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Abstract: In recent years, Active Queue Management (AQM) mechanisms to improve the perfor-
mance of TCP/IP networks have acquired a relevant role. In this paper, we present a simple and
robust RED-type algorithm together with a couple of dynamical variants with the ability to adapt
to the specific characteristics of different network environments, as well as to the user’s needs. We
first present a basic version called Beta RED (BetaRED), where the parameters can be tuned accord-
ing to the specific network conditions. The aim is to introduce control parameters that are easy
to interpret and provide a good performance over a wide range of values. Secondly, BetaRED is
used as a framework to design two dynamic algorithms, which we will call Adaptive Beta RED
(ABetaRED) and Dynamic Beta RED (DBetaRED). In those new algorithms, certain parameters are
dynamically adjusted so that the queue length remains stable around a predetermined reference value
and according to changing network traffic conditions. Finally, we present a battery of simulations
using the Network Simulator 3 (ns-3) software with a two-fold objective: to guide the user on how
to adjust the parameters of the BetaRED mechanism, and to show a performance comparison of
ABetaRED and DBetaRED with other representative algorithms that pursue a similar objective.

Keywords: congestion control; active queue management; random early detection; beta distribution;
stability

1. Introduction

Over the last few decades, the Internet has become increasingly faster by many orders
of magnitude, but at the same time the number of users has increased, along with a huge
deployment of Internet-based applications, and with a multitude of bandwidth and latency
requirements. This growth in data flow has resulted in increased network traffic congestion,
which, if not properly managed, could lead to a considerable decrease in performance,
a critical factor for any Internet service. The TCP transport protocol has become the
standard for data communications, being the most common type of data flow on the
Internet. The most popular network applications (FTP, TELNET, Web Access, etc.) use
TCP protocol in their communications. This, together with the massive use of Voice over
Internet Protocol (VoIP) applications, online games, financial exchanges, etc., has caused
buffers to fill up, resulting in the phenomenon known as bufferbloat [1], characterized by
high latency and massive discarding of packets over long periods of time, leading to poor
quality of service for the end user.

Congestion control is a critical part of the Transmission Control Protocol (TCP), which
directly influences transport performance. TCP is the dominant transport layer protocol
on the Internet. In general, there are two congestion control mechanisms: (1) end-to-end
congestion controls, which are are approaches adopted by TCP and are achieved mainly
at the transport layer; and (2) network-assisted congestion controls, which are controls
adopted by routers. This mechanism uses router queue size and/or delay to monitor the
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congestion state of the network. To meet the demands of Internet users and applications,
research both in academic and industrial environments has focused on improving these
two control mechanisms to achieve high performance and avoid data traffic collapse.
This paper is concerned with the second approach, and aims to design a new congestion
control mechanism to be implemented at the router. For those readers interested in the first
approach, the surveys [2,3] collect the main transport protocols that have been proposed in
recent years.

The main objective of congestion control mechanisms is to keep the network operating
fairly close to its nominal capacity, even when faced with extreme overload. This objective is
achieved by acting according to two fundamental premises. The first is to prevent network
congestion before it occurs and to dissolve congestion if it cannot be avoided. The second
is to provide a fairness service to different connections, along with support for various
Internet application domains with varying quality of service (QoS) requirements. Designing
good congestion control mechanisms is extremely difficult; the specific characteristics of
the connection and each individual link can significantly affect performance, often in
unpredictable ways.

Active Queue Management (AQM) algorithms are algorithms implemented in routers
that act on the buffer queue to control its length so that efficient congestion control of
the system is achieved. Such management also allows TCP to do its job of sharing links
properly, without which it cannot function as intended. The primary goal of an AQM is
to prevent congestion before it occurs and, if it has already occurred, to try to control it.
AQM mechanisms act on the length of queues in buffers to achieve lower delay, and try to
absorb short-term variations (e.g., bursts), thus playing a crucial role in congestion control
on the Internet. Numerous AQM schemes have been proposed in recent years to properly
manage queues to avoid undesirable effects such as bufferbloat, link underutilization,
large variations in queuing delays, etc. The truth is that there is no one algorithm that
has dominated over the others, since network environments are very varied, and network
traffic very changeable, so each algorithm has advantages and disadvantages according to
those environments.

The Random Early Detection (RED) algorithm, proposed by Floyd and Jacobson [4],
works by detecting incipient congestion and notifying the TCP transmission control proto-
col of the congestion by randomly discarding packets to avoid filling the router. The RED
algorithm avoids some of the problems of using the simple Drop Tail [5] (such as blocking,
full queues and global synchronization), whose mechanism consists of dropping all incom-
ing packets when the buffer queue is full. In fact, RED has been the most studied AQM to
date, and has been the basis for the development of new AQM systems. The reason for this
is not only because RED was the first to be developed in the Internet community, but also
because of the numerous drawbacks involved in using this algorithm, some of which have
not yet been fully resolved. One of the main problems is the difficulty and uncertainty
in adjusting its parameters for adequate performance, due to the high sensitivity of the
RED parameters to traffic load. Thus, a poor choice of RED parameters can lead to other
deficiencies such as forced drops, or link underutilization. Moreover, even if the RED
parameters are properly tuned, they are very sensitive to network conditions and can also
cause other more complex nonlinear effects such as bifurcation and chaos. In summary, it
can happen that a set of parameters works perfectly for a certain network setting but not
when those parameters are slightly changed. This is obviously not desirable, as Internet
traffic conditions change rapidly. The study of stability and bifurcations of Internet conges-
tion control models involving delay is a central issue that has been intensively studied in
recent decades (see [6–14]).

