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A certain vector-tensor theory is revisited. It was proposed and analyzed as a theory of electromag-

netism without the standard gauge invariance. Our attention is first focused on a detailed variational

formulation of the theory, which leads to both a modified Lorentz force and the true energy-momentum

tensor of the vector field. The theory is then applied to cosmology. A complete gauge invariant treatment

of the scalar perturbations is presented. For appropriate gauge invariant variables describing the scalar

modes of the vector field (A modes), it is proved that the evolution equations of these modes do not

involve the scalar modes appearing in general relativity (GR modes), which are associated to the metric

and the energy-momentum tensor of the cosmological fluids. However, the A modes modify the standard

gauge invariant equations describing the GR modes. By using the new formalism, the evolution equations

of the A perturbations are derived and separately solved and, then, the correction terms—due to the

A perturbations—appearing in the evolution equations of the GR modes are estimated. The evolution of

these correction terms is studied for an appropriate scale. The relevance of these terms depends on both the

spectra and the values of the normalization constants involved in extended electromagnetism. Further

applications of the new formalism will be presented elsewhere.
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I. INTRODUCTION

In previous papers, an extended theory of electromag-
netism was proposed [1] and developed [2–4]. The evolu-
tion of cosmological scalar perturbations was studied in
[2]; nevertheless, the authors assumed that the scalar per-
turbations of the electromagnetic field do not affect metric
perturbations evolution. They stated that this assumption
holds both in the radiation dominated period and in the
matter dominated era, that is to say, at any moment before
dark energy domination. Hence, it affects the choice of the
initial conditions for numerical integrations, which are
always fixed in the radiation dominated era (z� 108),
when the cosmologically significant scales had superhor-
izon sizes. Moreover, in paper [2], the conservation law of
standard electromagnetism,r�J

� ¼ 0, is assumed, e.g., to

get Eq. (2.3) from Eq. (2.2). Nevertheless, this law is
not an equation of extended electromagnetism, whose
true conservation law (see below) admits solutions with
r�J

� � 0. This fact is important in cosmology, where the

lawr�J
� ¼ 0 implies that only vector modes are involved

in the expansion of the current J�, whereas the condition
r�J

� � 0 requires the existence of J� scalar modes. We

have introduced one of these modes (see below) in our
general calculations. We see that, in extended electromag-

netism, there are scalar modes in the expansions of both the
electromagnetic field A� (A modes) and the current J�

(J modes). Sincewe have no convincing arguments proving
that, initially, at z� 108, all these modes are negligible
against the small scalar modes of the radiation fluid, we
cannot ensure that they do not affect metric perturbations.
Hence, the A and J scalar modes should not be neglected
a priori in order to get the metric and fluid initial con-
ditions for numerical integrations. After these considera-
tions it seems that the assumption used in [2] is a
simplifying condition which would require further justifi-
cation (if it exists). In this situation, it is obvious that a
more general study of cosmological perturbations is worth-
while. It is performed in this paper, where a general com-
plete treatment of the cosmological perturbations is
developed in the framework of extended electromagne-
tism. Our approach has various relevant properties: (i) it
is gauge invariant, (ii) it does not involve approximating

conditions, (iii) it involves a Jð0Þ scalar mode as it is
required by the general conservation law of extended elec-
tromagnetism, and (iv) it uses appropriate scalar modes for
the field A� which evolve independently of the scalar
general relativity (GR) modes (metric and fluid modes).
This paper is structured as follows: The basic equations

of the vector-tensor (VT) theory are derived—by using
variational techniques—in Sec. II, where the energy-
momentum tensor and the Lorentz force are calculated.
The theory is applied to cosmology in Sec. III, where the
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linear approximation is studied by using standard techniques
based on decoupled scalar, vector, and tensor modes [5,6].
An analysis of the equations derived in Sec. III is performed
in Sec. IV, where the equations satisfied by the scalar per-
turbations of the vector field are numerically solved, and the
differences between the equations describing the evolution
of the scalar modes in GR and in VT are studied. The
Appendix contains some estimates in the framework of
GR, which are useful in Sec. IV. Finally, Sec. V contains a
general discussion and our main conclusions.

Let us finish this section fixing some notation criteria.
Latin (Greek) indices run from 1 to 3 (0 to 3). The gravi-
tational constant, the scale factor, the conformal time, and
the Hubble constant are denoted G, a, �, and H0, respec-
tively. Whatever function D may be, D=� stands for its

partial derivative with respect to the coordinate x�, and DB

represents its background value. Units are chosen in such a
way that the speed of light is c ¼ 1. Spatial distances are
given in megaparsecs.

II. THE THEORY: VARIATIONAL FORMULATION
AND BASIC EQUATIONS

A charged isentropic perfect fluid is considered in the
framework of the VT generalization of Einstein-Maxwell
theory proposed in [1]. The basic equations are derived
from the following action:

I ¼
Z �

R

16�G
� 1

4
F��F�� þ �ðr�A

�Þ2

þ J�A� � �ð1þ �Þ
� ffiffiffiffiffiffiffi�g
p

d4x; (1)

where � is an arbitrary parameter, R, g��, and g are the

scalar curvature, the covariant metric components, and the
determinant of the g�� matrix, respectively. The vector

field of the theory is A�. The symbol r stands for the
covariant derivative and we define F�� ¼ r�A� �r�A�.

The electrical current is J� ¼ �qU
�, where �q is the

density of electrical charge and U� is the four-velocity
of the fluid world lines. Finally, for an isentropic perfect
fluid, one can introduce a conserved energy density �
½r�ð�U�Þ ¼ 0� and an internal energy �; so the fluid

energy density is � ¼ �ð1þ �Þ and the pressure is P ¼
�2ðd�=d�Þ (see [7]).

Some VT theories were proposed in the early 1970s (see
[8,9]). All these theories were based on the action:

I ¼ ð16�GÞ�1
Z
ðRþ!A�A

�Rþ 	R��A
�A�

� "F��F
�� þ �r�A�r�A� þ LmÞ ffiffiffiffiffiffiffi�g

p
d4x; (2)

where!, 	, ", and � are arbitrary parameters and Lm is the
matter Lagrangian, which couples matter with the fields
of the VT theory. Actions (1) and (2) are equivalent
for ! ¼ 0, 2"� 	 ¼ 8�G, � ¼ 	 ¼ 16�G�, and Lm ¼
J�A� � �ð1þ �Þ.

