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with InMotion2 robot is used to evaluate its efficacy in dis-
criminating stroke from healthy behavior. The experimen-
tal results have shown that arm angles are reconstructed 
with a RMSE of 8.3 × 10−3 rad. Moreover, the compari-
son between healthy and stroke subjects has revealed dif-
ferent features in the joint space in terms of mean values 
and standard deviations, which also allow assessing inter- 
and intra-subject variability. The findings of this study 
contribute to the investigation of motor performance in the 
joint space and Cartesian space of stroke patients undergo-
ing robot-aided therapy, thus allowing: (1) evaluating the 
outcomes of the therapeutic approach, (2) re-planning the 
robotic treatment based on patient needs, and (3) under-
standing pathology-related motor strategies.

Keywords Upper-limb kinematics · Rehabilitation 
robotics · Stroke rehabilitation

Abstract The paper proposes a novel method for an 
accurate and unobtrusive reconstruction of the upper-limb 
kinematics of stroke patients during robot-aided rehabilita-
tion tasks with end-effector machines. The method is based 
on a robust analytic procedure for inverse kinematics that 
simply uses, in addition to hand pose data provided by the 
robot, upper arm acceleration measurements for comput-
ing a constraint on elbow position; it is exploited for task 
space augmentation. The proposed method can enable 
in-depth comprehension of planning strategy of stroke 
patients in the joint space and, consequently, allow devel-
oping therapies tailored for their residual motor capabili-
ties. The experimental validation has a twofold purpose: 
(1) a comparative analysis with an optoelectronic motion 
capturing system is used to assess the method capability to 
reconstruct joint motion; (2) the application of the method 
to healthy and stroke subjects during circle-drawing tasks 
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1 Introduction

In Italy, about 200,000 persons are affected by stroke each 
year, and in USA approximately 795,000 Americans experi-
ence a new or recurrent stroke each year [12]. Most people 
survive, but the functionalities of the upper limb are often 
compromised [27]. Motor rehabilitation is proved to be very 
effective in dealing with upper-limb motor impairment result-
ing from stroke. In particular, the beneficial effects of robot-
aided therapy and constrained-induced movement therapy 
were shown by several studies in the last decade [16].

Rehabilitation machines can be categorized into two 
main classes [13]: (1) exoskeletal robots and (2) end-effec-
tor robots, where the physical contact with the patient is 
limited to the end-effector. For historical reasons and for 
the reduced design complexity, end-effector machines are 
more commonly used in the clinical practice than exoskel-
etons [20, 22], with the consequent limitation that patient 
motion can be assessed only in the Cartesian space through 
the sensors embedded in the robot [3, 5, 6, 28], and patient 
joint motion cannot be directly monitored.

Nevertheless, the analysis of arm joint trajectories of 
stroke patients undergoing robot-aided therapy can address 
a number of scientific and clinical issues, such as:

•	 Quantifying the residual motor capabilities of the 
patient, by investigating the behavior of each degree of 
freedom involved in the motion.

•	 Assessing the outcomes of the therapy at Cartesian and 
joint level and, possibly, understanding the motor strate-
gies possibly related to the pathology.

•	 Re-planning/re-configuring the treatment based on the 
recovery level and the motion capabilities of each spe-
cific patient.

•	 Improving patient safety keeping away arm motion 
from human joint limits.

•	 Typical systems for motion analysis (also used in clin-
ics) are as follows: (1) electrogoniometers, (2) inertial or 
magneto-inertial sensors and (3) optoelectronic systems 
[2]. As regards electrogoniometers, it is difficult to elimi-
nate the misalignment between the measuring system 
and the human joint axes of rotation; they are obtrusive 
systems and cannot measure rotations around the longitu-
dinal axis of a limb segment (such as the shoulder intra-
extra rotation). Inertial and magneto-inertial wearable 
sensors are cheap and small (due to the microfabrication 
procedures) and consume very low power [25]; however, 
they can be obtrusive and alter the natural motion of a 
subject if a net of sensors is used to reconstruct the entire 
arm kinematics. Optoelectronic devices are camera-based 
systems considered as the most accurate motion captur-
ing systems as long as marker-based approaches are 

employed. However, they are very expensive and require 
a high structured acquisition environment and a time-
consuming calibration procedure.

An alternative approach to the use of motion analy-
sis systems relies on the use of computational methods 
to reconstruct upper-limb kinematics. In a recent review 
[10], it was stated that the most appropriate way to solve 
the upper-limb inverse kinematics problem is to resort to 
methodologies derived from robotics. Unless one consid-
ers a simplified planar human arm model, as in [8], the 
inverse kinematics approach requires to face the redun-
dancy of the human arm kinematic chain. In [10], two 
general approaches to solve arm redundancy are proposed, 
both based on intrinsic kinematic constraints: (1) In the first 
approach, the minimization of the path covered from an ini-
tial to a final position is accounted for; (2) in the second 
one, underlying relations between joint angles are taken 
into account. However, while the first constraint has shown 
inconsistencies with the experimental observations, meth-
ods based on the second constraint were found valid only 
for particular movements, since the arm posture at a given 
hand position cannot be considered independent on previ-
ous configurations [31]. This is the case, for example, of 
the adaptation of the Donder’s law to the human arm.

