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Recent studies show that motor variability is actively regulated as an exploration tool to promote learning
in reward-based tasks. However, its role in learning processes during error-based tasks, when a reduction
of the motor variability is required to achieve good performance, is still unclear. In this study, we
hypothesized that error-based learning not only depends on exploration but also on the individuals’
ability to measure and predict the motor error. Previous studies identified a less auto-correlated motor
variability as a higher ability to perform motion adjustments. Two experiments investigated the rela-
tionship between motor learning and variability, analyzing the long-range autocorrelation of the center
of pressure fluctuations through the � score of a Detrended Fluctuation Analysis in balance tasks. In
Experiment 1, we assessed the relationship between variability and learning rate using a standing balance
task. Based on the results of this experiment, and to maximize learning, we performed a second
experiment with a more difficult sitting balance task and increased practice. The learning rate of the 2
groups with similar balance performances but different � scores was compared. Individuals with a lower
� score showed a higher learning rate. Because the � scores reveal how the motor output changes over
time, instead of the magnitude of those changes, the higher learning rate is mainly linked to the higher
error sensitivity rather than the exploration strategies. The results of this study highlight the relevance of
the structure of output motor variability as a predictor of learning rate in error-based tasks.

Public Significance Statement
Motor variability during a baseline period is interpreted as exploration strategies for promoting reward-
based learning. However, in error-based learning, the initial variability is linked to performance and, thus,
an individual’s room for improvement, biasing the interpretation of the functional role of variability. This
study highlights that error-based learning depends on an individual’s ability to measure and predict their
motor error rather than exploration strategies. The structure of motor variability measured through a
Detrended Fluctuation Analysis reveals the system’s capacity to perform motion adjustments to reduce the
outcome error and predicts learning rate. This is the first study to relate the structure of motor variability
to the error-based learning rate, avoiding the bias due to individuals’ initial performance level differences.
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Motor variability is described as the “noise” caused by stochas-
tic neuromuscular function that must be minimized to increase task
performance (Churchland, Afshar, & Shenoy, 2006; Harris &
Wolpert, 1998; Osborne, Lisberger, & Bialek, 2005; Schmidt,

Zelaznik, Hawkins, Frank, & Quinn, 1979; Shmuelof, Krakauer, &
Mazzoni, 2012). While learning any motor skill, the magnitude of
motor variability progressively decreases as movement execution
improves (Caballero, Barbado, & Moreno, 2014; Stein, Gossen, &
Jones, 2005). However, other approaches indicate that variability
plays a functional role, allowing individuals to generate more
adaptive responses to stressors (Goldberger, 1996; Goldberger,
Peng, & Lipsitz, 2002). Motor variability reflects the motor sys-
tem’s ability to explore different motor configurations, looking for
an optimal solution facilitating adaptive (Barbado, Sabido, Vera-
García, Gusi, & Moreno, 2012; Manor et al., 2010; Zhou et al.,
2013) and/or learning processes (Tumer & Brainard, 2007; Wu,
Miyamoto, Gonzalez Castro, Olveczky, & Smith, 2014). However,
although some studies have found that high motor variability
predicts faster reward-based learning of different reaching tasks
(Pekny, Izawa, & Shadmehr, 2015; Wu et al., 2014), there is
limited evidence as to whether motor variability plays a similar
role during error-based learning (Wu et al., 2014).

This article was published Online First January 16, 2017.
David Barbado Murillo and Carla Caballero Sánchez, Research Sport

Center, Miguel Hernandez University; Janice Moreside, School of Health and
Human Performance, Dalhousie University; Francisco J. Vera-García and
Francisco J. Moreno, Research Sport Center, Miguel Hernandez University.

This study was made possible by financial support from Economy and
Competitiveness Ministry of Spain, project cod. MINECO 2013\DEP2013-
44160-P, project cod. MINECO 2013/DEP2014-55167-R and project cod.
FPU12/00659, Spanish Government.

Correspondence concerning this article should be addressed to David Bar-
bado Murillo, Centro de Investigación del Deporte, Universidad Miguel
Hernández, Av. de la Universidad s/n, CP: 03202, Elche, Alicante, Spain.
E-mail: dbarbado@umh.es

T
hi

s
do

cu
m

en
t

is
co

py
ri

gh
te

d
by

th
e

A
m

er
ic

an
Ps

yc
ho

lo
gi

ca
l

A
ss

oc
ia

tio
n

or
on

e
of

its
al

lie
d

pu
bl

is
he

rs
.

T
hi

s
ar

tic
le

is
in

te
nd

ed
so

le
ly

fo
r

th
e

pe
rs

on
al

us
e

of
th

e
in

di
vi

du
al

us
er

an
d

is
no

t
to

be
di

ss
em

in
at

ed
br

oa
dl

y.