The paper is organized as follows. In Section 2, the current AQM problem is presented,
along with the description of the most recent algorithms that have similar objectives to
BetaRED. This section also briefly reviews the AQM schemes with which we will compare
the proposed new algorithms. Section 3 is devoted to describing the simulation scenarios
and the metrics we will use to perform the comparison between the AQM schemes. In the
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next two sections, new proposed algorithms are introduced and compared by numerical
simulations with ns-3, namely, the main BetaRED algorithm (Section 4), and two new
dynamic algorithms ABetaRED and DBetaRED based on the previous one (Section 5).
Finally, in Section 6, some final conclusions are presented.

For the convenience of the reader, in Table 1 we list symbols of the most important
parameters used in this paper.

Table 1. Notation for the most important parameters and variables used throughout the paper.

AQM Algorithm Name Description

Tunable
parameters

ABetaRED,
DBetaRED, ARED,
CoDel, PIE

Ttarget Target delay

Tupdate Update interval time

Alpha, Beta Control parameters with different objectives
according to the AQM.

BetaRED, ABetaRED,
DBetaRED

θ
Scale factor determining the standard deviation
of the drop probability function

w Averaging weight

BetaRED

qtarget Target queue length

qmin Lower threshold

qmax Upper threshold

pmax Maximum packet drop probability

System
parameters All

B Buffer size (maximum number of packets that
the buffer of Router 1 can store)

C
Capacity of the channel (the maximum amount
of error-free information that can be transmitted
over the channel per unit time)

N Number of flows in the dumbbell topology

M Packet size

Variables All

p Drop probability

qcur Current queue length at Router 1

qavg Average queue length at Router 1

2. Description of the Problem and Related Works

Numerous AQM algorithms with different approaches have been proposed over the
past two decades to handle the queuing delay problem. However, the conditions of a
network and the specific user needs may vary from one scenario to another, so there
is no algorithm that can satisfy all demands at the same time. In addition, the optimal
configuration of the parameters involved in this type of algorithm is complicated. This is
why no single AQM has had a predominant deployment over the others, and the AQM that
obtains the best performance in the given scenario is selected. This fact is what has most
negatively affected the widespread application of the RED mechanism. There are a large
number of publications in the literature aimed at overcoming these difficulties by variations
on the RED algorithm. A good summary can be found in [15], which in turn contains a
large collection of citations of work based on RED technology. However, the problem is
still topical and we can find numerous recent works addressing the issue.

Drop Tail is the simplest algorithm that can be designed: the buffer accepts packets
until it is completely full, and when this happens, it discards the last packets received.
The main problem with this mechanism is its performance when combined with TCP,
which reduces the sending rate when it receives packet loss notifications, and this occurs
only after the buffer is completely full. This, in turn, causes TCP to generate a flow with
intermittent bursts, which, with full buffers, causes packet loss to increase in each Round
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Trip Time (RTT) cycle, eventually ending up in a degraded circular dynamics with high
latency and low throughput. The problem is further aggravated when the number of flows
connected in the same link increases, each regulated by its own congestion window. It has
been found that, in this situation, the slow start of each of the flows tends to synchronize,
causing the phenomenon known as global synchronization [4], which is characterized by
very low overall network throughput.

Active queue management attempts to provide a solution to problems that appear in
Drop Tail (see [5,16]) by notifying congestion initiation signals before the buffer fills up.
Notification can be done via packet drop or with the Explicit Congestion Notification (ECN)
flag. The large amount of research on the design and study of AQM algorithms has resulted
in significant improvement in performance metrics: latency, link utilization, throughput,
jitter, etc., reducing burst losses and solving the global synchronization problem.

In the RED scheme, the probability function p of packet dropping at an instant is
dependent on the average size of the queue length qavg and its expression is given by

p(qavg) =


0 if qavg < qmin,
1 if qavg > qmax,
pmax · z(qavg) otherwise.

where z(qavg) =
qavg − qmin

qmax − qmin
(1)

The values qmin and qmax are the lower and upper thresholds for the average queue
length qavg where below qmin all packets are accepted, and above qmax all packets are
rejected. The value pmax is the maximum value for the packet drop probability function
when the average queue length is between qmin and qmax, which is reached at the point
qavg = qmax. The average queue length is updated upon packet arrival according to the
Exponential Weighted Moving Average (EWMA),

qnew
avg = (1− w) · qold

avg + w · qcur (2)

between the previous average queue length qold
avg and the current queue length qcur, where

0 < w < 1 is the averaging weight. The higher w, the faster the RED mechanism reacts to
the actual buffer occupancy.

Although RED was able to eliminate some shortcomings of Drop Tail such as blocking,
full queues and global synchronization, other shortcomings remained. One of the main
problems of RED is that its parameters must be adjusted according to different Internet
traffic load states. Experiments and numerical simulations have been the main tool used to
adjust the parameters of many of the algorithms studied. In the literature we find many
conclusions based solely on simulation results, but they lack a theoretical foundation that
guarantees the results. The combination of end-to-end TCP congestion control and active
RED queue management can be modeled as a discrete-time dynamic system and this system
exhibits a variety of irregular behaviors, such as bifurcation and chaos. Recently, in [11,17],
a generalized RED-based model was proposed in which two new control parameters are
introduced by means of a nonlinear packet dropping probability function, namely, the
normalized incomplete beta function. In addition, in [12,18] a theoretical analysis of the
global stability was performed, and the results were used to find robust ranges of the new
control parameters. This theoretical study has helped to design the new AQM algorithms
proposed here for queue management, since they showed the existence of a wide range of
parameters for which a higher stability than RED is achieved. One of the advantages of the
algorithms proposed here is that the parameters are easily and intuitively adjusted with
guarantees of achieving a good balance between stability and performance, and supported
by the theoretical analysis made in [12,18].

