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Abstract
Infectious disease modeling plays an important role in understanding disease spreading dynamics and can be used for

prevention and control. The well-known SIR (Susceptible, Infected, and Recovered) compartment model and spatial and

spatio-temporal statistical models are common choices for studying problems of this kind. This paper proposes a spatio-

temporal modeling framework to characterize infectious disease dynamics by integrating the SIR compartment and log-

Gaussian Cox process (LGCP) models. The method’s performance is assessed via simulation using a combination of real

and synthetic data for a region in São Paulo, Brazil. We also apply our modeling approach to analyze COVID-19 dynamics

in Cali, Colombia. The results show that our modified LGCP model, which takes advantage of information obtained from

the previous SIR modeling step, leads to a better forecasting performance than equivalent models that do not do that.

Finally, the proposed method also allows the incorporation of age-stratified contact information, which provides valuable

decision-making insights.

Keywords Compartment SIR model � Infectious diseases � Log-Gaussian Cox process � Spatial point process �
Spatio-temporal modeling

1 Introduction

The spread of infectious diseases such as COVID-19 may

overload healthcare systems and have devastating health,

social and economic impacts at different levels (Kaye et al.

2021; Pak et al. 2020; Hossain et al. 2020). Disease mod-

eling is essential to understand spreading dynamics and

may provide valuable insights into disease prevention and

control.

In this regard, one common approach to describe epi-

demic dynamics consists of splitting the population into

compartments and modeling the rates that describe how

individuals move from one compartment to another. Ker-

mack and McKendrick (1927) initially proposed a model of

this kind, assigned individuals to three compartments,

namely Susceptible (S), Infected (I), and Recovered (R),

and modeled the transition events S ! I and I ! R. This

model aimed to describe how the number of individuals in

each compartment evolves in time by solving a system of

differential equations. Several extensions with additional

compartments and transition events have been proposed.

For instance, we may allow infected individuals to become

susceptible again, or we can even include a new com-

partment—named Exposed (E)—between the susceptible

and infected blocks in such a way that it addresses the

latent period an individual may go through after being

exposed to a disease but before being effectively infected.

The last extension is known as SEIR, and both (and others)

are described in Keeling and Rohani (2011).

Other extensions can arise from the usual model

assumptions. As discussed in Britton et al. (2019), one can

assume that individuals are homogeneously and uniformly

mixed or primarily in contact with households and close

friends. For sexually transmitted diseases, contact may

only be defined among one’s sexual partners. Also, we may

assume that all individuals have similar responses when

exposed to a certain disease; however, people may vary, for

example, regarding their immune systems and whether or

not they should be included in the susceptible group.

Another variable is related to the overall population size;
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we might assume it is constant over time (or at least

approximately constant), but especially for groups

observed over longer periods, migration is likely to play a

role in the epidemic dynamics.

One could also consider a population divided into strata

(e.g., based on gender, age and job type) to account for the

different contact frequencies among individuals from these

groups. As described by Mossong et al. (2008), elderly

individuals have much less contact with other people when

compared to younger classes. Age also plays an essential

role in the disease severity—for example, there is evidence

that the risk of death increases with age for COVID-19

(Wu et al. 2020; Moraga et al. 2020). Moreover, since

children were already shown to be more susceptible to

influenza than adults (Viboud et al. 2004), age might also

impact the infectious rate for some specific diseases.

Motivated by that, one can extend the SIR model by

including such contact information among age groups to

better characterize the interaction in the overall population;

that is the approach we take throughout this paper.

Spatial and spatio-temporal statistical models have also

been developed to understand disease geographic and

temporal patterns, especially over the recent years, due to

the increased availability of georeferenced health infor-

mation (Moraga 2019). However, many of these works that

focus on spatio-temporal modeling for infectious disease-

related problems analyze areal data from aggregated point-

level information or geostatistical data from surveys. For

instance, Giuliani et al. (2020) and Lawson and Kim

(2021) modeled COVID-19 areal data in space and time in

Italy and South Carolina (USA), respectively. On the other

hand, methods for dealing with point pattern data for the

locations of infected individuals seem to be less explored—

partly due to the challenge of obtaining the exact locations

of infected individuals. An important example of point

pattern data being used in this context comes from Diggle

et al. (2005). In such a work, they introduced a log-Gaus-

sian Cox point process model for spatio-temporal disease

modeling and applied it to online spatio-temporal surveil-

lance of non-specific gastrointestinal diseases in the United

Kingdom. Similarly, there have also been some recent

advances in including spatial components in the afore-

mentioned compartment models; e.g., Geng et al. (2021)

extended the SIR model to accommodate for the spatial

spreading of the studied disease across the considered

region by using a spatial kernel, and Lau et al. (2017)

proposed a framework based on the SEIR model for

describing a disease transmission pattern in space and time.

In this paper, we propose a spatio-temporal modeling

framework that describes infectious disease dynamics and

allows us to make accurate predictions for the number of

infected cases in the future across space. To do so, we

integrate the SIR compartment and log-Gaussian Cox

process models and use the age-stratified contact infor-

mation and point pattern data corresponding to the infected

individuals’ locations in space-time to fit the model.

Although the modeling scheme proposed by Diggle et al.

(2005) already decomposes the intensity process into

purely spatial, purely temporal and spatio-temporal

dependent terms, our approach extends it by using the SIR

compartment model output as the temporal component,

which has a significant impact on the obtained results,

especially when making predictions. More specifically, we

propose to model the epidemic spatio-temporal dynamics

in two steps: (1) fitting a temporal compartment SIR model

taking into account contact patterns of different age groups,

and (2) fitting a log-Gaussian Cox process for the point

pattern data that represents the locations of infected indi-

viduals in the studied region and time interval, such that the

mean of such a process depends on the information

obtained from the previous step. Also, our fitting procedure

for step (2) relies upon a faster computational technique,

namely integrated nested Laplace approximation (INLA)

(Rue et al. 2009)—as opposed to a Markov chain Monte

Carlo (MCMC) algorithm—making it more appealing for

practitioners.

The remainder of this paper is as follows. Section 2

presents the prerequisites for SIR modeling and introduces

the key concepts in point pattern data analysis. In Sect. 3,

we give the details of our proposed framework by

describing the integration of the modeling steps in time and

space-time. In Sect. 4, we conduct a simulation study to

assess the performance of our approach and compare it

with a null model that does not incorporate information

from the SIR model. In this section, we simulate an epi-

demic scenario in São Paulo, Brazil, discuss the fitting

procedures, and explore the obtained results. Section 5

shows a case study of the number of COVID-19-infected

individuals in Cali, Colombia. In the last section, we briefly

discuss our methodology and results; we also detail its

limitations and possible extensions.

