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Abstract: The robustness of the polarization spatial distribution of vector beams upon 
propagation is crucial for a number of applications, including optical communications and 
materials processing. This study has been commonly centered on Gouy phase effects on 
focused vector beams. In this work, we present a theoretical and experimental analysis of the 
Gouy phase’s effects on the propagation of pure and hybrid vector beams. Experimental 
results at various axial planes, before and past the focus, are obtained by using a simplified 
liquid-crystal spatial light modulator-based optical system that allows the easy generation of 
these beams. Furthermore, a new alternative optical set-up that is devoid of moving elements 
is demonstrated, which simplifies this study. We experimentally verify the differences 
between pure and hybrid vector beams upon propagation. While the first ones remain stable, 
hybrid vector beams show Gouy phase effects that demonstrate an optical activity where the 
local polarization states rotate by an angle that depends on the propagation distance. 
Experimental results agree with the theory. 

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement 

1. Introduction 

Vector beams are of interest for their polarization spatial distribution and they received a 
great deal of attention for their applications in many diverse fields [1]. Particular interest is 
their use to optically encode and transmit information either via free space [2] or through 
optical fibers [3]. The stability of the polarization structure of vector beams as they propagate 
is very relevant for such applications. In addition, other groups are examining their use for 
material processing where focused vector beams are employed to imprint subwavelength 
patterns [4]. It is known that pure vector beams retain their polarization pattern. But related 
variants like hybrid or truncated vector beams experience significant deformation upon 
propagation. 

Pure vector beams are the superposition of right (RCP) and left (LCP) circularly polarized 
components with helical phases having opposite topological charges R L= −   [5]. Initially 

they were generated interferometrically [6], but nowadays it is common to use devices named 
q-plates [7]. These are half-wave retarders where the orientation of the axis rotates 
azimuthally proportional to the q-value. These geometric phase devices introduce helical 
phases with charges 2q±  onto the RCP and LCP states. Alternatively, pure vector beams can 

be generated using programmable spatial light modulators (SLMs) where spiral phase plates 
(SPPs) with opposite charges R L= − =    are encoded onto the two orthogonal 

polarizations, thus mimicking an equivalent q-plate device with a q-value / 2q =   [7]. 

Different optical setups with different SLM configurations have been proposed to generate 
vector beams [8–10]. While bulkier, these SLM-based systems have a great deal of flexibility 
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to examine new ideas before adding the expense of fabricating their physical q-plate 
counterparts. 

Hybrid vector beams are variations where SPPs with different topological charges R  and 

L  are encoded onto the orthogonal polarization components. They received different names 

such as pseudo-vortex beams [11], Poincaré beams [12], vectorial vortices [13], vector vortex 
beams [14], or cylindrically polarized beams of the hybrid Poincaré sphere [15]. A first very 
simple approach to generate hybrid vector beams is a radial polarizer illuminated with 
circularly polarized light [11]. The output is radially polarized, but the decomposition of the 
circular polarization components reveal that they have charges 0R =  and 0L = . The same 

situation occurs when a single SLM is used in between QWPs to generate a polarization 
azimuthal rotator, since only one polarization component can be modulated [16]. In these 
cases, one polarization component has zero charge and the entire topological charge is 
encoded in the orthogonal polarization component. These beams can be identified as Poincaré 
beams [12]. Other approaches to generate hybrid vector beams involve forked gratings [15], a 
q-plate and a spiral phase plate (SPP) [13,14], an equivalent q-plate system and a single SLM 
[17], or a q-plate operating at quarter-wave retardance [18]. In all cases the topological 
charges encoded onto orthogonal polarizations follow R L≠ −  . Again, the use of SLM 

based systems allows the independent manipulation of the topological charges to generate 
arbitrary hybrid vector beams [19,20]. 

Under certain circumstances, the polarization patterns are similar for pure and hybrid 
vector beams. However, their propagation dynamics are very different, affected by the 
different Gouy phase that the two orthogonal polarization components experience for 
different topological charges [21–23]. Such Gouy effects have been compared for pure vector 
and non-pure vector beams [24], showing that pure vector beams retain their polarization 
pattern. Rotating optical fields have been previously described, for instance by the 
combination of scalar Bessel-Gauss beams with different phase velocities [25]. More 
recently, the Gouy phase has been identified as responsible of the rotation observed in 
partially truncated scalar vortex beams [26–28]. Recent studies also manifested that truncated 
vector beams experience significant deformation of its structure upon propagation caused by 
the Gouy phase [29,30]. 