According to the variational techniques described in [7],
three fields may be independently varied in the action (1).
These fields are the vector field of the theory (A�), the flow

lines of the fluid (U�), and the metric field (g��).

We first vary the field A� for fixed flow lines and metric

(
A variations). Thus, we easily obtain the field equations
for the A� field, whose form is

r�F�� ¼ J� þ JA�; (3)

where JA� ¼ �2�r�ðr � AÞ with r � A ¼ r�A
�. Then,

from these field equations one easily gets the relation:

r�J� ¼ �r�JA�; (4)

which indicates that the total current J� þ JA� is conserved

in the theory. This is the conserved current associated to the
invariance of action (1) under the residual gauge trans-
formation A0

� ¼ A� þ @�� with @�@�� ¼ 0.

In the second step, the flow lines are varied for fixed A�

and g�� (
U variations) and, moreover, the densities � and

�q are adjusted to satisfy the equation r�ð�U�Þ ¼ 0 and

Eq. (4), respectively (see [7]). Since the right-hand side
of Eq. (4) does not depend on U�, the following relation
is satisfied 
Uðr�J

�Þ ¼ r�ð
UJ
�Þ ¼ 0. On account of

these considerations, the following equations are easily
obtained [7]:

ð�þ PÞU�r�U
� ¼ �r�Pðg�� þU�U�Þ þ F��J�

þ ðr�JA�ÞA�: (5)

These equations describe the fluid evolution in the VT
theory. The last term is the generalized Lorentz force, fL,
of the theory; hence, we can write

fL� ¼ F��J
� þ ðr�JA�ÞA�: (6)

Finally, the metric is varied whereas fields A� and U�

are fixed (
g variations). For this kind of variations, Eq. (4)

leads to the relation 
gð ffiffiffiffiffiffiffi�g
p

J�Þ ¼ �
gð ffiffiffiffiffiffiffi�g
p

JA�Þ and,

then, from this relation and the identity r�½A�ðr � AÞ� ¼
ðr � AÞ2 þ A�r�ðr � AÞ, it follows that the Lagrangian

densities �ðr�A
�Þ2 þ J�A� [involved in action (1)] and

��ðr�A
�Þ2 are fully equivalent. On account of this fact,


g variations lead to

G�� ¼ 8�GT��; (7)

where G�� is the Einstein tensor and T�� is the energy-
momentum tensor of the charged fluid plus the electro-
magnetic field, whose form is

T�� ¼ ð�þ PÞU�U� þ Pg�� þ F�
�F

�� � 1
4g

��F��F
��

þ 2�½fA�r�ðr � AÞ þ 1
2ðr � AÞ2gg��

� A�r�ðr � AÞ � A�r�ðr � AÞ�: (8)

This energy-momentum tensor is to be compared with that
given in [2] taking into account differences in the assumed
signature.
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Equations (3), (5), and (7) are the field equations of the
theory. Any solution of these equations satisfies Eq. (4),
and also the relations r�T

�� ¼ 0. These last relations

combined with all the field equations and Eq. (8) lead to

½U�r�ð�Þ þ ð�þ PÞr�U
��U� ¼ 2F��JA� � 2A�r�JA�:

(9)

In the Einstein-Maxwell theory, which is formally obtained
in the limit JA� ! 0, Eq. (9) reduces to U�r�ð�Þþ
ð�þPÞr�U

�¼0 [which is identical to Eq. (3.9) in [7]].

After this detailed variational study, which has not been
previously developed, we are concerned with cosmological
applications.

III. BACKGROUND UNIVERSE AND
COSMOLOGICAL PERTURBATIONS

From the field equations of Sec. II, one easily finds the
equations describing a homogeneous and isotropic neutral
flat universe, in which the line element is

ds2 ¼ a2½�d�2 þ dr2 þ r2d2 þ r2sin2d�2�: (10)

The vector field, A, and the four-velocity, U, of the cosmic
fluid have the covariant components ½A0Bð�Þ; 0; 0; 0� and
½�að�Þ; 0; 0; 0�, respectively. The energy density is the
critical one, whose present value is �B0 ¼ 3H2

0=8�G,

and the density of charge is �qBð�Þ ¼ 0 for any time. In

this background, Eq. (3) reduces to

�B � ðr � AÞB ¼ � 1

a2

�
_A0B þ 2

_a

a
A0B

�
¼ const; (11)

and Eq. (8) leads to the relations

�A
B ¼ �PA

B ¼ ���2
B; (12)

where quantities �A
B and PA

B are the background energy
density and pressure of the vector field A�, respectively.
The equation of state (12) proves that the energy density of
the background field A� play the role of a cosmological
constant. In order to have positive values of �A

B the pa-
rameter � must be negative. Hereafter units are chosen in
such a way that c ¼ 8�G ¼ 1; thus, from Eqs. (7) and (8)
one easily gets the following basic cosmological equation
for the background evolution:

3
_a2

a2
¼ a2ð�B þ �A

BÞ; (13)

� 2
€a

a
þ _a2

a2
¼ a2ðPB þ PA

BÞ; (14)

where �B and PB are the background energy density and
pressure of the cosmological fluid (baryons plus dark
matter and radiation). Hereafter, w and c2s stand for the
ratios PB=�B and dPB=d�B, respectively.

In the next sections, perturbations are described—in the
usual way—with the formalism summarized in [5] (see

also [6]). There are three types of perturbations whose
evolution is independent during the linear regime. They
are the so-called scalar, vector, and tensor fluctuations,

which may be expanded in terms of the scalar,Qð0Þ, vector,
Qð1Þ

i , and tensor, Qð2Þ
ij , harmonics, respectively.

