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Abstract—Human Activity Recognition poses a significant
challenge within Active and Assisted Living (AAL) systems,
relying extensively on ubiquitous environmental sensor-based
acquisition devices to detect user situations in their daily living.
Environmental measurement systems deployed indoors yield
multiparametric data in heterogeneous formats, which presents a
challenge for developing Machine Learning-based AAL models.
We hypothesized that anomaly detection algorithms could be
effectively employed to create data-driven models for monitor-
ing home environments and that the complex multiparametric
indoor measurements can often be represented by a relatively
small number of latent variables generated through Manifold
Learning (MnL) techniques. We examined both linear (Principal
Component Analysis) and non-linear (AutoEncoders) techniques
for generating these latent spaces and the utility of core domain
detection techniques for identifying anomalies within the result-
ing low-dimensional manifolds. We benchmarked this approach
using three publicly available datasets (hh105, Aruba, and Tulum)
and one proprietary dataset (Elioth) for home environmental
monitoring. Our results demonstrated the following key findings:
(a) Nonlinear manifold estimation techniques offer significant
advantages in retrieving latent variables when compared to linear
techniques; (b) The quality of the reconstruction of the original
multidimensional recordings serves as an acceptable indicator of
the quality of the generated latent spaces; (c) Domain detection
identifies regions of normality consistent with typical individual
activities in these spaces; And (d) the system effectively detects
deviations from typical activity patterns and labels anomalies.
This study lays the groundwork for further exploration of
enhanced methods for extracting information from MnL data
models and their application within the AAL and possibly other
sectors.

Index Terms—Autoencoders, Deep Learning, Human Activity
Recognition, Anomaly Detection, Sensors, Active and Assisted
Living, Latent Spaces.

I. INTRODUCTION

AGEING POPULATION in developed countries is one of
the biggest challenges for our society during the last

decades. A moderate growing trend of the aged population
(65 years and over) was identified between 1950 (11%) and
2000 (18%), but this trend will rise dramatically by 2050
when it reaches 38% [1]. The increasing number of elderly
care services expends many social resources from national
health care systems. One of the most known is the support of
initiatives related to Active and Assisted Living purposes, with
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the primary goal of providing necessary services for senior
citizens at a manageable cost [2], through the deployment and
use of technological solutions focused on promoting elderly
independence and providing new intelligent functionalities for
helping them on their daily living needs. It is feasible to come
across research concerning Ambient Assisted Living (AAL),
which involves using a platform that incorporates an array
of sensors and devices to observe the health and welfare of
senior citizens [3]. Furthermore, some undertakings strive to
devise an all-inclusive remedy for the AAL of older people,
which entails a platform that blends various sensors, devices,
and services to furnish bespoke assistance to them [4]. Human
Activity Recognition (HAR) plays a significant role in human-
to-human interaction and interpersonal relations. The human
ability to recognize another person’s activities is one of the
main subjects of study in the scientific areas of computer
vision and machine learning (ML) [5]. The goal of HAR
is to automatically detect and analyze human activities from
the information acquired from sensors, e.g., a sequence of
images, either captured by RGB cameras, range sensors, or
other sensing modalities [6]. Current AAL systems often face
the challenge of processing a wide variety of multiparametric
data from environmental measurement systems: temperature,
humidity, and light intensity by environmental sensors, while
wearable sensors continuously measure respiration, pulse, and
movement signals from gyroscopes and accelerometers to
monitor daily activities such as sitting, walking, going upstairs
and downstairs, standing, or resting [7], [8].