Other computational approaches for solving the upper-
limb redundancy problem adopt simpler kinematic con-
straints or some geometrical simplifications [1]. The con-
sequence is that estimations (and not accurate measures) of 
the upper-limb angles can be provided.

The objective of this paper is to propose a new approach 
that allows overcoming the shortcomings of the aforemen-
tioned systems and methods, and enables an accurate and 
unobtrusive reconstruction of the entire upper-limb kin-
ematics in robot-aided rehabilitation with end-effector 
machines. The approach is based on an inverse kinematics 
algorithm, originally conceived for redundant anthropo-
morphic manipulators and here ad hoc adapted to human 
motion reconstruction. Hence, the method has the advan-
tage to be grounded on a robust analytic procedure. The 
kinematic redundancy of the arm is solved through the task 
space augmentation; this allows obtaining a closed-form 
solution for the inverse kinematics problem. Constrained 
solutions are found by simply performing an additional 
measurement with respect to the hand pose data provided 
by the robot, i.e., the radial acceleration of the upper arm 
segment. In this way, the so-called swivel angle [14, 17] is 
computed (i.e., the angle that describes the internal motion 
of the upper-limb when shoulder and hand position are 
fixed), thus enabling parametrization of arm redundancy.

The kinematic model of the upper-limb and the inverse 
kinematics algorithm are presented in Sects. 2.1 and 2.2, 
respectively; the experimental tests carried out for assessing 
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the proposed method and measuring its performance are 
illustrated in Sect. 2.3. The experimental tests were carried 
out with a two-stage procedure: first, a comparative analy-
sis with data measured by an optoelectronic marker-based 
digital system (SMART-D, from BTS Bioengineering) was 
performed; secondly, the method was applied to healthy and 
stroke subjects during the execution of circle-drawing tasks 
with the InMotion2 rehabilitation robot. Experimental results 
and discussion are reported in Sects. 3 and 4, respectively.

2  Methods

This section presents the upper-limb kinematic model, the 
theoretical formulation of the joint reconstruction algo-
rithm and the two-stage procedure followed for validating 
the proposed method on healthy and pathological subjects.

2.1  Upper‑limb kinematics

2.1.1  Kinematic model

The upper-limb kinematic chain consists of 7 DoFs 
(Degrees of Freedom) and 2 links, namely lu for the upper 
arm and lf  for the forearm, respectively (Fig. 1). Three 
DoFs belong to the shoulder spherical joint; they are 
abduction–adduction q1, flexion–extension q2 and internal–
external rotation q3. The elbow revolute joint has 1 DoF 
that accounts for forearm flexion–extension q4. Lastly, the 
wrist spherical joint is composed of pronation–supination 
q5, ulnar-radial deviation q6 and flexion–extension q7 of the 
hand. Although the pronation–supination degree of free-
dom anatomically belongs to the elbow joint, it was consid-
ered as a wrist DoF, since it mainly affects hand orientation 
rather than its position.

In accordance with the Denavit–Hartenberg (D–H) 
convention [7], different frames were placed all along the 
upper-limb kinematic chain, starting from the reference 
frame (indicated as frame 0), placed in the shoulder joint. 
The frame locations, the D–H parameters, and the joint var-
iables are described in Fig. 1a, b.

Given the D–H parameters, the homogeneous transfor-
mation matrix from frame i to the frame (i − 1), Ti−1

i (qi) 
is computed. Hence, the forward kinematics is given by 
T0
7 (q̄) and describes the hand pose as a function of the joint 

angles vector (q̄). Matrix T0
7 (q̄) can be calculated as

where

i) T0
3(q1, q2, q3) accounts for translations and rotations of 

the elbow with respect to the reference frame;

(1)T
0
7(q̄) = T

0
3(q1, q2, q3) ∗ Te(q4) ∗ T

4
7(q5, q6, q7),

ii) Te(q4) =
[

T3
4(q4)× Trans(ẑ4, lf )

]

, accounts for trans-
lations and rotations of the wrist with respect to the 
elbow frame;

iii) T4
7(q5, q6, q7), accounts for the rotations of the hand 

with respect to the wrist frame.

By regarding the human arm as redundant 7-DoFs 
manipulators [15], an additional variable can be introduced 
to describe the internal motion and exploit the kinematic 
redundancy. It is the swivel angle (α) as shown in Fig. 1d. 
It represents the angle between the reference plane, defined 
by vectors V̂  and ¯sw (Fig. 1—right side), and the plane 
containing s̄ = O0, ē = O3, w̄ = O7, being Oi the origin of 
frame i. Therefore, the upper-limb internal motion can be 
described as a rotation of the plane containing arm joints 
around the vector ¯sw. Angle α is uniquely defined when 
shoulder and hand positions are fixed; in such a condition, 
the elbow can move along a circular arc (indicated as inter-
nal motion) having a normal vector aligned with vector ¯sw 
[32].

2.1.2  Inverse kinematics algorithm with augmented 
Jacobian

The additional Cartesian variable expressed through swivel 
angle α allows solving the arm kinematic redundancy and, 
consequently, providing a closed-form solution for the 
inverse kinematics problem. In particular, the task space 
variables can be increased through the introduction of angle 
α in the hand pose vector as

being m̄ the (6× 1) vector describing hand position and 
orientation.