Journal of Experimental Psychology:
Human Perception and Performance

© 2017 American Psychological Association

2017, Vol. 43, No. 3, 596–607
0096-1523/17/$12.00 http://dx.doi.org/10.1037/xhp0000303

596

mailto:dbarbado@umh.es
http://dx.doi.org/10.1037/xhp0000303


Functional perspectives of motor variability are not in opposi-
tion to the traditional view. Variability seems to be a multidimen-
sional feature of the motor system (Stergiou & Decker, 2011).
Previous findings indicated the need for high-variability when
exploration is required to learn a novel task, but low-variability
improves accuracy, exploiting a viable solution (Woolley &
Doupe, 2008; Wu et al., 2014). Nevertheless, when motor vari-
ability during a novel task is analyzed, it is difficult to estimate the
extent to which motor variability is a consequence of stochastic
neuromuscular noise, which must be reduced to improve motor
performance, or whether it is being actively regulated to promote
learning. Novices usually show higher motor variability but exhibit
a higher learning-rate than experts. Therefore, how can we mea-
sure motor variability to reveal the system’s functional properties
during learning when a low magnitude of variability is required to
perform the task properly?

Some mathematical tools allow for the discrimination between
both concepts of variability. Scattering variables have been used to
describe the magnitude of the variability (Stergiou & Decker,
2011), suggesting that the mean is the ultimate performance goal
and diversion from the mean is the error. Nonlinear mathematical
tools have been used to analyze the temporal organization of
variability. For example, for a given time series, Detrended Fluc-
tuation Analysis (DFA) analyzes long-range auto-correlation
(Amoud et al., 2007; Peng, Havlin, Stanley, & Goldberger, 1995),
whereas entropy tools measure regularity (Barbado et al., 2012;
Rhea et al., 2011); both assess the extent to which further motor
behavior is dependent on previous fluctuations. Less dependence
on previous behavior (lower long-range auto-correlation or regu-
larity) was interpreted as higher flexibility to perform motion
adjustments (Amoud et al., 2007; Wang & Yang, 2012). Studies on
balance tasks in older (Manor et al., 2010; Zhou et al., 2013) and
young individuals (Barbado et al., 2012) revealed that individuals
who showed lower long-range auto-correlation and less regularity
of center of pressure (COP) fluctuations while standing on a stable
surface demonstrated better performance with more difficult bal-
ance tasks. Therefore, an important question is how the structure of
motor variability, demonstrated during the early stages, relates to
learning rate during an error-based task and what it means.

To answer these questions, two experimental set-ups were car-
ried out to analyze the relationship between motor variability and
learning rate in balance tasks where the performance criterion was
the reduction in the amount of variability. In Experiment 1, the
learning rate in a standing balance task was assessed within-
session. Based on the results of Experiment 1 and its limitations, a
second experiment was performed using a less common and more
difficult sitting balance task with longer trial times and an in-
creased practice period. In both experiments, the learning rate was
compared between the two groups and showed similar balance
performance (magnitude of variability) but a different long-range
auto-correlation of the postural sway fluctuations (structure of
variability).

Experiment 1: Standing Protocol

Method

Participants. Thirty volunteers took part in Experiment 1
(mean age: 24.2 � 4.6 years; mean height: 1.72 � 0.09 m;

mean mass: 69.0 � 10.7 kg), 11 women (mean age: 23.4 � 3.4
years; mean height: 1.64 � 0.06 m; mean mass: 59.5 � 5.0 kg) and
19 men (mean age: 24.6 � 5.2 years; mean height: 1.77 � 0.07 m;
mean mass: 74.5 � 9.2 kg).

All of the participants were healthy and without current knee or
ankle injury or past pathology in these regions. All of the subjects
reported having no neurological or musculoskeletal problems. No
participant had previous experience in the balance task used in this
study. Written informed consent was obtained from each partici-
pant prior to testing. The experimental procedures used in this
study were in accordance with the Declaration of Helsinki and
were approved by the Office for Research Ethics of Miguel Her-
nandez University (2013.83.OEP).

Procedure. The participants were asked to “stand as still as
possible” (Cavanaugh, Mercer, & Stergiou, 2007; Duarte & Ster-
nad, 2008) on a BOSU balance trainer (BOSU, Ashland, OH;
diameter: 65 cm; height: 23 cm) with their feet placed 30 cm apart
and their hands resting on their hips (see Figure 1). The BOSU
pressure was constant between the participants (0.3 bar) and was
checked before and after each participant’s testing. To assess
postural stability, this study used a force plate (Kistler, Switzer-
land, Mode 9287BA). The feet were positioned such that the line
between their heels coincided with the medial-lateral axis of the
platform. Trials were performed barefoot in front of a clear white
wall with no visual reference. Although a safety rail was placed in
front of the participant providing a secure bar to grasp if partici-
pants perceived they were unable to control their balance, all
participants were able to maintain the standing posture, without
grasping a support rail or stepping in any direction during the
trials. Ground reaction forces were recorded at 1000 samples/s and
were calibrated at the beginning of each participant’s collection.
Participants performed a 30-s pretest trial followed by 10 practice
trials to analyze the effect of practice within the same day. Each
practice trial lasted 15 s, with a 45-s rest between trials. A 30-s
posttest was then performed under the same conditions as the
pretest. Each data collection began when participants were rela-
tively stable.