This diversity and density of measurements are often being
tackled in terms of ML and Deep Learning (DL) methods
nowadays, which often follow a classification problem state-
ment regarding different activities to be recognized. Recent
reviews on DL techniques for HAR with sensors suggest
that efficient methods are emerging [9], [10]. However, inter-
pretability is more complex in them. Another type of problem
solved with data-based models in AAL is anomaly detection.
Changes in typical patterns of daily activities are defined as
anomalies, and data models aim to infer when a given pattern
is notably different from the ones observed before. Linear
dimensionality reduction techniques have been used in this
setting, for instance, with conventional methods such as Prin-
cipal Component Analysis (PCA) [11]. AutoEncoders (AE)
architectures have been proposed [12] for anomaly detection
in smart home systems, and they have given promising results.
Interestingly, in this and other DL works, anomaly detection
is often addressed in terms of the error reconstruction of the
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Fig. 1. The proposed system block diagram on the ML Procedure includes dimensionality reduction (encoder), anomaly detection (in the latent space), and
reconstruction of the input (decoder). The machine learning core consists of two main components: the encoder, which maps the input into a low-dimensional
latent space, and the decoder, which maps the small space into the reconstruction of the original input. Anomalies are assumed to be deviations of the mapping
of an input vector from their usual manifold in the latent space.

input at their output. Still, again, the interpretability that could
be achieved from the bottleneck of these structures needs to be
explored. We can note here that AE can be seen as a Manifold
Learning (MnL) method when we work only with the encoder
component after training them. MnL methods are considered
a subgroup of nonlinear dimensionality reduction procedures
[13]. They are used assuming that high-dimensional data
can be projected onto a low-dimensional latent space, whose
variables represent the essential information of the original
data set.

Whereas MnL techniques are often used for visualization
purposes in ML and DL, anomaly detection algorithms could
be used for creating models for home environmental mon-
itoring, and multiparametric indoor measurement recordings
could be represented by a moderate number of latent variables
generated by MnL techniques. This way, sensor anomalies
could be successfully detected to the security and functionality
of the various sensors and devices. Therefore, we hypothesized
that in-home sensor data and some algorithms would be able
to capture subtle changes in usual patterns of daily activities
that reflect early indicators of atypical situations, thus allowing
generated alerts to be further scrutinized in AAL systems. For
this aim, we implemented and benchmarked several anomaly
detection algorithms based on low-dimensional representations
of AAL recordings. We tested the different methods on several
publicly available sensor HAR datasets (hh105, Aruba, and
Tulum [14]) and on a home environmental setting with people
in their living environments and the presence of integrated
sensors at the so-called Elioth platform. Therefore, this work
presents a novel system capable of detecting anomalies in daily
living activities based on home sensor network registers.

II. METHODS

Our proposed system can be divided into three main parts:
database processing, dimensionality reduction, and anomaly

detection (see Figure 1). The notation is as follows. We have
an environment E for which a number of L measurements are
monitored with time, this is,

mE
l (t), l = 1, · · · , L (1)

where mE
l denotes the lth signal in time taking place in

environment E. Different sampling periods can be used for
each signal (Tl) so that after digitizing and sending, we store
the following digitized recordings:

mE
l [n] = ml(nTl), n = 0, · · · , Nl − 1 (2)

where mE
l [n] denotes the time-sampled version of the corre-

sponding time signal, and Nl − 1 is the number of samples
available in the digitized recording.

A. Databases and Preprocessing

We tested our method in four environments, three from pub-
licly available repositories and one sustained by the research
group at CETEM. Their characteristics are explained next.

Human Activity Recognition from Continuous Ambient
Sensor Data (hh105) is a publicly accessible dataset available
through the WSU CASAS repository [15]. This dataset covers
five years, starting from June 2011 and ending in March 2017.
To focus our study on the daily routines of House hh105, we
specifically selected two months of data. From the extensive
dataset, we narrowed our focus to data collected in the toilet,
which includes sensors for light, temperature, and presence, as
well as data from the kitchen, equipped with light and presence
sensors. For a visual representation of the house layout and
the positions of various sensors, see Figure 2.a.