Hence, the (6× 1) velocity vector in the task space (v̄) 
can be rewritten as a (7× 1) vector given by

and the corresponding square (7× 7) Augmented Jacobian 
matrix is computed as

The augmented Jacobian is composed of two matrices; they 
are the geometric Jacobian matrix of the upper-limb (Jg(q̄)),  
accounting for the contribution of the joint speed vectors 
to the hand velocity, and the swivel angle Jacobian (Jα(q̄)), 
i.e., a row vector that describes the contribution of the joint 
velocities to the rate of change of α. The computation of the 
swivel angle Jacobian is explained in detail in Sect. 2.2.1.

(2)

[

m̄

α

]

,

(3)

[

v̄

α̇

]

(4)JA(q̄) =

[

Jg(q̄)

Jα(q̄)

]

.
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The inverse kinematics algorithm employing the aug-
mented Jacobian matrix is expressed as

Given hand velocity vector v̄ and the rate of change of α
, it allows computing joint speed vector ˙̄q. The inversion 
error (ēr), due to the time-discrete integration procedure 
for calculating joint trajectories (q̄), can be reduced choos-
ing a suitable value for gain matrix (K). In particular, as 
explained in [29], if K is a positive definite (usually diag-
onal) matrix, the system describing error time course is 
asymptotically stable and the inversion error tends to zero 
with a velocity of convergence proportional to the eigen-
values of K; however, being the inversion scheme imple-
mented as a discrete-time system, an upper bound exists for 
the eigenvalues of K, depending on the sampling time.

(5)˙̄q = J−1
A (q̄)

([

v̄

α̇

]

+K ∗ ēr

)

.

Finally, in order to extend the algorithm also to regions 
closed to kinematic singularities, a damped least-squares 
augmented Jacobian matrix can be used in Eq. (5) in place 
of JA. It can be expressed as

where JTA  represents the transpose augmented Jacobian 
matrix, k2 is a damping factor useful for numerically con-
ditioning the solution of the inverse kinematics procedure, 
and I is the (7× 7) identity matrix. Damping factor k has 
to be positive definite and allows defining the weight 
between the minimum norm of the joint speed vector || ˙̄q|| 
and the minimum inversion error. High values of k ensure 
limited joint speed and reduce accuracy in the neighbor-
hoods of singularities; the appropriate choice of k depends 
on the minimum singular value of the Jacobian matrix, 

(6)J⋆A = JTA

(

JAJ
T
A + k2I

)−1

,

Fig. 1  a Upper-limb frames 
placement. b D–H parameters. c 
Representation of the variables 
needed for the computation of 
the elbow joint Cartesian coor-
dinates. d Representation of the 
variables needed for the swivel 
angle computation

(a)

(b)

(c)

(d)
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since it represents a measure of proximity to singularities 
[30].

2.2  Joint reconstruction algorithm

The proposed method for upper-limb joint reconstruction 
was specifically conceived for being used during robot-
aided therapy with end-effector machines. In this con-
text, patient hand pose (and velocity) is provided by robot 
position sensors. Joint motion can be computed through 
the inverse kinematics algorithm in Eq. (5), once the aug-
mented Jacobian matrix is calculated. Hence, the computa-
tion of the swivel angle and of the corresponding Jacobian 
vector Jα(q̄) is a key point. Both of them require the meas-
uring elbow trajectory, as explained below.

2.2.1  Computation of the swivel angle

The swivel angle is the angle between the reference plane 
and the plane containing shoulder, elbow and wrist joints 
and is expressed as

Note that the reference plane is not uniquely defined when 
vectors V̂  and ¯sw are colinear. Choosing V̂  as a vertical 
unit vector, the alignment with ¯sw is avoided if fully out-
stretch of the arm along the vertical axis is not permitted. 
The swivel angle can be computed as a function of elbow 
(ē) and hand (w̄) positions, once defined the following three 
parameters (Fig. 1d):

•	 projection of ē onto w̄, indicated as d̂ = ŵ(ŵT ē),
•	 minimum distance between vector ¯sw and the elbow 

joint, denoted with p̄ = ē− d̄,
•	 vector lying on the reference plane and orthogonal to 

vector ¯sw, i.e., l̄ = (w̄× V̂)× w̄. The swivel angle Jaco-
bian in Eq. (4) can be computed as

being

(7)α = atan2

(

ŵT (V̂ × p̄), V̂T p̄
)

.

(8)

Jα(q̄) =

(

ŵ× p̂
)T

||p̄||
E

+

[

V̂T w̄

||l̄||

(

ŵ× l̂
)T

−
ŵT ē

||w̄|| ||p̄||

(

ŵ× p̂
)T

]

W ,

(9)

α̇ =

(

ŵ× p̂
)T

||p̄||

[

E −
ŵT ē

||w̄||
W

]

˙̄q

+
V̂T w̄

||l̄||

(

ŵ× l̂
)T

W ˙̄q = Jα(q̄) ˙̄q

the time derivative of the swivel angle in Eq. (7) and E 
and W the Jacobian matrices that relate the joint speed 
vector to the translational velocities of elbow and wrist 
joints, respectively.