Data analysis and reduction. A custom software program in
Labview, 2009 (National Instruments, Texas) was used for data
analysis. There is little physiological significance to the COP
signal frequencies above 10 Hz (Borg & Laxaback, 2010), and
thus the COP time series were subsampled at 20 Hz. This also
removed the artificial colinearities that could affect the variability
analysis (Barahona & Poon, 1996; Rhea et al., 2011). The first 5 s
of each trial were discarded to avoid nonstationarity related to the
beginning of the trial (van Dieen, Koppes, & Twisk, 2010); thus,
the length of the final time series was 500 data points for each
participant. Finally, a low-pass filter (4th-order, zero-phase-lag,
Butterworth, 5 Hz cut-off frequency) was performed, according to
Lin, Seol, Nussbaum, and Madigan (2008).

Because the orientation of the participant was only approxi-
mately aligned with the axes of the force platform, the resultant
distance (RD) was used as a global measure to quantify perfor-
mance during the balance trials (Prieto, Myklebust, Hoffmann,
Lovett, & Myklebust, 1996). RD was calculated as the average of
the vector distance magnitude (mm) of the COP from the participant’s
own mean COP position. The absolute learning rate (ALR) and
relative learning rate (RLR) were calculated as follows: the ALR was
the RD differences between the pretest (RDPRE) and posttest
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(RDPOST), whereas the RLR was calculated relative to the initial
performance of each individual [100�(RDPRE � RDPOST)/RDPRE].

To assess the structure of the variability, we used Detrended
Fluctuation Analysis (DFA). DFA is a method based on the ran-
dom walk theory, representing a modification of a classic root
mean square analysis of the random walk, which evaluates the

presence of long-term correlations within the time series by a
parameter referred to as the scaling index � (Peng et al., 1994;
Peng et al., 1995; M. Roerdink et al., 2006). Different values of �
indicate the following: � � .5 implies persistence (i.e., the trajec-
tory tends to continue in its current direction); � � .5 implies
antipersistence (i.e., the trajectory tends to return to where it came
from); and � � .5 implies uncorrelated signal (M. Roerdink et al.,
2006). Therefore, � identifies the extent to which further data are
dependent on the previous (Jordan & Newell, 2008). Previous
COP displacement in balance tasks have exhibited �-values rang-
ing from 0.5 to 1.5 (Duarte & Sternad, 2008; Wang & Yang,
2012), and have been used to assess human adaptability to postural
or motion adjustments (Amoud et al., 2007; Wang & Yang, 2012).

To maximize the long-range correlations and to reduce the
estimation error of �, long-term correlation was characterized by
the slope � obtained from the range of 4 � n � N/10, where N is
the data length (Chen, Ivanov, Hu, & Stanley, 2002). The partic-
ipants were only approximately aligned with the axes of the force
platform, and the � of each participant was calculated as the
average � obtained from both axes.

Statistical analysis. Normality of the variables was evaluated
through the Kolmogorov–Smirnov test with Lilliefors correction.
First, Pearson’s bivariate correlations were performed between
RDPRE, � PRE, ALR and RLR to assess the initial performance and
variability influence on learning rate. Second, to avoid the initial
performance bias on learning rate, participants were grouped using
a linear regression method. As demonstrated in Figure 2, partici-
pants were sorted according to their RDPRE values. Three groups
were then formed, consisting of the lowest, middle and highest
RDPRE scores, with 10 participants per group. Then, we performed
a linear regression between RDPRE and �PRE in each performance
group. Finally, participants were grouped according to their resid-
ual scores. The higher residual scores in each group were included
in the “High auto-correlated variability” (HAV) group. The lower
residual scores in each group were included in the “Low auto-
correlated variability” (LAV) group. One-way ANOVA for inde-
pendent measures was performed to assess the ALR and RLR
differences between groups, with the initial structure of variability

Figure 1. Participant performing a standing stability task on a BOSU
surface.

Figure 2. Linear regression of the initial structure of the variability (� PRE) and the initial performance (RDPRE)
during a standing balance protocol in the three performance groups. Black dots represent the participants
included in the “high auto-correlated variability” group (HAV), and white dots represent the participants
included in the “low auto-correlated variability” group (LAV).
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as an intersubject factor (HAV and LAV groups). A mixed-way
ANOVA was performed with RD as a within-subject factor (PRE
and POST) and with the initial structure of variability as an
intersubject factor (HAV and LAV groups). The partial eta squared
(�p

2) was calculated as a measure of effect size. The values of an
effect size �0.64 were considered strong, between 0.64 and 0.25
were considered moderate, and �0.25 were considered small (Fer-
guson, 2009).

Finally, to check the results obtained with the linear regression
method, we performed a Principal Component Analysis (PCA) on
the initial structure of the variability (�PRE), the initial perfor-
mance (RDPRE), and the relative learning rate (RLR). This method
reduces the dimensionality of interrelated measures (Jolliffe, 2002)
and facilitates the interpretation of the results as it extracts features
that are directly related to the original data set (Rocchi, Chiari, &
Cappello, 2004). All statistical analyses were performed using
IBM SPSS software 18.0, with significance level set at p � .05.

