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Abstract
It is well-known that each new video coding standard significantly increases in com-
putational complexity with respect to previous standards, and this is particularly true 
for the HEVC and VVC video coding standards. The development of techniques for 
reducing the required complexity without affecting the rate/distortion (R/D) per-
formance is therefore always a topic of intense research interest. In this paper, we 
propose a combination of two powerful techniques, deep learning and parallel com-
puting, to significantly reduce the complexity of the HEVC encoding engine. Our 
experimental results show that a combination of deep learning to reduce the CTU 
partitioning complexity with parallel strategies based on frame partitioning is able 
to achieve speedups of up to 26× when 16 threads are used. The R/D penalty in 
terms of the BD-BR metric depends on the video content, the compression rate and 
the number of OpenMP threads, and was consistently between 0.35 and 10% for the 
video sequence test set used in our experiments
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1 Introduction

The high-efficiency video coding (HEVC) standard was launched in 2013 [9] by 
the Joint Collaborative Team on Video Coding (JCT-VC). Although HEVC can 
compress a video sequence using half the bitrate of its predecessor, this perfor-
mance improvement comes at the expense of an increment in the computational 
cost [1].

Great efforts have been made to speed up the encoding process. Several works 
in the literature have tried to reduce the coding time using modern hardware 
accelerators [2–8]. In [6, 8], computation of the motion estimation (ME) was 
moved to the GPU, since in the same way as for previous video standards, ME 
is the most complex task undertaken by the encoder, requiring more than 90% of 
the encoding time [9]. In [2, 4, 7], the ME process was accelerated using a similar 
approach based on FPGAs. In other approaches, various coding processes have 
been moved to the FPGA, such as the 2D-DCT with variable size [3], the intra-
frame prediction process [5], and the CABAC entropy encoder [10].

Other works in the literature have used parallel computing strategies to reduce 
the overall complexity of HEVC encoding, and to take advantage of the multi-
core processors available in modern HPC servers in order to speed up the over-
all encoding time for a video sequence [11–16]. There are also several other 
approaches, which typically depend on the selected parallelisation strategy (tem-
poral or spatial) and the level at which parallelism is applied (fine, medium, or 
coarse). For example, in [15], the authors applied a fine parallelism scheme to 
reduce the complexity of the HEVC Sample Adaptive Offset (SAO) in-loop filter, 
and obtained an speedup of 1.9× , while in [14], the authors employed a temporal 
parallelism approach based on wavefront parallel processing which consisted of a 
special type of pipeline processing for the Coding Tree Units (CTUs) of a given 
frame when several computing OpenMP computing threads were available. The 
latter approach obtained an speedup of 5.5× using 20 cores, with a BD-rate [17] 
increment of 1.2%. In [12], a higher-level parallelisation scheme (at the frame 
level) was proposed based on the partition of each frame using tiles (a new fea-
ture available in HEVC). In this approach, a maximum speedup of up to 9 × was 
obtained for the all intra (AI)-coding mode using 10 cores. The study in [16] pre-
sented a thorough analysis of the need to adaptively evaluate the workload of the 
different tiles in order to determine the best CTU partitioning is presented. In 
[13], the authors developed a parallel HEVC encoder using frame-level parallel-
ism by means of slices rather than tiles, obtaining speedups of up to 9.3× and 
8.7× for the AI and Random Access (RA) coding modes, respectively. In [11], a 
coarse-grained parallelisation scheme was presented (at the sequence level), in 
which different groups of pictures could be independently encoded by several pro-
cessing nodes. This parallel approach was well-suited to the distributed memory 
architectures of modern federated clusters, and obtained speedups of up to 11.84× 
using 12 cores for the RA coding mode, with a BD-rate increment of 1.3%.