Aruba is publicly available via the WSU CASAS repository
[15]. This dataset covers a period of one year, extending
from June 2016 to July 2017. Specifically, we have selected
a two-month segment for an in-depth examination of the
daily routines within House Aruba. This dataset has gained
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(a) (b) (c)
Fig. 2. House maps and their sensor positions for different datasets used. (a) shows the Human Activity Recognition from Continuous Ambient Sensor Data
in the hh105 house, (b) shows the Aruba house, and (c) shows the Tulum house. Sensors labeled as MXXX refer to movement sensors, MAXXX refer to
movement area sensors, and TXXX refer to temperature sensors. The other labels are not taken into account for this work.

recognition as one of the most frequently employed sensor
datasets for assessing Human Activity Recognition (HAR)
[14]. From this extensive dataset, we have focused on the data
originating from the principal room, encompassing sensors
monitoring temperature, movement, and presence. For a visual
representation of the house layout and the various sensor
placements, please consult Figure 2.b.

Tulum is a publicly accessible resource found within the
WSU CASAS repository [15]. This dataset encompasses a
timeframe of six months, ranging from September 2009 to
March 2010. Specifically, we have selected a two-month
segment to examine the daily routines within House Tulum
closely. This dataset has garnered recognition as one of the
most frequently utilized sensor data collections for assessing
Human Activity Recognition (HAR) [14]. Within this exten-
sive dataset, our focus is directed toward data originating from
the principal room, where sensors are deployed to monitor
temperature, movement, and presence. To gain insight into the
layout of the house and the placement of various sensors, refer
to Figure 2.c.

Elioth Environment. These databases have been selected
to align with the main objective of the Elioth project, namely,
the monitoring of older people to detect anomalies that can
harm their health. For this reason, the selected databases
collected data from homes where only one or two residents
live. Elioth is a proprietary database collected during Elioth
project. The data originates from 6 data acquisition devices
(Elioth Sensor Devices) deployed in three homes (single-
resident households). In each house, two data acquisition
devices were set up, one in the living room and another in
the main bedroom. However, our study exclusively utilizes
the data collected from House-1 during 36 consecutive days
(ensuring a comprehensive and longitudinal dataset for our
analysis).

In House-1, two data acquisition devices were deployed
(Sofa-1 and Bed-1). Sofa-1 is located in the living room,
precisely mounted on the wall next to the sofa and very close
to a natural lighting window. Bed-1 is in the house main
bedroom, attached to the wall near the bed’s headboard. There

are two main acquired data types:
• Event Based-Data: real-time sensor data associated ex-

plicitly with both occupancy and non-occupancy events
detected on the couch and bed within the monitored
environment.

• Periodical Ambient Monitoring Based-Data: real-time
and periodic data from sensors related to ambient vari-
ables, including humidity, temperature, and lighting lev-
els.

The Elioth Sensors Device enables seamless and non-intrusive
monitoring of users in their home environment. One simply
has to place the device in a fixed location and connect it to a
power source and a WiFi data network (see Figure 3).

Preprocessing. The preprocessing stage is composed of two
main parts. The first part involves extracting and curating
different datasets, while the second part includes data normal-
ization. Once the data are loaded, we need to apply resampling
to equalize the different sampling frequencies of each sensor
and dataset.

After conducting several tests, the data were reinterpolated
to handle time resolution with one-day windows spaced every
Ts = 10 minutes, resulting in a window size of 721 samples
(144 samples per day, with each group representing 5 days).
This yielded the following signal notation:

mE
l [n] = ml(nTs), n = 0, · · · , Nl − 1 (3)

Additionally, we included the timestamp in hours as a new
signal, which can be denoted as

mE
t [n] = n, n = n0, · · · , Nt − 1 (4)

where n0 and Nt − 1 are reset and synchronized with zero
at midnight. Note that this variable represents a relative time
index that can be subsequently used as input for a daily
temporal reference.

