert vectors,
noting that they had 89, 63, and 0 significant categories each.
Interestingly, the eigenvector number three of the represen-
tation and the fourth number often show symmetrical confi-
dence intervals across the horizontal axis. This effect could
be attributed to the rotation of the eigendecomposition axes
through different random samples. It can also be observed
that the confidence intervals in the two first components are
narrow, thanks to the high number of input vectors used to
build the Burj matrices. This fact also indicates that these first
eigendirections are robust concerning rotations.

For each realization, the projection of each category was
obtained on the three-dimensional latent space, as usual in
MCA studies. Fig. 7 depicts each projected category on a
different color, showing the structure of the alert vectors in
terms of the mutual statistical information of each category.

VOLUME 11, 2023 23761



J. R. Feijoo-Martínez et al.: Cybersecurity Alert Prioritization in a Critical High Power Grid With Latent Spaces

FIGURE 6. Eigenvectors and confidence intervals (grey bands) in MCA. Some categories are represented for each of the first 6 eigenvectors. Vertical red
lines denote the statistically significant categories on each eigenvector, this is, those whose confidence interval does not overlap zero.

As explained elsewhere, confidence volumes were obtained
using a domain description technique. This representation
allows us to identify strongly related categories, as they are
represented as overlapped confidence volumes. Also, those
categories that are farther from the origin are less frequent.
Whereas this information is sometimes evident and natural
from an alert point of view, sometimes this represents relevant
information for the manager. In general, we consider that this
view represents a valuable tool for managers. For instance,
multimodalities can be observed according to unconnected
confidence volumes in the same color.

We also obtained the projection of each input alert vector
onto the latent space build using the three first eigenvectors.
Fig. 7 also shows the cloud point obtained in this way.We can
appreciate that alerts on this projected space keep some
strong spatial similarity properties and tend to group into non-
Gaussian and manifold-like clouds. Note also that due to the
strong effect of discretization, many of the single points in
the figure correspond to many alert vectors that are initially
equal or very similar in most of the features. We represented
in the same figure the severity for each alert as provided
by the IDS in terms of a color code, which can represent
a qualitative proxy to detect those alerts as candidates to
be prioritized. It should be mentioned at this point that the
finding of the existence of morphologies and especially the
concentration of risks in certain regions must be assessed for
further interpretation.

From a result perspective based on graphical representa-
tion, we can appreciate that the study synthesized here allows
us to estimate the method used and qualify its applicability.
First, the method stability can be appreciated by the solidity,
over the hundreds of realizations, of the values and vec-
tors of the MCA transformation. This effect can be easily
observed in Fig. 6, where the reduced confidence intervals
of the coefficients (identified with red lines), especially in
the first eigenvectors, indicate so. Secondly, the projection
over the three first dimensions (first 3 eigenvectors) allow us
to scrutinize the groupings of instances, as shown in Fig. 7.
This representation allowed us to visualize clusters related
to the different categories although overlapping (upper part
of Fig. 7). This representation also allowed us to observe
how the low-risk index obtained from IDS is concentrated
in a region of the space (see the lower part of Fig. 7). It is
important to notice that the categorical nature of the source
guides the fact that the seemingly unique points may corre-
spond to hundreds of them. Although these experiments have
allowed us to conclude the existence of latent relationships
between the categories, the difficulty of jointly processing
many samples and the overlap of the identified groups limits
the applicability.

B. SIMPLE AND MULTILAYER AE PERFORMANCE
The experiment data set was structured to scrutinize the
scope of latent variable extraction fromAE architectures. The
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FIGURE 7. MCA Results. Up: Projected categories using MCA. The cloud points
represent the aggregated projections through the 300 repetitions, and the colored
volumes represent the confidence volumes for each category. Down: Projected alert
vectors in MCA using the first three components as latent variables.

available alerts of the first dataset (up to 92508) were split
into training (80%) and validation (20%). A second dataset,
including over 499000 alerts, was used for testing. The fol-
lowing features were used:MAC source direction,MACdesti-
nation direction, IP source direction, IP destination direction,
Protocol, and Type. This last one was considered optional,
given that labeling the IDS alerts could affect the latent spaces
and alter their structure. All of themwere categorical features,
so one hot encoding was applied. In this case, no filtering of
the low-populated categories was performed, as AE architec-
tures have been shown to exhibit robustness concerning this,
in contrast with MCA implementations.