2 SIR and spatial point process models

Here, we briefly review the basics of infectious disease

modeling through compartment models; in particular, we

consider a SIR compartment model in time that accounts

for age classes. We also present the relevant concepts of

spatial point processes and describe one possible approach,

named ‘‘log-Gaussian Cox process,’’ to model this data.

2.1 SIR model

Suppose we are interested in studying how an infectious

disease may spread among individuals living in a given
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region. To model the evolution of such a disease in time,

we can start by dividing the population into three groups,

namely Susceptible (S), Infected (I), and Recovered (R),

such that individuals are transferred from one compartment

to another in the following way: S ! I ! R. Then, under

the assumptions of (1) a homogeneous population with

uniform mixing (meaning that individuals meet each other

uniformly at random, (2) constant infectious rate and

recovery (or death) rate over time, and (3) preserved

population mass (that is, the total number of individuals in

the population is constant over the total time), we can state

the so-called deterministic base-SIR model.

For t 2 T � Rþ ¼ fx 2 R; x� 0g, let SðtÞ, IðtÞ, and

RðtÞ denote the number of susceptible, infected, and

recovered individuals at time t. Also, let NðtÞ ¼ SðtÞ þ
IðtÞ þ RðtÞ denote the total number of individuals in the

population, such that NðtÞ ¼ N, 8t. Moreover, let b[ 0 and

c[ 0 be the infectious and recovery (or death) rates,

respectively. In this case, the deterministic base-SIR model

describes the evolution of the epidemic through the solu-

tion of the following system of Ordinary Differential

Equations (ODEs)

dSðtÞ
dt

¼ �bSðtÞ IðtÞ
N

dIðtÞ
dt

¼ þbSðtÞ IðtÞ
N

� cIðtÞ

dRðtÞ
dt

¼ þcIðtÞ:

Under initial conditions ðSð0Þ; Ið0Þ; Rð0ÞÞ, such that Rð0Þ is

usually assumed to be equal to 0, this system can be

numerically solved—for instance, one can use the Euler’s

Method (Atkinson 2008). Also, b and c are disease-specific

parameters and can be estimated as described in

Sect. 3.1.1.

For this so-called base-SIR model, another quantity of

interest, R0 (Base Reproductive Number), is essential when

studying an infectious disease outbreak. Roughly speaking,

R0 represents the expected number of secondary cases

arising from a primary case in a completely susceptible

population (Blackwood and Childs 2018). In that way, for

the above simplistic model, it can be computed as

R0 ¼ b=c. Here, notice that R0 depends on a ‘‘single’’

infectious case and ignores the individual variability. As

we will see next, the base reproductive number is com-

puted differently when considering structured populations.

Often, we cannot assume a homogeneous population

with uniform mixing since the number of contacts a person

from a particular age group has highly depends on the other

individuals’ ages (Mossong et al. 2008). Consequently, we

might want to incorporate this contact information for a

structured population in our base-SIR model. To do so, we

rely on a contact matrix Cij that represents the average

number of contacts made by an individual of age group i

with an individual of age group j and on the proportion of

individuals in each age group, namely fi. In this regard,

notice that (1) Cij is not symmetric, and (2) the total

number of contacts of group i with group j should be equal

to the total number of contacts of group j with group i, i.e.,

Cij � fi ¼ Cji � fj, for all pairs (i, j). Although, as discussed in

Fitzgerald et al. (2020), (2) might not hold for all real data

sets—especially when one tries to aggregate data from

different sources, as we will do.

Based on Cij and fi, the age-groups-SIR model will

describe the evolution of the epidemic for the different

population classes as the solution of the following system

of differential equations

dSiðtÞ
dt

¼ �bSiðtÞ
X

j

Cij �
IjðtÞ
Nj

dIiðtÞ
dt

¼ þbSiðtÞ
X

j

Cij �
IjðtÞ
Nj

� cIiðtÞ

dRiðtÞ
dt

¼ þcIiðtÞ;

ð1Þ

such that SiðtÞ, IiðtÞ, and RiðtÞ correspond to the number of

susceptible, infected and recovered individuals in group i

and at time t, and NiðtÞ ¼ Ni, 8t, is the total number of

individuals in group i. The other quantities are defined as

before.

From Model (1), notice that the infectious and recovery

(or death) rates are still common for all age groups i.

Letting b and c vary with the population class is one

possible extension (among many others) of such a model.

Also, although there are different methods to determine R0

in this structured-population scenario (Li et al. 2011), the

base reproductive number can be numerically computed as

the largest eigenvalue of ðb=c �MijÞ, such that Mij is a

matrix with elements Cij � fi=fj for all pairs (i, j) (Black-

wood and Childs 2018; Towers and Feng 2012). This

method is best known as the ‘‘next-generation matrix’’

(Diekmann et al. 1990, 2010) and has been used in dif-

ferent works (Li et al. 2020; Davies et al. 2020).

Finally, as mentioned before, an analytical solution for

systems of differential equations like in Model (1) might

not be possible to determine. Instead, we will approach

such a problem numerically. To do so, we define a partition

of T ¼ ½0;T�, given by ftk; k ¼ 0; 1; . . .; ng, such that

0 ¼ t0\t1\ � � �\tn ¼ T. For such a discretization, and

under initial conditions ðSið0Þ; Iið0Þ; Rið0ÞÞ, 8i, we can use

a solver for initial value problems for ODEs to determine

an approximate solution at all ftkgk. In particular, we will

use a solver named lsoda (Hindmarsh 1983; Petzold

1983) when implementing the methodology described in

Sect. 3.
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2.2 Spatial point process models

This section describes how disease spread can be modeled

in space and space-time. In particular, we see how to model

the observed space-time locations of infectious individuals

in the studied population. To do so, we will briefly discuss

the key ideas about point processes and introduce the

notation used in the paper.

For each discretized time point tk from the previous

subsection, we assume that the locations of infectious

individuals arise as a realization of a point process in space.

For u 2 U � R2 and tk defined as before, a spatial point

process nðtkÞ will be defined as a locally finite random

subset of U; that is, #ðnðtkÞ \ AÞ is finite for all bounded

subsets A � U , such that #ðxÞ denotes the cardinality of x.

From this definition, we will let niðtkÞ denote a point pro-

cess in U and at t ¼ tk for the locations of infected indi-

viduals from a class i in our studied area at a given instant

in time. One can refer to Moller and Waagepetersen (2003)

for a rigorous introduction to (spatial) point processes.