On the other hand, it was observed that the variables related
to the presence or movement, when incorporated into the
analysis directly, without transformation, did not expressively
contribute to the final results in the presence of other variables
or isolation. In this second case, it was observed that they
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Fig. 3. Sensor node block diagram shows the components that collect, process, and transmit data from a physical environment. The Elioth device has Bluetooth
and Wi-Fi capabilities for local configuration and data transmission to an external or cloud server. It includes: two occupancy sensors to detect the usage of
a sofa or bed, which can be used to monitor resting and sleep patterns, one accelerometer to detect unusual device movements and impacts on the surface
where it is installed, which can indicate possible falls, one ambient noise sensor to acquire anomalous sound levels, which can also be an indicator of possible
falls or impacts and one Presence InfraRed (PIR) motion detector based on differences in heat emission, which is related to user’s level of activity at home.
Discrete and based event data, such as occupancy of the bed or sofa (0 for non-occupancy, 1 for occupancy), human presence (by the PIR sensor), unusual
movements, impacts, or sound levels are acquired when a specific event happens as discrete variables (these events are recorded at specific moments, and do
not change between timing moments). Additionally, to monitor the comfort level at home, Elioth includes a relative humidity (percentage), a temperature (in
Celsius) sensor, and a lighting sensor (in Lux), which are continuous timing data acquired with a time interval of 15 minutes.

could not generate clear patterns, especially when they were
consolidated into periods to make them compatible with the
rest of the samples. This circumstance was produced by the
intrinsic difference between the PIR state variables (an oscillat-
ing state signal that is difficult to consolidate into an equivalent
evenly sampled time series), and actual continuous time series,
such as temperature and humidity, are to be evaluated jointly.
That is why part of the pre-processing included the transfor-
mation of these state variables into variables of temporary
significance in order to be able to interact in a consolidated
manner with the variables of continuous magnitude. To do so,
we transformed each state variable into a set of time series
by converting the state variable into these three synchronous
variables: (1) A state variable that collected the state in the
period as the majority state during it (Active/Inactive); (2) a
second numerical variable that collects the number of status
changes in the same period (Ativations); And (3) a last variable
that collects the duration of the active status. This led to
a better characterization and compatibility for joint analysis
without effective loss of information.

We denote globally with Φl the signal preprocessing opera-
tor, including the previous preprocessing stages on signals, in
such a way that we denote

xE
l [n] = Φl{mE

l [n]}, n = n0, · · · , Nt − 1 (5)

so that xE
l [n] denotes the discretized and preprocessed signal

for the lth sensor in environment E, and we can define sim-
ilarly as xE

t [n] = Φt{mE
t [n]}. The multivariable recording,

denoted in matrix form as

XE [n] = [mE
t [n]

T |mE
1 [n]

T | · · · |mE
L [n]

T ]T (6)

can be buffered in terms of the sliding window with size S
samples, thus yielding the original data matrix,

XE [n] =


xE
t [n], xE

t [n− 1], · · · , xE
t [n− S + 1]

xE
1 [n], xE

1 [n− 1], · · · , xE
1 [n− S + 1]

...
...

. . .
...

xE
L [n] xE

L [n− 1], · · · xE
L [n− S + 1]


T

(7)
and the complete data matrix is obtained as follows,

X = [XE [1]T | · · · |XE [Nt]
T ]T (8)

In order to use a machine learning strategy for splitting the
matrix data into train and test vectors, we choose a time instant
ntr to split the matrix into observed vectors so that

Xtr = [XE [1]T | · · · |XE [ntr]
T ]T (9)

are used as train vectors, and the others are used as test vectors.
Note that an additional reshaping has to be done to convert the
multiparametric temporal samples into a single vector, as usual
in machine learning implementations, which is not included in
this notation.

Finally, for the normalization stage, we propose three dif-
ferent scenarios. First, normalizing the data with respect to the
absolute maximum of the signal values from the training set.
Second, normalizing the data according to the z-score on the
training set. And finally, not applying any normalization.