Therefore, it is of great interest to develop optical arrangements where the propagation 
dynamics of different vector beams can be easily studied and compared. This work presents a 
simplified optical system that enables the systematic study of Gouy phase effects on vector 
beams. First, using only one liquid-crystal SLM and one q-plate device, similarly to [17], we 
readily generate pure and hybrid vector beams. These beams are examined on the basis of the 
Gouy phase shift difference experienced by the RCP and LCP components, depending on the 
charge encoded in each component. An equivalent optical activity phenomena upon 
propagation caused by the Gouy phase is demonstrated, that explains the polarization 
transformations observed between the generated near field and the propagated far field 
pattern. This study is performed by analyzing the axial propagation. Second, we demonstrate 
that the same experimental analysis can be performed without any moving element by 
applying a virtual propagation procedure [31,32] based on the application of a fast Fresnel 
diffraction algorithm [33], thus simplifying the experimental load of this type of study. 

2. Gouy phase in pure and hybrid vector beams 

We follow [34] for the definition of the Gouy phase, and concentrate on Laguerre-Gauss 
modes pLG   where p is the radial index and   is the azimuthal index. For simplicity, we only 

consider the vortex modes 0LG   having spiral phase of charge   and radial index p = 0. 

These modes can be characterized by an electric field as 
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where 0 ( )u z  is a complex amplitude term given by [34,35]: 
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where ( )R z  and ( )zω  are the radius of curvature and beam width respectively. We note that 

these 0LG   modes are usually identified as optical vortex beams whose diameter depends not 

only on the waist size, but also on the charge   of the spiral phase [36]. 
The Gouy phase ( , , )p zΦ   for a pLG   mode is given by 

 [ ]( , , ) | | 2 1 ( ),p z p zζΦ = + +   (3) 

where 1
0( ) tan ( / )z z zζ −= . Here 2

0 0 /z πω λ=  and 0ω  are the Rayleigh range and the beam 

width at the waist, respectively. Figure 1 shows ( )zζ  as a function of propagation distance z  

around the beam waist, which is located at 0z = . It reaches limits of / 2π±  at distances of 
z = ±∞ , but values of / 4π±  at distances of only 0z z= ± . However, these variations of the 

Gouy phase are magnified by the parameter | | 2 1p+ +  in Eq. (3), which depends on the 

absolute value of  . This has important physical implications, as shown later. 
For the zero order Gaussian beam, the beam width ( )zω increases with propagation 

distance in both directions away from the waist as 
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Therefore, for narrower beam waist 0ω  the Rayleigh range 0z  is smaller, and consequently 

the beam will expand more quickly. 

 

Fig. 1. Plot of the Gouy phase term ( )zζ  in Eq. (1). 
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The situation is more complicated for the LG modes because the beam width depends on 
both the Gaussian beam width 0ω  and the charge  . The divergence of LG modes has been 

recently discussed [37,38]. For our considerations, there is not a simple relationship to 
determine the value of 0z  and we will rely on computer simulations. For this work, we will 

arbitrarily define an “effective” 0z  as the distance for the Gouy phase term ( )zζ  to change 

by / 4π  in Fig. 1. For the case of a Gaussian beam ( 0)= , this coincides with the standard 

definition of the Rayleigh range. 
A vector beam can be regarded as the superposition of two 0LG   beams in Eq. (1) 

encoded onto the RCP and LCP states and with different charges R  and L . For 

simplification, we only consider the case of linearly polarized vector beams, thus both 
circular polarization components have the same weight. Then, the vector beam can be written 
as: 

 ( , ) ( , )
0 0( ) ( ) ( ) ,R R L L

R L

i i z i i zV z u z e e R u z e e Lθ θ− − Φ − − Φ= +   
   (5) 

where ( )1
2

1,
t

R i= +  and ( )1
2

1,
t

L i= −  denote the normalized Jones vectors for the RCP 

and LCP states. Here the Gouy phase for the RCP and LCP components are 

 [ ] [ ]( ) | | 1 ( ) and ( ) | | 1 ( ).R R L Lz z z zζ ζΦ = + Φ = +   (6) 

Thus, when | | | |R L=   the Gouy phase is the same for the RCP and LCP components. 