For spatial point processes, we may define an intensity

function k : U ! ½0;þ1Þ, such that
R

A
kðu; tkÞdu\þ1,

for all bounded A � U , in the following way

E½N ðA; tkÞ� ¼
Z

A

kðu; tkÞdu; A � U ;

where N ðA; tkÞ counts the number of points in A at t ¼ tk.

Thus, kiðu; tkÞ will correspond to the intensity function of

the point process niðtkÞ for all classes i.

Spatial point processes can be modeled using a Poisson

point process. A point process nðtkÞ on U is a Poisson point

process with intensity function kðu; tkÞ if the following

properties are satisfied

1. For any bounded A � U , N ðA; tkÞ� PoissonR
A
kðu; tkÞdu

� �
; and

2. For any bounded A � U and n 2 N, conditional on

N ðA; tkÞ ¼ n, points in nðtkÞ \ A are independent and

identically distributed with density proportional to

kðu; tkÞ.
Therefore, getting back to the disease spread modeling

problem, niðtkÞ would be the process that describes the

locations, at tk, of the infected individuals in age group i.

Also, if niðtkÞ is a Poisson point process, its average will

depend on the corresponding intensity function kiðu; tkÞ.

2.2.1 Log-Gaussian Cox process

Due to its simplicity, the Poisson point process may not be

valid for describing more complex scenarios. However,

such a process can be extended to a more general class of

models named Cox process (Cox 1955). A Cox process can

be seen as a doubly stochastic process since its intensity

function is a random process itself. More specifically, nðtkÞ
is a Cox process driven by Kðu; tkÞ if

1. fKðu; tkÞ; u 2 Ug is a non-negative valued stochastic

process, and

2. Conditional on fKðu; tkÞ ¼ kðu; tkÞ; u 2 Ug, nðtkÞ is a

Poisson process with intensity function kðu; tkÞ.
A particular case of a Cox process named log-Gaussian

Cox process can be constructed by setting

logfKðu; tkÞg ¼ lHðu; tkÞ þ fðu; tkÞ, such that lðu; tkÞ ¼
expflHðu; tkÞg is possibly interpreted as the mean structure

of Kðu; tkÞ, and fðu; tkÞ is a stationary Gaussian process,

such that Eðfðu; tkÞÞ ¼ �r2=2, 8k and u, and

Covðfðu1; tkÞ; fðu2; tkÞÞ ¼ /ðh; tkÞ ¼ r2qðh; tkÞ, where h ¼
jju1 � u2jj and r2 is the variance of fðu; tkÞ. In this case,

EðKðu; tkÞÞ ¼ lðu; tkÞ, and CovðKðu1; tkÞ; Kðu2; tkÞÞ ¼
wðu1; u2; tkÞ ¼ s2hðu1; u2; tkÞ ¼ lðu1; tkÞ lðu2; tkÞ½exp

f/ðjju1 � u2jj; tkÞg � 1�, where s2 ¼ 2lðu; tkÞ½expfr2g �
1� is the variance of Kðu; tkÞ.

We set niðtkÞ, 8i, as log-Gaussian Cox processes for the

events of observing infected individuals in each age class

and at tk. In particular, the corresponding Gaussian pro-

cesses fiðu; tkÞ will describe the spatio-temporal depen-

dence structure for the underlying processes Kiðu; tkÞ. In

Sect. 3.2, we see different ways to model fiðu; tkÞ.

3 Methodology

We propose a model to describe how infectious diseases

evolve in space and time and how to make predictions for

the future number of cases across the study region. We do

this by integrating the SIR compartment modeling in time

and a point process modeling approach in space-time. By

combining these methods, we incorporate knowledge about

the mechanistic approach that drives the temporal

dynamics into the model that accounts for spatial

dependence.

Our approach is divided into two steps. First, we

aggregate the data in the whole region for each discretised

time window and estimate the epidemic dynamics in time

using a SIR model. This gives us the corresponding curves

for the number of infected individuals for all age groups i

and at all time points tk. Then, for each population class,

we estimate the intensity of the spatial-temporal point

process that originated each observed point pattern of

infected individuals. We do this by incorporating the esti-

mates of the total number of infectious derived from the

SIR model into the mean component of the point process

and adding a spatio-temporal random structure to take

variation into account. This approach allows us to describe
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past spatio-temporal patterns and predict the spatio-tem-

poral evolution of the disease in future times. Figure 1

shows a diagram that illustrates such a procedure.

Throughout this paper, we will use the following nota-

tion. The observed data are the locations and times of

infected individuals for each age group i—we will denote

them by fniðtkÞgk for all tk. That is, for t 2 T ¼ ½0;T�, such

that T is partitioned into ftk; k ¼ 0; 1; . . .; ng and

u ¼ ðu1; u2Þ 2 U � R2, we have that fniðtkÞgk, for all i, are

sequences of spatial point patterns in U observed at time

t ¼ tk, such that the corresponding point process describes

the locations of the infected individuals in each class and

time window.

3.1 Temporal modeling

Our first step concerns modeling and estimating the tem-

poral structures of the disease spread process in the pop-

ulation of interest. In this regard, the counting processes for

the number of susceptible, infected and recovered indi-

viduals in all age classes, namely SiðtÞ, IiðtÞ, and RiðtÞ,
respectively, will be modeled according to Model (1).

Based on data given by a set of locations for each

observed infected individual, denoted by fniðtkÞgk, such

that k 2 f0; 1; . . .; ng, we can start by aggregating all

location observations over space in such a way that

iiðtkÞ ¼ #ðniðtkÞÞ, 8i; k. Therefore, iiðtÞ will correspond to

the observed counting process for the number of infected

individuals in each group at t ¼ t0; t1; . . .; tn. We can esti-

mate the parameters based on Model (1) from such data

and solve for SiðtkÞ, IiðtkÞ, and RiðtkÞ, 8i; k, for inference

and prediction.

3.1.1 Inference and prediction in time

A solution for Model (1) can be approximately computed

using a numerical solver, as described in Sect. 2.1. In this

way, for a set of initial values ðSið0Þ; Iið0Þ; Rið0ÞÞ, 8i, and

initial guesses for b and c, we can solve the system of

ODEs for SiðtkÞ, IiðtkÞ, and RiðtkÞ by employing such a

method. For later reference, we will name these solutions

SODEi ðtkÞ, IODEi ðtkÞ, and RODEi ðtkÞ, respectively.