Initially, a single fully-connected neural layer was used as
an encoder and a decoder, called simple AE in the following.
The final model maps an input vector to the reduced latent
variables and from them to its reconstruction. A plot of the
encoded data obtained in the inner autoencoder layer (again
using a 3-dimensional latent space) is shown in Fig. 8(a)
when the Type feature that identifies the kind of alert is
or is not considered during the training phase. The differ-
ent colors represent the values of the data set IP source
direction. Using Type, featured groups transformed the input
data into different manifold structures. Therefore, the fol-
lowing paper results are obtained with and without the Type
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FIGURE 8. 3D-encoded data (up) and reconstruction errors (down), without (left) and with (right) the Type
feature, in a single layer AE (a) and in the multilayer AE (b).

feature to compare and show the importance of this feature in
the anomaly detection problem addressed here. Figure 8(a)
also shows the reconstruction error obtained by this sim-
ple AE in both conditions. An operative threshold of 0.1%

was established to discriminate the urgent alerts. Accord-
ing to the result summary in Table 3(a), the inclusion of
Type during the training phase achieved two positive points:
(1) the system detected as anomalies those alerts of type
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TABLE 3. Type and number of alerts detected by simple AE (a) and by multilayer AE (b).

MULTIPLE-UNSUCCESSFUL-LOGINS, which belong to
the ones with higher potential real attacks according to expe-
rience; and (2) the system also reduced the total amount of
not potentially-dangerous alerts that are detected compared
with training the simple AE without using Type.
Another set of experiments was made with a fully-

connected neural stack up to 5 layers (called from now on
the multilayer AE). A plot of the encoded data obtained in
the 3d latent space is shown in Fig. 8(b). Again, the encoded
data showed different manifold structures when including
the Type feature. Figure 8(b) also shows the reconstruction
errors obtained under the same conditions as the ones used
with the simple AE. After setting a heuristical threshold, the
multilayer AE singularizes 765 anomalies without using Type
and 1191 when using Type. Although the number of events
considered as anomalies using Type is larger than without,
we checked that none of those alerts would be considered
possible attacks by the responsible human operator. More
specifically, the simple AE identified about a 0.11% variables
as potentially different on the test data set versus 0.24%
provided by the multilayer AE. However, the sets of alerts
related to this difference were negligible warnings that were
not severe actually and had been filtered. We checked that
there was a noticeable prevalence of high-severity events in
data with high reconstruction errors. Still, there were also
some low-severity rare events corresponding to unusual IP
source address with high reconstruction errors, and finally,
some high-severity events were not taken into account. Occa-
sionally, alerts with high risk tagged by the IDS as anoma-
lous packets were also discriminated by the method. Similar
results were obtained using another multilayer AE with more
than 5 layers.

In summary, in an attempt to consolidate the results
achieved and represented graphically in this work, we can
say that the analysis carried out using simple and multilayer
AE has allowed visualizing the latent space and the recon-
struction error to study the potential incidence under a risk
perspective. The analysis was performed by incorporating
and isolating various combinations of variables to validate the
most effective model. The best and most differential results
were obtained with all variables and incorporating (right side
of Fig. 8) or not (left side of Fig. 8) the event type variable.
The different varieties, although again overlapping, both for

simple (upper part of Fig. 8) and multilayer (lower part of
Fig. 8) allow us to observe some consistency with the cate-
gorization of the IDS, still not being conclusive. The use of
reconstruction error (represented below each 3D latent space
portrait) as a risk indicator confirmed a much larger detection
capability by simple AE versus multilayer AE (upper part of
the Fig. 8).