A. Tensor perturbations

There are no tensor modes involved in the expansion of
vectors A� and J�; hence, in the VT theory, tensor modes
only appear in the expansions of the same quantities as in
GR (metric and anisotropic part of the stress tensor) and,
moreover, they satisfy the same equations as in GR.
Therefore, we are mainly interested in scalar and vector
modes. Metric tensor modes (gravitational waves) and
anisotropic stress tensor components evolve as in GR,
namely, they satisfy the equation:

€H ð2Þ
T þ 2

_a

a
_Hð2Þ
T þ k2Hð2Þ

T ¼ PBa
2�ð2Þ

T ; (15)

where �ð2Þ
T Qð2Þ

ij is the tensor part of the anisotropic stress

tensor and Hð2Þ
T Qð2Þ

ij the tensor part of the metric (see [5]).

For negligible anisotropic stress, cosmological fluctua-
tions evolving well outside the effective horizon ( _a=a�k,

see [5,10]) obey the equation €Hð2Þ
T þ 2ð _a=aÞ _Hð2Þ

T ’ 0,

whose general solution is _Hð2Þ
T / a�2; hence, _Hð2Þ

T is a
fast decaying mode. This means that well after reheating,
e.g. at z ¼ 108, superhorizon scales evolve in such a way

that quantity Hð2Þ
T is almost independent of time. This fact

will be taken into account below.

B. Vector perturbations

In the case of a flat background, the vector harmonics

can be written as follows [6]: ~Q� ¼ ~�� expði ~k � ~rÞ, where ~k
is the wave number vector. A representation of vectors ~�þ
and ~�� is [11,12]

��1 ¼ð�k1k3=k�ik2Þ=�
ffiffiffi
2

p
; ��2 ¼ð�k2k3=kþik1Þ=�

ffiffiffi
2

p
;

��3 ¼��=k
ffiffiffi
2

p
; (16)

where � ¼ ðk21 þ k22Þ1=2.
The first order vector part of the fields A� and J� may be

written as follows:

A� ¼ ½0; Að1Þ�Qð1Þ�
i �; (17)

J� ¼ ½0; a2Jð1Þ�Qð1Þ�
i �: (18)

As it is done in standard electromagnetism (Einstein-
Maxwell theory), we define the covariant components of
the electric and magnetic fields (E� and B�) as follows:

E� ¼ F��U
�; (19)

and
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B� ¼ 1
2ð�gÞ�1=2�����F

��U�; (20)

where quantities ����� are the Levy-Civita symbols. Then,

at first order in perturbation theory, one easily finds

F��¼A�=��A�=�¼

0 �aE1 �aE2 �aE3

aE1 0 aB3 �aB2

aE2 �aB3 0 aB1

aE3 aB2 �aB1 0

2
666664

3
777775: (21)

Equations. (16)–(18) and (21) lead to the following equa-
tions in momentum space:

Eð1Þ� ¼ � 1

a
_Að1Þ�; Bð1Þ� ¼ � kAð1Þ�

a
: (22)

Hereafter we use the following equivalences: ~E ¼
ðE1; E2; E3Þ, ~B ¼ ðB1; B2; B3Þ, and ~J ¼ ðJ1; J2; J3Þ.
Moreover, ~r � ~X and ~r ^ ~X stand for the ordinary diver-

gence and curl of ~X, respectively.
By using this notation and Eqs. (22) it is easily verified

that, up to first order, the equation

að ~r ^ ~EÞ þ @

@�
ða ~BÞ ¼ 0 (23)

is satisfied in position space. Finally, since the ordinary
divergence of any vector mode vanishes, we can write

~r � ~B � Bi=i ¼ 0: (24)

Let us now consider the field equation (3), which may be
rewritten as follows:

½lnð ffiffiffiffiffiffiffi�g
p Þ�=�F�� þ F��

=� ¼ J� � 2�g��ðr � AÞ=�: (25)

Since r � A and r � J are scalars, they may be expanded in
scalar harmonics with no contributions from vector modes;
hence, the term �2�g��ðr � AÞ=� vanishes in the case of

vector modes and, consequently, Eq. (25) reduces to those
of Einstein-Maxwell theory. By using Eqs. (21) and (25), it
may be easily verified that, for vector modes and up to first
order, Einstein-Maxwell field equations and Eq. (25) may
be written as follows:

að ~r ^ ~BÞ � @

@�
ða ~EÞ ¼ a2 ~J; (26)

~r � ~E � Ei=i ¼ 0: (27)

Finally, from Eqs. (18), (22), and (26), the following

equation describing the evolution of Að1Þ� is found:

€A ð1Þ� þ k2Að1Þ� ¼ a4Jð1Þ�: (28)

For a given function Jð1Þ�ð ~k; �Þ, the solution of Eq. (28)

gives Að1Þ�ð ~k; �Þ and then, quantities Eð1Þ� and Bð1Þ� are
fixed by Eqs. (22). From these last quantities we may

calculate ~Eð ~x; �Þ and ~Bð ~x; �Þ by using the explicit

form (16) of the vector harmonics. The resulting ~E and ~B
quantities satisfy the four Eqs. (23), (24), (26), and (27) in
position space.
The equations of this section are valid in the VT theory

under consideration as well as in the standard Einstein-
Maxwell theory. It is due to the fact that vector modes do
not contribute to the terms involving � either in Eq. (25) or
in Eq. (8), and these terms are responsible for all the
differences between both theories. The predictions of these
theories only may be different due to the scalar modes
involved in the vector fields A� and J�, which are studied
in the next section.

C. Scalar perturbations

For a flat background, the scalar harmonics are plane

waves; namely, Qð0Þ ¼ expði ~k � ~rÞ. The first order scalar
contributions to vectors A� and J� are

A� ¼ ½�ð0ÞQð0Þ; �ð0ÞQð0Þ
i �; (29)

J� ¼ ½0; a2Jð0ÞQð0Þ
i �; (30)

where Qð0Þ
i ¼ ð�1=kÞQð0Þ

=i .