The idea of using a nonlinear packet drop probability function also appears in several
papers. In [19], the authors designed an algorithm called Three-section Random Early
Detection (TRED), where the probability function is divided into three sections in order
to achieve a trade-off between delay and throughput by distinguishing between light,
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moderate and high loads. Following a similar idea, an AQM scheme called Flexible
Random Early Detection (FXRED) is proposed in [20] where different variations of the
packet drop probability function are applied according to the state of the network traffic
load. Moreover, in [21], a new probability model with a variation of the packet drop
function with respect to RED is proposed, obtaining an increase in throughput and a
reduction in the expected end-to-end delay.

There is a huge amount of research on the design of new dynamical AQM algorithms
whose goal is to maintain a stable average queue length around a predetermined target
under changing network traffic conditions. In fact, we can find recent work addressing the
issue that show that the problem is still open. In [22–25], the RED algorithm is modified
in order to improve its performance and stability for various network states, obtaining
better results compared to their predecessors. In [26], the Weight Queue Active Queue
Management (WQDAQM) scheme, based on dynamic monitoring and reaction depending
on the traffic load, is proposed. This algorithm aims to maintain the average queue length
between two dynamically predetermined thresholds to prevent the buffer from exceeding
the latter and overflowing.

For our numerical comparison in Sections 4.3 and 5.3, we have chosen some repre-
sentative AQM algorithms that are implemented in ns-3, such as Adaptive RED (ARED),
Control Delay (CoDel) and Proportional Integral Controller Enhanced (PIE). We add a brief
summary of the most important features of these algorithms as follows.

ARED, proposed by Feng et al. [27] and subsequently improved by Floyd et al. in [28],
was intended to adjust the RED parameters adaptively to achieve a queue length around a
prefixed target queue length. The main parameter that is tuned is the maximum packet
drop probability, for which it uses an Additive-Increase-Multiplicative-Decrease (AIMD)
approach. However, the performance of ARED is inferior to that of RED when faced with
complex network environments.

CoDel [29,30] manages congestion control through the time that packets are in a
given buffer (sojourn time), or the time a given packet spends in the queue of a buffer.
Thus, CoDel distinguishes between a “good queue”, one that does not show bufferbloat,
maintaining an adequate delay in the face of bursts of traffic, and a “bad queue”, one that,
on the contrary, has a high buffer delay in the face of low utilization.

PIE (see [31–33]) uses an estimate of the buffer queue delay as an indicator of conges-
tion, marking with this estimated time each packet at the buffer entrance. When queuing
a packet, a random discard is performed with a probability p obtained as a function of
the latency calculated as an estimate of the delay and the trend that this value develops.
PIE adopts the model Proportional Integral (PI) [34] to maintain the queuing delay at a
specified target value. Furthermore, the algorithm self-adjusts the control parameters as a
function of the level of congestion, directly reflecting this measure in the current discard
probability, this being updated at regular intervals.

The CoDel and PIE algorithms (see [32,35], in which a comparative analysis is per-
formed) are designed with the main objective of minimizing queue latency while main-
taining high link utilization. They represent solutions to the problem raised in [36] of the
Internet Engineering Task Force (IETF), where a call is made for the design of new methods
to control network latency. For dumbbell topologies, both algorithms have performed well
and mainly serve the purpose for which they were designed, which is to allow packet bursts
to fill the buffer queue, preventing the queue from stalling under a persistent packet load.

3. Scenarios of Simulation and Metrics

The complexity of the network means that the mathematical models of the protocols
are not completely realistic and often the theoretically optimal algorithms do not perform
as expected in real networks. This inevitably leads to the use of numerical simulations to
obtain reliable predictions about the behavior of AQM algorithms in a real environment.
Furthermore, in most cases (e.g., for TCP), the congestion control algorithm for a given
transport protocol is implemented in the same code base as the core of that protocol and is
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therefore the same for each end-to-end connection. Therefore, it is not possible to customize
the response of the congestion algorithm to the characteristics of each connection.

3.1. Scenarios of Simulation

For testing the AQM algorithms, the topology used for the simulation (Sections 4.3 and 5.3)
is a simple dumbbell topology (see Figure 1), where N is the number of long-lived TCP
connections sharing a single bottleneck. Traffic is generated from the left side to the right
side, specifically for each i ∈ {1, 2, . . . , N}, Si and Di denote the source and destination
of the TCP flow i. The router R1 on the left is where the bottleneck is actually located
and the control AQM model will be installed. All other nodes, by default, have the Drop
Tail queue manager installed. The edge links between the TCP sources and the router R1,
and the router R2 and the TCP sinks have a capacity of 100 Mbps with a mean of 1 ms
propagation delay. Router R1 is connected to R2 through a capacity C of 50 Mbps and 10 ms
propagation delay. The maximum buffer size B of each router is set to 1000 packets of a
size M of 1000 bytes each. The TCP transport agent will be TCP Cubic.

Figure 1. Network topology.

