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Abstract: The proportion of video traffic on the internet is expected to reach 82% by 2022, mainly
due to the increasing number of consumers and the emergence of new video formats with more
demanding features (depth, resolution, multiview, 360, etc.). Efforts are therefore being made to
constantly improve video compression standards to minimize the necessary bandwidth while re-
taining high video quality levels. In this context, the Joint Collaborative Team on Video Coding has
been analyzing new video coding technologies to improve the compression efficiency with respect to
the HEVC video coding standard. A software package known as the Joint Exploration Test Model
has been proposed to implement and evaluate new video coding tools. In this work, we present
parallel versions of the JEM encoder that are particularly suited for shared memory platforms, and
can significantly reduce its huge computational complexity. The proposed parallel algorithms are
shown to achieve high levels of parallel efficiency. In particular, in the All Intra coding mode, the
best of our proposed parallel versions achieves an average efficiency value of 93.4%. They also had
high levels of scalability, as shown by the inclusion of an automatic load balancing mechanism.

Keywords: JEM; video coding standards; JEM slices; JEM parallel; OpenMP

1. Introduction

The High Efficiency Video Coding (HEVC) standard [1] was developed by the Joint
Collaborative Team on Video Coding (JCT-VC) in 2013, and replaced the previous H.264/
Advanced Video Coding (AVC) standard [2]. The HEVC standard obtains savings in terms
of bit rate of almost 50%, with the same visual quality as the previous H.264/AVC standard.
However, this reduction is obtained at the expense of a huge increase in the computational
complexity of the encoding process [3].

Recently, Cisco released a report called “Forecast and Trends: 2017–2022 White Pa-
per” [4], in which they state that IP video traffic will form 82% of all IP traffic by 2022,
representing a four-fold increase between 2017 and 2022. This represents a situation where
each second, a million minutes of video content travel through the network. The report
also predicts a constant increase in novel services such as video-on-demand (VoD), live
internet video, virtual reality (VR) and augmented reality (AR). VoD traffic is expected
to double by 2022, mainly due to the increasing numbers of consumers and higher video
resolution (4 K and 8 K), bringing the amount of VoD traffic to the equivalent of 10 billion
DVDs per month. The impact of user devices on global traffic is even more important
when we consider popular services such as ultra-high-definition (UHD) video streaming.
We need to take into account the fact that the bit rate for 4 K video is about 15 to 18 Mbps,
more than double the bit rate for HD video and nine times more than standard definition
(SD) video. The Cisco report estimates that by 2022, nearly 62% of the flat-panel TV sets
installed will be UHD.
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In order to deal with this increase in IP video traffic, new video coding techniques
are required to obtain higher compression rates. Since the release of HEVC, both the
ITU-T Video Coding Expert Group (VCEG) and the ISO/IEC Moving Picture Expert Group
(MPEG) have been studying and analyzing new video coding technologies in order to
improve the compression capability compared to that obtained by HEVC. To achieve
this, a framework of collaboration has been created called the Joint Video Exploration
Team (JVET).

The compression enhancements studied by the JVET have been implemented in a
software package known as the Joint Exploration test Model (JEM) [5]. Its main purpose is
to explore new coding tools that can provide significant improvements at the video coding
layer. Following an analysis of the new coding tools that have been proposed within the
last few years, JVET has begun developing a future video coding standard called Versatile
Video Coding (VVC) [6]. The main goal of this coding standard is to achieve bit rate savings
of between 25% and 30% compared to HEVC [7,8].

Preliminary results obtained with the new model (JEM 3.0) show an 18% reduction in
bit rate using the All Intra (AI) coding mode configuration [9]. However, this is achieved at
the expense of an extremely large increase in computational complexity (60x) with respect
to HEVC.

This increase requires the introduction of acceleration techniques that leverage hard-
ware architectures to reduce encoding time. Since JEM is an exploration model, only a few
articles have been published on the subject, and most of them are focused on rate distortion
(R/D) comparisons between JEM, HEVC and AV1 codecs [10]. Recently, the authors of [11]
proposed a pre-analysis algorithm that was designed to extract motion information from
a frame in order to accelerate the motion estimation (ME) stage. Their proposal showed
that around 27% of the reference frames could be skipped, and that a time saving of more
than 62% was achieved on the integer ME operation, with a negligible impact of 0.11% on
the Bjøntegaard delta rate (BD rate) [12]. The authors in [13] proposed parallel algorithms
based on the group of pictures (GOP) structure, increasing the BD rate when temporal
redundancy is exploited.

In this paper, we present two JEM parallel encoder versions that are specifically
designed for shared memory platforms, in order to speed up the encoding process for the
All Intra (AI) coding mode, as this coding mode is especially useful for video editing. We
performed several experimental tests to illustrate the behavior of the parallel versions in
terms of their parallel efficiency and scalability. In the first parallel algorithm, a synchronous
algorithm named JEM-SP-Sync, a domain decomposition is performed, in which the
computational load is not balanced, although the data are almost equally distributed. The
second parallel algorithm, named JEM-SP-ASync, is an asynchronous algorithm, also based
on a domain decomposition but able to balance the load automatically.

The rest of this paper is organized as follows. In Section 2, we present a brief de-
scription of the coding tools introduced in the new JEM video coding standard. Section 3
describes the parallel algorithms developed for the AI coding mode of the JEM stan-
dard. Experimental numerical results are presented in Section 4, and in Section 5, some
conclusions are drawn.

2. Description of the New Characteristics of the Joint Exploration Test Model (JEM)

The JEM codec is based on the HEVC reference software, called HM, meaning that the
overall architecture of both codecs is quite similar since they share a hybrid video codec
design. However, some of the coding stages are modified in the JEM implementation in
order to improve the previous standard [14,15]. The R/D performance of JEM is better
than in HEVC due to the use of these techniques, but this is achieved at the expense of an
increased computational cost for the intra-prediction stage. This section describes the main
improvements offered by JEM in comparison to the previous standards, as these could lead
to a load imbalance when using parallel algorithms such as those proposed in this work.
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2.1. Picture Partitioning

The way in which a video frame is split into a set of non-overlapping blocks is called
picture partitioning. These non-overlapping blocks are arranged into a quadtree structure,
where the root is called a coding tree unit (CTU) [16], and each CTU is further partitioned
into smaller blocks. Figure 1 shows the division of a 1280 × 720 pixel frame into 240 CTUs,
split into 20 columns by 12 rows, where the last row is composed of incomplete CTUs. The
complete CTUs are composed of 64 × 64 pixels.

Figure 1. Division of a 1280 × 720 pixel frame into CTUs: 240 (20 × 12).

Two of the major differences between HEVC and JEM are the way in which a CTU
is further partitioned and the size of the CTU itself. In HEVC, the maximum CTU size is
64 × 64 pixels, and there is the option to further recursively partition it into four square
coding units (CU) whose sizes range from 64× 64 pixels (i.e., no partitioning) to 8 × 8 pixels.
The leaf blocks in a CU quadtree form the roots of two independent trees that contain
prediction units (PUs) and transform units (TUs).