B. Dimensionality Reduction

Some AE, such as Naive (MSE), are neural networks
trained to set a target equal to the input. They consist of
two main components: the encoder, which maps the input
into a small space called (latent space, initial compression
of variables), and the decoder, which maps the small space
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into the reconstruction of the original input. Although full
recovery of the original signal will not be possible due to
intermediate compression of the variables, by minimizing the
difference between the original and final space, models defined
in this way will preserve the essence of the data. They can
generalize better on new samples and extend over a different
or incremental sample space to perform full ML validation and
testing processes [16]. A comparative methodology has been
developed for several of these AE studies based on the results
obtained from the different proposed techniques.

PCA is a linear multivariate statistical technique widely
used as a dimension reduction technique for data compression
or visualization. Analyzes a data set that represents observa-
tions described by several metric variables that are generally
correlated with each other. Its goal is to represent this set of
observed metric variables in terms of a smaller set of new
orthogonal variables [17]. Detailed equations can be found in
many works, and here we summarize the description [18]. This
analysis, valid in many environments and data sets, cannot
capture the nonlinear patterns often present in natural data. The
representation of our data does not seem to be geometric and
also presents a spatial dissociation between the training and
test samples, so we use this technique to compare. MnL meth-
ods are considered a subgroup of nonlinear dimensionality
reduction procedures [13] and are used under the assumption
that high-dimensional data can be projected onto a manifold
of low dimensions, representing the essential information of
the original data set.

AE-based Manifolds. One of the most used manifold
learning techniques is the AE architecture, which is a neural
network compounded by three different parts, namely, the
encoder, which applies a non-linear dimensionality reduction
to input data xi, the code also called latent variables hi,
which is the low dimensionality representation of input data,
and the decoder, which perform a non-linear dimensionality
augmentation of h(t) reaching the input space dimensionality
x̂i [16]. From a structural point of view, the encoder and
decoder nets are essentially the same. They may include zero
or more hidden layers that are trained as classical artificial
neural networks, but considering that the loss function intends
to minimize the difference between input xi and output x̂i.

Similarly to classical neural networks, the next equations
describe the encoder block:

hi = ϕ(We xi + be)

where hi ∈ Rd is the vector map in the latent space that
corresponds to input xi ∈ RD, ϕ(·) is a nonlinear transforma-
tion, We is the weight matrix, and be is the bias vector. Its
corresponding decoder is also an affine mapping, given as

x̂i = φ(Wd hi + bd)

where φ(·) is another nonlinear transformation, Wd is the
weight matrix, and bd is the bias vector. We want to estimate
the weights and biases We, Wd, be, and bd, from a set of
samples such that x̂i ≈ xi. Typical loss functions are the mean
squared error and the cross-entropy metric.

Naive AE is the most direct approach, and it assumes the use
of an input and output network consistent with a multilayer

neural network architecture that compresses the information at
its intermediate point until reaching the desired dimensionality.
In the second phase, the expansion occurs until the original
space has a symmetrical structure compared to the first one.
Use the MSE as a reflection of the quality of the analysis
performed. Convolutional Neural Network (CNN) can consider
the intrinsic temporal structure of the data with certain advan-
tages over the conventional model [19], [20]. Variational AE
can offer better performance due to its statistical foundation in
the embedded space and the representation of the generated
embeddings. Long Short-Term Memory (LSTM) is a type of
recurrent neural network in which information can persist by
introducing loops in the network diagram, which formalizes
the existence of memory in the network and accumulates
information from previous moments.

The encoder projection to low-dimensional latent space,
called bottleneck, forces the AE to retain the essential in-
formation in the input data so that AE can be naturally
seen as manifold estimators. Manifolds obtained from AE
can be used on new test samples to support (and they often
do) the use of other ML data models. Compared with PCA,
the AE architecture provides us with nonlinear mappings for
estimating the latent spaces, which, depending on the nature
of the input data, can represent an advantage that should
justify their use and the computational burden required by their
training process.