The level of congestion of the simulation is set according to the number N of long-lived
TCP connections sharing the bottleneck. In that sense, we distinguish two different scenarios:

Scenario 1: Constant congestion level. In this case the number N of active flows is constant
throughout the simulation time, which is of 250 s.

Scenario 2: Changing congestion level. In this case the number N of active flows varies as a
function of time according to the following distribution:

• Between 0 and 50 s, the number of active flows is N = 100.
• Between 50 and 100 s, the number of active flows is N = 200.
• Between 100 and 150 s, the number of active flows is N = Nmax.
• Between 150 and 200 s, the number of active flows is N = 200.
• Between 200 and 250 s, the number of active flows is N = 100.

The congestion level in this case will be determined by the maximum number of active
flows Nmax in the simulation.

3.2. Performance Metrics

The ultimate goal of TCP/AQM protocols is to improve the performance of end-user
metrics. However, the final performance is strongly influenced by the performance of
router-based metrics. Thus, to evaluate the performance of the proposed algorithms, we
have chosen to use two router-based metrics and three end-user metrics. The follow-
ing is a brief description of the most important characteristics of the metrics used for
performance evaluation:
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• Average queue length (AQL). The queue size indicates the number of packets pending
transmission in the buffer queue. An unstable system is usually characterized by a
synchronization in the TCP queues, accompanied by strong oscillations.
Under suitable settings, the average queue length tends to stabilize at a value that
we refer to as the equilibrium point. One of the main objectives of AQM algorithms
is to stabilize the buffer queue size and, in this sense, we shall refer to the stability
of an AQM algorithm as the ability to maintain the average queue length (or the
average queuing delay) around a certain target value. The stability is an important
performance characteristic of TCP/IP networks.

• The packet drop rate. It measures the ratio of the number of packets dropped by an
AQM to the total number of packets in queue. In this count, packets dropped by the
link or channel at the physical layer are not counted, considering only the drop rate
at the network layer. The main objective of an AQM is to maintain a stable queue
size with as low packet drop rate as possible. This increases the performance, since
dropped packets are an early signal of congestion to the TCP, causing a decrease in its
send rate.

• End-to-end throughput. This is a performance measure obtained between two inter-
locutors (server–host). It measures the actual transmission of the total data propagated
with respect to the simulation time (from the time the data is sent to the time it is
received). It is defined as the number of bits received correctly per unit of time. Specif-
ically, the calculation of this metric is obtained from the ratio between the number of
bits received by the server/host and the time elapsed between the reception of the first
segment and the last one. To calculate the throughput in the dumbbell type topology,
we have averaged the ratio between the number of bits received by the left and right
hosts, and the sum of elapsed time between the reception of the first segment and the
last one at each of these nodes.

• End-to-end delay (latency). It is one of the most significant metrics in a communication
system and, in general terms, it is the time required to transmit a segment along its
entire length, end-to-end. Specifically, it is calculated using the equation:

Latency = propagation time+ transmission time+ queuing time+processing delay

For its calculation in the dumbbell topology, the end-to-end delay times of all the
segments sent between the left and right hosts are summed, divided by the number of
segments received on both hosts.

• Jitter. Jitter in a flow is defined as the variation in delay of arriving packets over
time. A very high jitter can cause packet loss due to buffer overflow. In the dumbbell
topology, an average value is calculated by summing the time variations between the
correlative packets of all flows, and dividing by the number of variations.

All simulations presented in this paper were performed with ns-3 [37]. This is a
discrete event network simulator for Internet systems, primarily intended for research and
educational use. It is free software, licensed under GNU GPLv2, and is publicly available
for research, development and use.

4. The Beta RED Scheme

The Beta RED algorithm that we introduce is inspired by the classical RED, where the
packet drop probability function is dependent on two new parameters. The idea is to adapt
the parameters in order to improve the performance and stability of the system according
to the characteristics of the congestion scenarios, such as traffic load, available bandwidth
and desired delay, etc. At first it might be thought that introducing two new parameters
complicates the already intricate parameter tuning that the RED algorithm undergoes since
its inception, but we will show that it is actually an advantage, since it is possible to easily
and intuitively adapt these parameters to stabilize the average queue length as close as
possible to a preset reference value. We will now briefly describe the biparametric family
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of probability beta functions and the properties on which we will rely in the design of the
new algorithm.

4.1. Normalized Incomplete Beta Function

The beta distribution function (or normalized incomplete beta function) I(α, β) is
given by the expression

Iz(α, β) =
B(z; α, β)

B(1; α, β)
, B(z; α, β) =

∫ z

0
tα−1(1− t)β−1dt, (3)

with α, β > 0 and z ∈ [0, 1]. By definition, Iz(α, β) is strictly increasing, and is hence
invertible. Its inverse, I−1

z (α, β), is also strictly increasing.
Although usually the family of probability beta functions are described according to

the parameters α and β, here it will be much more convenient to describe them according
to their mean µ and standard deviation σ, as we will show later. It is well known that the
expected value and the variance of the beta distribution is given by:

µ = E[I(α, β)] =
α

α + β
, σ2 = Var[I(α, β)] =

αβ

(α + β)2(α + β + 1)
. (4)

If we solve α and β as a function of µ and σ2 in the above equations we obtain:

α(µ, σ) = µ

(
µ(1− µ)

σ2 − 1
)

, β(µ, σ) = (1− µ)

(
µ(1− µ)

σ2 − 1
)

. (5)