However, when | | | |R L≠   there is a phase shift between these polarization components as 

the beam propagates. 
It is well known that a phase shift between the circular polarization components is the 

cause of the optical activity, i.e. a rotation of the state of polarization [39,40]. In this case, the 
phase difference depends on the propagation distance, and therefore this effect can be 
regarded as an axially dependent optical activity. Also note that the sense of the optical 
activity depends on the difference | | | |R L−  , so the polarization transformation upon 

propagation can be levorotatory or dextrorotatory (similar to the difference between sugar and 
fructose) [40]. Therefore, a rotation of the polarization pattern is expected due to the Gouy 
phase difference ( )G zΔΦ  between the RCP and LCP components, which depends on the 

encoded charges as 

 ( )( ) ( ) ( ) | | | | ( ).G R L R Lz z z zζΔΦ = Φ − Φ = −   (7) 

In order to calculate the rotation angle of the polarization, it is useful to define the mean 
topological charge ( )  and the semi-subtraction of the topological charges ( )m  as: 

 1 1
2 2( ) and ( ).R L R Lm= + = −      (8) 

Note that pure vector beams have 0= , while 0≠  for hybrid vector beams. Note also, that 
in the case of hybrid vector beams, the RCP and LCP vortex components are of different 
diameter [37,38], i.e., the complex amplitudes 0 R

u   and 0 L
u  in Eq. (5) are different. 

For simplicity, let us approximate 0 0 0( ) ( ) ( )
R L

u z u z u z≈ ≈   . We discuss the limitations 

of this approximation below and in the conclusions. Then, using these   and m  parameters, 
Eq. (5) can be approximated as 

 { }( ) ( )
0( ) ,R Li z i zi im imV z u e e e R e e Lθ θ θ− Φ − Φ− − ++
  (9) 

and the polarization rotation is given by: 
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Note that this last equation was reported in [24], where in that case   and m  were the 
topological charge produced by a fork-grating and an encoded q-plate, respectively. 

Here, it is important to emphasize that this analysis is only an approximation useful to get 
a physical insight on how the polarization pattern of hybrid vector beams rotates as the beam 
propagates. Because of the size difference between 0LG   modes having different angular 

phases, it cannot account for a precise quantitative description of the rotation angle. As a 
result, the distribution of polarization states and intensity will not only rotate but also change 
structure as a whole. However, the simplicity of the above analysis is very valuable to obtain 
an approximated insight of the polarization transformation upon propagation, with still quite 
good accurate description, as will be further discussed in the next section. 

Finally, within this approximation, and following the definitions of R  and L , Eq. (9) 

can be written as the following Jones vector: 

 ( ) ( )
( )

1
2

( ) ( )
0

cos ( )

sin ( )
( ) 2 .R Li z zi m z

m z
V z u e e− Φ +Φ− +

+
 

=  
 




θ θ α
θ α

 (11) 

Note that Eq. (11) corresponds to a linear vector beam, where the rotation angle ( )zα  defined 

in Eq. (10) implies a change of origin of the vector beam polarization state. For instance, for 
the vector beam of order 1m = , the radial, slanted, azimuthal and opposite slanted vector 
beams are obtained for ( ) 0, / 4, / 2zα π π=  and 3 / 4π . 

For a pure vector beam R L= −   and 0= . Therefore, according to Eqs. (10) and (11), 

the Gouy phase shift difference is zero and the optical rotation is null. Thus, the Gouy phase 
does not have any impact on the propagation of pure vector beams. However, different pairs 
of charges ( , )R L   can correspond to the same value of m (and therefore to the same initial 

spatial distribution of polarization states) but with 0≠ . This implies a non-null polarization 
rotation ( )zα as the beam propagates, that has a great importance in the propagation 

dynamics. In [23] Zhang et al studied these effects when R L≠ −  . However, their 

experimental study was limited only to the beam focused at the focus of a converging lens. 
But let us point out that the verification of the polarization rotation as the beam propagates 
requires measurements at distances of approximately z0 from the waist of the Gaussian beam. 