C. VAE PERFORMANCE
In the preceding experiments, we were able to check that low-
dimensional latent spaces represented with advantage the het-
erogeneous set of input vectors representing alerts provided
by the IDS. The embedded point clouds provided both by the
simple AE and by the multilayer AE show that non-Gaussian
shapes emerged in these spaces, which is an interesting-to-
exploit characteristic. In addition, the classically used crite-
rion to identify the atypical alerts using the reconstruction
error exhibited noticeable dependence on the choice of the
heuristic threshold. Therefore, the preceding results indicate
that anomaly detection should be better addressed in the latent
space rather than the reconstruction error. The use of some
principled approach for identifying those data points far from
the usual-traffic points appears as a necessity to be fulfilled.
We decided to use VAE architectures to cope with all these
requirements.

For the VAE training, the settings were set at a batch size of
256, intermediate dimension of 16 units, latent-space dimen-
sion of 3 units, and 150 epochs. The reconstruction errors
obtained for both scenarios (with and without using the IDS-
provided Type feature) are shown in Fig. 9(a). The VAE could
detect 765 anomalies without Type and 1, 191 with it. On a
dataset of 499, 013 events, theVAEdetected 27, 485 events as
outliers without Type, whereas the events considered anoma-
lies were reduced to 1, 076 with Type.

Note that the approach of identifying the anomalies using
the error of the reconstructed output given by an AE can have
several limitations. One of them is that high reconstruction
error could be due to a non-observed case, but it also could
be due to noise. Another is that the threshold set on each
case cannot be easily adjusted with a criterion equally use-
ful across different AE. We set here an operative threshold
allowing the network analyst to scrutinize an operative num-
ber of cases being possible candidates for anomalies. Hence
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FIGURE 9. VAE experiments. (a) 3D latent space (up) and reconstruction error (down) in the VAE. (b) OSVM (up) and
IFOREST (down) on the VAE-generated 3D latent space, without (left) and with (right) the Type feature.

we decided to do it by inspecting the residual plot in each
scheme. Another criterion, such as choosing a small and fixed
percentage of cases, or a fixed number of cases, would have
been possible to set the thresholds, though it also would have
been heuristic choices.

Again to analyze the relevance of this reduction, Table 4(a)
shows the type of alert associated with each case. Without

using Type, there is a clear-cut group of alerts of type
NETWORK-MALFORMED, which will require further anal-
ysis in the discussion section as it might be related to reported
critical alerts.

As one of the main objectives of this work is to reduce
to the minimum the false alerts suggested by the IDS, the
application of well-known anomaly detection methods can
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TABLE 4. Results in VAE latent spaces. Types and amounts of alerts detected by the VAE (a), by OSVM (b), and by IFOREST (c). (d) Degree of alerts
considered relevant by VAE and OSVM or IFOREST.

be a solution. Thus, we applied two well-known algorithms
of anomaly detection, namely, the One-class Support Vector
Machines (OSVM) [32] and Isolation Forest (IFOREST)
[33], on the VAE-generated 3d latent space, instead of using
the reconstruction error as a criterion.

On the one hand, Figure 9(b) shows the VAE-encoded
test data, with the considered anomalies in magenta by the
OSVM algorithm. The OSVM-detected anomalies corre-
spond to the types of alerts registered by Table 4(b). Without
using Type, we checked that intuitively, a combination of the
alerts NETWORK-SCAN, MULTIPLE-UNSUCCESSFUL-
LOGINS, and CONFIGURATION-CHANGE. This singular
fact is consistent with security issues reported in the literature,
as covered in the discussion section.

On the other hand, Figure 9(b) also shows the
VAE-encoded test data considered anomalies (in magenta)
by the IFOREST algorithm. The IFOREST anomalies corre-
sponded to the types of alerts registered by Table 4(c). The
WRONG-TIME anomaly means that the timestamp specified
in the alert is not the same as the network time.