Thus, given values µ ∈ (0, 1) and σ <
√

µ(1− µ), we have univocally determined pa-
rameters α and β such that the beta distribution I(α, β) has mean µ and standard deviation
σ. Henceforth we will consider the beta distribution Ĩ(µ, σ) with respect to the parameters
µ and σ, specifically:

Ĩz(µ, σ) = Iz(α(µ, σ), β(µ, σ)) (6)

4.2. Beta RED Algorithm

In [11,17] the authors generalize the RED scheme by replacing the linear packet
drop probability function pmax · z(qavg) in (1) by the nonlinear function pmax · Iz(qavg)(α, β),
where 0 ≤ z ≤ 1 and α, β > 0. Since Iz(1, 1) = z, we recover the classical RED scheme for
α = β = 1. The purpose of this generalization was to improve the stability properties by
introducing the additional control parameters α and β. Following the analysis of Ranjan [38],
in [12,18] the authors perform a detailed theoretical study of chaos, bifurcation diagrams,
Lyapunov exponents and global stability robustness for different control parameters and
fixed system parameters. Bifurcation diagrams are discussed for specific values of α and β
in different scenarios, as well as biparametric sweeps of these parameters in which it was
found that there are parameter regions in which the system performs very successfully in
terms of stability and robustness.

However, for the design of our algorithms it is much more convenient to consider the
biparametric family of packet drop probability functions with respect to the parameters µ
and σ, since they have an intuitive meaning in statistical terms, namely, the mean and the
standard deviation. In this case the packet drop probability function takes the expression

p(qavg) =


0 if qavg < qmin,
1 if qavg > qmax,
pmax · Ĩz(qavg)(µ, σ) otherwise.

(7)

where µ ∈ (0, 1) and σ <
√

µ(1− µ). From Equation (4), the classical RED (α = β = 1) is
recovered when µ = 1

2 = 0.5 and σ = 1
2
√

3
≈ 0.2886.
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As in the RED algorithm, the basic idea of BetaRED is to maintain the average queue
length qavg (calculated through the EWMA algorithm) within minimum and maximum
thresholds qmin and qmax, but as close as possible to a predetermined target queue length
that we denote by qtarget. With this objective in mind, the next step is to provide concrete
values of µ and σ for which a good balance between stability and performance of the
algorithm is obtained. From this point of view, our selection of the mean is given as a
function of the target queue length qtarget and will be completely determined by means of
the expression:

µ =
qtarget − qmin

qmax − qmin
. (8)

With this choice, we match the mean of the packet drop probability function to the
qtarget value. Moreover, the standard deviation σ is a spread measure of the values of the
distribution around µ. This means that the smaller σ is, the more concentrated the packet
drop probability mass is around its mean µ (see Figure 2). Therefore, when the buffer starts
to fill up and the average length of the buffer queue qavg approaches qtarget, the probability
of packet drop will increase faster the smaller σ is. Moreover, the smaller σ is, the closer
to qtarget the system will stabilize. Consequently, the value of the standard deviation is a
parameter that has to be adjusted in our BetaRED scheme. However, the fact that the value
of the standard deviation verifies 0 < σ <

√
µ(1− µ) = σmax causes a slight inconvenience

since the user has to calculate the maximum value σmax before selecting the value of σ.
To avoid this inconvenience, the σ value is selected by mean of a scale factor θ that verifies
0 < θ < 1, being σ = θ ·

√
µ(1− µ), which facilitates the task to the user. Summarizing,

in BetaRED, once the target queue length qtarget is set, we have to adjust the parameters qmin,
qmax, pmax, w and θ. The rest of the algorithm works exactly the same as RED. For the sake
of completeness, we present an outline of the pseudo-code for BetaRED in Algorithm 1.

Algorithm 1 Pseudo-code outline for the Beta RED algorithm.

1: set tunable parameters: qtarget, qmin, qmax, w, pmax, θ

2: µ =
qtarget − qmin

qmax − qmin
; σ = θ ·

√
µ(1− µ);

3: for each arriving packet do
4: calculate new qavg = (1− w) · qavg + w · qcur

5: if qavg ≤ qmin then
6: p = 0
7: else if qavg ≥ qmax then
8: p = 1
9: else

10: p = pmax · Ĩz(qavg)(µ, σ)

11: end if
12: with probability p, drop arriving packet
13: end for
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Figure 2. The lower the standard deviation σ, the higher the concentration of the packet drop
probability mass around qtarget.

4.3. Simulations for the BetaRED Algorithm

In this section we present some numerical simulations with the purpose of analyzing
the average queue length and the performance of the BetaRED algorithm for some values of
the control parameters. However, space limitation conditions us to present only a selection
of a larger set of the simulations that have been carried out. The analysis of the results
obtained will help us to design two new dynamic algorithms based on BetaRED, which
will be described in Section 5.

In the first set of simulations (see Figure 3) we vary the parameter pmax for different
numbers of nodes in the dumbbell topology shown in Figure 1, and analyze the average
queue length in the last 125 s (half of the total simulation time). We contemplate only
the second half of the total simulation considering the first half as a transition period,
and thus obtain a better estimate of the equilibrium point. Two different scenarios are
setting according to the parameters qmin y qmax. The first one is when qmin = 0 and
qmax = 1000 (maximum buffer capacity). In the second scenario, we consider the minimum
and maximum thresholds close to the target queue length qtarget = 250, namely, qmin = 200
and qmax = 400.