A PU can have the same size as the CU, or can be further split into smaller PUs of up to
8 × 8 pixels. The PUs store the prediction information in the form of motion vectors (MVs).
In intra-prediction mode, HEVC uses a quadtree structure with only square PUs, while in
inter prediction mode, asymmetric splitting of PUs is possible, giving up to eight possible
partitions for each PU block: 2N × 2N, 2N × N, N × 2N, N × N, 2N × nU, 2N × nD,
nL × 2N and nR × 2N. 1,0,0 Figure 2 shows an example of a CTU partition in HEVC and
the relationship between CU partitioning, PU partitioning and TU partitioning.

CTU

Depth 0

(64x64)

Depth 1

(32x32)

Depth 2

(16x16)

Depth 3

(8x8)

CU

PU

TU

Figure 2. HEVC QT partition schema and the relationship between CU, PU and TU partitioning.

The picture partitioning schema is modified in JEM in order to simplify the prediction
and transform stages, and further partitions of CUs to form PU and TU trees are avoided.
The JEM partitioning schema, called quadtree plus binary tree (QTBT), offers a better match
with the local characteristics of each frame [17]. The highest level is a CTU, as in HEVC,
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but the main change is that block splitting below each branch is a binary partition giving
the leaves.

The size of the CTU is larger than in HEVC, with a maximum of 256 × 256 pixels, and
only the first partition needs to be square partitioned. Lower partitions can be partitioned
further in a quadtree schema, but at the desired level the binary tree ends the partitioning
schema. There are two types of splitting in the binary tree: symmetric horizontal and
symmetric vertical. The binary tree leaf node is the CU, which is used for prediction and
transformation with no further partitioning. Hence, in most cases, the CU, PU and TU
have the same size. An example of QTBT is shown in Figure 3; here, the quadtree has two
levels (continuous line), after which the binary tree starts (dotted lines).

CTU

Depth 0

(256x256)

Depth 1

Depth 2

Depth 3

CU

Figure 3. JEM QTBT partition schema.

In JEM, a CU can have either a square or a rectangular shape, and consists of coding
blocks (CBs) of different color components; for example, a CU may contain one luma CB
and two chroma CBs in the YUV420 chroma format.

In HEVC, inter prediction for small blocks is restricted in order to reduce memory
accesses for motion compensation, i.e., bi-directional prediction for 4 × 8 and 8 × 4 blocks
is not allowed, and 4 × 4 inter-prediction is also disabled. In QTBT, these restrictions are
removed, which increases the computational cost of the JEM codec.

The CUs are not partitioned further for transforming or prediction unless the CU is too
large for the maximum transform size. The maximum transform size is 128 × 128 pixels, which
improves the coding efficiency for higher resolution video, e.g., 1080 p and 4 K sequences.

The following parameters are defined in order to obtain efficient partitioning in a
QTBT tree:

• CTU size: The root node size of a quadtree; the same concept as in HEVC.
• MinQTSize: The minimum allowed size of the leaf node in the quadtree.
• MaxBTSize: The maximum allowed size of the root node in the binary tree.
• MaxBTDepth: The maximum allowed depth of the binary tree.
• MinBTSize: The minimum allowed size of the leaf node in the binary tree.

MaxBTSize and minQTSize are two factors that are critical to the R/D performance
and the encoding time. In JEM, these two parameters of the current slice are set adaptively
larger when the average CU size of the previous encoded picture is larger, and vice versa
for only the P and B slices [17].

At the transform stage, only the lower-frequency coefficients are maintained for
transform blocks with sizes (width or height) larger than or equal to 64. For example, for
an M × N transform block (where M is the width and N the height), when M is larger than
or equal to 64, only the left M/2 columns of transform coefficients are retained. Similarly,
when N is larger than or equal to 64, only the top N/2 rows of the transform coefficients
are retained. This behavior can be skipped using skip mode for large blocks.
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The proposed QTBT approach in JEM uses more partition types than HEVC in order
to adapt the resulting partition tree to the contents of the scene. It is guided in this task by
a trade-off between rate reduction and distortion reduction, and as we will see in the next
section, this is a computationally expensive task. The whole video frame is first partitioned
into equally sized (up to 256 × 256) CTUs, and each CTU is then further partitioned into
CUs based on the scene contents, i.e., the time needed to process a whole CTU depends on
the complexity of the underlying scene in each CTU. A summary of the main differences
between HEVC and JEM related to picture partitioning is shown in Table 1.

Table 1. Differences between HEVC and JEM with respect to picture partitioning.

Characteristics HEVC JEM

CTU size 64 × 64 256 × 256

CTU partition Quad-Tree with separate Quad-Tree+Binary-Tree
tress for CU, PU and TU QTBT (shared by CU, PU, TU)

Inter-Prediction No bi-directional Bi-directional allowed
for 4 × 8 and 8 × 4 sizes

Max transform unit size 32 × 32 128 × 128

2.2. Spatial Prediction

In order to be able to capture the finer edge directions presented in natural videos, the
directional intra-modes in JEM have been extended from 33, as defined in HEVC, to 65.
The addition of planar and DC modes gives a total of 67 different prediction modes for
JEM. These denser directional intra-prediction modes (see Figure 4) are applied to all PU
sizes and both luma and chroma intra-predictions.

The partitioning schema described in the previous section is directed by a rate-
distortion optimization (RDO) algorithm that recursively searches for the best possible
partitioning schema in terms of an R/D estimation. This algorithm tries all directional
intra-modes for each of the possible partitions, (i.e., no partitioning, vertical partitions,
horizontal partitions and quadtree partitions), at each recursion level, to find the one with
the lowest cost. For a CTU in which the underlying scene is smooth, this recursion ends
rapidly, and the number of trials for the 67 directional modes is therefore much lower than
if the CTU belongs to a highly textured area within the scene. Thus, the computational
effort is not evenly distributed over the CTUs in a video frame, and depends on the content
of the scene.

In JEM, the list of most probable modes (MPMs) is extended from the three used in
HEVC to six, and the selection procedure for these modes is also changed. In HEVC, the
method proposed in [18] was adopted in the standard for building the MPMs list. The 35
intra-modes are divided into two groups: three MPMs and 32 remaining modes. The three
MPMs are derived based on the modes of the PUs to the left of and above the current PU.
The new procedure followed in JEM [19] uses five neighbors of the current PU: left, above,
above left, below left and above right, as shown in Figure 5 [19].
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Figure 4. Extended (red) prediction modes in JEM [17].

Figure 5. MPMs: neighbors of the current PU in JEM.

The improvements in JEM described in the following paragraphs, which increase the
complexity of the encoder, can also lead to a load imbalance when parallel processing the
slices of a frame.