In general terms, we can see that the alert profiles exhibit
differences that can be scrutinized with the proposed method.
The results on the specific analyzed dataset show that aver-
age alerts are often grouped in probability clouds mutually
adjacent in the probability space. Alternatively, it can be
said that alerts with low occurrence probability are often
grouped in the same class, far away from the other classes,
thus pointing at their possible severity importance. It has also
been observed that distant and isolated classes contain about
a small percentage of alerts, distinguishing an objective group
where to start the intrusion analysis. Table 4(d) shows a high-
level description of comparative results from the different
methods. The use of flexible anomaly detection algorithms
in latent spaces generated by input spaces without using the
Type feature tends to better prioritize the number of alerts and
the content in the possible alert as evaluated by expert human
managers.

As in the previous experiments and in an attempt to consol-
idate the results achieved and represented graphically in this
work, we can say, by way of synthesis, that the exploration of
possible risk analysis and its classification leveraged on the
graphic representations of the results of the VAE (see the first
row of Fig. 9(a)), allow us to observe how the representation
of the latent space that was relevant in the case of AE, it is
even more so in the case of VAE, with the groupings being
observed more clearly. Again, the characterization through
the reconstruction error (lower row of Fig. 9(a)) was identi-
fied as of interest for the categorization of the different types
of events regardless of the variable type. Even further, the
double analysis through domain descriptors such as OSVMor
IFOREST represented in Fig. 9(b), allowed to reveal anoma-
lies bundled to events identified as of great interest for the
management.

VI. DISCUSSION AND CONCLUSION
Entering now into the conclusions, the focus of the present
work has been to provide the network supervisor with an
alert assortment through a mixed approach, including many
methods. In particular, the alert aggregation has been consid-
ered the key indicator for prioritization, and its significance
is provided by a three-dimensional representation built from
different approaches. A particular aspect of this work is the
availability of large amounts of data, forcing an adaptation of
the proposed methods.

From aMachine Learning point of view, our work provides
evidence that alerts generated by an IDS can be processed and
subsequently projected to low-dimensional spaces of latent
variables, thus generating manifolds (geometrical structures).
On the one hand, the existence of said manifolds paves the
way for using Machine Learning for other supervised and
unsupervised data-based models, for instance, classification
and regression, in cybersecurity problems based on traffic or
alert data. On the other hand, we implemented an anomaly
detection system based on machine learning, which allowed
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us to prioritize the IDS-generated alerts. Whereas the use
of conventional MCA for categorical variables did not pro-
vide a clear and operative tool, relevant findings that require
additional discussion were observed. As they relate to the
MCA method, we can say that as the alerts associated by
the IDS with more considerable severity are condensed in
a spatial and specific region of latent space but intertwined
with the general structure, it is not isolatable using spatial
segregation strategies. This fact and the difficulty of simul-
taneously working with large volumes of alerts discourage
its application in this discipline. However, the confirmation
of the presence of spatial structure in the MCA latent space
indicates that other multiple learning methods could better
support the alert prioritization and therefore opens the way to
other methods that share this type of morphological analysis.

Much better results were obtained using AE structures.
In this regard, we can point out that the results of the simple
AE modeling provided reasonable results when it comes to
prioritizing the agent’s effort in their search for possible
security risks. On the other hand, the multi-layer AE mainly
warned about apparently unimportant but repetitive alerts,
which could be essential to detect some attacks using tun-
nels with standard protocols such as ICMP or DNS. This
multilayer model could associate the probability of miscon-
figuration by attaching apparent DoD alerts such as TCP
SYN FLOODING with typical IP addresses. Other than that,
few more significant trends were observed, such as several
clusters of low severity. Still, they seemed to correspondmore
to isolated cases of random significance than to the presence
of some structural patterns. In a comparative analysis of the
autoencoders, the results obtained did not prove to be better
for the case of the multilayer AE compared to the simple one.
For this reason, and considering the increase in computational
complexity of multilayer, the use of simple versus multilayer
is suggested, the former being capable of a good detection of
a high number of potential attacks with lower computational
resources.