We note that, to achieve a higher robustness in terms of the stability of the average
queue length, it is convenient to select the value pmax = 1. This way, the average queue
length stays closer to qtarget. However, the performance may decrease for increasing values
of the parameter pmax, which means that we should look for the lowest possible pmax
parameter value that guarantees stability and increases performance. It is well known that
the ARED algorithm [28] is based precisely on adjusting pmax to obtain a predetermined
target average queue length. In Section 5 we will follow the same idea of ARED adapted
to BetaRED.

Figure 3. Cont.
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Figure 3. Comparison of the BetaRED algorithm according to the number N of FTP active flows and
different values of the maximum probability threshold pmax. Different thresholds qmin and qmax are
also considered. Other tunable parameters: qtarget = 250 packets, w = 0.1, θ = 0.1. Scenario 1 on
the dumbbell topology (described in Section 3.1) is used. As pmax and/or the level of congestion
increase, the equilibrium point of the average queue length gets closer to the prefixed qtarget. On the
other hand, if minimum and maximum thresholds qmin and qmax are closer to the target queue length
qtarget, this also results in the average queue length equilibrium point being closer to qtarget.

In a second set of simulations (see Figure 4), we vary the θ parameter for different
numbers of nodes in the dumbbell topology presented in Figure 1. Again, to estimate the
equilibrium point, we calculate the average queue length in the last 125 s, i.e., in the second
half of the total simulation time. As in the first set of simulations, we also consider the
same two scenarios according to the minimum and maximum thresholds qmin and qmax.
As expected (taking into account the interpretation of the standard deviation σ), better
stability results are obtained as the value of θ (and hence σ) decreases. In the following,
the default value of θ = 0.1 will be used for simulations.

The discussion of the results when we vary the value of the weight parameter w
is more intricate. Although we do not show concrete numerical simulations since the
behavior is less predictable, it was observed that, as a general rule, increasing its value is
accompanied by better performance, but stability gets worse. Nevertheless, we shall show
that for the DBetaRED algorithm (described in Section 5.3) both high performance and
good stability are obtained for a wide range of w values.

Figure 4. Cont.
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Figure 4. Comparison of the BetaRED algorithm according to the number N of FTP active flows
and different values of θ. Different thresholds qmin and qmax are also considered. Other tunable
parameters: qtarget = 250 packets, w = 0.1, pmax = 1. Scenario 1 on the dumbbell topology (described
in Section 3.1) is used. As the standard deviation σ decreases and the level of congestion increases,
the equilibrium point of the average queue length gets closer to the prefixed qtarget. Similarly, if the
minimum and maximum thresholds qmin and qmax are closer to the target queue length qtarget, then
the average queue length equilibrium point is closer to qtarget.

5. Dynamic Algorithms Based on BetaRED

In the previous section, we designed a generic AQM based on the nonlinear beta
probability distribution function. The major difficulty was, as in the case of RED and
so many other schemes, the selection of the parameters to obtain good performance and
stability around the target queue length. We found that the BetaRED algorithm tries to
keep the average queue length close to the target queue length, but the level of congestion,
the particular network conditions and the choice of appropriate values for the control
parameters qmin, qmax, pmax, w and the θ, can cause that the average queue length at
equilibrium point undergoes substantial deviations from the desired qtarget, as shown in
Figures 3 and 4.

In this section, we propose two dynamical schemes based on BetaRED that are more
accurate in reaching the target queue length and adapt satisfactorily to network traffic
changes. Specifically, the objective is to perform dynamic parameter adjustments that
correct the deviation of the equilibrium value of qavg from the qtarget value. The possibilities
of acting on the parameters to correct these deviations are diverse. We propose two: the first
one follows the same approach as the ARED algorithm [28], which is based on varying the
value of pmax to correct the difference from the equilibrium point of qavg to qtarget, whereas
the second is to modify dynamically the target queue length qtarget to correct the deviations.

5.1. The Adaptative Beta RED Algorithm (ABetaRED)

ABetaRED is inspired by the ARED algorithm (which in turn is based on RED),
although there are some relevant changes due to the differences between the RED and
BetaRED algorithms. For our ABetaRED algorithm, the tuning of the following two
parameters is straightforward:

qmin = 0, qmax = B. (9)

The choices for qmin and qmax are based primarily on the numerical simulations for BetaRED
in Section 4.3. It is observed that with the choices (9) an acceptable performance is achieved
for a very wide range of parameters in various scenarios, while no substantial improvement
in performance was obtained with the selection of other values. The control parameters
Alpha and Beta determine the size of the increase and decrease steps of the maximum
probability, respectively, with the range of admissible values being 0 < Alpha, Beta ≤ 1.
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On the other hand, the tunable parameters to be set by the user are the target delay
Ttarget, the scale factor θ and the averaging weight w. As in ARED, once the target delay is
set, the target queue length can be estimated by

qtarget = C · Ttarget (10)

where, as in Equation (9), C is the link capacity measured in packets per second, and Ttarget
is measured in seconds. A pseudo-code for ABetaRED is outlined in Algorithm 2.

Algorithm 2 Pseudo-code outline for the Adaptative Beta RED algorithm. By default,
Alpha = Beta = 1 and Tupdate = 0.5 s, were set in all simulations.