Finally, there are other works that have focused on optimisation of the source 
code of specific parts of the HEVC encoder [18–24]. In [18, 19], a pre-analysis 
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technique was proposed to reduce (a) the size of the search area; (b) the number 
of reference frames in the inter-frame prediction; (c) the number of intra-predic-
tion modes; and (d) the number of best candidates for the intra-frame prediction 
process. This approach achieved a 49% reduction in coding time on average for 
the RA coding mode with an average BD-rate increment of 1.08%. In [21], the 
authors developed a fast decision method to perform efficient asymmetric mode 
partition, thus reducing the computational complexity. They also proposed an 
adaptive motion search area estimator to reduce the overall inter-coding complex-
ity even further. Their results demonstrated that their algorithm could reduce the 
encoding time by 31.37% in the RA coding mode with a negligible BD-rate incre-
ment. In [20], the authors reported on a fast decision mode based on CABAC rate 
estimation with a coding time reduction of 15%, while in [22], a fast CTU parti-
tioning algorithm was developed in which the CTU texture was used to prune the 
CTU quad-tree structure. The results proved that the proposed fast coding unit 
(CU) partitioning algorithm yielded savings of 41% in the encoding time on aver-
age, with a BD-rate increment of 0.69%. In [23], a decision tree-based algorithm 
for CTU partition was presented. The authors implemented three decision trees 
classifiers for all the three depths of the CU partition. However, the thresholds 
required by this algorithm needed to be selected manually. This technique was 
able to reduce the encoding time by 42.1% on average, with a BD-rate increment 
of 0.7%. The authors of [24] proposed a Bayesian decision rule for an early ter-
mination CU algorithm. This Bayesian decision rule was used to estimate a like-
lihood function and the prior probability of a new scene. The model was then 
updated for the following frames, to predict the CU size. Although the proposed 
model had a negligible training time compared with other machine learning mod-
els, its accuracy depended on the particular scene, making it inaccurate. The 
results showed that an average reduction in coding time of 36% could be achieved 
with a BD-rate increment of 1.08% for the AI coding mode.

With regard to source code optimisation techniques, several authors have devel-
oped deep learning approaches to reduce the complexity of the HEVC encoder 
[25–33]. For example, to reduce the complexity of inter-mode prediction in the 
Low Delay B coding mode (LB), Zhang et  al. [29] proposed a coding unit (CU) 
depth decision algorithm with a three-level joint classifier based on a support vector 
machine (SVM), which predicted the splitting of CTUs based on as a three-level of 
hierarchical binary decision problem. The proposed algorithm was able to reduce the 
encoding time by 51.45% on average, with a BD-rate increment of 1.98%. For the 
intra-coding mode, Liu et al. [26] developed a convolutional neural network (CNN) 
approach that predicted the CTU partitioning, thus reducing the coding time by 72% 
on average, with a BD-rate increment of 4.79%. The authors of [28] proposed a 
CNN-based algorithm for predicting the CU size for both inter- and intra-prediction 
coding using CNN models, where the quantisation parameter (QP) was used as one 
of the inputs to the classifier. In this scheme, reductions in coding time of 66.47% 
and 62.94% were achieved for the intra- and inter-coding modes, respectively. In 
[31], the authors developed a CNN-based algorithm to extract texture and objects 
location features, which were used with a Softmax classifier to predict the CU 
size. The results showed a reduction in the coding time of 66.89%, with a BD-rate 
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increment of 1.31% for the AI coding mode. In [32], the researches proposed a fast 
CU size decision algorithm based on a CNN architecture, where four CNNs were 
used as classifiers at each of the four depths to make a decision (splitting or non-
splitting) for the given QP. The pruning algorithm achieved a coding time reduction 
of 77% with a BD-rate increment of 3.1% on average for the AI coding mode. The 
authors of [33] presented CtuNet, a CNN approach that predicted CTU partition-
ing. The CtuNet framework consisted of three CNN networks for the CU sizes of 
64 × 64 , 32 × 32 , and 16 × 16 , with a residual network (ResNet18) [34] as the back-
bone model. This model obtained reductions in the coding time of 63.68% with a 
BD-rate increment of 1.77% on average, for the AI coding mode.

Recently, Çetinkaya et al. [35] have published a survey of CTU depth decision 
algorithms that covered classical statistics-based algorithms to modern advanced 
deep learning algorithms such as deep neural networks. In another recent paper, 
Wang and Li [36] designed a one-stage decision network(OSDN) structure to 
determine the CU/PU partition and prediction mode for intra-coding. Their exper-
imental results showed that the proposed method could reduce the intra-encoding 
time by 73.69%, with a BD-PSNR loss of 0.1673 dB on average.