In addition to the changes in the JEM encoder mentioned above, there are also dif-
ferences in the entropy coding of the MPM list between HEVC and JEM, as explained
in [17,19], which lead to a reduction of the contexts used in the entropic encoder to signal
the MPM index from nine to three, corresponding to the vertical, horizontal or non-angular
class MPM modes.

The interpolation filters are also changed in JEM with respect to HEVC [15]. In HEVC,
a two-tap linear interpolation filter is used to generate the intra-prediction block in the
directional prediction modes (i.e., excluding the planar and DC predictors). In the JEM,
four-tap intra-interpolation filters are used for directional intra-prediction filtering. Cubic
interpolation filters are used for blocks smaller than or equal to 64 samples, and Gaussian
interpolation filters are used for larger blocks. The filter parameters are set based on the
block size, and the same filter is used for all modes.

Another improvement to JEM is made in the boundary prediction filters [15]. In HEVC,
after the prediction block has been generated for the vertical or horizontal intra-modes, the
leftmost column or the top row of the predicted block are adjusted further using the values
of the boundary samples. In JEM, the number of boundary samples is increased from one
to four (rows or columns) in order to obtain the predicted value using a two-tap filter (for
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the first and last angular modes, corresponding to intra-modes 2 and 34 in HEVC) or a
three-tap filter (for modes between intra-modes 3–6 and 30–33 in HEVC), as shown in the
example in Figure 6.

Figure 6. Examples of limit prediction filters for intra-modes corresponding to modes 30–34 in
HEVC [15].

In JEM, the results of the intra-prediction planar mode are also improved by including
a position-dependent intra-prediction component (PDPC) method that processes a specific
combination of the unfiltered boundary reference samples with the filtered ones, thus
improving the perceived quality of the predicted block when the planar mode is used. This
process uses different weights and filter sizes (three-tap, five-tap, seven-tap) based on the
block size.

To reduce some of the redundancy that remains after the prediction process between
the luma and chroma components, JEM uses cross-component linear model (CCLM) pre-
diction. In this process, the chroma samples are predicted based on the reconstructed
down-sampled luma samples of the same CU, using a linear model for square blocks. For
non-square blocks, additional down-sampling is needed to match the shorter boundary.
There are two CCLM modes: single- and multiple-model CCLM modes (MMLM). In the
single-model CCLM mode, JEM employs only one linear model to predict the chroma
samples, while in MMLM, there can be two models. In MMLM, the models are built based
on two groups of boundary samples that serve as a training set for deriving the linear
models [15]. A summary of the main differences between HEVC and JEM related to spatial
prediction is shown in Table 2.

Table 2. Differences between HEVC and JEM with respect to the spatial prediction.

Characteristics HEVC JEM

Intra-modes 33 67
List MPMs 3 6
Nº of Neighbors for MPMs derivation 2 5
Interpolation filters 2-tap Linear 4-tap Cubic or Gaussian
Boundary filter samples 1 4

3. Parallel Approaches

Slices are fragments of a frame formed by correlative (in raster scan order) CTUs (see
Figure 7). These are regions of the same frame that can be decoded (and also encoded)
independently, which offers a valid parallelization approach for video encoding and
decoding processes. However, slice independence has a drawback in that the existing
redundancy between data belonging to different slices cannot be exploited, and thus
the coding efficiency in terms of the R/D performance decreases. Moreover, slices are
composed of a header and data, and although this is useful in terms of providing an
encoded video sequence with error resilience features (since the loss of a single slice does
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not prevent the rest of the slices in the same frame from being properly decoded), the
inclusion of a header in each slice also causes a decrease in the R/D performance.

Figure 7. Division of a full-HD frame (1920 × 1080 pixels) into 10 slices of 51 CTUs each.

Based on the slice partitioning of the JEM video encoder, each video frame is divided
into as many slices as threads to be spawned. The number of threads in the parallel region
can be set as a parameter or can be obtained depending on the current state of the computer
system. Hence, the number of threads (and consequently the number of slices), and the slice
size are computed before starting the encoding process. In this work, we have developed
two algorithms, the first of which requires synchronization processes while the second is a
completely asynchronous algorithm.

3.1. Synchronous Algorithm: JEM-SP-Sync

Algorithm 1 shows the parallel algorithm, called JEM-SP-Sync, which includes syn-
chronization processes. In Algorithm 1, the size of the slice is first computed in numbers of
CTUs. To do this, we initially compute the number of horizontal (FrWidth) and vertical
(FrHeight) CTUs, and the total number of CTUs (NoCTUs) available in a frame, which will
depend on the video resolution. It is worth noting that both the right-hand and bottom
CTUs in the frame may be incomplete (see lines 4 and 8). Furthermore, since the slices may
not have the same number of CTUs, the algorithm sets the size of the last slice as equal
to or smaller than the size of the rest of the slices in order to achieve a better load balance
(lines 13–18).

Before starting the encoding process of the whole video sequence, each thread com-
putes the CTUs of the slice assigned to that thread, which always remains the same
throughout the encoding process (lines 20–26). The encoding process starts by reading
the frame to be encoded and storing it in memory. This initial process is performed by a
single thread, and a synchronization point is therefore needed to ensure that the process
waits until the frame is available (line 30). In a similar way, the reconstructed frame is
also stored in the shared memory. This task is carried out by each individual thread after
encoding the assigned slice, meaning that another synchronization point is required before
applying the “loop filter” process (line 32). The encoded video data stream (i.e., the bit
stream) is organized into network abstraction layer units (NALUs), where each NALU is a
packet containing an integer number of bytes. To finish the encoding process, the NALUs
corresponding to each slice must be written in the correct order to form the final bit stream
(line 35). It is worth mentioning that the slice-based parallel strategy for HEVC proposed
in [20] obtained good speed-ups when all slices had the same number of CTUs, or differed
by a maximum of a single CTU. However, this behavior changes greatly when the JEM
encoder is used. As explained in Section 2, changes to the coding procedure introduced
in the JEM with respect to HEVC result in significant differences in computational cost
when encoding different CTUs. Note that this load imbalance is mainly due to the intrinsic
characteristics of the video content.
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Algorithm 1 JEM-SP-Sync: Slice-based parallel algorithm with synchronization processes.
1: Set NoT to the number of threads (equal to the number of slices)
2: procedure COMPUTE THE NUMBER OF CTUS PER FRAME
3: NoHzCTUs = FrWidth/CTUSize
4: if FrWidth%CTUSize! = 0 then
5: NoHzCTUs ++
6: end if
7: NoVrCTUs = FrHeight/CTUSize
8: if FrHeight%CTUSize! = 0 then
9: NoVrCTUs ++