Results

Participants improved their performance, reducing their RD
significantly after practice trials (RDPRE � 14.5 � 5.0 mm;
RDPOS � 12.6 � 3.1 mm; F1,28 � 4.571; p � .041; �p

2 � 0.136).
As shown in Table 1, the learning rate significantly correlated with
the initial performance, while no significant correlations were
found between the learning rate and the initial structure of vari-
ability. These results indicate that the learning rate is highly
determined by the initial performance, while the initial structure of
variability does not seem to influence it. That is, less skillful
individuals have a higher room for improvement than more skillful
ones. However, although no significant relationship was found
between RDPRE and �PRE, it was close to being significant (r �
.319; p � .086), suggesting that initial performance could bias the
relationship between the variability and learning rate. That is, less
skillful individuals who tend to show higher �PRE values could
show higher learning rates.

To assess the relationship between the initial structure of the
variability (�PRE) and the learning rate (ALR, RLR), avoiding the
bias of the initial performance (RDPRE), participants were grouped
using a linear regression method (see Figure 2). The higher resid-
ual scores (black dots in Figure 2) in each performance level were
included in the HAV group, whereas the lower residual scores
(white dots) were included in the LAV group.

Table 2 shows the values of the two groups after the distribution
of the participants. The groups were quite similar in the initial

performance (RDPRE: F1,28 � 0.006; p � .938: �p
2 � 0.001) but

different in the structure of the variability (�PRE: F1,28 � 24.614;
p � .001; �p

2 � 0.468). After analyzing the effects of practice on
the performance variables, no significant differences were found
between groups in the learning rate, but the LAV group showed a
trend for higher RLR values compared with the HAV group (RLR:
F1,28 � 3.735; p � .063; �p

2 � 0.118).
Nevertheless, as pairwise comparisons show (see Figure 3),

whereas the LAV group reduced the RD significantly between
pretest and posttest measures (p � .015), the HAV group did not
show significant changes in RD (p � .620). Thus, only the LAV
group showed an improved performance (see Figure 3).

Based on these results, we performed a PCA to examine the
underlying relationships between the initial performance, the ini-
tial structure of the variability and the learning rate. The first
principal component factor (PC1) accounted for 55.14% of the
total variance and showed that a higher RLR was mainly related to
a higher RDPRE (worse performance) and to a lesser extent to a
higher �PRE, supporting the notion that the learning rate is highly
determined by the initial performance (see Table 3). In addition,
less skillful individuals showed a high auto-correlated COP vari-
ability. PC2, accounting for 34.94% of the total variance, showed
that a higher RLR was related to a low �PRE and was unrelated to
RDPRE (see Table 3). Figure 4 shows the relationship between
these variables, indicating that individuals with low PC2 values
showed a higher learning rate (R2 � 0.229; p � .007), lower
auto-correlated COP variability (R2 � 0.817; p � .001), and
equivalent initial performances (R2 � 0.002; p � .793) compared
with individuals with high PC2 values.

Discussion

Previous studies found a relationship between an individual’s
motor variability during a baseline period and learning rate in
reward-based tasks, but limited evidence is available for error-
based learning (Wu et al., 2014).

In this study, we found little evidence that motor variability
predicted the rate of learning. However, our results suggest that an
individual’s initial performance level could bias the relationship
between motor variability and learning rate. Specifically, based on
PC1 results (Tables 1 and 3), individuals with higher auto-
correlated COP variability, which has been interpreted as an index
of lower number of postural adjustments (Amoud et al., 2007;
Wang & Yang, 2012; Zhou et al., 2013), tended to show poorer
performance (high magnitude of variability) but learned to a higher
extent. As previously described in balance learning (Ko, Challis, &
Newell, 2003), individuals in the early stages of learning display
an exploratory search behavior, characterized by large variability,
for a more stable and efficient postural coordination mode com-
pared with other motor solutions. It is reasonable to assume that
participants in an earlier stage of learning would have greater room
for improvement. On the other hand, individuals who showed
lower auto-correlated motor fluctuations, this is, larger number of
changes in COP excursion and consequently more postural adjust-
ments, displayed better balance performance but lower learning
rate. These results are in coherence with those found in a later
stage of learning, whereby exploitation rather than exploration
behavior is utilized (Herzfeld & Shadmehr, 2014; Wu et al., 2014).

Table 1
Pearson’s Bivariate Correlations Among Individuals’ Initial
Balance Performance (RDPRE), Initial Structure of Variability
(�PRE), and Learning Rate in Absolute (ARL) and Relative
(RLR) Values

Variable �PRE ALR RLR

RDPRE .319 (.086) .799 (�.001) .596 (�.001)
�PRE .053 (.782) �.058 (.760)

Note. Pearson correlation coefficient (level of significance). �PRE �
long-range autocorrelation index shown in the pretest; RDPRE� resultant
distance shown in the pretest.
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However, it may be reasonable to assume that individuals who
display a higher ability to perform postural adjustments would also
show a greater learning rate. When participants were grouped
using the linear regression method and the initial performance bias
was avoided, those individuals with low long-range auto-
correlated COP variability (low �PRE) tended to display greater
performance improvement than those with high long-range auto-
correlation. PC2 confirmed these findings, supporting the hypoth-
esis that individuals with a higher ability to perform postural
adjustment have greater improvement potential.