The most important contributions of the present work are as follows: 

1 A hybrid HEVC encoder that combines two different acceleration strategies based 
on parallel computing and source code optimisation techniques is designed and 
developed. The first acceleration technique is a parallel scheme that uses a domain 
decomposition model based on HEVC slice partitioning, which is particularly 
suitable for exploiting the shared memory parallelism of multicore processors. 
The second technique uses optimisation methods at the CTU level to reduce the 
complexity of the quad-tree splitting process by means of a CNN.

2 The benefits of our hybrid solution are demonstrated, and it is shown to be fully 
compliant with the HEVC standard, to give good encoding performance for the 
HEVC, and to achieve outstanding speedups.

3 The hybrid proposal also includes extra parallelisation of the additional process-
ing steps required by the machine learning-based acceleration approach.

The remainder of this paper is organised as follows. In Sect. 2, we explain the deep 
learning approach used to predict the CU partition and the slice-based parallelism 
strategy. Sect.  3 describes the proposed hybrid approach for improving the speed 
of the HEVC coding stage, and in Sect. 4, experimental results from the proposed 
hybrid algorithm are presented. Finally, in Sect. 5, some conclusions are drawn.

2  Related work

In this section, we explain the main features of the techniques used in this work 
to create the hybrid acceleration scheme in order to significantly improve the 
speedup of the HEVC encoding process.
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2.1  Neural network algorithm

The HEVC algorithm reduces the bit rate of the encoded video at the cost of a con-
siderable increase in the encoding complexity. One of the most time-consuming 
process is the decision on the optimal quad-tree partitioning of each CTU. To find 
an optimal CTU partitioning from the 83522 possible partitions (see [35]), HEVC 
searches 85 CUs with different sizes ranging from 64 × 64 to 8 × 8 pixels. In addi-
tion to finding the correct CU depth structure, the prediction unit (PU) modes and 
the transform unit (TU) partitioning must be properly determined for each CU. Thus, 
the search for the optimal CTU structure requires the largest amount of time in the 
encoding process [37], since it uses a brute force approach to find the one with the 
minimum rate-distortion (RD) cost.

Several schemes for reducing the computational cost of the CU partition have 
been reviewed in Sect. 1, some of which reduce the complexity of the algorithm at 
the cost of an increase in bit rate to maintain the reconstructed video quality; others 
replace the brute force search for R/D optimisation (RDO) with a deep neural net-
work that is trained to estimate the CTU partitioning. Of the numerous complexity 
reduction schemes based on deep learning that have been proposed, we highlight the 
one presented by Xu et al. [28]. The main factors that differentiate this proposal from 
the alternatives involve the definition of a hierarchical CU partition map (HCPM) 
to represent the CU partition. Given sufficient training data and an efficient HCPM 
representation, the authors propose a deep CNN structure called an early-terminated 
hierarchical CNN (ETH-CNN) that can be trained to explore various patterns for the 
CTU partition and thus reduce the complexity of the HEVC coding process.

A CTU has a size of 64 × 64 pixels by default, and can either contain a single CU 
or be recursively split into multiple smaller CUs, based on the quad-tree structure 
shown in Fig. 1.

In the CU partition structure in HEVC, four different CU sizes are supported by 
default; these are 64 × 64 , 32 × 32 , 16 × 16 and 8 × 8 , corresponding to four CU 
depths of 0, 1, 2 and 3. For a coding unit U, the first-level binary label y1(U) indi-
cates whether U is split (= 1) or not (= 0). If U is split, its sub-CUs of depth one are 

(a) (b)

Fig. 1  Example of CTU quad-tree structure defined in HEVC
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denoted as {Ui}
4

i=1
 . As stated above, in HEVC, the binary labels for splitting each 

CU are obtained using a time-consuming RDO process, but these can be predicted 
faster via a deep learning algorithm using a simple multi-class classification in one 
step call (ETH-CNN). Note that the input CTU is extracted from raw images, and 
only the Y channel is used in ETH-CNN. The structure of ETH-CNN consists of 
two pre-processing layers, three convolutional layers, and one concatenating layer 
[28]. Using this ETH-CNN structure, the model is trained to minimise the R/D loss 
function (see Equation (2)), and can finally be used to predict the CTU partitioning 
in the form of HCPM. For each training sample r the loss function LFr sums the 
cross-entropy over all valid elements of HPCM (see Equation (1)).

where 
{

ŷr
1
(U), ŷr

2
(Ui)

4

i=1
, ŷr

3
(Ui,j)

4

i,j=1

}NoTS

k=1
 are the labels of the hierarchical CU parti-

tion map predicted by ETH-CNN and r represents the number of training samples 
(NoTS). Moreover, H(y, ŷ) is the cross-entropy between the ground-truth (y) and the 
predicted labels ( ̂y ). The proposed ETH-CNN model is trained by optimising the 
global loss function (LF) shown in Equation (2).