10: end if
11: NoCTUs = NoHzCTUs ∗ NoVrCTUs
12: end procedure
13: procedure COMPUTE THE NUMBER OF CTUS PER SLICE
14: NoCTUsSlice = NoCTUs/NoThreads
15: if NoCTUs%NoThreads! = 0 then
16: NoCTUsSlice ++
17: end if
18: end procedure
19: IN PARALLEL (NoT):
20: procedure ASSIGN THE DIMMS OF THE SLICE(Tid)
21: iniCTUTid = Tid ∗ NoCTUsSlice
22: endCTUTid = iniCUTid + NoCTUsSlice
23: if Tid == (NoT − 1) then
24: endCTUTid = NoCTUs − 1
25: end if
26: end procedure
27: for i = 1 to NumFramesInSequence do
28: Single thread:
29: Read frame i it in global memory.
30: Synchronization point #1
31: Encode Slice (iniCTUTid to endCTUTid)
32: Synchronization point #2
33: Apply the loop filter process to whole frame
34: Generate NALUs
35: Ordered:
36: Write NALUS to bitstream.
37: end for

Figure 8 shows graphically the structure of the synchronous parallel algorithm JEM-
SP-Sync. As explained in Algorithm 1, each thread (Tx) always processes the same slice (Sx)
in all frames. Before starting the processing of a new frame, the threads must synchronize
(Sync) to compose the bitstream of the last frame (line 35 of Algorithm 1).

3.2. Asynchronous Algorithm: JEM-SP-ASync

To solve the load imbalance drawback, we designed a parallel algorithm called JEM-
SP-ASync, as shown in Algorithm 2, which does not use any type of synchronization
during the overall encoding process. The calculation of both the number of CTUs per frame
and the number of CTUs per slice (line 3) is identical to that in Algorithm 1 (lines 2–18).
Before starting the parallel region, the dimensions of all slices are calculated (lines 3–10)
and stored in memory, which will be configured as shared memory (the iniCTUs and
endCTUs arrays) since these values will be used by all threads. At the beginning of the
parallel region, the first slice to be encoded by every thread is set (line 12) based on the
thread identifier (Tid). However, the mapping of slices to threads will change for every
new frame, following a round-robin-like scheduling (lines 24–27). For this reason, each
thread must update the CTUs to be encoded when starting the encoding of a new frame
(lines 15 and 16). Since there are no synchronization points, the encoded NALUs must be
stored in shared memory.
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Figure 8. JEM-SP-Sync: Graphical scheme of the slice-based synchronous parallel algorithm.

When the encoding process for the slice is complete, each thread checks whether there
is a frame for which all of the slices are encoded; if so, this thread stores the complete en-
coded frame in the bit stream. This procedure should be performed within a parallel critical
region (lines 20–23). The proposed mapping of slices to threads included in Algorithm 2
provides an automatic load balancing mechanism without the need for synchronization
points or a coordinating process. By alternating the coding slice for each thread from
one frame to another, the computational cost per thread tends to balance, with a greater
probability as the number of frames to be encoded increases.

In the asynchronous algorithm, shown in Figure 9, there are no synchronization points;
to compose the bit stream, each thread after processing a slice checks if all the slices of the
frame following the last fully encoded one are already encoded, and in that case the thread
will compose that frame and remove the stored data. This process (line 17 in Algorithm 2)
does not involve any synchronization point. Furthermore, each thread (Tx) processes a
different slice (Sx) in each frame.
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Algorithm 2 JEM-SP-ASync: Slice-based parallel algorithm without synchronization processes.
1: Set NoT to the number of threads (equal to the number of slices)
2: NoCTUs and NoCTUsSlice computed as in Algorithm JEM-SP-Sync
3: procedure COMPUTE DIMMENSIONS OF ALL SLICES
4: for i = 0 to (NoT − 2) do
5: iniCTUs[i] = i ∗ NoCTUsSlice
6: endCTUs[i] = (i + 1) ∗ NoCTUsSlice − 1
7: end for
8: iniCTUs[NoT − 1] = (NoT − 1) ∗ NoCTUsSlice
9: endCTUs[NoT − 1] = NoCTUs − 1

10: end procedure
11: IN PARALLEL (NoT):
12: idSlice == Tid
13: for i = 1 to NumFramesInSequence do
14: Read slice idSlice from frame i in private memory.
15: currentIniCTU = iniCTUs[idSlice]
16: currentEndCTU = endCTUs[idSlice]
17: Encode Slice (currentIniCTU to currentEndCTU)
18: Apply the loop filter process to own slice
19: Store NALU(s) in global memory
20: critical:
21: if there are any fully encoded frames then
22: Write all NALUS of that frame to bitstream.
23: end if
24: idSlice ++
25: if idSlice > (NoT − 1) then
26: idSlice = 0
27: end if
28: end for

Figure 9. JEM-SP-ASync: Graphical scheme of the slice-based asynchronous parallel algorithm.
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4. Experimental Results

The reference software used in our experiments was JEM-7.0rc1 [21], and the parallel al-
gorithms were developed and tested using the GCC v.4.8.5 compiler [22] and OpenMP [23].
The shared memory platform used consisted of two Intel XEON X5660 hexacores, with up
to 2.8 GHz and 12 MB cache per processor, and 48 GB of RAM. The operating system used
as CentOS Linux 5.6 for x86/64-bit systems.

The proposed algorithms were tested for the video sequences listed in Table 3, each of
which had a different resolution and a different frame rate. In all of the experiments, we
used the same number of frames to be encoded (120) for all video sequences. Hence, the
number of seconds to be encoded varied depending on the frame rate of the video sequence
tested. We used a small number of frames for encoding in order to evaluate the load
balancing capability of the JEM-SP-ASync algorithm (Algorithm 2). Note that as the number
of frames to be encoded increases, the automatic load balancing method of Algorithm 2
is expected to improve, since it is statistically more likely that the computational cost per
thread will be balanced. The values of the quantization parameter (QP) used were 37, 32,
27 and 22.

Table 3. Video sequences.

Video Seq. Acronym Resolution Rate (Hz) N. Frames Time (s)

Park Scene PARK 1920 × 1080 24 120 5
Four People FOUR 1280 × 720 60 120 2
Party Scene PART 832 × 480 50 120 2.4
BQ Square BQSQ 416 × 240 60 120 2

Before addressing the efficiency of the parallel algorithms described in Section 3, we
analyze the theoretical load balance index, which will depend on both the resolution of
the video sequence and the number of slices (i.e., the number of threads). In all of the
experiments, the CTU size was set to 128, based on common testing conditions [24]. Table 4
shows the dimensions of the different video resolutions tested, in numbers of CTUs of
128× 128 pixels. As mentioned above, there may be incomplete CTUs at the right-hand and
bottom edges of the video sequence. This occurs when the number of horizontal/vertical
CTUs is not an integer, as shown in Table 4. This is the primary source of potential load
imbalance, even if the computational costs associated with different CTUs are similar.

Table 4. Number of 128 ×128 CTUs for each video sequence resolution.