In terms of limitations, it could be argued that the between-
groups differences in the learning rate, based on the initial struc-
ture of variability, showed a small size-effect and were only
significant when the learning rate was assessed in a relative sense.
These results were influenced by the small learning rate observed
after practice. Even so, some individuals showed a poorer perfor-
mance after practice (see Figure 3), suggesting that the task was
too easy or that the practice was not extensive enough to promote
learning. If this were the case, there would have been no need for
the motor exploration, thus decreasing the importance of the motor
variability as a functional feature of learning (Woolley & Doupe,

2008; Wu et al., 2014). Another limitation could be related to the
low reliability that scattering variables such as RD exhibit during
the data series involving short easy tasks (Lee & Granata, 2008;
van Dieen et al., 2010). If a balance task is too easy, participants
might attempt to maintain balance with their center of mass at
different locations relative to their support surface (Caballero,
Barbado, & Moreno, 2015). In such cases, it is difficult to achieve
stationarity of the time series, decreasing the reliability of the
scattering variables such as RD (Caballero et al., 2015; Lee &
Granata, 2008) and DFA (Caballero et al., 2015).

Taking the results and the aforementioned concerns into ac-
count, we tested the hypothesis in a second experiment using a less
common and more difficult balance task with longer trial times and
with an increased practice period.

Experiment 2: Sitting Protocol

Method

Participants. Twenty-two male volunteers took part in Exper-
iment 2 (mean age: 24.6 � 4.6 years; mean mass: 73.6 � 7.5 kg,
mean height: 1.74 � 0.07 m; mean trunk moment of inertia: 5.22 �
0.76 kg�m2). The inclusion criteria were the same as the previous
experiment. All subjects were healthy, without current pain in the hip
or back or past pathology in these regions. All of the subjects
reported having no neurological or musculoskeletal problems. No
participant had previous experience in the balance task used in this
study. Written informed consent was obtained from each partici-
pant prior to testing. The experimental procedures were in accor-

Table 2
Mean � SD Differences of the Initial Structure of Variability (�PRE), the Initial Performance
(RDPRE), and the Absolute and Relative Learning Rate (ALR and RLR) Between Individuals With
High or Low Initial Long-Range Auto-Correlation Grouped According to the Residuals of the
Linear Regression Grouping Method

Variable LAV group (n � 15) HAV group (n � 15) F1,28 p �p
2

�PRE .96 � .09 1.14 � .09 24.614 �.001 .468
RDPRE(mm) 14.41 � 4.60 14.57 � 5.55 .006 .938 .001
ALR (mm) 3.19 � 4.29 .61 � 5.30 2.183 .151 .072
RLR (%) 17.26 � 26.57 �3.01 � 30.72 3.735 .063 .118

Note. One-way ANOVA for independent measures. �PRE � long-range autocorrelation index shown in the
pretest; RDPRE� resultant distance shown in the pretest; LAV group � Low auto-correlated variability group;
HAV group � High auto-correlated variability group.

Table 3
Principal Component Factors (PC) Obtained From the
Principal Component Analysis During the Standing Protocol

Components PC1 PC2 PC3

RDPRE .924 .049 �.378
RLR .810 �.479 .338
�PRE .379 .904 .200

Note. �PRE � long-range autocorrelation index shown in the pretest;
RDPRE� resultant distance shown in the pretest; LAV group � Low
auto-correlated variability group; HAV group � High auto-correlated
variability group.

Figure 3. Pre- and posttest differences in the resultant distance (RD)
between the “high auto-correlated variability” (HAV) and the “low auto-
correlated variability” (LAV) groups. Participants were grouped in the
HAV or LAV groups according to the residual scores of the linear regres-
sion method between the initial performance (RDPRE) and initial structure
of variability (� PRE). �Significant pre- and posttest differences of the LAV
group.
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dance with the Declaration of Helsinki and were approved by the
University Office for Research Ethics.

Procedure. Participants sat upon a seat assembly consisting of
a wooden platform (50 cm 	 50 cm) affixed to the flat surface of
a polyester resin hemisphere (diameter of hemisphere: 35 cm;
height of the seat relative to the bottom of the hemisphere: 12 cm)
(see Figure 5). The seat was equipped with wooden leg and foot
supports to prevent lower body movement relative to the platform.
Foot support height was individually adjusted to create a 90° knee
angle and light plantar foot support, while elastic straps secured
each participant’s lower leg to the leg support. A safety rail was
placed in front of the participant, thus providing a secure bar to
grasp if participants perceived they were unable to control their
balance, and to hold onto during rest periods (see Figure 6). In

addition, a wooden stabilizing device was inserted under the seat
platform during the rest periods, thus stabilizing the platform from
any rocking motion. In this way, fatigue was avoided and partic-
ipants were unable to gain further balance practice during the rest
periods.

To analyze the effect of practice, participants attended 3 testing
sessions spaced 1 week apart. Five 70-s trials were collected per
session (15 trials in total) with 2 min of rest between trials. The
70-s of data collection began when they were relatively stable with
their hands on their lateral chest at rib level. They were instructed
to maintain their balance, keeping the unstable platform “as still as
possible” (Cavanaugh, Mercer, & Stergiou, 2007; see Figure 5).

The seat assembly was placed atop a force plate (Kistler, Swit-
zerland, Model 9286AA), which was sampled at 1000 Hz and
calibrated prior to each test. The COP data were subsampled at 20
Hz following the same principle explained in Experiment 1.