2.2.2  Computation of elbow joint trajectories

The method proposed in [21] was applied to determine the 
position of the elbow in the Cartesian space. To this pur-
pose, an accelerometer placed on the upper arm was used 
to provide upper arm static acceleration. Hand position data 
provided by the robot and static acceleration provided by 
the accelerometer were used to estimate the vertical coordi-
nate of the elbow joint ey. It is worth observing that, thanks 
to the availability of hand kinematic data from robot posi-
tion sensors, only one accelerometer was used (instead of 
a net of sensors) to reconstruct the entire arm kinematics; 
thus, the unobtrusiveness of the acquisition system was 
ensured. The remaining two Cartesian coordinates of the 
elbow joint were reconstructed by applying some geometri-
cal considerations on arm internal motion.

The elbow joint Cartesian coordinates in the reference 
frame (shoulder frame) can be expressed as (Fig. 1c)

The accelerometer placed in ā in Fig. 1 allows computing 
the elbow coordinate along y0-axis as

where äy is the radial acceleration of the upper arm in 

ā =
[

ax ay az
]T (expressed in the elbow frame O3 − x3, y3, z3)  

and g represents the gravitational acceleration.
By analogy with the work in [21], it was chosen to locate 

the accelerometer directly on the segment connecting the 
shoulder and elbow joints in order to neglect distances ax 
and az. Therefore, the measured acceleration is given by

where gcosq1cosq2 represents the radial static acceleration 
of the upper arm, while (lu − ay)q̇

2
1cosq

2
2 + q̇22 is the cor-

responding dynamic acceleration. Given the application to 
stroke rehabilitation, only slow upper-limb movements are 
considered; hence, in the recorded acceleration, the static 
component dominates on the dynamic term and dynamic 
acceleration can be neglected. Under this assumption, the 
radial acceleration measured on the upper arm is given by 
äy ≈ gcosq1cosq2.

On the other hand, to compute x and z components of 
the elbow position, a number of parameters need to be cal-
culated. They are (Fig. 1c):

(10)ē =
[

lusinq1cosq2 − lucosq1cosq2 − lusinq2
]T

.

(11)ey =
−äylu

g
= −lucosq1cosq2,

(12)äy ≈ gcosq1cosq2 + (lu − ay)q̇
2
1cosq

2
2 + q̇22,
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•	 The normal vector to the internal motion arc, i.e., 
ẑu = ŵ.

•	 The angle between vector ¯sw and the upper arm seg-
ment; by invoking the cosine rule, it is expressed as 

•	 The radius and the center of the internal motion arc, 
given by ρ = lusinφ and ū = luẑucosφ, respectively.

•	 The unit vectors x̂u and ŷu of the frame centered in ū. 
Unit vector x̂u is determined as follows:

1. The vertical component of x̂u is given by 

2. The other two components of x̂u can be computed 
through the system of equations 

 This yields 

 and 

3. Once computed x̂u and ẑu, unit vector ŷu is given 
in a right-handed frame.

•	 Finally, elbow position in the frame centered in ū. It is 
given by 

Hence, elbow coordinates in the reference frame can 
be calculated as

being

the transformation matrix from the frame centered in ū to 
the shoulder frame.

φ = acos
|| ¯sw− s̄||2 + l2u − l2f

2lu|| ¯sw− s̄||
.

x̂(2)u = (ey − uy)/ρ;

{

||x̂u||
2 = 1

x̂u · ẑu = 0.

x(1)u =

√

x
(2)
u

2
z
(1)
u

2
z
(2)
u

2
−

(

z
(1)
u

2
+ z

(3)
u

2
)(

x
(2)
u

2
(

z
(2)
u

2
+ z

(3)
u

2
)

− z
(3)
u

2
)

− x(2)u z(1)u z(2)u

z
(1)
u

2
+ z

(3)
u

2

x(3)u =
x(1)u z(1)u + x(2)u z(2)u

z
(3)
u

.

ēu =
[

ρ 0 0
]T

.

(13)
[

ē 1
]T

= U
[

ēu 1
]T

,

(14)U =

[

x̂u ŷu ẑu ū

0 0 0 1

]

2.3  Experimental validation

The experimental validation has the twofold purpose of 
assessing method performance and evaluating method effi-
cacy to discriminate pathological behavior during robot-
aided motor tasks. Therefore, the following experimental 
activities were fulfilled:

1. A comparative analysis with joint angles obtained from 
an 8-camera marker-based optoelectronic motion cap-
turing system (SMART-D, from BTS Bioengineering). 
It was carried out on healthy subjects and was aimed to 
compare joint angles trajectories and assess the perfor-
mance of the proposed method the root-mean-square 
error (RMSE) and the maximum error of the recon-
structed angles with respect to those computed through 
the motion analysis system were calculated.

2. The application to robot-aided rehabilitation, by 
reconstructing joint motion of healthy and stroke sub-
jects performing circle-drawing tasks with a planar 
end-effector machine. It was applied to both patients 
and healthy subjects in order to evaluate the possibil-
ity to employ the presented method for discriminat-

ing healthy and stroke motion also in the joint space, 
a comparison between the reconstructed healthy and 
stroke subjects’ motion was carried out.

All subjects gave informed consent to take part in this 
study that was approved by the local scientific and ethi-
cal committees.