Resolution Horizontal CTUs Vertical CTUs Number of CTUs

1920 × 1080 15 15 8.4 9 135
1280 × 720 10 10 5.6 6 60
832 × 480 6.5 7 3.8 4 28
416 × 240 3.25 4 1.9 2 8

Table 5 shows the theoretical size of the slices, in number of CTUs, required to obtain
a balanced load. As previously explained for Algorithm 1, when the number of CTUs per
dimension is not an integer, the size is rounded up to the next integer value; otherwise, the
number of slices would not match the number of threads.
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Table 5. Number of CTUs per slice.

Number of Slices (and Threads)
N. CTUs 2 4 5 7 8 10 11 12

Slice size (in CTUs)

135 67.5 33.8 27.0 19.3 16.9 13.5 12.3 11.3
60 30.0 15.0 12.0 8.6 7.5 6.0 5.5 5.0
28 14.0 7.0 5.6 4.0 3.5 2.8 2.5 2.3
8 4.0 2.0 1.6 1.1 1.0 0.8 0.7 0.7

Slice size (in CTUs) rounded up

135 68 34 27 20 17 14 13 12
60 30 15 12 9 8 6 6 5
28 14 7 6 4 4 3 3 3
8 4 2 2 2 1 1 1 1

Table 6 shows the size differences, in numbers of CTUs, between the last slice and the
other slices in the same frame. As can be seen, when 12 slices are used in the HD video
sequence, the difference reaches nine CTUs. This is the second source of potential load
imbalance, and as in the previous case, this holds even if the computational costs associated
with different CTUs are similar. In addition, the use of a given number of threads is not
recommended in certain cases. For example, when 11 threads are used in the 1280 × 720
video sequence (60 CTUs in Table 6), all slices have six CTUs while the last has none,
meaning that it will remain idle throughout the encoding process.

Table 6. Difference in size of the last slice (in CTUs).

Number of Slices (and Threads)

Number of CTUs 2 4 5 7 8 10 11 12

Diff. in Size of the Last Slice

135 −1 −1 0 −5 −1 −5 −8 −9
60 0 0 0 −3 −4 0 −6 0
28 0 0 −2 0 −4 −2 −5 −8
8 0 0 −2 −6 0 −2 -3 −4

The third and final source of potential load imbalance depends on the encoding
complexity of JEM, which does not depend on the number of CTUs but on the intrinsic
characteristics of the intra-prediction, which may be affected by the CTU contents. As
explained in Section 2, this load imbalance cannot be predicted, as it depends on the
intrinsic characteristics of the video content to be encoded, which modifies the amount of
processing required to encode each CTU.

To show that domain decomposition using slices does not ensure that the load is
balanced, we experimentally obtained the computational cost of each slice for the sequences
listed in Table 3. Tables 7–10, show the experimental percentages of the computational cost
assigned to each slice for the Park Scene, Four People, Party Scene and BQ Square video
sequences, respectively. These tables include different numbers of slices per frame setup
for each video sequence, and show the relative computation time required by each slice
at different compression rates (QPs). As can be observed, none of these schemes achieve
correct load balancing, regardless of whether or not the volume of data assigned to each
process is balanced.
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Table 7. Computational cost per slice for Park Scene video sequence.

Slice

size QP (0–68) (68–135)

68

22 53% 47%
27 53% 47%
32 53% 47%
37 53% 47%

(0–45) (45–90) (90–135)

45

22 37% 36% 28%
27 37% 36% 28%
32 37% 35% 27%
37 37% 36% 27%

(0–34) (34–68) (68–102) (102–135)

34

22 27% 27% 29% 18%
27 27% 26% 29% 17%
32 27% 26% 30% 16%
37 28% 25% 31% 16%

(0–27) (27–54) (54–81) (81–108) (108–135)

27

22 22% 21% 22% 23% 13%
27 22% 21% 22% 23% 12%
32 22% 21% 22% 24% 11%
37 23% 19% 23% 26% 10%

(0–23) (23–46) (46–69) (69–92) (92–115) (115–135)

23

22 18% 20% 17% 19% 18% 7%
27 17% 21% 17% 20% 19% 6%
32 18% 21% 16% 21% 19% 6%
37 18% 20% 16% 22% 19% 5%

(0–20) (20–40) (40–60) (60–80) (80–100) (100–120) (120–135)

20

22 15% 17% 17% 15% 17% 16% 4%
27 15% 17% 17% 15% 17% 15% 4%
32 15% 17% 17% 15% 18% 15% 3%
37 16% 17% 16% 16% 18% 14% 3%

(0-17) (17-34) (34–51) (51–68) (68–85) (85-102) (102–119) (119–135)

17

22 14% 14% 13% 14% 14% 15% 13% 4%
27 13% 14% 13% 14% 14% 16% 13% 4%
32 14% 14% 12% 14% 14% 16% 12% 4%
37 14% 14% 12% 13% 14% 17% 12% 3%

(0–15) (15–30) (30–45) (45–60) (60–75) (75–90) (90–105) (105–120) (120–135)

15

22 12% 13% 12% 12% 11% 12% 13% 11% 4%
27 12% 13% 12% 12% 11% 12% 13% 11% 4%
32 12% 13% 12% 12% 11% 13% 13% 10% 3%
37 12% 14% 12% 11% 11% 13% 14% 10% 3%
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Table 8. Computational cost per slice for Four People video sequence.

Slice

size QP (0–30) (30–60)

30

22 56% 44%
27 56% 44%
32 56% 44%
37 57% 43%

(0–20) (20–40) (40–60)

20

22 31% 52% 17%
27 30% 54% 15%
32 31% 54% 15%
37 32% 54% 14%

(0–15) (15–30) (30–45) (45-60)

15

22 25% 31% 32% 11%
27 25% 31% 34% 10%
32 26% 31% 34% 9%
37 27% 31% 33% 9%

(0–12) (12–24) (24–36) (36–48) (48–60)

12

22 19% 24% 29% 19% 8%
27 18% 25% 30% 20% 8%
32 18% 26% 29% 19% 7%
37 19% 26% 29% 19% 7%

(0–10) (10–20) (20–30) (30–40) (40–50) (50–60)

10

22 14% 18% 24% 27% 11% 5%
27 13% 18% 25% 28% 10% 5%
32 13% 18% 26% 29% 10% 5%
37 14% 18% 25% 28% 10% 5%

(0–9) (9–18) (18–27) (27–36) (36–45) (45–54) (54–60)

9

22 12% 16% 22% 22% 17% 8% 3%
27 12% 16% 23% 22% 17% 7% 3%
32 12% 16% 23% 22% 17% 7% 3%
37 13% 16% 23% 22% 17% 7% 2%

(0–8) (8–16) (16–24) (24–32) (32–40) (40–48) (48–56) (56–60)

8

22 11% 15% 16% 19% 22% 8% 6% 2%
27 11% 15% 17% 19% 23% 8% 6% 2%
32 12% 15% 17% 18% 23% 7% 5% 2%

Table 9. Computational cost per slice for Party Scene video sequence.