Given an input CTU, ETH-CNN provides the splitting probabilities at each level 
P1(U) , P2(Ui) and P3(Ui,j) for the binary labels y1(U) , y2(Ui) and y3(Ui,j) , to predict 
the CU partitioning. In general, a decision threshold �l = 0.5 is set for levels 1, 2 and 
3. Hence, a CU with Pl(U) > 𝛼l is split into four sub-CUs. The author of [28] also 
provides a convolutional network for inter-coding called ETH-LSTM. However, as 
our proposal is focused on the intra-coding we will use the ETH-CNN network spe-
cially developed for intra-coding.

2.2  Slice‑based parallel algorithm

The HEVC standard allows each frame of a video source to be segmented into a 
set of CTUs, each of which can be configured as an independent block that can be 
encoded in parallel. The HEVC standard offers two options for dividing the video 
source to be encoded into independent sets of CTUs: slice and tile partitioning. 
Slices are sets of correlative CTUs where the number of CTUs in each set are the 
same for all slices (except where necessary for the last slice containing the CTUs 
in the lower right-hand corner of the frame). In the HEVC standard, the number of 
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CTUs per slice needs to be established. The sizes of the slices (in terms of the num-
bers of CTUs) will determine the number of slices in each frame, depending on both 
the resolution of the video sequence to be encoded and the size of the CTUs. Note 
that each CTU is a square set of pixels for which the size is set to 64 × 64 pixels, as 
specified in the HEVC common test conditions [38].

As each slice contains a data header, it can be decoded independently of the oth-
ers, even if the data from the others are not available when decoding. Since the size 
of the header can affect the compression ratio (i.e. the number of bits per pixel in 
the compressed bit stream), the number of slices in the proposed parallel algorithm 
should be established with care, in order to avoid an excessive bitstream overhead 
(see [39]). Each encoding process calculates the slice size, expressed in number of 
CTUs, depending on (a) the number of CTUs in a frame; (b) the identification of 
the encoding process 

(

IEP
)

 ; and (c) the total number of available encoding processes 
(

NEP

)

 , as indicated in Algorithm 1. The size of the last slice (in the lower right-hand 
corner) is either equal to or smaller than the rest of the slices, and its size 

(

SSlice
)

 is 
determined based on the number of processes according to Algorithm 1.

The slice partitioning process in Algorithm 1 aims to achieve a balanced computa-
tional load, in which domain decomposition is performed to assign each process the 
same (or a similar) amount of data. Note that if the computational load assigned to each 
process is evaluated based on the number of CTUs in a frame 

(

NCTUs

)

 it is only possi-
ble for the encoding process of the last slice to have an imbalanced computational load. 
Depending on the video sequence resolution to be encoded, there may also be CTUs 
at the right-hand or bottom edges of a frame with fewer than 4096 (64 × 64) pixels. 
Figure 2a and b show two different partition schemes for encoding a video sequence 

(a) (b)

Fig. 2  Slice partitioning of a 832 × 480 frame
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of size (832 × 480) pixels, where the total number of CTUs is 104 (13 × 8) . Figure 2 
shows partitioning into two slices of 52 CTUs each, while Fig. 2 shows partitioning 
into six slices, where the first five slices contain 18 CTUs each and the last slice con-
tains 14. In the last slice, only the first CTU has 4096 (64 × 64) pixels, and the remain-
ing 13 CTUs have only 2048 (64 × 32) pixels.

Once the slices have been assigned to the processes, each process must encode the 
CTUs contained in the assigned slice, and for each CTU, the quad-tree structure must 
be computed using the brute force R/D algorithm as described in Sect. 2.1.

In order to significantly reduce the computing time of the HEVC encoding process, 
we propose a hybridised scheme that includes both a deep learning approach to predict 
the CU partition and a parallel processing scheme based on slice partitioning, and this 
is described in the next section.