As mentioned earlier, because of the size difference between 0LG   modes having 

different angular phases, there is a limit on whether these beams will overlap if the value of m 
is too large, and the above approximation 0 0 0( ) ( ) ( )

R L
u z u z u z≈ ≈   can be applied. 

Nevertheless, as we show next, this approximation provides a qualitative good description if 
m is kept small. 

3. Experimental procedure 

We first note here that experimental studies of these effects depend strongly on the size of the 
beam waist. For example, consider a beam having a beam waist of 0 4ω =  mm, which is a 

typical size for vector beams generated by SLM-based optical set-ups. For our laser source of 
632.8 nm, the value of z0 is 80 meters and cannot be realized in the laboratory. 

Instead it is useful to use a lens to reduce the beam waist, as shown in Fig. 2. Here, a 
Gaussian beam having a beam waist 01ω  is incident at its waist onto a lens having a focal 

length f and the new beam waist 02ω  is formed approximately at the focal plane. This new 

beam waist is given [41] by 
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Therefore, the new Rayleigh range is reduced to 
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where Eq. (12) and the definitions of the Rayleigh ranges 01z  and 02z  were used. 

The system in Fig. 2 has two advantages. First, the size of the Rayleigh range is reduced 
to values compatible with the laboratory. In addition, this setup allows us to study the Gouy 
phase on either side of the beam waist. An SLM and a q-plate located before the lens are used 
to generate different kinds of vector beams. Pure vector beams are obtained by turning the 
SLM off and using only the q-plate, while hybrid vector beams require both the q-plate and 
the SLM with the desired spiral phase encoded. 

 

Fig. 2. (a) Focusing of a Gaussian beam with a lens. The new smaller waist is located 
approximately at the focal plane of the lens. The waist is located at the position z = 0. An SLM 
and a q-plate located before the lens are used to generate the vector beam. Simulation results in 
(b) and (c) for the intensity pattern behind an analyzer that is vertically aligned and at various 
axial locations. (b) Right after the SLM and q-plate, pure and hybrid vector beams show 
identical patterns. (c) However, when viewed around the focal plane the pure vector beam 
retains its polarization structure, while the hybrid vector beam suffers a rotation ( )zα . 

The inset in Fig. 2 illustrates the situation for a radially polarized beam with two possible 
combinations of charges, ( , ) ( 1, 1)R L = + −   and (+3, +1). They both yield the radially 

polarized beam of m = 1. However, the first combination corresponds to the pure radial 
polarization, while the second case is a hybrid version of this vector beam. If the beam is 
analyzed with a vertically oriented analyzer, the intensity pattern right after the SLM/q-plate 
system (inset b) shows in both cases two bright lobes oriented vertically and a dark line in the 
horizontal direction. However, when the beam is analyzed around the lens focus (inset c), the 
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behavior is quite different. While the two-lobe pattern is maintained for the pure vector beam, 
the hybrid vector beam rotates around the beam waist and achieves a 90° rotation at the focus. 
This rotation at the focus was already reported in [24]. However, here we explore in detail the 
rotation before and behind the focus. 

These effects can be explained by the Gouy phase difference between the RCP and LCP 
components, as mentioned before. According to Eqs. (9)-(10), the polarization state rotates by 
an angle ( )zα . For the pure vector beam ( 0)= , Eq. (10) predicts ( ) 0zα =  and therefore no 

rotation occurs. However, for the hybrid vector beam with ( , ) ( 3, 1)R L = + +   Eq. (10) 

predicts a continuous polarization rotation ( ) ( )z zα ζ=  which, therefore, follows the curve in 

Fig. 1. Note that the limit z → −∞ , where ( ) / 2zα π= − , corresponds to the beam generated 

after the SLM/q-plate system. In this limit, the hybrid beam shows the two bright lobes 
oriented in the vertical direction. However, as it propagates, the polarization state rotates as 