Incrementally, the results from VAE architecture offered
the best results. It should be mentioned here that regarding
the VAE technique, and specifically in the case where the
Type variable was not included, the combination of alerts
found is compatible with a privilege escalation attack pat-
tern [34], which should be taken seriously. In this kind of
event, an attacker could scan the network and find a default
or inappropriate application or password, thus achieving
privilege escalation to generally inaccessible assets. On the
other hand, when using Type, we can see that a very simple
aggregation is detected, which could point to a malicious
scan. Network scanning involves detecting active hosts on a
network and assigning them to their IP addresses, and it is
a prior step before launching an attack on a system. In this
very same analysis, the NETWORK-MALFORMED alert
was found significant. According to the literature, this alert
is related to detecting malformed packets that violate a pro-
tocol check during the packet inspection phase. A malformed

packet sequence could indicate that some hidden process is
in progress [35]. If it was the case, the communication might
be established between both ends and encoded in a way that
is not recognized. That should be considered attentively as
a hint of a possible attack. However, with Type, there is a
prevalence of NETWORK-SCAN category detected, making
it possible to be a case of enumeration and reconnaissance,
which could be used to gather and covertly discover as much
information as possible about a target system [36]. It should
be noted that reconnaissance is essential in achieving a breach
in an information system.

In summary, the use of AE structures gave better results.
Also, simple AE outperformed multilayer AE, and VAE sur-
passed both in providing latent manifolds useful for prior-
itization. The use of domain description techniques in the
latent space yielded better results in this task than the standard
reconstruction error, and more, the second one required an
empirical threshold to be tuned heuristically, whereas the
first one can use systematic and natural-to-tune thresholds.
Other manifold learning algorithms could be used for alert
prioritization problems in the future, as this is an evolving
field [37], [38].

The proposed analysis is to be used by the supervisory
team in alerts management if values of the significant features
are reached so that the severity estimated can be contrasted
with the incorporated by the IDS and relevant situations
can be detected. However, it is possible that this approach
still generates false positives, so specifications should be
worked together with end users. The traditional experience-
based judgment has a growing need to be updated. This way,
efforts would be well spent in refining the data. The designed
algorithms were observed to fit adequately with the intrinsic
messiness present in the high-level data an IDS provides. The
proposed method can be used to interpret a wide variety of
information, including some points which are not directly
related to attacks. These results show the analysis power
of the methods when driven by large amounts of data and
enhance the use of multivariate techniques [39].

The aggregation of alerts is a crucial aspect of attack
prevention [40], [41], [42]. One singular incident, such as a
gratuitous ARP or a single scan, could hint that an attack is
in progress if it belongs to a sequence. Another possibility
is tunneling detection. Attackers may tunnel network com-
munications to and from a victim system within a separate
protocol to avoid detection and enable access to otherwise
unreachable systems. For example, attackers may perform
SSH, HTTP, or even DNS tunneling, forwarding arbitrary
data over an encrypted tunnel. Separately, this will be con-
sidered an innocuous action, but the aggregation is a severe
indicator to be considered.

The objective of this work is not to show that the VAEs
outperform other AEs or other machine learning (ML) meth-
ods. Our objective is to show the advantages of models based
on AEs when applied as attack diagnostic aid methods for
human network operators. AEs and VAEs can be an excellent
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solution to reduce the substantial false positives given by
the intrusion detection systems (IDS) used to monitor net-
works. Among the different ML models, we have chosen
those based on AEs because, according to the literature,
they have shown good enough results for anomaly detection
applications such as the one studied here. The proposed
scheme is a useful statistical tool that helps security operators
improve decision-making by providing relevant information
to the security process. Likewise, this work opens the door
to formalizing statistical learning analysis methods based
on low-dimensional latent spaces to boost the treatment of
cybersecurity events.

Regarding the possible next steps, the findings regarding
the ability to classify anomalies and the clustering effect of
different varieties or classes in the latent space encourage us
to consider that it is possible to further improve the results
by using classification tools, either with clustering or with
exploratory refinement techniques. Alert detection improve-
ment may help to a more accurate revealing of potential risks,
while on the other hand, the study of the characterization
of all other identified categories may eventually allow us to
better analyze and classify the remaining assemblies for the
appropriate management.
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