Slice

size QP (0–14) (14–28)

14

22 52% 48%
27 51% 49%
32 51% 49%
37 51% 49%

(0–10) (10–20) (20–28)

10

22 36% 40% 24%
27 35% 41% 23%
32 35% 42% 22%
37 35% 43% 22%

(0–7) (7–14) (14–21) (21–28)

7

22 25% 27% 27% 21%
27 24% 27% 28% 21%
32 24% 27% 29% 19%
37 25% 26% 30% 19%

(0–6) (6–12) (12–18) (18–24) (24–28)

6

22 22% 22% 23% 20% 12%
27 22% 22% 24% 20% 12%
32 21% 21% 25% 20% 12%
37 21% 21% 25% 20% 13%

(0–5) (5–10) (10–15) (15–20) (20–25) (25–28)
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Table 9. Cont.

Slice

5

22 18% 19% 19% 21% 15% 8%
27 17% 19% 19% 23% 14% 8%
32 17% 19% 19% 24% 13% 9%
37 17% 19% 18% 24% 13% 9%

(0–4) (4–8) (8–12) (12–16) (16–20) (20–24) (24–28)

4

22 15% 14% 16% 15% 18% 11% 12%
27 14% 14% 15% 15% 19% 11% 12%
32 14% 15% 14% 15% 20% 10% 12%
37 14% 15% 13% 15% 21% 9% 12%

Table 10. Computational cost per slice for BQ Square video sequence.

Slice Size QP (0–4) (4–8)

4

22 56% 44%
27 57% 43%
32 58% 42%
37 61% 39%

(0–3) (3–6) (6–8)

3

22 51% 31% 18%
27 51% 31% 18%
32 53% 29% 18%
37 56% 27% 17%

(0–2) (2–4) (4–6) (6–8)

2

22 35% 21% 26% 18%
27 36% 20% 25% 18%
32 38% 20% 24% 18%
37 40% 21% 22% 17%

(0–1) (1–2) (2–3) (3–4) (4–5) (5–6) (6–7) (7–8)

1

22 18% 18% 16% 5% 13% 13% 14% 4%
27 20% 17% 15% 5% 13% 12% 14% 4%
32 22% 17% 15% 5% 12% 12% 14% 4%
37 22% 17% 16% 5% 11% 11% 13% 4%

Table 11 shows the computation times (in seconds) needed to encode 120 frames using
the AI coding mode for all video sequences tested, and the average computation time per
frame for all QPs tested. As can be seen, the sequential algorithm required an average of
14 min to encode a frame of the Park Scene video sequence, meaning that 28.2 h would be
needed to encode the 120 frames of the video sequence (five seconds of video).

Table 11. Sequential computational times.

Time (s.) Time per Frame (s.)

Video Reso- QP QP QP QP QP QP QP QP
seq. lution 22 27 32 37 22 27 32 37

PARK 1920 × 1080 163,395 114,688 78,010 50,474 1362 956 650 421
FOUR 1280 × 720 46,805 33,763 24,928 18,272 390 281 208 152
PART 832 × 480 43,844 36,796 29,754 22,121 365 307 248 184
BQSQ 416 × 240 9896 8099 6265 5010 82 67 52 42

Tables 12 and 13 show the parallel efficiency and the computational times, respectively,
of the JEM-SP-Sync algorithm for the BQ Square, Party Scene, Four People and Park Scene
video sequences encoded at four QP values (22, 27, 32, 37). The computation times were
obtained using OpenMP functions and the parallel efficiency, in percentage, was calculated
according to Equation (1).

E f f iciency =
Sequential_time

Parallel_time ∗ NoT
∗ 100 (1)
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The JEM-SP-Sync algorithm, which includes synchronization points, generally obtains
good parallel efficiency when few threads are used (set by NoT value), but does not have
good scalability, meaning that its efficiency degrades as the number of threads increases.
The high computational cost of the JEM video encoder means that if the load is not perfectly
balanced, the parallel performance is strongly affected. In this case, and as mentioned
above, the load imbalance may be caused by differences in slice sizes, by some slices having
incomplete CTUs, or by the difference in the intrinsic complexity of the CTUs in the coding
process in JEM. As shown in Tables 7–10, the computational cost is not balanced despite
the quasi-balanced domain decomposition according to the volume of data assigned to
each processor. The load imbalance is due to the nature of the data, i.e., the content of each
CTU. Since the JEM-SP-Sync algorithm is synchronous, when a thread has completed the
processing of the assigned CTUs of one frame, it must wait in an idle state until the rest of
threads also complete the assigned CTUs, which in turn decreases parallel efficiency, as
shown in Table 12.

Table 12. Parallel efficiency for Algorithm JEM-SP-Sync.

Parallel Efficiency

Video QP QP QP QP
sequence NoT 22 27 32 37

BQSQ

2 85.0% 85.2% 82.6% 79.1%
3 61.5% 61.3% 59.4% 57.2%
4 67.6% 65.2% 62.5% 60.3%
8 61.7% 56.7% 52.2% 51.1%

PART

2 94.1% 96.1% 96.9% 94.1%
3 77.3% 76.3% 76.0% 75.5%
4 86.1% 83.1% 82.4% 78.9%
5 79.6% 78.7% 75.6% 74.2%
6 73.1% 69.0% 66.0% 64.6%
7 74.2% 70.9% 67.8% 64.7%
8 65.4% 61.8% 59.2% 56.8%

10 72.5% 70.4% 68.4% 67.1%

FOUR

2 88.4% 88.1% 86.3% 85.3%
3 62.2% 60.1% 57.9% 60.1%
4 74.5% 70.9% 70.7% 71.5%
5 65.0% 62.9% 63.8% 65.3%
6 59.6% 56.1% 55.1% 55.5%
7 61.0% 57.8% 57.8% 58.3%
8 55.5% 50.2% 50.1% 51.2%
9 59.6% 56.8% 57.0% 57.8%

10 59.5% 54.5% 54.7% 56.3%
11 53.8% 50.1% 49.9% 50.8%
12 55.7% 51.7% 49.5% 49.3%
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Table 12. Cont.

Parallel Efficiency

PARK

2 91.7% 92.9% 92.1% 93.9%
3 87.9% 89.0% 89.8% 91.0%
4 88.6% 88.3% 84.3% 81.6%
5 89.8% 87.0% 84.3% 80.1%
6 82.1% 80.0% 78.8% 78.6%
7 83.6% 82.4% 78.0% 78.1%
8 84.5% 80.8% 77.0% 73.1%
9 86.3% 84.1% 79.3% 78.2%
10 81.9% 77.9% 73.3% 69.4%
11 78.5% 75.5% 72.6% 70.2%
12 77.0% 73.2% 66.9% 63.7%

Table 13. Computational times (s.) for Algorithm JEM-SP-Sync.

Computational Time (s.)