2.3.1  Validation of the reconstruction algorithm: subjects 
and protocol

This testing phase was aimed at assessing the validity of 
the proposed method and measuring its performance by 
means of a comparative analysis with a marker-based 
optoelectronic measurement system. It involved four 
healthy subjects (two men and two women, mean age 
= 27.6± 1.9 years).

Each subject was asked to seat on a chair, placing the 
hands on the thighs and the arms on the sides of the trunk; 
then, they were required to reach a target placed in front 
of them and return to the starting position (i.e., forward/
backward movements) avoiding fast and jerky motion; each 
movement was repeated five times. The target, the same for 
all the tested subjects, was placed in front of the subject 
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and centered with respect to her/his chest so that it could be 
reached without fully out-stretching the elbow.

A wearable and light-weight magneto-inertial sensor 
(MTx sensors, from Xsens—full scale: ±5g) was posi-
tioned on the subject’s upper arm; it is worth observing 
that, thanks to the availability of hand pose data from robot 
position sensors, only one magneto-inertial sensor was 
used (instead of a net of sensors) to reconstruct the entire 
arm kinematics; thus, the unobtrusiveness of the acquisi-
tion system was ensured. Since a triaxial accelerometer is 
embedded in the sensor, one of the sensor axes was aligned 
with the limb segment. Acceleration data were sampled at 
200 Hz, sent to a computer via serial connection (RS-232) 
and offline filtered with a tenth-order Butterworth low-
pass filter with a cutoff frequency of 100 Hz; filter order 
and cutoff frequency were selected through visual inspec-
tion of the acceleration signal, paying attention to remove 
only noise. Acceleration data were used to compute the 
swivel angle, once calculated the elbow trajectory [(Eqs. 
(7) and (13)]. Thus, the reconstruction algorithm was used 
to reconstruct arm joint angles. The input signals for the 
reconstruction algorithm in Eq. (5) were the hand pose, 
the lengths of upper arm and forearm segments and the 
shoulder position; they were provided by the optoelectronic 
system used for validating the method. The output data of 
the algorithm were the arm joint velocities; they were inte-
grated through a numerical integration method (i.e., Euler’s 
method), with a step-size of 0.005s.

The optoelectronic system (Fig. 2a) was made of eight 
infrared digital cameras (sensors resolution 640× 480 px, 
acquisition frequency 60–120 Hz), retro-reflective mark-
ers and one workstation for data processing and motion 
reconstruction; system accuracy is < 0.2 mm on a volume 
4× 3× 3m3. The system was used to measure the joint 
angles of the subject during the movements described 
above and compare them with the angles computed through 

the reconstruction algorithm. To this purpose, a kinematic 
protocol was developed in [24] and applied to the compu-
tation of the human arm angles. This protocol is a modi-
fied version of Rab protocol in [26]. Twelve retro-reflective 
markers were located on twelve arm anatomical landmarks, 
i.e., right and left acromion, 7th cervical vertebrae (C7), 
sternum, right/left olecranon, right/left distal ulna, right/left 
distal radius, 3rd metacarpus center of right/left hand, mid-
dle finger tip of right/left hand, right and left anterior supe-
rior iliac spine (ASIS) and sacrum. Then, the seven arm 
joint angles were computed starting from markers 3D coor-
dinates [26] sampled at a frequency of 60 Hz and filtered 
through a sixth-order Butterworth low-pass filter with a 
cutoff frequency of 3 Hz [18]. Fig. 2b illustrates the experi-
mental setup for the validation of the proposed method; in 
particular, it shows the subject red stick figure, plotted dur-
ing recording, with retro-reflective markers (placed directly 
on subject skin) and the magneto-inertial sensor attached to 
the subject’s upper arm.

Finally, in order to assess the performance of the pro-
posed method in the reconstruction of the arm angles, the 
error (in terms of RMSE and maximum error) committed 
by the proposed method with respect to the measurements 
performed with the optoelectronic system was computed 
for all the joint trajectories in all the performed tests.

2.3.2  Experimental trials of robot-aided rehabilitation: 
subjects and protocol

Two chronic stroke patients (mean age 58.8± 1.2 years) 
were recruited for these experimental trials. They had a single 
stroke event more than 6 months before the enrollment in this 
study. A 18-session robot-aided treatment was delivered with 
a robotic machine for upper-limb training, i.e., the InMotion2 
planar robot (Interactive Motion Technologies Inc.). Each 
subject was evaluated at admission to and discharge from 

Fig. 2  a SMART-D BTS optoelectronic motion capturing system: post-processing of the experimental trails. b Experimental trial for assessing 
method validity: the placement of retro-reflective markers and magneto-inertial sensor is shown on the subject stick figure
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this study through clinical scales (i.e., Fugl-Meyer [11] and 
Motor Power [23]) and quantitative measures provided by 
the joint motion reconstruction algorithm described in this 
paper. In particular, for the quantitative evaluation, patients 
were required to perform a series of unassisted circle-drawing  
exercises with the InMotion2 Shoulder–Elbow robot. Carte-
sian motion was monitored through position sensors embed-
ded into the robot, and joint motion was reconstructed with 
the proposed algorithm in Eqs. (4), (5) and (6).