Data analysis and reduction. Although the data analysis
closely followed the procedure used in the previous experiment,
there were a few differences. To avoid nonstationarity related to
the beginning of the trial, the first 10 s of each trial were discarded
(van Dieen et al., 2010). The length of the time series analyzed was
1200 data points.

Similar to the first experiment, because the orientation of the
participant was only approximately aligned with the axes of the
force platform, the resultant distance (RD) was used as a global

Figure 4. Relationship between PC2 scores and a) the initial performance
(RDPRE); b) the initial long-range autocorrelation of the COP variability (�

PRE) and c) the relative learning rate (RLR) during the protocol of Exper-
iment 1.

Figure 5. Participant performing the sitting stability task on the unstable
seat.
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measure to quantify the performance during the balance trials
(Prieto et al., 1996), and the � scores of each participant were
calculated as the average � obtained from both axes.

In this experiment, the RD and � of each participant were
averaged over the three last trials of each session. The ALR was
now calculated as the RD differences between the third and second
sessions relative to the first (ALR1–2 and ALR1–3). The RLR was
similarly calculated relative to the initial performance of each
individual (RLR1–2 and RLR1–3).

Statistical analysis. The statistical analysis performed in Ex-
periment 2 was similar to Experiment 1. Normality was evaluated
through the Kolmogorov–Smirnov test with Lilliefors correction.
First, a Pearson’s correlation was performed between the perfor-
mance (RD1) and long-range autocorrelation (�1) in the first
session, and the learning rate (ARL1–2, ARL1–3, RLR1–2 and
RLR1–3) to assess the initial performance and variability influence
on the learning rate. Second, to avoid the initial performance bias
on the learning rate, participants were grouped using a linear
regression method. Specifically, participants were classified into
three groups according to their RD1. A linear regression was then
performed between RD1 and �1 in each performance group. Sim-
ilar to the first experiment, participants were grouped according to
their residual scores: higher residual scores made up the HAV
group and the lower scores comprised the LAV group. One-way
ANOVA for independent measures was performed to assess learn-

ing rate (ARL1–2, ARL1–3, RLR1–2 and RLR1–3) differences be-
tween the groups with the initial structure of the variability as an
intersubject factor (HAV and LAV groups). A mixed-way
ANOVA was performed with RD as a within-subject factor (Ses-
sion 1, Session 2 and Session 3) and with the initial structure of the
variability as an intersubject factor (HAV and LAV groups).
Partial eta squared (�p

2) was calculated to measure effect size.
Effect size �0.64 were considered strong, between 0.64 and 0.25
moderate, and �0.25 were considered small (Ferguson, 2009).

Finally, PCA was performed (Table 6 and Figure 9) to check the
results obtained with the linear regression method and to extract
underlying relationships between the initial structure of the vari-
ability (�1), initial performance (RD1) and relative learning rate
(RLR1–3).

Statistical analyses were performed using IBM SPSS software
18.0, using a significance level of p � .05.

Results

All participants improved their performance and significantly
reduced their RD between the 3 sessions (RD1 � 4.9 � 1.2 mm;
RD2 � 4.3 � 1.0 mm; RD3 � 3.3 � 0.8 mm; F2,42 � 32.694; p �
.001; �p

2 � 0.598). Nevertheless, the effect size indicated the
learning rate in Experiment 2 was higher than that of in Experi-
ment 1. As Table 4 shows, learning rate significantly correlated

Figure 6. Linear regression of the initial structure of the variability (� 1) and the initial performance (RD1)
during the sitting balance protocol in the three performance groups. Black dots represent the participants
included in the “high auto-correlated variability” group (HAV), and white dots represent the participants
included in the “low auto-correlated variability” group (LAV).

Table 4
Pearson’s Bivariate Correlations Between the Individual’s Initial Balance Performance (RD1),
Initial Structure of the Variability (�1), and Learning Rate in Absolute (ALR1–2, ALR1–3) and
Relative (RLR1–2, RLR1–3) Values

Variable �1 ALR1–2 RLR1–2 ALR1–3 RLR1–3

RD1 .537 (.010) .536 (.010) .407 (.060) .723 (�.001) .485 (.022)
�1 .350 (.111) .332 (.131) .283 (.202) .161 (.474)

Note. Pearson correlation coefficient (level of significance). �1 � long-range autocorrelation index shown in
the first session; RD1 � Resultant distance shown in the first session; ALR1–2 � absolute learning rate between
sessions 1 and 2; ALR1–3 � absolute learning rate between sessions 1 and 3; RLR1–2 � relative learning rate
between sessions 1 and 2; RLR1–3 � relative learning rate between sessions 1 and 3.
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with initial performance, while no significant correlations were
found between learning rate and the initial structure of the vari-
ability. Again, these results indicate that the learning rate is highly
determined by initial performance, whereas the initial structure of
the variability does not seem to influence it. However, a significant
relationship was found between RD1 and �1, supporting that initial
performance biased the relationship between variability and the
learning rate. That is, less skillful individuals who show higher �1

values have a higher learning rate.
As in Experiment 1, to assess the relationship between the initial

structure of variability (�1) and learning rate (ALR1–2, ALR1–3,
RLR1–2, RLR1–3) while avoiding the bias of the initial perfor-
mance (RD1), participants were grouped using a linear regression
method (see Figure 6). Again, higher residual scores (black dots in
Figure 6) in each performance level were included in the HAV
group, whereas lower residual scores (white dots) were included in
the LAV group.