3  Hybrid acceleration proposal

The deep learning algorithm described in Sect. 2.1 and the slice-based parallel algo-
rithm in Sect. 2.2 can be complemented by allowing for parallelisation and pre-calcu-
lation of CTU partitioning through deep learning. A general flowchart for the proposed 
hybrid algorithm is shown in Fig. 3. The sliced parallel algorithm is represented using 
red boxes, while the blue ones represent the contribution from deep learning. In the first 
step, all of the OpenMP threads read the configuration parameters and encode a set of 
frames depending on the total numbers of frames and threads. Each thread computes 
the HCPM for all the CTUs in the assigned frame set, and the partition map is stored 
in memory so that it can be accessed by all threads when the CTU partitioning tree is 
computed for a given slice. Once all the HPCMs have been generated and saved in a 
concurrent manner (which yields an improvement in computation time compared to 
other approaches), all threads are synchronised to encode each frame. In this sense, the 
slice-based parallel algorithm is applied at a higher level. As shown in Fig. 3, only the 
master thread reads the new frame to be encoded, in order to reduce both the number 
of disk accesses and the memory requirements. The frame to be encoded will there-
fore be stored in the shared memory, and will be accessed only for reading. In fact, 
each thread will only access those CTUs that are part of the slice to be encoded by it. 
The prediction for the CTU partition obtained from the deep learning approach is used 
when coding the set of CTUs for the slice assigned to each thread. When each thread 
has encoded the slice assigned to it, it writes its bit stream into the final bit stream, and 
this process must be done in the right order, as shown in Fig. 3. Hence, thread 0 is the 
first to become idle after storing its computed part of the bitstream. This thread can 
then start reading or receiving the new data, while the rest of the OpenMP threads fin-
ish writing to the bitstream.
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4  Experimental results

In this section, we present the results of a set of experiments carried out to validate 
the effectiveness of our proposal are presented. To evaluate the intra-frame coding 
performance of our hybrid scheme, we compare the slice-based parallel approach 
proposed in [13], the deep learning approach proposed in [28] and the proposed 
hybrid approach. All three methods are based on the HEVC reference software 
HM version 16.3 [40] (which was used as a benchmark), and the AI configuration 
was applied using the default configuration file encoder_intra_main.cfg. 
Four QP values (22, 27, 32, 37) were chosen for compression of the selected video 
sequences as recommended by the HEVC common test conditions [38]. All experi-
ments were conducted on a server with two processors (Intel(R) Xeon(R) Gold 6140 
@ 2.30 GHz) with 18 cores per processor, 400 GB RAM, four Tesla P100-PCIE 
GPUs and CentOS Linux release 7.6.1810 as the operating system. For the deep 
learning approaches, we used TensorFlow 1.8 with GPU support for CUDA 9.1 and 

Fig. 3  Hybrid parallel algorithm
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cuDNN 7.1 is used. The trained neural networks considered in the experiments were 
provided by the authors of [28]. Eleven video sequences from the JCT-VC stand-
ard test set [38] were used to evaluate and compare our method, as summarised in 
Table 1.

Table 2 shows the speedup and Bjontegaard delta bit rate (BD-BR) [41] obtained 
for the Class A video sequences using the schemes in [13, 28] and our proposed 
approach (Prop.). The time reduction is expressed based on the speedup as an accel-
eration measurement in order to directly relate the coding latency to the number of 
OpenMP threads (Th.) used. All the speedups and the values for the BD-rate were 
obtained with respect to the reference software, HM version 16.3 [40].

The experimental results from the deep learning approach were similar to those 
obtained by the authors of [28]; for example, for the Traffic sequence, a reduction of 
a 73.7% in the execution time was achieved for QP = 37, corresponding to an aver-
age speedup of 3.7× . The OpenMP approach described in [13] gave speedups of up 
to 14.65× for 16 threads for same video sequences, with an efficiency of 75% (where 
efficiency is defined as the ratio of useful work to the resources expended by each 
thread in each core). This was as expected, since a slice-based distribution is more 
efficient for higher-resolution video sequences where the computational load can 
be equally distributed, as described by the authors of [13]. The proposed approach 
which combines both strategies is able to considerably reduce the coding times. For 
example, for the BQMall Class C video sequence encoded with QP = 37, a speedup 
of 37.9× was achieved for 16 threads. These results clearly show that a combination 
of slice-based parallelisation with a reduction in complexity from deep learning can 
provide significant levels of acceleration for HEVC intra-frame coding, which are 
greater than the accelerations obtained by the schemes in [28] and [13] (2.96× and 
14.12× , respectively). In a practical scenario where the speed of intra-coding is deci-
sive, the proposed solution offers a much higher performance than all the proposals 
described in Sect. 1.