C. Anomaly Detection

Identifying elements with different patterns outside the
surface may be considered anomalies, as they have not been
previously incorporated. There are several methods to detect
anomalies, including machine learning (ML) and deep learning
(DL), which have become increasingly popular [21], [22].
However, detecting anomalies in high-dimensional spaces and
understanding the variables related to the anomaly can be
challenging. A comprehensive review of detection techniques
based on incoming or anomalous time series data can be found
in [23].

The anomaly detection problem can be approached as
complementary to the Domain Description (DD) problem. DD
can be formulated as a one-class classifier, where an ML al-
gorithm identifies the most common space region for a dataset
and establishes a boundary to identify anomalous samples
outside. Several algorithms can be used for DD, including the
Support Vector DD (SVDD)[24], which is a kernel method that
builds a boundary on a hypersphere mapped through kernel
functions to an intermediate Reproducing Kernel Hilbert Space
(RKHS). In this space, data can be adequately surrounded by
a hypersphere corresponding to a nonlinear domain boundary
[25].

The problem is to find the hypersphere with minimum
volume in the RKHS that contains most of the mapped objects
with radius R > 0 and center a ∈ H, given a dataset xii = 1N

belonging to a class of interest. To account for atypical values
in the training set, slack variables ξi ≥ 0 can be used. The
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TABLE I
ARCHITECTURE MODEL WITH IMPROVED RESULTS FOR THE

EXPERIMENTS PERFORMED.

Choice
Segmentation 30% training, 70% test

Time yes
Windowing 24h

Normalization Z-score
Layer and nodes 1[8]

problem can be formulated as

min
R,a

{
R2 + C

N∑
i=1

ξi

}
(10)

subject to

∥ϕ(xi)− a∥2 ≤ R2 + ξi ∀i = 1, . . . , N (11)
ξi ≥ 0 ∀i = 1, . . . , N (12)

The trade-off between the hypersphere volume and the
allowed errors is controlled by parameter C, while parameter
ν = 1/(NC) is a rejection parameter that can be tuned
[26]. The dual functional for this problem is a Quadratic
Programming problem that gives Lagrange coefficients (αi)
corresponding to the constraints in Equation (11). When C
is properly adjusted, many αi are null, resulting in a sparse
solution. Using the Lagrange multipliers obtained from the
dual functional, we can calculate the distance of any point to
the center in the RKHS, R(x∗), as per

R(x∗) = K(x∗,x∗)−2

N∑
i=1

K(xi,x∗)+

N∑
i,j=1

K(xi,xj) (13)

This distance can be compared with the hyper-sphere radius
R to determine if the input points are outside the domain.
The equation calculates the distance by subtracting twice the
sum of the kernel function evaluated at the input point and
each training point from the kernel function evaluated at the
input point itself and adding the sum of the kernel function
evaluated at each pair of training points.

SVDD methods can be applied regardless of the data
dimensionality. However, their primary interest in this work
is their ability to identify the manifold structure in the low-
dimensional latent space. This manifold structure can be
represented and used to work with geometrical considerations
on the manifold obtained from the input datasets.

D. Analysis and Visualization Code

Our customized software, a proprietary yet transparent tool,
has been thoroughly validated for its efficacy in identifying
normality patterns and anomalies across the hh105, Aruba,
Tulum, and Elioth databases. This software enables us to:

• Independently select input variables for analysis, includ-
ing temporary preprocessing.

• Utilize various analytical methods such as PCA, Naive
AE, Variational AE, CNN, and LSTM.

• Configure the number of layers and nodes within each
layer, allowing for exploring numerous configurations.

• Define a classification surface encompassing training data
normality samples in the latent space, implicitly establish-
ing a measure of normality represented as the distance to
this surface (referred to as score).

Note that despite being a proprietary tool, the transparency and
reproducibility of our results remain intact. The community
has access to the code for various elements integrated into
our software, ensuring the accessibility and verifiability of the
techniques employed in the present work.