( ) ( )z zα ζ= , and so does the intensity pattern transmitted by the vertical analyzer. At z = −z0, 

the rotation is ( ) / 2z = −α π , while at the beam waist (z = 0) it is ( ) 0zα = . Note that this 

means that the orientation of the two bright lobes becomes horizontal at the beam waist (Fig. 
2(c)), i.e., the hybrid radially polarized vector beam is transformed at the focus into an 
azimuthal polarization. We note that this transformation from a radial polarization onto an 
azimuthal polarization was reported in Refs [24,42], but only at the focus plane and with a 
different setup. Past the waist, the beam continues rotating and it would show again the two 
bright lobes oriented along the vertical direction in the limit z → +∞ , where ( ) / 2z = +α π . 

These simulations show that the tendency is correctly described by the function ( )zζ . 

However, it is important to note that the above analysis in terms of the rotation function ( )zα
is only a very useful simplification, since the approximation 0 0( ) ( )

R L
u z u z≈   in Eq. (9) is 

considered. Vortex beams with topological charges 3 and 1 focalize in doughnut shapes, but 
with different diameters. Thus, their overlapping is not as perfect as it is in the case of the 
pure vector beam, and therefore the azimuthal polarization pattern is not perfect. 

Nevertheless, as we show next, the axial optical activity caused by the Gouy phase 
difference provides a valid physical insight of the beam polarization pattern around the axis. 
In the next section, we discuss our experimental system and compare experimental results to 
computer simulations. 

4. Experimental system and results 

Figure 3(a) shows the experimental system we have developed to verify these effects. Light 
from a linearly polarized 20 mW He-Ne laser having a beam diameter of 0.7 mm at the 1/e2 
points (so this is twice the value of 0ω ) is spatially filtered using a X10 objective lens with a 

focal length of 14.8 mm and a 25 micron pinhole. The beam is then collimated using a 20 cm 
focal length lens (L1). The final width of the collimated beam is 0 4ω   mm. The beam then 

passes through a non-polarizing beam splitter (NPBS) and addresses the LCoS SLM. 
The reflected beam impacts a reflective liquid-crystal on silicon (LCoS) spatial light 

modulator (SLM) manufactured by Hamamatsu (X10468 series), with 792 × 600 pixels 
having dimensions of 20Δ =  μm. The phase shift is controlled over 2π radians at the He-Ne 
laser wavelength of 632.8 nm. The SLM liquid crystal director is oriented horizontally. 
Therefore, the input laser beam is selected to be linearly polarized along the horizontal 
direction so the SLM acts as a phase-only modulator. A spiral phase pattern (SPP) with 
charge SPP  is addressed onto the SLM. The beam then passes back through the NPBS and 

through a commercial q-plate from Thorlabs, identified as vortex half-wave retarder, with 
value q = 1/2. 
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As discussed in the introduction, the q-plate introduces a helical phase with charges ± 2q 
onto the RCP and LCP states. As a result, the RCP and LCP components now have charges 

2R q SPP= +    and 2R q SPP= − +   . The mean topological charge ( )  and the semi-

subtraction of the topological charges (m) of the output vector beam are 

 1 1
22 2( )  and ( ) .R L SPP R L qm= + = = − =        (14) 

 

Fig. 3. (a) Scheme of the first proposed optical system to generate pure and hybrid vector 
beams and study the Gouy phase effects. A SPP is encoded on the LCoS-SLM and the lens L2 
(or the CCD camera) is shifted longitudinally to capture different axial planes near the beam 
waist. (b) Experimental results for the propagation of the radially polarized beams with charges 

( , )
R L

=  (−1, −3), ( +1, −1) and (+3, +1) The analyzer is vertically aligned in all cases. 

For the case where no SPP is encoded onto the SLM, the q-plate creates a vector beam 
with 1R L= − =  , thus with 0=  and 1m = , i.e. a first order pure vector beam. However, 

when an SPP of charge SLM  is encoded on the SLM, the output is a hybrid vector beam with 

charges 1R SLM= +   and 1R SLM= −  , thus with SLM=  , while keeping 1m = . Thus, the 

output is a first-order hybrid vector beam. Although the q-plate is fixed, the sign and value of 

SLM=   encoded on the SPP can be controlled. 