1: set control parameters: Ttarget, w, θ

2: qmin = 0; qmax = B; pmax = 0.5; qtarget = C · Ttarget;

3: µ =
qtarget − qmin

qmax − qmin
; σ = θ ·

√
µ(1− µ);

4: for each arriving packet do
5: calculate new qavg = (1− w) · qavg + w · qcur

6: for every interval time Tupdate do
7: if qavg < qtarget then
8: decrease maximum probability:

9: pmax = max
[

0.01 , pmax ·Alpha ·
(

1−
qtarget − qavg

qmax − qmin

)]
10: else if qavg > qtarget then
11: increase maximum probability:

12: pmax = min
[

0.99 , pmax + Beta · pmax · (1− pmax) ·
qavg − qtarget

qmax − qmin

]
13: end if
14: end for
15: update p = pmax · Ĩz(qavg)(µ, σ)

16: with probability p, drop arriving packet
17: end for

5.2. The Dynamic Beta RED Algorithm (DBetaRED)

The idea of the DBetaRED algorithm is, once the target queue delay Ttarget is fixed
and the target queue length is estimated as in ABetaRED by Equation (10), we introduce
another dynamic parameter called virtual target queue length q̃target to correct for devi-
ations between the average queue length qavg and the actual target queue length qtarget.
According to the value of q̃target, the value of the mean µ (and thus the standard deviation
σ = θ ·

√
µ(1− µ)) of the drop probability function are updated dynamically for each time

interval Tupdate previously established. An outline of the pseudo-code of this new algorithm
is given in Algorithm 3.
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Algorithm 3 Pseudo-code outline for the Dynamic Beta RED algorithm. By default,
Alpha = Beta = 1 and Tupdate = 0.5 s, were set in all simulations.

1: set control parameters: Ttarget, w, θ

2: qmin = 0; qmax = B; pmax = 1;
3: qtarget = C · Ttarget

4: q̃target = qtarget; µ =
q̃target − qmin

qmax − qmin
; σ = θ ·

√
µ(1− µ);

5: for each arriving packet do
6: calculate new qavg = (1− w) · qavg + w · qcur

7: for every interval time Tupdate do
8: calculate δ = µ · (1− µ) · (qtarget − qavg)

9: if qavg < qtarget then
10: increase virtual target queue length: q̃target = min[qmax − 1 , q̃target + Alpha ·

δ]
11: else if qavg > qtarget then
12: decrease virtual target queue length: q̃target = max[qmin + 1 , q̃target +Beta · δ]
13: end if

14: update µ =
q̃target − qmin

qmax − qmin
; σ = θ ·

√
µ(1− µ);

15: end for
16: update p = pmax · Ĩz(qavg)(µ, σ)

17: with probability p, drop arriving packet
18: end for

In this case we make a straightforward selection of the following parameters:

qmin = 0, qmax = B, pmax = 1.

The choice of the minimum and maximum thresholds is based on the same reason
as we have stated for the ABetaRED algorithm. Regarding pmax, it is well known that the
choice of pmax in RED is linked to the traffic load in the network, where the higher the traffic
load the higher the value of pmax should be. One of the advantages of BetaRED over RED
is that we can control the increase of the drop probability function around the target queue
length (in a smoothly or sharply way, but always continuously) by means of the θ parameter.
Thus, the choice of pmax = 1 is the most reasonable in order to avoid discontinuities in
the drop probability function. Moreover, the numerical results of Figure 3 show that a
higher value of pmax implies better performance. The control parameters Alpha and Beta
determine the size of the increase and decrease steps of the virtual target queue length,
respectively, with the range of admissible values being 0 < Alpha, Beta ≤ 1. The tunable
parameters to be set by the user in this case are the target delay Ttarget, the scalar factor θ
and the averaging weight w.

5.3. Simulations

This section presents the results and discussion of the numerical simulations per-
formed to compare ABetaRED (Section 5.1) and DBetaRED (Section 5.2), as well as these
algorithms with the selection of the other AQM algorithms described in Section 2. The sim-
ulations are performed in several scenarios according to different parameters and levels of
congestion, including slight, moderate and abrupt variations in the number of nodes in
order to verify the robustness of the proposed AQM algorithms. However, space limitation
conditions us to present only a selection of the most important features regarding the
behavior of the above algorithms.
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The first comparison we carried out was between the ABetaRED and DBetaRED
algorithms (see Figures 5 and 6) when we progressively increase the parameter θ (and
hence the standard deviation σ). Figure 5 shows the result of the simulations for a constant
level of congestion (Scenario 1 described in Section 3.1), while Figure 6 shows the result
for a changing level of congestion (Scenario 2 described in Section 3.1). It is observed
that, in both algorithms, the throughput is quite unpredictable for different θ parameters.
However, the jitter is lower the smaller the value of the θ parameter, i.e., for smaller σ values.

Figure 5. Comparison between ABetaRED and DBetaRED algorithms according to the standard
deviation σ. Different levels of congestion are also considered by means of a constant number N of
active flows. Other tuning parameters: Ttarget = 40 ms (qtarget = 250 packets) and w = 0.1. Scenario 1
on the dumbbell topology (described in Section 3.1) is used. Overall, the DBetaRED algorithm exhibits
better performance, especially for the end-to-end jitter metric.
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Figure 6. Comparison between the ABetaRED and DBetaRED algorithms according to the parameter
θ. Different levels of congestion are also considered, but, unlike in Figure 5, the number N of active
flows varies dynamically with time. Other tuning parameters: Ttarget = 40 ms (qtarget = 250 packets)
and w = 0.1. Scenario 2 on the dumbbell topology (described in Section 3.1) is used. As in the non-
dynamic scenario (Figure 5), the DBetaRED algorithm performs better than the ABetaRED algorithm.