Table 5 shows the group mean values after participants were
divided in the HAV and LAV groups. Although groups were quite
similar in initial performance (RD1: F1,20 � 0.038; p � .847: �p

2 �
0.002) they differed in the structure of variability (�1: F1,20 �
24.614; p � .001; �p

2 � 0.468). After analyzing the effects of
practice on performance variables, significant between-groups dif-
ferences were found in ALR1–3 and RLR1–3. The LAV group
showed a higher learning rate than the HAV group.

The mixed measure ANOVA showed a performance improve-
ment after practice in both groups (F1,20 � 32.694; p � .001; �p

2 �
0.598). However, the LAV group showed higher improvements
between Sessions 3 and 1 than the HAV group (Interaction F1,20 �
4.389; p � .049; �p

2 � 0.180). Pairwise comparisons showed
significant between-groups differences in RD in Session 3 (p �
.006; see Figure 7).

Although the differences between participants with different
� scores do not seem to be apparently different through visual
inspection, Figure 8 shows the most representative examples
about the differences in learning rate (%) two participants with
different initial � scores but similar initial performance level
(RDPRE). This figure shows the pretest and posttest data series
of two participants, where the � scores and relative learning rate
(%) can be observed. Participant A showed lower long-range

auto-correlation in the pretest and higher learning rate than
Participant B.

Finally, the PCA performed among the initial performance
(see Table 6), initial structure of variability, and learning rates
between Sessions 1 and 3 supported the aforementioned results.
PC1 accounted for 60.28% of the total variance, showing that a
higher RLR1–3 was related to a higher RD1 and �1. Thus, less
skillful individuals had greater room for improvement than
more skillful ones but showed higher auto-correlation of COP
variability. PC2 accounted for 27.99% of the total variance and
showed that a higher RLR1–3 was related with low �1, yet
unrelated to RD1. As shown in Figure 9, individuals with low
PC2 values demonstrated a higher learning rate (R2 � 0.446;
p � .001), lower auto-correlated COP variability (R2 � 0.373;
p � .003) and no difference in their initial performance (R2 �
0 .001; p � .920) when compared with individuals with high
PC2 values.

Table 5
Mean � SD Differences of the Initial Structure of the Variability (�1), the Initial Performance
(RD1), and the Absolute and Relative Learning Rate (ALR1–2, ALR1–3, RLR1–2, RLR1–3) Between
Individuals With High or Low Initial Long-Range Auto-Correlation Grouped According to the
Residuals of the Linear Regression Grouping Method

Variable LAV group (n � 11) HAV group (n � 11) F1,20 p �p
2

�1 1.11 � .11 1.22 � .11 6.437 .020 .243
RD1 4.84 � 1.18 4.95 � 1.26 .038 .847 .002
ALR1–2 .86 � .73 .40 � .88 1.834 .191 .084
ALR1–3 1.98 � .83 1.15 � 1.02 4.389 .049 .180
RLR1–2 16.85 � 15.18 5.59 � 19.54 2.277 .147 .102
RLR1–3 39.69 � 10.32 20.46 � 17.81 9.599 .006 .324

Note. One-way ANOVA for independent measures. �1 � long-range autocorrelation index shown in the first
session; RD1 � resultant distance shown in the first session; ALR1–2 � absolute learning rate between sessions
1 and 2; ALR1–3 � absolute learning rate between sessions 1 and 3; RLR1–2 � relative learning rate between
sessions 1 and 2; RLR1–3 � relative learning rate between sessions 1 and 3; LAV group � Low auto-correlated
variability group; HAV group � High auto-correlated variability group.

Figure 7. Resultant distance values (RD) from the “high auto-correlated
variability” (HAV) and “low auto-correlated variability” (LAV) groups
across sessions. �Significant differences between the groups in Session 3.
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Discussion

Our second experiment, using a sitting balance task, confirmed
the preliminary results found in Experiment 1. On the one hand,
individuals with less auto-correlated COP variability showed a
better performance but a lower learning rate. Conversely, when the
bias caused by initial performance was controlled, individuals with
less auto-correlated COP variability showed a higher learning rate
in both the relative and absolute values. Despite the fact that the
statistical procedures used in both experiments are correlational
and they do not permit the establishment of causal links, a less
auto-correlated COP variability during the balance tasks suggests
a higher ability to perform postural adjustments. This allows
individuals to achieve better performance and faster learning. The
lower learning rate found in Experiment 1 compared with the
results found in the second experiment could indicate that in a
daily basic movement, such as standing still, exploitation strategies
prevailed over exploration ones (Herzfeld & Shadmehr, 2014; Wu
et al., 2014). Nevertheless, even in such easy and common tasks in

which the exploitation of the current knowledge prevailed, indi-
viduals who showed higher motor exploration (lower �1) also
demonstrated a higher learning rate, suggesting that they are for-
going, in some way, their performance in view of an increased
learning rate. A higher effect-size found in Experiment 2 indicates
that during unusual and more difficult tasks, such as the sitting
balance, exploration strategies prevail, increasing the functional
role of the variability as a learning facilitator. Overall, these results
agreed with previous findings on both reward-based and error-
based pointing tasks (Wu et al., 2014). However, to the best of our
knowledge, this is the first study to assess the relationship between
the structure of motor variability and learning rate, while avoiding
the influence of the initial performance level and using a task
where performance criterion was the reduction in the amount of
variability.