Video QP QP QP QP
sequence NoT 22 27 32 37

BQSQ

2 5882 4751 3857 3215
3 5415 4402 3577 2964
4 3694 3694 3694 3694
8 2026 2026 2026 2026

PART

2 23,305 19,153 15,346 11,753
3 18,911 16,069 13,053 9763
4 12,733 11,070 9030 7007
5 11,012 9347 7867 5964
6 9991 8887 7518 5703
7 8445 7412 6266 4882
8 8384 7444 6287 4864

10 6051 5224 4349 3295

FOUR

2 26,479 19,172 14,441 10,709
3 25,103 18,716 14,362 10,141
4 15,705 11,898 8809 6385
5 14,407 10,732 7818 5595
6 13,085 10,034 7547 5484
7 10,960 8348 6158 4476
8 10,545 8410 6218 4464
9 8727 6606 4860 3512

10 7861 6200 4558 3244
11 7909 6128 4546 3269
12 7007 5440 4194 3089

PARK

2 95,117 66,946 45,846 29,237
3 66,202 46,565 31,348 20,128
4 49,218 35,234 25,017 16,821
5 38,857 28,583 20,025 13,708
6 35,411 25,915 17,845 11,654
7 29,830 21,576 15,453 10,048
8 25,811 19,243 13,695 9396
9 22,458 16,426 11,831 7804

10 21,319 15,965 11,511 7916
11 20,207 14,978 10,567 7110
12 18,894 14,159 10,507 7188
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The second algorithm, JEM-SP-ASync, was developed to avoid the use of synchroniza-
tion processes, and can improve the parallel efficiency if load balancing is achieved. The
process implemented in this algorithm to balance the load assigns a different slice to each
thread depending on the frame to be encoded, thus providing automatic load balancing.
Tables 14 and 15 show the parallel efficiency and the computational times obtained by
the JEM-SP-ASync algorithm for all video sequences tested here. The results confirm
that the automatic load balancing process implemented in the JEM-SP-ASync algorithm
works correctly and shows very good scalability, especially compared to the JEM-SP-Sync
algorithm (Table 12).

Table 14. Parallel efficiency for Algorithm JEM-SP-ASync.

Parallel Efficiency

Video QP QP QP QP
sequence NoT 22 27 32 37

BQSQ

2 93.1% 96.1% 95.0% 96.7%
3 93.7% 92.6% 94.6% 95.2%
4 92.7% 92.7% 94.8% 95.7%
8 86.2% 88.3% 88.8% 88.9%

PART

2 98.3% 98.6% 99.4% 99.0%
3 95.3% 96.3% 97.1% 97.9%
4 94.4% 95.1% 96.7% 96.4%
5 93.3% 95.2% 94.6% 93.2%
6 92.6% 93.4% 93.0% 92.2%
7 92.0% 91.2% 94.2% 93.3%
8 91.3% 91.3% 92.1% 92.5%
10 91.9% 90.0% 93.7% 90.8%

FOUR

2 97.9% 98.9% 97.2% 98.8%
3 95.2% 94.5% 94.3% 95.2%
4 95.0% 92.3% 94.1% 94.9%
5 97.8% 93.9% 94.7% 94.6%
6 93.9% 93.1% 92.7% 91.6%
7 95.3% 93.8% 93.3% 93.5%
8 94.1% 92.2% 92.6% 91.0%
9 95.0% 93.8% 92.9% 93.0%
10 92.6% 91.2% 91.8% 90.0%
12 89.9% 89.5% 87.6% 88.4%

PARK

2 98.5% 98.2% 97.4% 98.1%
3 95.4% 95.1% 93.1% 94.7%
4 94.0% 94.2% 90.5% 94.6%
5 94.2% 95.7% 92.9% 93.1%
6 94.7% 93.6% 89.9% 93.4%
7 93.6% 91.2% 93.2% 94.2%
8 93.7% 93.4% 91.8% 92.7%
9 94.2% 92.6% 91.2% 92.9%
10 93.3% 92.4% 91.8% 89.1%
11 92.4% 92.2% 87.9% 89.9%
12 89.5% 89.4% 88.5% 88.5%
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Table 15. Computational times (s.) for Algorithm JEM-SP-ASync.

Computational Time (s.)

Video QP QP QP QP
sequence NoT 22 27 32 37

BQSQ

2 5368 4215 3354 2629
3 3556 2915 2244 1781
4 2695 2695 2695 2695
8 1449 1449 1449 1449

PART

2 22,302 18,668 14,968 11,172
3 15,343 12,730 10,216 7532
4 11,613 9677 7693 5737
5 9403 7729 6288 4748
6 7891 6568 5332 3997
7 6807 5761 4513 3386
8 6000 5039 4040 2990
10 4769 4087 3176 2435

FOUR

2 23,893 17,072 12,822 9247
3 16,392 11,909 8811 6401
4 12,311 9143 6624 4811
5 9569 7195 5263 3862
6 8306 6046 4482 3325
7 7019 5140 3818 2791
8 6220 4578 3367 2509
9 5473 4000 2983 2182
10 5057 3703 2714 2029
12 4341 3144 2370 1723

PARK

2 82,978 58,401 40,028 25,722
3 57,119 40,202 27,935 17,760
4 43,445 30,449 21,543 13,332
5 34,683 23,956 16,803 10,840
6 28,754 20,416 14,461 9007
7 24,939 17,967 11,961 7656
8 21,809 15,356 10,624 6805
9 19,275 13,767 9508 6034
10 17,512 12,408 8499 5666
11 16,084 11,304 8064 5105
12 15,207 10,695 7347 4750

It should be noted that in order to develop both algorithms, several procedures of the
reference software had to be modified. The number of modified processes is greater in
JEM-SP-ASync than in JEM-SP-Sync. However, none of these changes affect the encoding
processes implemented in the reference software. Obviously, in the reference software, the
encoded slices are totally independent, which is necessary in order to develop parallel
algorithms without modifying the standard encoding process. We detected that slice
encoding depends on the order in which it is encoded. That is, when the slices are
independently encoded in a disordered way, there is a small change in the reference
software. In any case, regardless of the order of encoding of the slices, the slices are totally
independent. Tables 16 and 17 show the bit rate and PSNR values for the sequential and
parallel algorithms, respectively. As can be seen, the differences between the two types
of algorithm are almost negligible, although the bit rate is slightly lower and the PSNR
slightly better in the parallel algorithm. This is because in the reference software, the initial
values of some of the variables that slightly modify the intra-prediction procedure vary
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from one slice to the next, whereas in our parallel algorithms, these variables have the same
initial values for all slices.

Table 16. Comparison of bitrate.