The reduction in the complexity of the HEVC intra-frame coding mode is 
achieved at the expense of a loss of R/D performance. Tables 2 , 3, 4 and 5 show the 
values of BD-BR used to evaluate the R/D performance of the proposed scheme and 
the other two alternatives [13, 28]. As expected, the BD-BR for our hybrid proposal 
is approximately the sum of the penalties obtained by the approaches in [28] and 
[13]. For example, it can be seen from Table 5 that for QP = 37, the algorithm pro-
posed in [28] shows an increase in the BD-rate of 1.43% for RaceHorses, whereas 
the penalty obtained by the algorithm proposed in [13] is 1.76% for 16 threads. 

Table 1  Test video sequences

Class Size Sequence Frame rate

A 2560 × 1600 PeopleOnStreet, Traffic 30fps, 30fps
B 1920 × 1024 BasketballDrive, BQTerrace, Cactus 50fps, 60fps, 50fps
C 833 × 488 BasketballDrill, BQMall, PartyScene 50fps, 60fps, 50fps
D 384 × 192 BlowingBubbles, BQSquare,RaceHorses 50fps, 50fps, 50fps
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Finally, our hybrid model has a penalty of 3.22% for the BD-rate. From an analysis 
of these results, it can be concluded that deep learning and parallelism do not inter-
fere with or cancel each other out in terms of the video quality.

In Fig 4, we show the speedup behaviour of the three schemes under evaluation 
as the number of the working threads increases, for three different Class B video 
sequences encoded with a QP value of 22. For the deep learning approach, the 
speedup is constant, as it does not use threads, whereas for the slice-based approach, 
we find an speedup progression that indicates good scalability behaviour, which is 
maintained for our hybrid proposal.

Finally, Table  6 shows the R/D performance results and the time reductions 
achieved by several schemes in the literature and the approach presented in this 
work. These results show that our scheme is able to achieve the greatest time reduc-
tions, with values that are consistently above 90%, and R/D performance losses of 
under 5% on average. However, if the increase in bitrate is unacceptable, a slower 
configurations may be chosen (with a lower number of threads), but with a minor 
R/D loss.

5  Conclusions

In this paper, we present a powerful technique to accelerate an HEVC encoder in 
the intra-frame coding mode. Our scheme combines two different approaches and 
exploits their characteristics to reap the benefits of both, and can considerably 
increase the speedup. Our proposed algorithm combines a slice-based parallel pro-
posal for shared memory systems, with a deep learning approach. Although each 
scheme obtains a significant speedup when applied separately, a combination of 
both approaches considerably accelerates the HEVC encoder and achieves time sav-
ings of more than 90%. Our experimental results show a coding acceleration of up 
to 35× . There have been many attempts in the literature to speed up intra-encoding 
in HEVC, but they have not been jointly exploited. Our scheme achieved an accel-
eration of 35× with regard to the reference software, without the need for additional 
hardware. However, this acceleration was obtained at the expense of a loss of R/D 
performance. In our experiments, the maximum BD-rate penalty was 10.14% and 
the minimum was -0.9%. It was found that the two base algorithms did not interfere 

(a) (b) (c)

Fig. 4  Speedup behaviour versus number of threads for the approaches in [13, 28] and the proposed 
scheme
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with each other, as the results for the BD-rate obtained by the hybrid algorithm were 
approximately the sum of the penalties of both algorithms.

Due to the high level of computational complexity of the newest video coding 
standards, hybrid approaches that combines different acceleration techniques will 
be necessary in order to reduce the computational requirements. As a future line of 
research, we plan to use two levels of parallelisation based on heterogeneous plat-
forms (shared and distributed memory) in order to get closer to real-time encoding 
with no change in the coding performance.
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