Table 1 reports data about the two enrolled patients. It 
reports the lengths of upper arm and forearm segments, in 
addition to the paretic arm (right or left) and the values of 
the Fugl-Meyer scale for shoulder–elbow (maximum score 
= 42 points), FM-SE/42, and the motor power scale for 
shoulder–elbow (maximum score = 70 points), MP-SE/70, 
at admission (i.e., PRE) and discharge (i.e., POST).

For comparative purpose, the same circle-drawing 
tasks were performed also by five healthy volunteers (age 
26± 2.3 years) in order to define “healthy bands” for all 
the kinematic variables during the performed tasks.

The experimental trials were performed as follows. 
Healthy and stroke subjects were seated on a chair and 
required to perform five repetitions of a task consisting of 
drawing a counterclockwise circle in the horizontal plane 
starting at 3 o’clock. They were asked to move their hand 
along the desired circular trajectory (radius = 0.075 m) 
shown on a monitor in front of them, together with a vis-
ual feedback regarding the current hand position. The 
trunk of each subject was tied through a seat belt in order 
to avoid compensatory torso movements; the forearm was 
placed and secured through velcro straps on a plastic sup-
port attached to the robot end-effector in order to minimize 
forearm pronation–supination and wrist movements. Robot 
motors were turned off, and thus, no assistance was pro-
vided to subjects during the exercise. The hand position of 
each subject was provided by the sensors embedded into 
the robot (sampling frequency of 200 Hz). Moreover, the 
MTx sensor was placed on the subject’s upper arm for the 
acquisition of the radial acceleration data; lengths of limb 
segments were manually measured.

In order to determine the shoulder position with respect 
to the robot base frame, an initial calibration phase was 
carried out. Hence, after measuring upper-limb segment 
lengths, the subject hand was positioned in the center of the 

circle (coincident with the robot workspace center) with a 
flexion angle of 45◦ for the shoulder and the elbow and an 
abduction angle of 45◦ for the shoulder; a goniometer was 
used for measuring calibration angles.

The circle-drawing task is a typical planar exercise for 
evaluating stroke patients after a robotic treatment [8]. In 
this study, it is particularly suitable to investigate the joint 
activity, mainly in the simultaneous activation of shoul-
der and elbow angles [8] that is typically compromised in 
stroke patients.

In Fig. 3a, a sketch of the top view of subjects’ position 
while performing the circle-drawing task and robot refer-
ence system is illustrated; on the other hand, Fig. 3b shows 
one of the tested healthy subjects performing the task.

3  Results

3.1  Performance of the joint reconstruction algorithm

Figure 4 illustrates the mean data of the upper-limb joint 
reconstruction of the five forward/backward movements 
performed by one of the four tested subjects; in detail:

•	 the mean value of the seven arm angles reconstructed 
through Eq. (5) is drawn with a dotted black line, while 
the mean arm angles measured through the optoelec-
tronic system are shown in light blue;

•	 the mean 3D hand trajectory obtained by applying the 
forward kinematics function to the seven reconstructed 
angles is shown with a dotted red line, while the mean 
hand position measured through the SMART-D opto-
electronic system is drawn in blue;

•	 Additionally, Fig. 4 reports, in the lower part, the val-
ues of mean and maximum standard deviations in the 
computation of all the arm angles in the five forward/
backward movements with the optoelectronic system 
(light blue rectangle) and with the proposed method 
(dotted black rectangle); mean and maximum stand-
ard deviations for the optoelectronic system are equal 
to 7.5× 10−3 rad and 1.2× 10−2 rad, while mean and 
maximum standard deviations for the proposed method 
are given by 2.3× 10−2 rad and 3.7× 10−2 rad.

Table 1  Patients data: lengths 
of upper arm and forearm 
segments—paretic arm—values 
of upper extremity FM-SE and 
MP-SE, before (PRE) and after 
(POST) the robotic treatment

Patient Upper arm  
length (m)

Forearm  
length (m)

Paretic arm Upper extremity 
FM-SE/42

Upper extremity 
MP-SE/70

PRE POST PRE POST

1 0.35 0.32 Right 18 19 36 38

2 0.36 0.33 Left 18 21 42 43
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In all the performed tests, the arm joint trajectories 
reconstructed with the proposed method are well over-
lapped with the angles computed through the optoelec-
tronic motion capturing system, and the measures per-
formed through the two systems have similar variability. 
The RMSE between the two trajectories in the joint space 
is 8.3× 10−3 rad on average over all the performed experi-
mental trials, with a variance of 1.8× 10−3 rad2.

A graphical representation of the error committed with 
the proposed reconstruction algorithm is shown in Fig. 5; 
it reports the RMSE (in gray) and the maximum error (in 
white) for each reconstructed upper-limb joint angle.

3.2  Experimental results of robot‑aided rehabilitation

Figure 6 reports, in the upper part, the joint kinematic 
reconstructions of healthy and stroke subjects during the 
circle-drawing tasks performed with the InMotion2 robot. 
In particular, Fig. 6 shows the reconstructed shoulder 
angles q1, q2, q3 in the top, elbow angle q4 in the middle 
and the hand positions provided by the robot in the bottom. 
Wrist angles are not reported being negligible their varia-
tions during planar tasks with the InMotion2.