Suppose we have obtained iiðtkÞ, 8i; k, i.e., the number

of infected individuals in all groups and at all time points.

One way to model such data is by assuming they come

from a specific probability distribution with the mean given

by the ODE solution IODEi ðtkÞ, 8i; k. In particular, as we are

dealing with counting data and aiming to account for the

possible overdispersion when fitting a Poisson model, we

will assume a Negative Binomial distribution for the

observed number of infected individuals, that is,

IiðtkÞ�Negative BinomialðIODEi ðtkÞ;uÞ; ð2Þ

such that u is the overdispersion parameter; this implies

that EðIiðtkÞÞ ¼ IODEi ðtkÞ and VarðIiðtkÞÞ ¼ IODEi ðtkÞ
ð1 þ ð1=uÞ � IODEi ðtkÞÞ:

For such an approach, notice that this is an iterative

procedure. (I) First, we set initial guesses for b, c, and u.

(II) Then, given the parameter values, we solve Model (1)

for SiðtkÞ, IiðtkÞ, and RiðtkÞ. (III) After that, we plug the

Fig. 1 Diagram for the spatio-temporal modeling approach of

infected individuals in all age groups i. From left to right, we have

the infected individuals’ locations (‘‘�’’ denotes Group 1 and ‘‘	’’

denotes Group 2), the observed and estimated IiðtkÞ curves (here,

notice that we collected data up to t50 and made predictions up to t99),

the base functions that represent the population at risk (see Sect. 3.2),

and the estimated intensity functions for all time windows
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IODEi ðtkÞ curve into the mean component of Model (2) and

evaluate the corresponding likelihood function. (IV) Next,

regardless of the estimation framework, and after updating

the values of b, c, and u, we get back to step (II) and repeat

this sequential procedure until convergence.

The model from Eqs. (1) and (2) can be fitted in dif-

ferent ways. Here, we adopt a Bayesian framework and use

RStan (Stan Development Team 2021) to estimate the

posterior distribution of h ¼ ðb; c;uÞ>, always assuming

reasonable prior distributions for b, c, and u and the

Negative Binomial likelihood for the observed counting.

Also, when making predictions, assuming we can generate

quantities from the fitted model, we need to solve Eq. (1)

for SiðtkÞ, IiðtkÞ, and RiðtkÞ for any i and any k beyond the

observation range.

3.2 Spatio-temporal modeling

Once we have estimated the model parameters and,

therefore, the IiðtkÞ curves, we can start modeling the

intensity functions for the spatial processes for all age

groups i at all times tk. In particular, we assume that the

observed point patterns are originated from log-Gaussian

Cox processes evaluated at the same partition of T ¼ ½0;T�
defined before, namely ftk; k ¼ 0; 1; . . .ng. Thus, the

counting number of infected individuals in each age group i

and at tk, namely N iðtkÞ, will be modeled as follows

N iðtkÞjKiðu; tkÞ ¼ kiðu; tkÞ� Poisson

Z

U

kiðu; tkÞdu
� �

;

and the corresponding intensity functions will be described

by

Kiðu; tkÞ ¼ liðu; tkÞ � expffiðu; tkÞg ð3Þ

such that all quantities are defined as in Sect. 2.2.1. Here,

liðu; tkÞ represents the large-scale component of the model,

and expffiðu; tkÞg represents the random variation around

it. This model formulation for Kiðu; tkÞ is similar to the one

proposed by Diggle et al. (2005). Notice that although

fiðu; tkÞ is a stationary process, if liðu; tkÞ is a non-constant

function for a fixed tk, then Kiðu; tkÞ has spatially varying

mean and covariance functions depending on the points’

locations. In this case, the resulting Cox process with such

intensity is called an intensity-reweighed stationary point

process (Baddeley et al. 2000), similar to a real-valued

process with varying mean and stationary residuals (Diggle

et al. 2013).

Concerning Eq. (3), we have to define the mean struc-

ture liðu; tkÞ and the correlation function qiðh; tkÞ. Starting

with liðu; tkÞ, we will set it as a function of the previously

estimated IiðtkÞ curve, 8i; k. We aim to have the expected

number of infected individuals in the studied region

somehow similar to what we estimated using the com-

partment model. This strategy will be beneficial when

making predictions, as discussed in Sect. 4. In particular,

we set the mean structure to

liðu; tkÞ ¼ k0;iðu; tkÞ � IiðtkÞ � expfx1;i x1;iðu; tkÞ
þ � � � þ xp;i xp;iðu; tkÞg;

ð4Þ

where k0;iðu; tkÞ is a non-negative real-valued function,

such that
R
U k0;iðu; tkÞ ¼ 1. In practice, k0;iðu; tkÞ will be set

as proportional to the population density function for class

i. Here, notice that k0;iðu; tkÞ depends on tk and might

evolve over time if the population structure also changes.

By setting it that way, we are using the total population

distribution as a proxy for the locations of the individuals at

risk of infection. Also, for each group, we can include a

vector of p spatio-temporal covariates representing risk

factors ðx1;iðu; tkÞ; . . .xp;iðu; tkÞÞ with associated coefficients

ðx1;i; . . .;xp;iÞ>.

Now, to define the covariance structure of fiðu; tkÞ, first,

notice that it can be written as

fiðu; tkÞ ¼ b0;i þ #iðu; tkÞ;

where b0;i is the mean component of fiðu; tkÞ, and #iðu; tkÞ
is a zero-mean spatially dependent Gaussian process with

covariance function /iðh; tkÞ ¼ r2
i qiðh; tkÞ. In particular,

we assume a Matérn model (Matérn 1960) for the corre-

lation function, a flexible correlation model appearing in

many fields. Thus,

qiðh; tkÞ ¼
1

2mi�1CðmiÞ
ðji � hÞmi Kmiðji � hÞ; ð5Þ

such that mi;k ¼ mi and ji;k ¼ ji, 8k are unknown parame-

ters, and Kmið�Þ is a modified Bessel function of 2nd order

for age class i. For later reference, we will name this

approach REF.