Since we assume that the Universe is neutral up to first
order, the component J0 vanishes and, moreover, taking
into account that the equation r � J ¼ 0 is not an equation

of the VT theory, a scalar part a2Jð0ÞQð0Þ
i must be included

in the expansion of Ji. Equations (29) and (30) are abso-
lutely general.
Equations (21) and (29) may be combined to get

Eð0Þ ¼ � 1

a
ðk�ð0Þ þ _�ð0ÞÞ; Bð0Þ ¼ 0: (31)

Similarly, the scalar r � A may be expanded in terms of
scalar harmonics; namely, we can write

r � A ¼ �Bð1þ�ð0ÞQð0ÞÞ: (32)

In order to calculate�ð0Þ � ðr � AÞð0Þ=�B, we must use the
relation r � A ¼ @A�=@x� þ �

�
��A�, which involves the

Christoffeld symbols. It is then evident that �ð0Þ depends
on the coefficients �ð0Þ and �ð0Þ appearing in the expansion
of A� [see Eq. (29)], and also on the coefficients involved

in the expansion of the metric components g��, which

appear in the Christoffeld symbols. If the resulting �ð0Þ
is used to write Eqs. (7), (8), and (25) up to first order in
scalar modes, all the equations are coupled among them
and their solutions only have been found under special
assumptions (see [2] and Sec. I). However, we have devel-
oped a method, in which we may first solve Eq. (25) and,
then, the solution can be used to solve Eqs. (7) and (8). Let
us now describe this method and derive the evolution
equations for the scalar modes.

Coefficients �ð0Þ and �ð0Þ are not the most suitable ones
in order to expand the field equations. It is preferable the

ROBERTO DALE AND DIEGO SÁEZ PHYSICAL REVIEW D 85, 124047 (2012)

124047-4



use of the coefficients Eð0Þ and �ð0Þ, which are gauge
invariant quantities. In terms of these variables, Eq. (25)
reduces to

2�a�B
_�ð0Þ ¼ kEð0Þ; (33)

_E ð0Þ ¼ �a3Jð0Þ � 2�ka�B�
ð0Þ � _a

a
Eð0Þ; (34)

and Eq. (4) may be written as follows:

€� ð0Þ þ 2
_a

a
_�ð0Þ þ k2�ð0Þ ¼ � k

2��B

a2Jð0Þ: (35)

Since Eq. (4) is a consequence of Eq. (25), which is
equivalent to Eq. (3), Eq. (35) may be easily obtained by

combining Eqs. (33) and (34). Hence, functions �ð0Þ and
Eð0Þ may be found by solving Eqs. (33) and (34) for a given

Jð0Þ plus initial values of �ð0Þ and Eð0Þ and, then, the

resulting �ð0Þ and Eð0Þ functions and the chosen Jð0Þ will
satisfy Eq. (35).

Equation (34) may be easily derived from Eqs. (33) and
(35), consequently, we may also proceed as follows:

Eq. (35) is solved for a given Jð0Þ and initial values of

�ð0Þ and _�ð0Þ and, then, the resulting solution �ð0Þ is used
to get function Eð0Þ by using Eq. (33). Obviously, Eq. (34)

is satisfied by the�ð0Þ and Eð0Þ functions we have found by
solving Eqs. (33) and (35).

It is worthwhile to point out that Eqs. (15) and (35) have

the same form. In fact, if we replace Hð2Þ
T by �ð0Þ and �ð2Þ

T

by �kJð0Þ=2PB� in Eq. (15), the resulting equation is

identical to Eq. (35). Condition Jð0Þ ¼ 0 in Eq. (35) is

equivalent to condition �ð2Þ
T ¼ 0 in (15). Hence, some

previous conclusions about the evolution of gravitational

wave modes would be also valid for the �ð0Þ evolution; in
particular, for Jð0Þ ¼ 0 and superhorizon scales, the rela-

tion _�ð0Þ ’ 0 holds.

In extended electromagnetism, function Jð0Þ does not

vanish a priori. Condition Jð0Þ ¼ 0 implies the relation
r�J� ¼ 0 in position space, but this relation is not a basic

equation of the theory. For this reason, function Jð0Þ is
included in the equations derived in this section; never-
theless, there is no—at the moment—physically motivated

rule to build up this function. Anyway, for a given Jð0Þ

(including the cosmological possibility Jð0Þ ¼ 0), Eqs. (33)
and (34) involve the constant � < 0, the wave number k,

the scale factor, functions�ð0Þ and Eð0Þ, and their first order
derivatives. These equations do not involve scalar pertur-
bations associated to the metric and the energy-momentum
tensor. They may be easily solved for given values of � and

k, and initial values of �ð0Þ and Eð0Þ [alternatively we may

solve Eq. (35) for initial values of �ð0Þ and _�ð0Þ]. The
resulting function �ð0Þ appears in the expansion of
Eqs. (7) and (8) in scalar harmonics (see below).

The gauge invariant formalism described in [5] is used in
this paper; namely, the metric, the four-velocity, and the
part of the energy-momentum tensor (8) being independent
of the parameter � are all expanded as follows (in the flat
case):

g00¼�a2ð1þ2 ~AQð0ÞÞ; g0i¼�a2 ~Bð0ÞQð0Þ
i ;

gij¼a2½ð1þ2HLQ
ð0ÞÞ
ijþ2Hð0Þ

T Qð0Þ
ij �; Ui¼avð0ÞQð0Þ

i ;

�¼�Bð1þ
Qð0ÞÞ; Tij¼PBð1þ�LQ
ð0ÞÞ
ijþPB�

ð0Þ
T Qð0Þ

ij :

(36)

Any other quantity as, e.g., U0, T0i, and so on, may be
easily written in terms of the coefficients involved in these
equations (see [5]), which may be combined to build up the
following gauge invariant variables:

	 ¼ ðw�L � c2s
Þ=w; vð0Þ
s ¼ vð0Þ � 1

k
_Hð0Þ
T ;

�m ¼ 
þ 3ð1þ wÞ 1
k

_a

a
ðvð0Þ � ~Bð0ÞÞ;

�A ¼ ~Aþ 1

k
_~B
ð0Þ þ 1

k

_a

a
~Bð0Þ � 1

k2

�
€Hð0Þ
T þ _a

a
_Hð0Þ
T

�
;

�H ¼ HL þ 1

3
Hð0Þ

T þ 1

k

_a

a
~Bð0Þ � 1

k2
_a

a
_Hð0Þ
T :