Healthy subjects’ trajectories were reported as “healthy 
bands” (i.e., the standard deviations of the trajectories per-
formed by the healthy volunteers), thus defining a reference 
behavior for evaluating patients’ motion. Patients’ trajecto-
ries are related to the phases of pre-treatment assessment 
(blue line) and post-treatment assessment (red line). They 
were averaged over all the five task repetitions and reported 
for both patients in two different columns.

As regards the variability of the showed data, the lower 
part of Fig. 6 reports mean and maximum standard devia-
tions in joint and task spaces of the five task repetitions 
during PRE-treatment and POST-treatment for patient 1 
(P1) and patient 2 (P2) and for the healthy subjects. Note 
that standard deviations decrease with motor recovery and 

are lower for healthy subjects, both in the joint and in the 
task space.

4  Discussion and conclusions

As detailed in Sect. 1, existent systems and methods for 
the reconstruction of the upper-limb kinematics (both ana-
lytical and geometrical) suffer from drawbacks that are 
difficult to cope with in robot-aided settings. As regards 
the commonly employed sensory systems for upper-limb 
motion capture, the major drawbacks are obtrusiveness, 
time-consuming initial calibrations, misalignment errors, 
necessity of highly structured environments; on the other 
hand, the major drawbacks of the existing computational 
methods are related to (1) the inconsistencies of the kin-
ematic constraints used to solve the human upper-limb 
redundancy with some experimental observations, and (2) 
the inaccuracy in joint angles reconstruction due to the sim-
plifications made in the geometrical approaches.

This work aims at overcoming the aforementioned limi-
tations by proposing a novel method that allows recon-
structing the 7-DoF upper-limb kinematics of the patients 
during robot-aided rehabilitation tasks in an unobtrusive 
and accurate way.

It is grounded on an analytical procedure of inverse kin-
ematics borrowed from the robotic domain and based on 
the augmented Jacobian matrix. In particular, the issue of 
arm kinematic redundancy is solved through the augmen-
tation of the task space and the definition of a new vari-
able, i.e., the swivel angle of the arm; this allows obtaining 
a closed-form solution for the inverse kinematics problem. 
For the computation of the swivel angle, the coupled use of 
the rehabilitation robot with an accelerometer is proposed 
in order to record hand pose data with the robot and radial 
acceleration of the upper arm segment with the wearable 
sensor.

Fig. 3  Experimental trial of 
robot-aided rehabilitation: a a 
sketch of the top view of sub-
jects’ position while performing 
the circle-drawing task and 
robot reference system; b a 
healthy subject performing the 
circle-drawing task
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A detailed description of the arm kinematics and the 
theoretical formulation of the inverse kinematics algorithm 
have been firstly described in this paper. Subsequently, the 
experimental validation has been presented. It consisted of 

two main sessions: The first has measured method accu-
racy through the comparison with a marker-based optoelec-
tronic system; the second one has provided an evidence of 
the applicability of the method to robot-aided rehabilitation 

Fig. 4  Mean shoulder and elbow angles (in the top) and wrist angles 
(lower left) reconstructed with the proposed method (dotted black 
line) and measured through the optoelectronic system (light blue 
line). Lower right mean hand position computed by applying the arm 
forward kinematic function to the angles reconstructed with the pro-

posed method (dotted red line) and measured through the optoelec-
tronic system (blue line). Bottom mean and maximum standard devi-
ations in the computation of all the arm angles in the five forward/
backward movements with the optoelectronic system (light blue rec-
tangle) and with the proposed method (dotted black rectangle)

Fig. 5  RMSE (gray) and 
maximum error (white) between 
joint angles computed with the 
proposed method and obtained 
via the optoelectronic system
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Fig. 6  Top shoulder and elbow angles and hand trajectories of 
healthy and stroke subjects. Healthy subjects trajectories are depicted 
as “healthy bands”; stroke patients’ data are averaged over all the five 

task repetitions. Blue pre-treatment; red post-treatment. Bottom mean 
and maximum standard deviations of the showed data both in joint 
and in task space
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for patient assessment, with preliminary results on stroke 
patients.

As regards method accuracy, the algorithm has 
revealed good results in reconstructing all the arm angles 
with a RMSE error of 8.3 × 10−3 rad (and variance of 
1.8 × 10−3 rad) with respect to the measures performed 
with a commercial optoelectronic motion capturing system. 
Interestingly, our analysis has also shown that the angles 
measured through the two systems have similar variability.

Also the error evolution over time of the inverse 
kinematics algorithm in Eq. (5) was analyzed. In the 
upper part of Fig. 7, the norm of the error [(i.e., vari-
able ēr in Eq. (5)] during the inverse kinematics pro-
cedure with the augmented Jacobian is showed; in par-
ticular, the norm of position error, orientation error and 
swivel angle error are reported with an initial condition 
of q̄ = [0.43,−0.1,−0.7,−0.7, 0.68,−0.56,−0.14]T rad 
(i.e., the initial value of the joint angles measured through 
the optoelectronic system) for the arm joint vector, a gain 
matrix of K = diag{10 . . . 10} N/ms and a damping fac-
tor of k2 = 0.5 (both chosen through a “trial and error” 
approach). As expected, although the error increases at the 
beginning, it rapidly converges to zero during movement 
reconstruction. In the lower part, Fig. 7 shows the desired 
task space variables (blue line), given as input to the pro-
posed inverse kinematics method, and the task space trajec-
tories obtained by method application (red line).