Bitrate (Kbps)

Video NoT and Slice QP QP QP QP
sequence slices size 22 27 32 37

BQSQ

2 4
Seq. 13,024 8652 5578 3474
Par. 12,579 8361 5356 3370
Diff. −3.4% −3.4% −4.0% −3.0%

4 2
Seq. 13,366 8855 5736 3563
Par. 12,640 8410 5393 3398
Diff. −5.4% −5.0% −6.0% −4.6%

8 1
Seq. 13,508 9113 5898 3644
Par. 12,826 8548 5495 3483
Diff. −5.0% −6.2% −6.8% −4.4%

PART

2 14
Seq. 45,454 28,760 17,506 9660
Par. 45,291 28,643 17,362 9675
Diff. −0.4% −0.4% −0.8% 0.2%

4 7
Seq. 46,018 29,001 17,678 9736
Par. 45,499 28,794 17,468 9750
Diff. −1.1% −0.7% −1.2% 0.1%

8 4
Seq. 46,559 29,558 17,833 9810
Par. 45,689 28,919 17,552 9814
Diff. −1.9% −2.2% −1.6% 0.0%

FOUR

2 30
Seq. 27,225 16,817 10,498 6513
Par. 26,866 16,631 10,398 6464
Diff. −1.3% −1.1% −1.0% −0.8%

4 15
Seq. 27,717 17,160 10,738 6671
Par. 27,182 16,871 10,575 6595
Diff. −1.9% −1.7% −1.5% −1.1%

8 8
Seq. 28,180 17,397 10,960 6831
Par. 27,506 17,106 10,746 6719
Diff. −2.4% −1.7% −1.9% −1.6%

PARK

2 68
Seq. 49,209 26,911 14,227 7118
Par. 49,084 26,873 14,222 7132
Diff. −0.3% −0.1% 0.0% 0.2%

4 34
Seq. 49,288 26,987 14,284 7154
Par. 49,218 26,983 14,301 7182
Diff. −0.1% 0.0% 0.1% 0.4%

8 17
Seq. 49,452 27,135 14,395 7232
Par. 49,468 27,166 14,436 7271
Diff. 0.0% 0.1% 0.3% 0.5%
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Table 17. Comparison of PSNR.

PSNR (dB)

Video NoT and Slice QP QP QP QP
sequence slices size 22 27 32 37

BQSQ

2 4
Seq. 42.7616 38.6735 34.9935 31.4817
Par. 42.9435 38.8538 35.2465 31.7929
Diff. 0.4% 0.5% 0.7% 1.0%

4 2
Seq. 42.6559 38.5985 34.9282 31.3503
Par. 42.9435 38.8538 35.2465 31.7929
Diff. 0.7% 0.7% 0.9% 1.4%

8 1
Seq. 42.6338 38.4881 34.7934 31.2209
Par. 42.9312 38.8410 35.2348 31.7715
Diff. 0.7% 0.9% 1.3% 1.8%

PART

2 14
Seq. 42.1050 38.0071 34.2767 30.7610
Par. 42.1459 38.0528 34.4646 30.9932
Diff. 0.1% 0.1% 0.5% 0.8%

4 7
Seq. 42.0037 37.9629 34.188 30.6701
Par. 42.1434 38.0467 34.455 30.9788
Diff. 0.3% 0.2% 0.8% 1.0%

8 4
Seq. 41.8932 37.7962 34.1187 30.5650
Par. 42.1409 38.0440 34.4525 30.9748
Diff. 0.6% 0.7% 1.0% 1.3%

FOUR

2 30
Seq. 45.1104 42.6808 39.9899 37.1100
Par. 45.1828 42.7848 40.1469 37.3029
Diff. 0.2% 0.2% 0.4% 0.5%

4 15
Seq. 45.0631 42.6244 39.9007 36.9927
Par. 45.1802 42.7800 40.1387 37.2943
Diff. 0.3% 0.4% 0.6% 0.8%

8 8
Seq. 45.0372 42.6250 39.8448 36.9191
Par. 45.1785 42.7756 40.1334 37.2841
Diff. 0.3% 0.4% 0.7% 1.0%

PARK

2 68
Seq. 42.4621 39.5641 36.8565 34.2881
Par. 42.5295 39.6277 36.9372 34.3736
Diff. 0.2% 0.2% 0.2% 0.2%

4 34
Seq. 42.4194 39.5221 36.8147 34.2439
Par. 42.5264 39.6253 36.9344 34.3672
Diff. 0.3% 0.3% 0.3% 0.4%

8 17
Seq. 42.3886 39.4936 36.7939 34.2173
Par. 42.5215 39.6188 36.9288 34.3554
Diff. 0.3% 0.3% 0.4% 0.4%

5. Conclusions

Some of the most important features of the JEM video encoder in relation to intra-
prediction have been briefly described here. These features focus on reducing the bitrate in
order to minimize the bandwidth required for transmission. These new features cause a
dramatic increase in the computational cost of encoding compared with previous video
encoder standards, including HEVC. The parallel algorithms developed here make use of
slices to implement domain decomposition; however, if the domain decomposition does
not allow the volume of data assigned to each process to be perfectly balanced, the high
computational cost causes significant cost imbalances. Moreover, a perfect balance of the
data to be encoded by each process also does not ensure load balancing, unlike in the
case of the HEVC encoder. In the JEM approach, it is not guaranteed that perfect domain
decomposition gives rise to a perfect computational load balance. The JEM-SP-Async
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parallel algorithm was proposed to solve these drawbacks, which, as explained above,
did not arise in previous standards. The automatic computational cost balancing system
included in the design of the proposed parallel algorithms was validated based on the
experimental results. These results show that the average value of efficiency rose from
71.3% to 93.4% when the JEM-SP-ASync algorithm was used instead of the JEM-SP-Sync
algorithm. This significantly improved the parallel scalability, e.g., average efficiency,
by coding the FOUR video sequence using 12 processes, which increased from 51.6% to
88.8%. These results were obtained by encoding only 120 frames (corresponding to 2.4
or 5 s, depending on the frame rate of the video sequence), and demonstrate correct load
balancing even for short video sequences.

List of Acronyms

− AI—All Intra
− AVC—Advanced Video Coding
− CB—Coding Blocks
− CCLM—Cross Component Linear Model
− CTU—Coding Tree Unit
− CU—Coding Unit
− HEVC—High Efficiency Video Coding
− JCT-VC—Joint Collaborative Team on Video Coding
− JEM—Joint Exploration test Model
− JVET—Joint Video Exploration Team
− ME—Motion Estimation
− MMLM—Multiple Model CCLM Mode
− MPEG—Moving Picture Expert Group
− MPM—Most Probable Modes
− MV—Motion Vectors
− NALU—Network Abstraction Layer Unit
− PDPC—Position Dependent intra-Prediction Component
− PSNR—Peak Signal to Noise Ratio
− PU—Prediction Unit
− QP—Quantization Parameter
− QTBT—Quadtree Plus Binary Tree
− R/D—Rate/Distortion
− RDO—Rate Distortion Optimization
− TU—Transform Unit
− VCEG—Video Coding Expert Group
− VoD—Video on Demand
− VVC—Versatile Video Coding
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