Aiming for more flexible models, we can still add other

structures to the REF model, for instance, independent and

identically distributed (i.i.d.) and autoregressive compo-

nents. More specifically, we will also define the IID and

AR1 model extensions. The IID model is defined as

fiðu; tkÞ ¼ b0;i þ #iðu; tkÞ þ eiðu; tkÞ; 8i;

where eiðu; tkÞ is a zero-mean independent Gaussian pro-

cess with variance r2
i;e. Here, eiðu; tkÞ acts like an

unstructured exchangeable component modeling the

uncorrelated noise in space and time. Also, the AR1 model

is defined as

fiðu; tkÞ ¼ b0;i þ #iðu; tkÞ þ eiðu; tkÞ þ tiðtkÞ; 8i;

such that

tiðtkÞ ¼ aitiðtk�1Þ þ .iðtkÞ; for k ¼ 1; . . .; n;
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where jaij\1, 8i, and .iðtkÞ is a zero-mean temporally

independent Gaussian process with variance r2
i;.. In that

case, tiðtkÞ�Normalð0; r2
i;.=ð1 � a2

i ÞÞ, 8k, such that

CovðmiðtkÞ; miðtkþmÞÞ ¼ ajmji � r2
i;.=ð1 � a2

i Þ. Also, notice

that tiðtkÞ does not depend on the location, and therefore,

the corresponding Cox process can account for spatial

clustering but not temporal clustering. In that way, we are

not modeling the local dependence of fiðu; tkÞ over time;

instead, the temporal dependence is commonly included for

all u 2 U . To overcome this issue, one could define .i, 8i,
as a zero-mean temporally independent but spatially

dependent Gaussian process for each tk with, for example,

a Matérn covariance model. However, this would result in

a more computationally expensive inference procedure that

typically requires larger data sets.

As a final remark, notice that another natural extension

would be including a random effect for the interaction

between space and time [e.g., as in Knorr-Held (2000)].

However, due to the typical number of data points observed

in our infectious-disease-modeling problems, it may

become computationally prohibitive fitting such models.

3.2.1 Inference and prediction in space and time

The final model for the counting number of infected indi-

viduals in all age groups i at tk is specified as follows

N iðtkÞjKiðu; tkÞ ¼ kiðu; tkÞ� Poisson

Z

U

kiðu; tkÞdu
� �

; 8i; k

Kiðu; tkÞ ¼ liðu; tkÞ � expffiðu; tkÞg
liðu; tkÞ ¼ k0;iðu; tkÞ � IiðtkÞ

fiðu; tkjgiÞ�Gaussian Processðb0;i;/iðh; tkjgiÞÞ
gi � priors;

ð6Þ

where /iðh; tkjgiÞ is a covariance function that depends on

the selected model from Sect. 3.2, and gi is a vector of

parameters and hyperparameters.

We fit this model, using R-INLA (Rue et al. 2009), by

employing the gridding approach described by Moraga

(2020). Specifically, we create a regular grid over the

studied region and model the number of occurring events in

each grid cell cj as N i;jðtkÞ� Poissonðhi;j;kÞ, such that

hi;j;k ¼
R
cj
kiðu; tkÞdu. In that way, for sufficiently small

cells, we can approximate such an integral by jcjj � kiðu; tkÞ,
for any u 2 cj, where j � j denotes area. Also, in R-INLA,

fiðu; tkÞ is defined as a zero-mean process; therefore, to

accommodate this change in the mean of the intensity

process, we must include an intercept in the linear predictor

for the Poisson regression formula when fitting the model.

As a final comment, notice that if we have ‘‘well pre-

dicted’’ values for IiðtkÞ for some k in the future, the mean

structure of the spatio-temporal modeling, namely liðu; tkÞ,
can greatly help us to explain kiðu; tkÞ for non-observed

time points, as we will see in Sect. 4.

4 Simulation study

In this section, we perform a simulation study to assess the

performance of our model and compare it with a null model

in which information from the estimated IiðtkÞ curves is

not used. Since the exact locations of infected individuals

over time are still difficult to obtain (Hernández-Orallo

et al. 2020), we use a combination of real and synthetic

data. Specifically, we consider many scenarios and simu-

late point patterns for the locations of infected individuals

in all age groups i observed over space and time. Then, we

fit a null and our proposed model to assess and compare

their prediction performances. The code to reproduce such

analyses is available on https://github.com/avramaral/PP_

SIR.

4.1 Data simulation

We consider as a study region an area of approximately

3 km2 in São Paulo, Brazil (Figure SF1, Supplementary

Information). In such a region, we use the estimated pop-

ulation size (WorldPop 2020) defined in each of the (ap-

proximately) 100 	 100 m cells (with 39,040 individuals

in total) as a base function that mimics the real intensity

that describes how infectious individuals are distributed

over space. Then, we simulate daily observations for 100

days.

We divide the population into three age groups, namely

0–19, 20–59, and 60?, so that the proportion of individuals

in Brazil that fall into each cathegory is given by 0.33,

0.60, and 0.07, respectively (Nations 2019). The contact

matrix Cij is also defined for the same three age groups and

determined by the estimates from Prem et al. (2017)

(Table ST1, Supplementary Information). Population age

distribution and contact matrix data were retrieved using

the COVOID package (Fitzgerald et al. 2020).

Regarding the simulation of the infected curves, we will

do this in two ways. First, we will assume the data comes

from the model described by Eqs. (1) and (2). Second, to

assess how well our approach behaves for an incorrectly

specified model for the temporal component, we will also

generate data from a different model, i.e., we will violate

the SIR assumptions and conduct a sensitivity analysis

under these conditions. In particular, we will simulate from

the model described in Section SS2 (Supplementary
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Information), based on Chen et al. (2016) and Held et al.

(2005). For reference, name it Autoregressive Conditional

Negative Binomial (ACNB) model.

Given b, c and u, for the SIR scenarios, we can simulate

the epidemic dynamics from Eqs. (1) and (2) and sample it

at tk, 8k. In particular, when considering the SIR temporal

modeling, notice that our goal is estimating the SiðtkÞ,
IiðtkÞ, and RiðtkÞ curves for all age groups i. To do this, we

will consider two scenarios, namely ‘‘early peak’’ (EP) and

‘‘flat curve’’ (FC) for the infected individuals. The corre-

sponding parameters b, c, and u, will be set as 0.04, 0.2,

and 100 for scenario EP and 0.0175, 0.1, and 100 for

scenario FC. The chosen scenarios aim to cover the situa-

tions in which (1) we observe a high peak for the infectious

in the very beginning and, therefore, it is easy to make

predictions for future times under the SIR model assump-

tions, and (2) the epidemic is still half-way through and,

therefore, it is not trivial to predict what will happen next.

Finally, the simulated number of infected individuals for

the SIR model in each group and under each scenario (EP

and FC) can be seen in Figure SF2 (Supplementary Infor-

mation). Similarly, the data simulated from the ACNB

model can be seen in Figure SF3 (Supplementary

Information).