Figure 7 shows the performance of DBetaRED for different levels of congestion accord-
ing to different values of the weight parameter w. It can be seen that whatever the level
of congestion, the choice of a sufficiently high w parameter guarantees a satisfactory per-
formance. However, the most appropriate value of w according to the scenario is difficult
to estimate, as it may vary depending on the network topology, the level of congestion,
etc. In any case, it was observed that the qualitative behavior does not change from one
scenario to another.
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Figure 7. Performance comparison of the Dynamic Beta RED algorithm according to a number N of
active flows that vary dynamically over time and different values of the weight parameter w. Other
tunable parameters: Ttarget = 40 ms (qtarget = 250 packets) and θ = 0.1. Scenario 2 on the dumbbell
topology (described in Section 3.1) is used. We observe that the trend is for the performance of the
DBetaRED algorithm to increase as the value of w increases.

It is of special interest when a comparison is made with other related AQM schemes.
The common denominator of all the selected dynamic algorithms to be compared with
ABetaRED and DBetaRED is the need to set the target delay parameter Ttarget. However,
the mechanism of action of each of the AQM algorithms according to this parameter is
different. CoDel starts dropping packets when the queue delay remains above the target
delay for a certain time. PIE continuously updates its probability of dropping packets
according to the difference between the current queue delay and the target delay. ARED
does not act directly as a function of the target delay, but rather as a function of a target
queue length estimated via the target delay. Both ABetaRED and DBetaRED algorithms act
in the same way as ARED, namely, to achive a given predetermined Ttarget, a target queue
length given by qtarget = C · Ttarget is estimated, where C is measured in packets per second.

As can be seen in Figure 8, when fluctuations and congestion level grow, all perfor-
mance metrics of the DBetaRED algorithm outperform all other AQM algorithms. More-
over, in Figure 9 a greater stability around the target value of the average queue length is
also observed.
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Figure 8. Performance comparison between related AQM algorithms when considering different
levels of congestion by varying dynamically the number N of active flows. Other tuning parameters:
Ttarget = 40 ms for all AQM algorithms; θ = 0.1 and w = 0.1 for ABetaRED and DBetaRED. Scenario
2 on the dumbbell topology (described in Section 3.1) is used. The performance of the DBetaRED
algorithm outperforms the other algorithms as the congestion level increases.

Figure 9. Cont.
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Figure 9. Stability comparison between related AQM algorithms when considering different levels of
congestion by varying dynamically the number N of active flows with Nmax = 800. Other tuning
parameters: Ttarget = 40 ms for all AQM algorithms; θ = 0.1 and w = 0.1 for ABetaRED and
DBetaRED. Scenario 2 on the dumbbell topology (described in Section 3.1) is used. The bottom right
panel shows a comparison of the average queue length (for the total simulation time) of all selected
AQM algorithms. The other panels illustrate the instantaneous queue length pattern, together with
its moving average queue length (of the last 25 s) for each of the AQM algorithms. Among all the
algorithms, DBetaRED exhibits the highest stability.

6. Conclusions

In this work we propose new RED-type AQM algorithms, which we call BetaRED,
ABetaRED and DBetaRED. Using a simple dumbbell topology and applying different levels
of congestion (both constant and variable), we have analyzed and evaluated its performance
comparing it with the ARED, CoDel and PIE algorithms through different performance
metrics such as the average queue length, the packet queue rate, the end-to-end throughput,
the end-to-end delay (latency) and the delay jitter.

We have shown that the new BetaRED algorithm is a simple, flexible and robust
mechanism, which provides good stability and performance over a very wide range of
parameters. However, BetaRED needs parameter tuning according to the network char-
acteristics and congestion scenario. In order to reduce the number of tuning parameters,
the dynamic algorithms ABetaRED and DBetaRED (based on BetaRED) have been pro-
posed and compared with benchmark algorithms such as ARED, CoDel and PIE, obtaining
comparable results and even outperforming them in certain scenarios. DBetaRED stabilizes
queueing length, further improves throughput and reduces packet drops, compared to
other representative AQM algorithms, most notably in high-load congestion scenarios.
Although the simulations carried out to obtain these conclusions have been numerous,
the testing possibilities are enormous, and so there is still a lot of work to be done in this
regard. Additionally, we share the view of [39] that the choice of the TCP-AQM couple to
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adopt is crucial, i.e., the most effective congestion control would occur when AQM and
TCP work together in a shared bottleneck. Consequently, we continue studying heteroge-
nous scenarios of our AQM algorithms with variants of TCP different to those studied
in this paper. Specially, it would be interesting to evaluate the behavior of the proposed
AQM algorithms with the bottleneck bandwidth and round-trip time (BBR) congestion
control algorithm published by Google in 2016. Unlike packet loss-based TCP variants
(such as Cubic and Reno), BBR is designed to obtain a high performance coupled with
low bottleneck buffer occupancy, reducing packet loss and minimizing delay by means
of its end-to-end action. Thus, the effect of the proposed AQM algorithms is likely to be
negligible in this case, or even negatively affect overall performance.

Last but not least, the proposed BetaRED-type algorithms are not claimed to provide
a general optimal solution, since the optimality of the parameters will depend on the
objective set and the characteristics of the scenarios. Therefore, one of our future research
topics will be the search for optimal settings of BetaRED parameters in different concrete
network scenarios, for which an in-depth analysis of mathematical models derived from
the BetaRED algorithm will be necessary.
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