(37)

The complementary part of the energy-momentum ten-
sor (8), namely, the part depending on � may be easily
expanded in terms of scalar harmonics. The resulting ex-

pansion involves the variable �ð0Þ and its first order time

derivative (or equivalently �ð0Þ and Eð0Þ).
In order to expand Eqs. (7) and (8) and the relation

r�T
�� ¼ 0, we use the same gauge invariant potentials

and variables as in [5]) (see above), plus the gauge invari-

ant variables �ð0Þ, Eð0Þ, and Jð0Þ. The resulting equations
reads as follows:

2k2

a2
�H¼�B�m�2��B

��
3

_a

a3
A0Bþ�B

�
�ð0ÞþA0B

a2
_�ð0Þ

�
;

(38)

� k2

a2
ð�A þ�HÞ ¼ PB�

ð0Þ
T ; (39)

_v ð0Þ
s þ _a

a
vð0Þ
s ¼k�Aþ k

1þw
ðc2s�mþw	Þ� 2wk

3ð1þwÞ�
ð0Þ
T ;

(40)

ð�Ba
3�mÞ_¼ �ka3ð�B þ PBÞvð0Þ

s � 2a2 _aPB�
ð0Þ
T

� ka3A0BJ
ð0Þ � 3�a3�BA0Bð�B þ PBÞ�ð0Þ:

(41)

Equations (38)–(41) plus (13) and (14) may be combined
to get the following equation for the evolution of �m:
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ð�Ba
3�mÞ€þ ð1þ 3c2sÞ _a

a
ð�Ba

3�mÞ_þ
�
k2c2s � 1

2
ð�B þ PBÞa2

�
ð�Ba

3�mÞ

¼ �k2ðPBa
3	Þ � 2 _aðPBa

2�ð0Þ
T Þ_þ 2

3
k2ðPBa

3�ð0Þ
T Þ þ 2�Ba

2

�
w� c2s � ð1þ c2sÞ�

A
B

�B

�
ðPBa

3�ð0Þ
T Þ

� 2�a3�Bð�B þ PBÞð2A0B
_�ð0Þ ��Ba

2�ð0ÞÞ � ka3
�
A0B

_Jð0Þ þ
�
ð2þ 3c2sÞ _a

a
A0B � a2�B

�
Jð0Þ

�
: (42)

For �ð0Þ ¼ 0, Jð0Þ ¼ 0, and �A
B ¼ 0, Eqs. (38)–(42) reduce

to the equations derived by Bardeen in the flat case [5]. For
�ð0Þ ¼ 0, Jð0Þ ¼ 0, and �A

B ¼ �� � 0, Eqs. (38)–(42) de-
scribe fluctuation evolution in a standard flat universe with
a cosmological constant whose energy density is ��.
Finally, if �A

B ¼ ��, and the two functions Jð0Þ and �ð0Þ
do not vanish at the same time, Eqs. (38), (41), and (42)
contain new terms, which modify the equations describing
perturbation evolution in flat universes with cosmological
constant.

IV. ANALYZING THE BASIC DIFFERENTIAL
EQUATIONS OF EXTENDED

ELECTROMAGNETISM

In this section, it is assumed that the condition Jð0Þ ¼ 0
holds in cosmology, which is equivalent to assume the
well-known conservation law of Einstein-Maxwell theory
(r�J

� ¼ 0). Under this arbitrary assumption, we study the

background equations (11)–(14), and the Eqs. (33)–(35)
and (38)–(42) describing the evolution of the first order
scalar perturbations in momentum space.

We begin with the background equations. Functions
�Bð�Þ and PBð�Þ are given by the formulas

�B¼�Br0ð1þzÞ4þ�Bm0ð1þzÞ3; PB¼�Br0ð1þzÞ4=3;
(43)

where �Br0 ¼ 8	 10�34 gr=cm3 and �Bm0 ¼ 0:2726�c

are the present energy density of radiation and matter.
Moreover, the baryon density is assumed to be �Bb0 ¼

0:0461�c, and the value of the Hubble constant is H0 ¼
100h Kms�1 Mpc�1 with h ¼ 0:704. All these values are
compatible with a certain version of the concordance
model (see [13]). In this model, the dark energy density,
�A
B, is easily obtained from the relation �Bm0 þ �Br0 þ

�A
B ¼ 3H2

0 , which is valid in flat backgrounds.

Equation (13) governing the evolution of the scale
factor may be numerically solved for the above parameters;
thus, the evolution of the scale factor is obtained. The
resulting function að�Þ is necessary to study the remaining
equations of the theory, namely, Eqs. (33)–(35) and also
Eqs. (38)–(42).

From Eq. (12) one easily gets the relation �B ¼
�j�j�1=2ð�A

BÞ1=2 (negative �). Once the value of �A
B ¼

�� is fixed (see above), this last relation leads to �B /
Sgnj�j�1=2, where Sgn only may take on the valuesþ1 and

�1. For a given value of j�j, only the absolute value of�B

may be obtained (its sign is arbitrary). On account of

Eq. (11), we may also write the relation A0B /
Sgnj�j�1=2. In the background, quantities j�j and Sgn re-

main arbitrary.
Hereafter, Din stands for the initial value of quantity D

whatever it may be. Let us now consider Eqs. (33)–(35).