Once we have simulated the IiðtkÞ curves, 8i; k, the true

generated intensity functions will be sampled from the

following model

Kiðu; tkÞ ¼ k0;iðu; tkÞ � IiðtkÞ � expffiðu; tkÞg;
for each i and k ¼ 0; 1; . . .; 99;

where k0;iðu; tkÞ is the normalized populational grid, and

fiðu; tkÞ is defined according to the IID or AR1 models, as

in Sect. 3.2, with parameters specified in Table ST3

(Supplementary Information). Then, the number of infec-

ted individuals and their respective locations will be gen-

erated from a Poisson process with the corresponding

intensity function kiðu; tkÞ.

4.2 Fitted models

Based on the data described in Sect. 4.1, we will fit a null

model (M0) and our proposed alternative model (M1).

The difference is that information from the estimated IiðtkÞ
curves will not be used for the null model. In particular, for

the counting number of infected individuals in all age

groups i and at tk modeled as follows

N iðtkÞjKiðu; tkÞ ¼ kiðu; tkÞ� Poisson

Z

U

kiðu; tkÞdu
� �

;

the null model (M0) will be given by

Kiðu; tkÞ ¼ expfx0;i þ fiðu; tkÞg; ð7Þ

such that x0;i is an unknown intercept, and the alternative

(M1) model will be given by

Kiðu; tkÞ ¼ liðu; tkÞ � expffiðu; tkÞg; ð8Þ

such that liðu; tkÞ is defined as in Eq. (4); that is, the

alternative model will depend on both the base function

k0;iðu; tkÞ and the estimated IiðtkÞ curve. Also, fiðu; tkÞ will

be defined in all scenarios based on one of the structures

introduced in Sect. 3.2, namely IID and AR1.

4.3 Implementation and results

For the simulated data sets introduced in Sect. 4.1, we can

fit the models (both null and alternative) that we have just

described. In particular, the temporal component will be

modeled as in Sect. 3.1 with the SIR approach, and the

spatial modeling for all age groups i and all tk will be

performed as detailed in Sect. 3.2; that is, we will consider

the point pattern of infected individuals in each of the

discretized time windows to estimate and predict the cor-

responding intensity functions. Here, we specify the

remaining terms and analyze the obtained results.

Starting with the temporal modeling, the number of

individuals in each compartment, the SiðtkÞ, IiðtkÞ, and

RiðtkÞ curves, 8i; k, will be described by Eq. (1)—with an

approximated solution obtained as mentioned in Sect. 2.1.

Also, the stochasticity from the sampling procedure will be

given by Eq. (2). In that case, the prior distributions were

specified as Normalð0:5; 1Þ for b and c and Normalð1; 100Þ
for u, all truncated at 0. This choice for the priors is

vaguely enough for our problem, and the chains for the

posterior sampled values were well mixed in all cases

(Figures SF4 and SF5 for the data generated from the SIR

model (scenarios EP and FC, respectively), and Figure SF6

for the data generated from ACNB model—Supplementary

Information). In particular, using RStan, we set the

number of chains, the number of iterations and the burn-in

size as 4, 4, 000, and 2, 000, respectively.

Furthermore, as we also want to make predictions, all

models throughout this section will be fitted with data up to

t49. The estimated parameters for all scenarios, namely

SIR-EP, SIR-FC, and ACNB, can be seen in Table 1.

Additionally, the estimated curves for the three scenarios

(SIR-EP, SIR-FC, and ACNB) and age group 20–59 can be

seen in Fig. 2. The other two sets of fitted curves for the

age groups 0–19 and 60? can be seen in Figure SF7

(Supplementary Information).

From Table 1, we can see that the model parameters for

the SIR scenarios were well estimated, and their true values

were always within the 95% equal-tail estimated credible
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interval. Also, from Figs. 2 and SF7 (Supplementary

Information), the estimated curves (given by the solution of

Model (1) averaged over all sampled b, c, and u parame-

ters) approximate the observed count data well. However,

for the data that violates the SIR assumptions, i.e., data

from the ACNB model, the corresponding fitted model

presents higher variability (expected since the fitted SIR

model is not that flexible). Moreover, based on Figs. 2 and

SF7 (Supplementary Information) for the ACNB scenario,

we can observe that the estimated curves under this setting

do not approximate well the true ones. Nonetheless, as we

will confirm next, even in that case, our alternative model

still performs better than the null model when using such a

poorly fitted mean component.

Provided that we have fitted the temporal model and

estimated the IiðtkÞ curves, 8i; k, we can now employ our

modeling approach in space-time, as in Sect. 3.2. Here, we

will use the same regular grid over U as in Figure SF1

(Supplementary Information) for the inference and pre-

diction steps. Also, as discussed in Sect. 3, we will fit the

spatio-temporal model under different scenarios (IID and

AR1); in particular, we will compare a null model (M0), as

in Eq. (7), with our proposed alternative (M1) model, as in

Eq. (8). So that we can assess whether bringing information

(even if it is not good quality) from the SIR compartment

modeling approach, as in Eq. (4), helps to describe the

intensity function for the observed point processes and

make predictions. Table 2 lists all possible combinations

for data generation and model fitting.

To fit Model (6), we used R-INLA and set the priors for

the parameters and hyperparameters as the default distri-

butions, x0;i �Normalð0; ð1=i0;iÞÞ, such that i0;i ¼ 0,

logð
ffiffiffiffiffiffi
8mi

p
=jiÞ�LogGammað1; 5 	 10�5Þ,

logð1=r2
i Þ�LogGammað1; 0:01Þ,

logð1=r2
i;eÞ�LogGammað1; 5 	 10�5Þ,

logðð1 þ aiÞ=ð1 � aiÞÞ�Normalð0; ð1=0:15ÞÞ, and

logðð1=r2
i;.Þ � ð1 � aiÞÞ�LogGammað1; 5 	 10�5Þ.