One of the aims of this study was to test whether the analysis of
the motor variability structure reveals motor system properties that
promote learning when a low magnitude of the variability is
required to have a good performance and what it does mean during
an error-based task. During reward-based learning, motor variabil-
ity magnitude is successfully interpreted as the exploration needed
to find the most beneficial solutions, which will subsequently be
exploited (Pekny et al., 2015; Wu et al., 2014). It has been
observed that individuals increase their motor variability when
they do not achieve success during an attempted motor task, which
has been interpreted as a search for rewarding outcomes (Galea,
Ruge, Buijink, Bestmann, & Rothwell, 2013; Pekny et al., 2015).
However, during the learning process of an error-based task,
thought to depend mainly on the cerebellum (Smith & Shadmehr,
2005), learning not only depends on the exploration capacity but
also on the ability to measure and predict motor error. That is, the

Figure 8. Representative example of two participants with similar pretest performance (RD: resultant distance)
and different long-range auto-correlation (� score) of COP displacement

Table 6
Principal Component Factors (PC) Obtained From Principal
Component Analysis During the Sitting Protocol

Components PC1 PC2 PC3

RD1 .897 �.023 �.442
RLR1–3 .732 �.611 .302
�1 .684 .683 .255

Note. �1 � long-range autocorrelation index shown in the first session.
RD1 � resultant distance shown in the first session; RLR1–3 � relative
learning rate between sessions 1 and 3.
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capacity to detect differences between the desired behavior and the
actual motor outcome (Smith & Shadmehr, 2005). It would be
expected that when individuals are more sensitive to their own
motor error, increased motion adjustment is needed to reduce it.
Previous literature suggests that motor variability during error-
based learning helps determine differences between the desired
motor behavior and the true motor output, facilitating motion
adjustments to reduce motor error (Wu et al., 2014). However,
there is still a lack of studies analyzing the ability to perform
motion adjustments and how they relate to motor learning rate. The
analysis of the structure of the variability through DFA reveals
how the motor output changes over time instead of the magnitude
of those changes. Therefore, the relationship between the �-scores
and learning rate found in this current study would be more related
to an individual’s error sensitivity rather than exploration pro-
cesses. Previous studies that assessed long-range auto-correlation

of step-by-step variability during gait (Jordan, Challis, & Newell,
2007) or postural sway during balance tasks (Amoud et al., 2007;
Wang & Yang, 2012) identified lower auto-correlated motor vari-
ability as an individual’s greater ability to perform motion adjust-
ments. In our experiments, individuals with lower auto-correlated
COP variability showed generally better performance, indicating
that the �-scores are an index related to skill level. That is, high
skillful individuals are more sensitive to their own motion, allow-
ing them to reduce the magnitude of their body fluctuation. Ad-
ditionally, when compared with their counterparts who had similar
performance but higher auto-correlated variability, they showed a
higher learning rate. Therefore, the analysis of the structure of
motor variability without the influence of performance level seems
to reveal that the ability to perform motion adjustment is condi-
tioned by the individual sensitivity to one’s own motor errors
(Herzfeld & Shadmehr, 2014; Smith & Shadmehr, 2005).

Finally, it should be noted that motor variability can be a motor
system feature that is actively and centrally regulated to promote
learning (Churchland et al., 2006; Mandelblat-Cerf, Paz, & Vaa-
dia, 2009; Sober, Wohlgemuth, & Brainard, 2008). Previous stud-
ies have shown that motor variability depends largely on individ-
ual factors, such as effort, motivation or attention (Borg &
Laxaback, 2010; Diniz et al., 2011; Roerdink, Hlavackova, &
Vuillerme, 2011; Stins, Michielsen, Roerdink, & Beek, 2009; Van
Orden, Holden, & Turvey, 2003). In this sense, Correll (2008)
assessed the influence of the effort on the time-response latencies
during a “ decision-making shooting task” and found that higher
effort was associated with a lower auto-correlated time response
variability. Under this perspective, and taking into account the
results of our study, low long-range autocorrelation values mean
that the participants have a high implication to perform motion
adjustment to reduce motor output error.

Despite these implications, our results point out that the analysis
of the structure of variability can be useful in predicting individual
learning rate, but the underlying processes that influence it are still
uncertain. Future studies should address the extent to which indi-
vidual constraints affect the structure of variability and whether it
can be modulated during the practice period to promote faster
learning.

In conclusion, our findings show that analysis of long-range
autocorrelation reveals a relevant role for motor variability during
motor error-based learning, even when a reduction of the magni-
tude of the output variability is required to achieve a good perfor-
mance and individuals show a similar performance level.
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