The error between the two methods (even though it is 
low) can be due to a number of reasons: e.g., subtle and 
unavoidable trunk movements that entail small displace-
ments of the reference frame, markers movements on the 
skin during the task execution, which can produce a small 
error in the measure of the length of the upper-limb seg-
ments (however, in the absence of an optoelectronic sys-
tem, manual measurements of these lengths could be even 
more inaccurate), the neglected dynamic component of the 
acceleration that is presumably low but not null. Neglecting 
dynamic component of acceleration is not so limiting for 
the application of the method to robot-aided settings where 
patient motion is typically slow. However, it is worth notic-
ing that the method cannot provide accurate results when 
the upper-limb is fully outstretched (elbow joint completely 
extended); hence, this configuration should be avoided.

On the other hand, in comparison with other methods in 
the literature, one can observe that: (1) the computational 
methods based on intrinsic kinematic constraints were 
found, in some cases, inconsistent with the experimental 
observations [19]; no inconsistencies were observed for 
the proposed method with the experimental analysis; (2) 
the accuracy of the proposed method for slow motions is 
higher than accuracy of methods based on geometrical 
approaches [21]; in fact, thanks to the exploitation of a 
sophisticated analytical procedure, the maximum RMSE in 

the computation of arm angles with the proposed method 
is equal to 2.7 × 10−2 rad, while in [21] it is greater than 
5× 10−2rad.

As regards the application to robot-aided rehabilitation, 
five healthy subjects and two patients were evaluated with 
the proposed method while performing a circle-drawing 
task with the InMotion2 planar robot. The reported plots 
on the mean value of the reconstructed data have shown a 
clear difference between healthy and pathological behavior. 
Motion variability was assessed with the standard devia-
tions of the reconstructed kinematic data; they decrease 
with motor recovery and are lower in the case of healthy 
motions, both in joint and in task space.

Moreover, it clearly emerges from Fig. 6 that hand tra-
jectories close to those of healthy subjects are obtained 

Fig. 7  Top norm of the error ēr due to the time-discrete integration; 
the error relative to position variables (above), orientation variables 
(middle) and swivel angle (below) during the reconstruction of a for-
ward/backward movement is represented. Bottom representation of 
task space desired trajectories (blue line) and task space trajectories 
computed through the inverse kinematics procedure (red line)
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with joint trajectories that tend to the “healthy bands” of 
the angles. This finding seems to be in line with the results 
on stroke patients in [8]; in it, although the joint trajectories 
were related to a simplified 2-DoF model of the upper-limb, 
it was observed that during motor recovery from stroke 
the improvement in drawing circles is accompanied by the 
increase in the excursion of the shoulder and elbow angles.

It is also worth observing that the outcomes for the 
two tested patients in Fig. 6 are different: performance of 
patient 1 in drawing the circle at the end of the treatment 
is higher than patient 2. This result seems to be controver-
sial with the clinical scales reported in Table 1, since at the 
discharge patient 2 has higher clinical scores than patient 1. 
However, an in-depth analysis of all the items of the clini-
cal scales revealed that the score of patient 2 was due to 
the improvement of 2 points on the FM scale for forearm 
pronation–supination. This is a DoF that is not exploited 
during the planar evaluation task performed with the InMo-
tion2 robot; thus, its improvement does not contribute to 
circle drawing. However, also consider that this work wants 
basically to assess method feasibility. The reconstruction 
of the upper-limb kinematics during robot-aided tasks with 
end-effector machines has pointed out the capability of 
identifying from patients’ plots movement features in the 
joint space that are responsible for hand motion far from 
the “healthy bands.” In particular:

•	 The coordination of shoulder and elbow joints during 
circle-drawing tasks is a key point since such a cor-
relation in the paretic arm of stroke patients changes 
with robotic therapy [8]; in Fig. 6a, different degree of 
correlation between shoulder and elbow joints can be 
observed in the two patients that show also a different 
recovery level.

•	 The difficulty of patients to draw large circles can be 
due to their inability to properly extend the elbow joint; 
as described in [4], the pathological flexor synergy, 
occurring in same stroke patients, consists of elbow 
flexion combined with shoulder abduction and flexion.

•	 The meager movement smoothness in the Cartesian 
space can originate from a low smoothness in the joint 
space; it is widely recognized that movement smooth-
ness improves during motor recovery [9].

•	 The reconstruction of arm joint trajectories of stroke 
patients undergoing robot-aided therapy has many prac-
tical implications that will be exploited in future work. 
In particular, through the definition of suitable indica-
tors describing the kinematic performance of the patient 
in the joint space, a more exhaustive quantification 
(with respect to the sole use of hand position data) of 
patient residual motor capabilities will be possible. This 
is expected to provide, on one hand, a thorough evalua-

tion of the outcomes of the therapeutic approach and, on 
the other hand, an objective basis for re-planning and/or 
tailoring the robotic treatment based on patient needs.

Future studies will be addressed to account for a larger 
number of subjects and for other tasks, such as 3D exer-
cises or Activities of Daily Living, that also include wrist 
motion. Finally, an in-depth understanding of pathology-
related motor strategies as well as the identification of 
stroke-specific movement features could be achieved.
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