Besides, the Gaussian processes fiðu; tkÞ, 8i were defined

as following a Matérn model for the correlation structure,

as in Eq. (5), with smoothing parameter mi ¼ m, for all age

groups i. Then, all possible combinations for the ‘‘data

generation procedure’’ and ‘‘model fitting’’ from Table 2

were fitted for data observed up to t49. In that way, based

on the samples drawn from the posterior distributions of

the model parameters, we could directly estimate kiðu; tkÞ

Table 1 Estimated parameters

(and 95% equal-tail credible

interval) for the two SIR

scenarios, namely EP and FC,

and for the model fitted with

data from ACNB. Models were

fitted with data up to tk ¼ 49

Scenario True value Posterior mean 95% equal-tail credible interval

b SIR-EP 0.04 0.0400 (0.0399, 0.0402)

c SIR-EP 0.2 0.1998 (0.1972, 0.2024)

1=u SIR-EP 0.01 0.0095 (0.0070, 0.0132)

b SIR-FC 0.0175 0.0173 (0.0170, 0.0176)

c SIR-FC 0.1 0.0964 (0.0912, 0.1013)

1=u SIR-FC 0.01 0.0091 (0.0067, 0.0131)

b ACNB – 0.0272 (0.0227, 0.0315)

c ACNB – 0.2972 (0.2184, 0.3682)

1=u ACNB – 0.9843 (0.7894, 1.2548)

Fig. 2 Estimated IiðtkÞ curves (black curves) for the age group 20–59

in the two SIR scenarios, namely EP (left panel) and FC (middle

panel), and the ACNB scenario (right panel). Models were fitted with

data up to t49 (vertical dashed line). The red curves correspond to the

observed number of infected individuals over time
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for all i and tk, such that k
 49, and predict all remaining k.

Figure SF8 (Supplementary Information) shows the esti-

mated number of infected individuals at t49, age group

20–59, and space-time scenario 16, as per Table 2. As a

remark, under this setting, the true number of infected

individuals in the entire region was 7,435, while the esti-

mated value was, rounding it to zero decimal places, 7,444

(with a 95% equal-tail credible interval given by 6,781—

8,160).

Following this procedure, we could fit our model and

estimate (and predict) the intensity functions for all age

groups—which is the same as estimating (and predicting)

the number of infected individuals in each cell. As

described in Sect. 3.2.1, assuming we have ‘‘reasonably

well predicted’’ values for IiðtkÞ, we expect better quality

prediction when describing the underlying process that

generated the observed point pattern. This happens since

IiðtkÞ is plugged-in as the mean of the spatio-temporal

process, which improves the overall model performance.

The following section assesses the null and alternative

models regarding their error for the estimated or predicted

intensity functions compared to the true values for all

scenarios listed in Table 2.

4.3.1 Model assessment

Aiming to compare the null model (M0) with our proposed

alternative model (M1), we compute a measure of error for

all scenarios from Table 2 for the difference between the

estimated (or predicted) values and the true values for a

quantity proportional to the intensity function. In particu-

lar, we analyze the difference between the estimated and

true values for the number of infected individuals per

cell—more specifically, we are interested in such errors

when making predictions. However, we might want to use

a scale-independent error measure to compare the data sets

with different scales, such as data from different age

groups. The Absolute Percentage Error (APE) has been

widely employed in this regard (Bowerman et al. 2005),

and it can be defined as follows for each group i and at tk,

APEi;j;k ¼
ðfi;j;k � f̂ i;j;kÞ

fi;j;k

�����

�����;

where fi;j;k and f̂ i;j;k correspond to the true and predicted

number of infectious in group i, cell cj, and tk, respectively.

However, since it produces infinite values if fi;j;k ¼ 0 for

any j, it may not be suitable for our problem. Instead, we

will use a modified version of APE, namely Arctangent

Absolute Percentage Error (AAPE) (Kim and Kim 2016),

which can be defined as follows

AAPEi;j;k ¼ arctan
ðfi;j;k � f̂ i;j;kÞ

fi;j;k

�����

�����

 !
: ð9Þ

From Eq. (9), we can compute the error in predicting

IiðtkÞ. In that way, considering the different scenarios

presented in Table 2, our goal will be to compare the

output obtained from the null and alternative models; that

is, we will plot the errors for scenarios 01 and 02, 03 and

04, etc. Figure 3 shows the AAPEs comparing scenarios

15 and 16. Also, Figures SF9, SF10, SF11, SF12, SF13,

SF14, SF15, SF16, SF17, SF18, and SF19 (Supplementary

Information) show the other plots for the remaining pairs of

corresponding scenarios.

From Fig. 3 (and all others in the Supplementary

Information), we can see that, although the estimated

intensity functions (and therefore, the estimated number of

infected individuals per cell) for the null and alternative

models approximate equally well the true process for

k
 49, when making predictions. That is, for k[ 49, the

null model (M0) tends to mispredict the process values—if

compared to the alternative model (M1) under the same

Table 2 Different space-time scenarios (indexed by the ‘‘ST Sce.’’

columns) under which we will generate data and fit the spatio-

temporal models. ‘‘T Sce.’’ refers to the two possible SIR scenarios,

namely EP and FC, and the ACNB one—all for temporal data

generation. ‘‘Data Gen.’’ refers to the spatio-temporal models, as in

Sect. 3.2, when generating fiðu; tkÞ. Furthermore, ‘‘Model Fit.’’ refers

to the possible fitted models (M0 and M1) with the different

proposed spatio-temporal structures (IID and AR1)

ST Sce T Sce Data Gen Model Fit ST Sce T Sce Data Gen Model Fit ST Sce T Sce Data Gen Model Fit

01 SIR-EP IID M0 IID 09 SIR-FC IID M0 IID 17 ACNB IID M0 IID

02 SIR-EP IID M1 IID 10 SIR-FC IID M1 IID 18 ACNB IID M1 IID

03 SIR-EP IID M0 AR1 11 SIR-FC IID M0 AR1 19 ACNB IID M0 AR1

04 SIR-EP IID M1 AR1 12 SIR-FC IID M1 AR1 20 ACNB IID M1 AR1

05 SIR-EP AR1 M0 IID 13 SIR-FC AR1 M0 IID 21 ACNB AR1 M0 IID

06 SIR-EP AR1 M1 IID 14 SIR-FC AR1 M1 IID 22 ACNB AR1 M1 IID

07 SIR-EP AR1 M0 AR1 15 SIR-FC AR1 M0 AR1 23 ACNB AR1 M0 AR1

08 SIR-EP AR1 M1 AR1 16 SIR-FC AR1 M1 AR1 24 ACNB AR1 M1 AR1
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setting. Also, when the epidemic ends, as we can observe at

later times in the EP scenarios, the null model overesti-

mates the number of infectious individuals, while for the

alternative model, the estimated IiðtkÞ curve greatly con-

tributes to the correct predictions.