We first solve Eq. (35) by using initial values �ð0Þin and
_�ð0Þin at redshift z ¼ 108. At this high redshift, the cosmo-
logical scales of interest (see below) are superhorizon ones;
hence, taking into account the similarity between Eqs. (15)
and (35) and the comments in the last paragraph of

Sec. III A, the condition Jð0Þ ¼ 0 assumed in this section

allows us to take _�ð0Þin ¼ 0. Only the initial value of �ð0Þ
may be appropriately chosen to integrate Eq. (35). The
values of j�j and Sgn are fully irrelevant to perform this

integration. Hereafter, numerical calculations are per-
formed for the spatial scale ~L ¼ 3	 103h�1 Mpc, which
reenters the effective horizon at present time (�0). Its wave

number is ~k ’ 1:47	 10�3. This scale is useful for nor-
malization in GR (see the Appendix). Equation (35) has

been solved for the wave number ~k with the initial condi-

tion �ð0Þinð ~LÞ ¼ 10�4 in position space. In order to write
the corresponding initial condition in momentum space,
we use the well-known relation [14]

hjXðxÞj2iL ’ k3hjXðkÞj2i=2�2; (44)

where X is an arbitrary quantity. Evidently, this relation

must be particularized for X ¼ �ð0Þin, L ¼ ~L, and k ¼ ~k to

calculate �ð0Þinð~kÞ. Either this last initial quantity (in mo-

mentum space) or�ð0Þinð ~LÞ (in position space) may be seen

as a normalization constant. The �ð0Þ spectrum would be

necessary to derive the initial value of �ð0ÞðkÞ for k � ~k.
The solution of Eq. (35) plus Eq. (33) allows us to

calculate function Eð0Þ which is proportional to Sgnj�j1=2.
Numerical integrations have given the functions A0BðzÞ,

�ð0Þð~k; zÞ, and Eð0Þð~k; zÞ represented in Fig. 1. These func-

tions correspond to j�j ¼ 1, Sgn ¼ þ1, k ¼ ~k, and

�ð0Þinð ~LÞ ¼ 10�4. Since the dependence of these functions

in terms of the parameters j�j, Sgn, and �ð0Þinð~kÞ is known
(see above), Fig. 1 contains complete information about the

scalar modes associated to the field A� for the scale ~k. The
same may be done for any linear spatial scale with the help

of an appropriate spectrum for �ð0Þin. Let us now study
Eqs. (38)–(42) describing the evolution—in the framework
of extended electromagnetism—of the scalar modes
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appearing in standard GR cosmology. Equations (38), (41),
and (42) contain the terms:

�1ð�;kÞ¼�2��B

��
3

_a

a3
A0Bþ�B

�
�ð0ÞþA0B

a2
_�ð0Þ

�
; (45)

�2ð�; kÞ ¼ �3�a3�BA0Bð�B þ PBÞ�ð0Þ; (46)

�3ð�; kÞ ¼ �2�a3�Bð�B þ PBÞð2A0B
_�ð0Þ ��Ba

2�ð0ÞÞ;
(47)

respectively. These terms—which appear in extended elec-
tromagnetism but not in Einstein theory with cosmological

constant—may be calculated, for the scale ~k, by using the
integration data used to build up Fig. 1 and, then, these
terms may be compared with appropriate terms involved in
GR equations (for the same wave number).
Taking into account that �B and A0B are proportional to

Sgnj�j�1=2 and also that �ð0Þ does not depend on Sgn and

j�j, it is trivially proved that quantities �1, �2, and �3 are

also independent of Sgn and j�j. For the wave number ~k,

these quantities are proportional to the number �ð0Þinð ~LÞ.
As it follows from Eqs. (38), (41), and (42), quantities

�1, �2, and �3 are to be compared with the GR values of the
terms

�1ð�; kÞ ¼ �B�m; (48)

�2ð�; kÞ ¼ �ka3ð�B þ PBÞvð0Þ
s ; (49)

�3ð�; kÞ ¼ ½12ð�B þ PBÞa2 � k2c2s�ð�Ba
3�mÞ; (50)

respectively. After the estimation of �1, �2, and �3 in
standard cosmology (based on GR), the three functions
rið�; kÞ ¼ j�ið�; kÞ=�ið�; kÞj may be calculated.
Evidently, for very small ri values, GR and extended
electromagnetism would lead to the same differential equa-
tions for the evolution of the GR scalar perturbations,
whereas ri values of the order of 10�3 or greater would
suggest relevant differences with respect to GR. If differ-
ences are expected, the matter power spectrum PðkÞ and
the angular power spectra of the CMB should be accurately
estimated by using numerical codes as CMBFAST [15] and
CAMB [16]. These accurate calculations—under general

enough initial conditions—are beyond the scope of this
paper.

The ri ratios will be estimated for the wave number ~k.
The corresponding spatial scale is useful for normalization
in GR, which is necessary to estimate the functions

�ið�; ~kÞ. The method used for the estimation of these
functions and for normalization in standard GR cosmology
are described in the Appendix.

The three functions riðz; ~kÞ are represented in Fig. 2 for

�ð0Þinð ~LÞ ¼ 10�4. Two panels (left and right) show the
evolution of each ratio ri. The evolutions of the three ratios
are similar. From z ¼ 108 to z� 102, the chosen spatial
scale is well outside the effective horizon and all the ratios
increase without oscillations (see left panels); however, for
z < 102, there are oscillations whose amplitudes grow
as z decreases (see right panels). It is due to the fact that
our spatial scale and that of the effective horizon come near
as the redshift decreases (they have been chosen to be
identical at z ¼ 0). The maximum values of the ratios are

FIG. 1. Functions A0BðzÞ (top), �ð0Þð~k; zÞ (middle) and
Eð0Þð~k; zÞ 	 108 (bottom) in terms of logð1þ zÞ, for ~L ¼
3000h�1 Mpc, j�j ¼ 1, Sgn ¼ þ1, and �ð0Þinð ~LÞ ¼ 10�4.
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r1 ’ 6:3	 10�4, r2 ’ 2:8	 10�4, and r3 ’ 2:6	 10�3.
These maximum values are all reached close to z ¼ 0.

They are small enough to ensure that, for �ð0Þinð ~LÞ ¼
10�4, the chosen scale evolves as in GR.

V. DISCUSSION AND CONCLUSIONS

An exhaustive variational formulation of extended elec-
tromagnetism has been presented in Sec. II. In particular,

the energy-momentum tensor of the vector field A� has
been found. This tensor has been analyzed to conclude that
the last term of Eq. (8) has not the same sign as in previous
calculations [2]. Our sign appears as a result of the relation

gð ffiffiffiffiffiffiffi�g

p
J�Þ ¼ �
gð ffiffiffiffiffiffiffi�g

p
JA�Þ, which is consistent with

the conservation law of J� þ JA�. This sign is only com-

patible with a negative constant � (see Sec. III). Our
formulation also leads to Eq. (6) giving the components
of the Lorentz force and to Eq. (9).