Finally, the transmitted light passes through a lens having a focal length of 100 cm (L2). 
The new smaller waist is formed at a detector whose axial position can be adjusted. Assuming 
a wavelength of 632.8λ =  nm and since 01 4ω =  mm, Eqs. (12) and (13) provide the 
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expected values of 02 50≈ω  microns and 02 12.6z ≈  mm. A linear polarizer placed in front of 

the detector is used to analyze the pattern of the generated vector beam. The output is 
captured using a WinCamD CCD camera. The propagation characteristics of the generated 
pure and hybrid vector beams were studied by moving either the lens (L2) or the detector. 

Figure 3(b) presents the experimental results for cases ( , ) ( 1, 3)R L = − −  , (+1, −1) and 

(+3, +1). For these three cases, we first verified the generation of a radially polarized beam 
right after the q-plate and before lens L2. We verified this by placing an analyzer oriented 
vertically and noting the vertical orientation of the two bright lobes. Then, we analyzed the 
intensity pattern captured by the CCD detector around the focus of the focusing lens (L2). 
Different axial planes at distances z = 0, ±2, ±4, ±6, and ±8 cm, were captured by moving the 
focusing lens (L2). In each case, we show 456 × 456 pixels, where the size of the WinCam 
detector pixel is 4.65 microns. The experiments confirm the situation illustrated in Fig. 2. 

As expected, the pure vector beam with charges ( , ) ( 1, 1)R L = + −   (middle row) retains 

the two bright lobes in the vertical direction and a dark horizontal line. This verifies that the 
radial polarization is kept along the propagation. The only difference upon propagation is the 
different size of the beam, which reaches its smallest size at the focus. 

This is not the case of the two hybrid vector beams with ( , ) ( 3, 1)R L = + +   and (−1, −3). 

They have the same semi-subtraction charge index m = +1 and therefore the beam is radially 
polarized behind the SLM-q-plate system. However, their propagation is quite different. 
Namely, the intensity pattern rotates as the beam approaches the focus, producing the 
characteristic “S” shaped beam caused by the lobes deformation. The sense of rotation is 
opposite in each case, as expected from Eq. (10). Note how at the focus the orientation of the 
lobes is rotated by 90° with respect to the pure radial polarization, denoting a 90° rotation in 
the state of polarization. However, at large distance from the focus in both directions, the 
lobes return to the vertical orientation. Finally, let us point out that the 45° polarization 
rotation occurs approximately at z = 40 mm, which is not the Rayleigh range of the Gaussian 
beam z02 ≈  12.6 mm mm that was calculated using Eq. (13). This value of 40 mm can then be 
regarded as an “effective” Rayleigh range for the hybrid vector beam. 

Nevertheless, the arctan function ( )zζ  in Fig. 1 describes qualitatively the rotation of the 

polarization state of these beams. The exact relation between the polarization rotation and the 
function ( )zζ  depends on the encoded charges R  and L , and on the input beam width. 

 

Fig. 4. Simulation results for the propagation of radially polarized beams with charges 

( , )
R L

=  (−1, −3), (+1, −1) and (+3, +1) in steps of 20 mm from the focus spot. The rotation 

of 45° occurs at about 40 mm from the focus. 

In order to confirm these experimental results, Fig. 4 shows computer simulations of the 
experimental conditions. In these simulations, we consider a radially polarized beam of 
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01 4ω =  mm that is transmitted through the SLM/q-plate system, similar to that used in the 

experiments. It is generated in an image of 1024 × 1024 pixels that assumes each pixel of 
20Δ =  microns (equal to the LCOS-SLM pixel pitch). The beam is then multiplied by the 

complex transmittance of a lens of focal length f = 100 cm. Fig. 4 clearly confirms the 
experimental results and show the different behavior around the focus for the three different 
combinations of charges ( , ) ( 1, 3)R L = − −  , (+1, −1) and (+3, +1). The size of each image is 

similar to those of Fig. 3. The simulations match the experimental results very nicely. 