5 Case study

In this section, we model the initial number of COVID-19

cases in Cali, the third-biggest city in Colombia and one of

the most populated. The data were provided by the

Municipal Public Health Secretary of the city1 and recor-

ded the confirmed COVID-19 cases at an individual-level

Fig. 3 Computed AAPEs for groups 1, 2, and 3 (0–19, 20–59, and

60?, respectively), all cells, and for all k. Scenarios 15 (upper row)

and 16 (lower row). Models were fitted with data up to t49 (vertical

solid line). The upper row corresponds to the errors for the fitted null

model (M0), and the lower for the fitted alternative model (M1)

1 https://www.cali.gov.co/salud/
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from 21/01/2020 to 18/06/2020 (Fig. 4, top-left panel). In

total, 4,518 unique individuals were observed. The data

were collected so that we have access to the initial loca-

tions of the infected individuals and their first symptoms

dates. We make two assumptions to obtain the infectious

curves: (1) all infected individuals will not move while

being infected, and (2) the recovery time is assumed to be

five days—as suggested by He et al. (2020). Also, as no

covariates (e.g., age) were made available, we do not

divide the population into different age groups; instead, the

Cij will only have one element (representing the average

number of contacts a person of any age has). As in Sect. 4,

an estimate for Cij was retrieved from the COVOID pack-

age (Fitzgerald et al. 2020).

Based on the approach described in Sects. 3 and 4.2, we

fit the null (M0) and alternative (M1) models to the data.

In particular, we rely on Eqs. (7) and (8), respectively, for

describing the intensity processes. In this regard, k0;iðu; tkÞ
is set as proportional to the population density in Cali

(WorldPop 2020), IiðtkÞ is obtained from the temporal

modeling approach described in Sect. 3.1 (Fig. 4, top-right

panel), and fiðu; tkÞ is defined according to the IID

structure introduced in Sect. 3.2. Finally, we use data from

21/01/2020 to 29/05/2020 (130 days) to fit the model and

make predictions for the remaining period (20 days). The

error in predicting the future number of infected individ-

uals in all 131 cells is computed based on Eq. (9).

Figure 4 (bottom-left and bottom-right panels) shows

the computed errors for both fitted null and alternative

models. From these plots, we can see that, for all tk, such

that k
 139, the two models have similar performance; in

fact, the Null Model seems to perform better than the

Alternative Model. This happens because the SIR model is

too rigid and fails to capture the shape of the true infectious

curve for the observed time points (Fig. 4, top-right panel).

The estimated SIR parameters are presented in Table ST4

(Supplementary Information). However, when forecasting,

the information provided by the SIR step improves the

quality (for the AAPE) of the Alternative Model, making it

better than the Null Model for almost all cells.

6 Discussion

Infectious disease modeling is essential to understand

epidemic dynamics in the past and predict its future. By

doing this, researchers can identify highly infectious areas,

and decision-makers can use such information to choose

where and when to focus their resources. In this paper, we

have introduced a new infectious disease modeling

approach for spatio-temporal point pattern data. In partic-

ular, we proposed a two-step framework for modeling data

on the infectious locations at each time for different age

groups. Firstly, we used a compartment SIR model with

contact matrix information to characterize the epidemic

dynamics in time. Secondly, we incorporated this infor-

mation into the mean component of a Cox process that

models the epidemic dynamics in space-time for all groups.

By doing this, provided that the temporal model in the first

step is ‘‘reasonably well specified’’, the spatio-temporal

modeling is also guaranteed to produce reasonable esti-

mates in space for time points also in the future.

Regarding implementation and always under a Bayesian

framework, for the temporal and spatio-temporal models,

we used RStan and R-INLA, respectively. Using these

tools, we can be very flexible in the model specification

without considerably changing the implemented procedure.

For instance, in the temporal-modeling step, many different

models for counting data could have been employed to

describe the number of infected individuals over time. We

believe that extending our approach in that direction may

result in more flexible and, therefore, more valuable

methods. Also, for the spatio-temporal modeling step,

notice that the log-Gaussian Cox process (LGCP) is easily

implemented in R-INLA, so we can take advantage of its

speed when fitting the corresponding models. Alterna-

tively, other models, e.g., self-exciting point processes

(Reinhart 2018), may replace the LGCP in such a

framework.

Aiming to assess our model, we first analyzed a com-

bination of real and simulated data. From that, we have

seen that when we compare the null model with our two-

step modeling framework for space-time, our approach

provides similar results for past values but performs much

better for time points in the future (for the AAPE). In other

words, by describing the mean component of our spatial

Cox process through the estimated IiðtkÞ curves from the

compartment modeling step, we gain information about the

epidemic dynamics and make better predictions. Second,

we analyzed a COVID-19 data set. In particular, by mod-

eling the number of infectious cases in space and time

according to our approach, we observed that, even though

the temporal component was not very well fitted to the

observed count data, the spatio-temporal modeling still

benefited from such estimates when making predictions for

almost all cells.

However, our approach also has limitations. For

instance, recall that the proposed framework assumes a SIR

model with age structure to model the number of infected

individuals over time and a log-Gaussian Cox process to

model spatio-temporal patterns. These assumptions may

not be appropriate for all scenarios, and other structures

can be included depending on the application. For instance,

although we focused on the SIR model with age groups

throughout this work, other temporal models could have
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been used as the first step of our modeling approach. Even

non-compartment models can be implemented—however,

the main advantage of the SIR model in predicting future

times well (assuming that the assumptions hold) might be

lost. Also, note that the presented model uses infected

individuals’ exact locations and times. These data may be

challenging to obtain or present underreporting issues.

However, if good quality data is available, our model can

help us to understand infectious diseases spreading and

contribute to health policies.

Thus, in future work, we might be interested in

extending such an approach for a broader scenario, relaxing

some of the assumptions made in Sect. 2.1, or proposing

alternative ways to deal with the challenge of obtaining

point pattern data for the infected individuals. Finally, to

increase our model performance, we could add covariates

that are known to affect infection transmission and struc-

tures that consider reporting delays and underreporting.

This might help us to describe the underlying intensity

processes better and obtain smaller errors when

forecasting.

Supplementary Information The online version contains

supplementary material available at https://doi.org/10.1007/s00477-

022-02354-4.

Fig. 4 Top-left panel: Map of Cali, Colombia, and 4,518 unique

infected (COVID-19) individual locations (red dots) from 21/01/2020

to 18/06/2020. The map also shows the grid used to fit the model.

Top-right panel: Estimated IiðtkÞ curve. The model was fitted with

data up to t129 (vertical dashed line). Bottom-left panel: Computed

AAPEs based on the fitted Null Model (M0) for all tk. The model was

fitted with data up to t129 (vertical solid line). Bottom-right panel:
Computed AAPEs based on the fitted Alternative Model (M1) for all

tk . The model was fitted with data up to t129 (vertical solid line)
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