FIG. 2. Left: functions log½r1ð~k; zÞ� (top), log½r2ð~k; zÞ� (middle) and log½r3ð~k; zÞ� (bottom) in terms of logð1þ zÞ, from z ¼ 108 to
z ¼ 0. The wave number ~k is the same as in Fig. 1. Right: functions r1ð~k; zÞ 	 104 (top), r2ð~k; zÞ 	 104 (middle) and r3ð~k; zÞ 	 104

(bottom) in terms of logð1þ zÞ, from z ¼ 102 to z ¼ 0, for the same wave number as in the left panels.
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We have emphasized that, for vector and tensor linear
perturbation of the Friedman-Robertson-Walker universe,
extended electromagnetism is fully equivalent to Einstein-
Maxwell theory. Although this fact was already known (see
[2]), our detailed but brief study of vector and tensor
perturbations is necessary to describe our approach to the
evolution of scalar modes and, moreover, this study exhib-
its novel aspects. Note that (i) our brief considerations
about tensor perturbations have been used to study the
evolution of some scalar modes [analogy between
Eqs. (15) and (35)], (ii) our analysis of vector perturbations
leads to new relations in momentum space derived from
Eqs. (16) and, (iii) this analysis suggests the definition of

the gauge invariant quantity Eð0Þ, which plays a crucial role
in our description of the scalar modes.

A new approach to deal with the evolution of the scalar
modes in extended electromagnetism has been described.
It is gauge invariant and fully general. This formalism
leads to Eqs. (33)–(35) and (38)–(42), which are the most
important findings of this paper.

The scalar modes associated to the vector field A� are

assumed to be�ð0Þ and Eð0Þ. Then, in Sec. III C, it is proved
that the evolution equations of these gauge invariant modes
[Eqs. (33)–(35)] do not involve any other scalar mode

(excepting Jð0Þ). These simple equations may be easily
solved by using standard numerical methods for any given

function Jð0Þ.
In Sec. IV, where the simplifying condition Jð0Þ ¼ 0 is

assumed, the solution of Eqs. (33)–(35) may be found by

using the initial value of�ð0Þ at z� 108, whereas the initial

values of both _�ð0Þ and E0 [related by Eq. (33)] may be
neglected. The solution corresponding to a particular wave

number ~k (reentering the effective horizon at the present
time) is presented in Fig. 1. There is no problem to inte-
grate Eqs. (33)–(35) for any other scale. Since we have
the numerical solutions of these equations, the correction
terms �i appearing in Eqs. (38)–(42) may be numerically
treated as known functions of k and � and, consequently,
these last equations only involve—as unknown
functions—the scalar modes appearing in GR. Their nu-
merical solution has not been found in this paper, where the
correction terms �i have been compared with appropriate
terms of the GR equations (�i) for suitable values of k and

�ð0Þin. For the chosen scale ~k and �ð0Þinð ~LÞ< 10�4, the

scalar modes would evolve as in GR. The spectrum of�ð0Þ
and the standard power spectrum PðkÞ, at initial time,
would be necessary to perform similar comparisons for
all the cosmological scales. If all the scales are found to
evolve as in GR, both theories are equivalent from the
cosmological point of view; on the contrary, some appro-
priate code, as e.g., CMBFAST or CAMB, may be modified to
estimate—in the VT—the angular power spectrum of the
CMB, the matter power spectrum, and so on.

In the background, functionsA0Bð�Þ and�Bð�Þ cannot be
fully fixed. Both functions are proportional to Sgnj�j�1=2,

but these parameters are arbitrary. Moreover, function �ð0Þ
and the correction terms �i defined in Eqs. (45)–(47) are
independent of parameters Sgn and j�j. Hence, cosmologi-

cal considerations cannot fix the values of these parameters.
It is not surprising, since it is well known (see [9]) that
the theories based on the Lagrangian (2) with J� ¼ 0
(no currents) cannot completely fix the vector field.

Condition Jð0Þ ¼ 0 has been assumed to be valid in
cosmology; nevertheless, this condition is not strictly re-
quired by extended electromagnetism. The question is:

What would be a scalar Jð0Þ current in cosmology? More
research about this scalar mode and its meaning is being
carried out.
Finally, let us discuss in detail the fact that our energy-

momentum tensor and that found in [2] have opposite
signs. The possible consequences of this difference deserve
special attention.
If the relation � ¼ 2� is satisfied, our Lagrangian (with

�) is identical to that used in [2] (including �). In spite of
this fact, opposite signs appear in the energy-momentum
tensors. As it is explained in Sec. II and summarized in the
first paragraph of this section, our sign is obtained—from
the common Lagrangian—with right variational calcula-
tions based on the true conservation law of the theory.
Equation (4) is actually the conservation law satisfied
in extended electromagnetism; however, if we take
r�J� ¼ 0, which is not an equation of the theory, but

the conservation law of standard electromagnetism, the
opposite sign is easily found in the resulting energy-
momentum tensor. This sign is not right.
For an arbitrary positive � value and for the correspond-

ing negative value � ¼ ��=2, the energy-momentum ten-
sor in [2] is identical to our energy-momentum tensor.
Hence, the Einstein equations are also indistinguishable
for these values of � (positive) and � (negative). However,
the field equations of the vector field A� are different for
the same values, namely, for � ¼ ��=2.
Equation (3) may be written in the form r�F�� ¼ J� �

2�r�ðr � AÞ, where r � A ¼ r�A
�, and these field equa-

tions are to be compared with the equations r�F�� ¼
J� � �r�ðr � AÞ appearing in [2]. This comparison shows

that the terms �2�r�ðr � AÞ and ��r�ðr � AÞ—which

modify the field equations of standard electromagnetism—
have opposite signs for � ¼ ��=2. Since the resulting A�

field equations are different, distinct predictions seem to be
unavoidable in general nonlinear applications of extended
electromagnetism. The discussion of these nonlinear cases
is beyond the scope of this paper, where we are concerned
with cosmological linear applications of the theory.
Actually, both signs lead to the same conclusions for first

order perturbations of Minkowski and Robertson-Walker
space-times, namely, for the cases considered, e.g., in
[17,18]. It is due to the fact that, according to Eqs. (11),