5. Experimental system with no moving elements 

The difficulty with these experiments is that the center axes of the incident beam, the SPP 
encoded onto the SLM, the q-plate, and the focusing lens (L2) must be very well aligned to 
obtain such good results. These difficulties are compounded when either the focusing lens or 
the detector must be moved. To avoid these difficulties we now discuss an alternative, 
simplified optical setup where the lens L2 is encoded onto the LCoS-SLM. The new setup is 
shown in Fig. 5(a). The combination of the SPP and the converging lens gives as a result the 
well-known spiral phase pattern. This pattern can be used to simultaneously impart the SPP to 
the beam and focusing the beam onto the CCD detector. 

 

Fig. 5. (a) Scheme of the second proposed optical setup to generate different pure and hybrid 
vector beams and study Gouy phase effects. A SPP and the lens are encoded on the LCoS-
SLM. The CCD camera is kept in a fixed position and the phase mask in the SLM is virtually 
displaced using a propagation algorithm. (b) Results for the propagation of the radially 

polarized beams with charges ( , )
R L

=  (−1, −3), ( +1, −1) and (+3, +1). The analyzer is 

vertically aligned in all cases. 

Then, in order to avoid moving the detector, we applied a technique consisting in virtually 
shifting the axial location of the lens by calculating the corresponding Fresnel diffraction, and 
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displaying it onto the SLM [31,32]. Applying a fast Fresnel algorithm [33] it is possible to 
virtually translate the lens and adjust the position of the focused beam relative to the detector 
position. Therefore, the same experiments presented in the previous subsection can be 
performed, but now no element is moving, and all variations are controlled by the SLM. Note, 
however, two changes with respect to the setup in Fig. 3(a). First, the position of the CCD 
detector must be changed, since we use the same value (100 cm) for the focal length for the 
focusing lens, but now it is located on the SLM. Second, and more relevant, now the beam 
impinging the q-plate is already converging. 

Despite the slightly converging beam incident on the q-plate, Fig. 5(b) shows results 
equivalent to those presented in Fig. 3(b) and simulated in Fig. 4. We first located the beam 
waist when the regular spiral lens (with focal length of 100 cm) is displayed onto the LCoS-
SLM. Then, in order to shift the location of the waist, we applied the fast Fresnel propagation 
algorithm to the spiral lens, and displayed the new propagated field onto the SLM. Note that 
both positive and negative propagation distances can be encoded this way. Therefore, we 
were able to displace the beam waist and experimentally reproduce the results in Fig. 3(b) 
without having to move the detector. We applied the same propagation distances as measured 
in Fig. 3(b) and in the simulations. Note the excellent agreement between the results in Fig. 
5(b) and Fig. 3(b). This verifies the procedure without moving elements as a very useful way 
of experimentally investigating these Gouy phase effects. 

6. Conclusions 

In summary, we have considered a simplified optical system to generate pure and hybrid 
vector beams, based on the use of a q-plate and an LCoS-SLM. The ability to program 
different spiral phases on the SLM allows easily changing the topological charges encoded 
onto the vector beam and compare in a simple manner the polarization patterns and the 
corresponding intensity patterns when projected onto an analyzer. 

This system is then applied to compare the propagation of pure and hybrid vector beams. 
We have provided a physical insight of the beam polarization transformations upon 
propagation based on the Gouy phase difference between the RCP and LCP components. This 
phase difference can be regarded as an optical activity effect that rotates the polarization as 
the beam propagates. Although the present analysis is only an approximation, it is very useful 
to obtain a very simple but with still quite good accurate description of the polarization 
transformation. A more complete description of these kind of transformations can be found 
for instance in [43]. 

Experimental results were presented where we capture different axial planes by physically 
moving the focusing lens. These results were corroborated by numerical simulations. The 
polarization rotation of the hybrid vector beams approximately follows the classical arctan 
term ( )zζ  of the Guoy phase. The exact polarization rotation angles depend on the encoded 

charges of the hybrid vector beam and on the input beam width. Nevertheless, this 
approximation provides a comprehensive description of the propagation dynamics and 
polarization transformation of these beams. 

Finally, we have shown an alternative and very convenient optical setup, devoid of 
moving elements, to experimentally evaluate Gouy phase effects. It is based on a codified 
Fresnel propagation of a spiral lens (combination of a SPP and a focusing lens) encoded onto 
the SLM. This way we can change the focusing of the output beam from a computer without 
moving any element. 
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