(12), and (35), the signs of �B and �ð0Þ � ðr � AÞð0Þ=�B

are arbitrary and, consequently, for � ¼ ��=2, these signs
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may be chosen to make identical the scalar parts of the
terms �2�r�ðr � AÞ and ��r�ðr � AÞ. Thus, the linear-
ized A� field equations derived in our paper become
equivalent to those of previous papers [2,17,18]. Since
the energy-momentum tensors are also identical for � ¼
��=2, the modes of positive energy coincide, and the
conclusions of papers [17,18] (with � > 0) may be also
obtained here for � < 0. However, only our signs are right
and, in general, only our A� field equations should be
applied in nonlinear cases.
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APPENDIX: ESTIMATING THE �i

FUNCTIONS IN GR

Since WMAP observations strongly suggest that cosmo-
logical perturbations are adiabatic, only the case 	 ¼ 0 is
considered in this section.

For cosmological perturbations evolving outside the
effective horizon (k < aH=2�), the evolution is essentially
independent of the microphysics. This means that the
anisotropic stress due to neutrinos may be neglected

(�ð0Þ
T ¼ 0), and also that, in spite of the tight coupling

between photons and baryons (see [10]) at z > 1100, the
transfer of energy and momentum between these two
species may be forgotten and, consequently, the corre-
sponding fluids may be treated as independent. This means
that, for superhorizon scales, a good enough estimate of
functions �i may be done by solving Eqs. (38)–(42) for

�ð0Þ
T ¼ 	 ¼ 0. In this case, Eqs. (38)–(42) lead to

€� mþð1þ3c2sÞ _aa
_�mþ

�
k2c2s�1

2
ð�BþPBÞa2

�
�m¼0;

(A1)

_� m ¼ �ka3ð�B þ PBÞvð0Þ
s ; (A2)

_v ð0Þ
s þ _a

a
vð0Þ
s ¼ 1

a

�
kc2s

ð�B þ PBÞa2
� 1

2k

�
�m; (A3)

�H ¼ �m

2ak2
; (A4)

where �m ¼ �Ba
3�m. This system of equations must be

solved together with the background equations for appro-
priate initial conditions at z ¼ 108.

The background is a flat universe with cosmological
constant. The energy densities of matter, radiation and
vacuum correspond to the concordance model (see above).
The background differential equations may be easily inte-
grated to get að�Þ, �Bð�Þ, and PBð�Þ.

The integration of Eqs. (A1)–(A3) only requires �inm and

vð0Þin
s at z ¼ 108. In fact, from the first of these values one

easily obtains�in
m, and the initial value of

_�m may be then

obtained by substituting vð0Þin
s into Eq. (A3). The second

order differential equation (A1) may be integrated by using

�in
m and _�in

m. Function�mð�Þ is then known and vð0Þin
s may

be used to solve Eq. (A3) and get function vð0Þ
s ð�Þ.

Since �m and vð0Þ
s are gauge invariant quantities, their

initial values may be calculated in any gauge. We have
used the synchronous gauge to perform this calculation.
For superhorizon scales, Eq. (96) of Ref. [10] may be used
to easily get the following initial conditions:


in
� ¼�2

3
Cðk�inÞ2; 
in

c ¼
in
b ¼3

4

in
� ; vð0Þin

c ¼0;

vð0Þin
� ¼vð0Þin

b ¼� 1

18
Ck3ð�inÞ3; Hin

L ¼1

6
Cðk�inÞ2;

Hð0Þin
T ¼�6C

�
1þ 1

18

�
ðk�inÞ2;

(A5)

where the conformal time �in is that corresponding to the
chosen initial redshift z ¼ 108, C is a normalization con-
stant, and the subscripts �, b, and c stand for photons,
baryons, and cold dark matter, respectively. The fluid
formed by these three components has the following den-
sity contrast and peculiar velocity [10]:


 ¼ ð�Bb
b þ �Bc
c þ �B�
�Þ=�B;

vð0Þ ¼ ½ð�Bb þ PBbÞvð0Þ
b þ ð�Bc þ PBcÞvð0Þ

c

þ ð�B� þ PB�Þvð0Þ
� Þ�=ð�B þ PBÞ: (A6)

The initial values of �m and vð0Þ
s may be easily

calculated taking into account Eqs. (37), (A5), and (A6).
Equations. (A1)–(A3) may be then solved.
The estimation of quantities �i requires normalization.

The question is: How can we find a good enough value of

FIG. 3. Matter power spectrum—estimated with CMBFAST—
for the chosen version of the concordance model.
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the normalization constant C? It is well known that, for
superhorizon scales, the gauge invariant quantity

�¼2

3

�HþðaHÞ�1 _�H

1þw
þ�H

�
1þ2

9

�
k

aH

�
2 1

1þw

�
(A7)

is conserved [19] and, moreover, at horizon crossing, the
relation


ðk; �Þ ¼ Oð1Þ �

1þ w
(A8)

is satisfied, whereOð1Þ is a number of order unity (see [19]
and references cited therein). Then, normalization may be
achieved as follows: in a first step, the matter power
spectrum at present time Pðk; �0Þ is obtained, by using
CMBFAST, for a certain version of the concordance model

(see [20] for details). The resulting spectrum is represented

in Fig. 3. From it, we can estimate Pð~k; �0Þ. In a second

step, Eqs. (A1)–(A3) are numerically solved for the scale ~k
and for an arbitrary C value and, then, by combining

Eqs. (A2), (A4), and (A7), the function �ð~k; �Þ may be
easily calculated. Finally, in a last step, the value of the
normalization constant C is fixed. It is done by using

Eq. (A8) to calculate 
ð~k; �0Þ, and taken into account that

the resulting 
ð~k; �0Þ quantity must be identical to

P1=2ð~k; �0Þ for the right C value.

The 
ð~k; �0Þ value obtained from the spectrum of Fig. 3
and Eq. (44) may be easily used to estimate the contrast

ð ~L; �0Þ in position space, and the resulting value is close
to 10�3 as it is expected for this scale.
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