III. EXPERIMENTS AND RESULTS

The object and expected result of this task will be the iden-
tification of behavior patterns from the signals collected by the
sensors that allow characterizing various situations of the daily
reality of users at home. The proposed techniques will make
it possible to analyze and, where appropriate, classify these
situations as standard or be detected as anomalies. This second
status classification may eventually allow experts to evaluate
it for the corresponding intervention. Our results proved that:
(1) The use of manifold nonlinear estimation techniques can
provide significant advantages in the latent variables retrieved
when compared with linear techniques; (2) The quality of the
reconstruction of the original multidimensional recordings is
an acceptable indicator of the quality of the generated latent
spaces; (3) DD provides regions of normality consistent with
representations of the usual activity of individuals in these
spaces; (4) The system is capable of detecting deviations of the
usual activity and label anomalies. The presented work paves
the way toward exploring improved methods of retrieving
information from MnL data models and their application in
the AAL sector.

A. Latent Spaces

Some Elioth devices were installed in the homes of vol-
unteer participants To carry out this project. A group of
senior citizens was invited to recreate this kind of user’s
actual circumstances and patterns. The collected signals were
processed using the previously described preprocessor and
dimensionality reduction techniques. For the Elioth database,
many tests and exploratory experiments were carried out
to validate the results obtained in the exhaustive previous
analysis on the Kyoto database and widely referenced in the
literature. Alternative experiments were proposed based on
different: (i) Time windows and significant overlaps for each
sample; (ii) Preprocessing models and normalizations of the
input magnitudes; (iii) Alternatives for incorporating different
groups of variables in the analysis; (iv) Division of training
and test samples; (v) Dimensionality reduction techniques; (vi)
Figures of merit; (vii) Neurons in the intermediate layers for
EAs; (viii) SVDD sizes.

Variables were evaluated both independently and in a
different set of groups. Results showed that incorporating
environmental variables, with or without the time variable,
facilitated the cyclical characterization of the samples under
analysis. On the contrary, the analysis of the state variables,
or their derivatives, in isolation, even with the transformation
practiced, did not facilitate the formulation of patterns in the
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(a) (b)

(c) (d)
Fig. 4. Latent spaces calculated for the Toilet hh105 database: (a) the first panel shows the validation error obtained, and the second the latent space for the
training set (blue), and test (orange) as they are computed by the proposed method. (b-d) shows different cases belonging to the test subset (in blue), and the
pink volume represents the domain calculated over the training set.

TABLE II
MAE FOR EACH OF THE METHODS TESTED IN HH105-TOILET SENSORS.

Method Illumination Presence
PCA 0.0173 0.4042
Naive 0.0146 0.3094
CNN 0.0128 0.2576

Variational 0.0154 0.3369
LSTM 0.0166 0.3202

latent space. The joint analysis of the state and environmental
variables did not generate significant differences concerning
the analysis of isolated environmental variables. It established
an exciting result regarding the subtle contribution in the latent
space generated by the state variables and their derivatives,
slightly improving the figures of merit.

DL, ML, and AE have been analyzed to classify situations
as everyday or as anomalies (and eventually allow their assess-

TABLE III
MAE FOR EACH OF THE METHODS TESTED IN HH105-ROOM SENSORS.

Method Illumination Presence
PCA 0.0346 0.4612
Naive 0.0215 0.3921
CNN 0.0187 0.3691

Variational 0.0246 0.3991
LSTM 0.0267 0.3761

ment by experts for the intervention that could correspond).
For this, a comparative methodology has been developed for
the results obtained from the different techniques proposed for
its analysis, whose characteristics have already been described:
Naive, CNN, Variational, and LSTM.

The initial studies commenced with an analysis of the
original Elioth and hh105 databases, during which decisions
were made regarding parameter selection. These decisions
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(a) Control Case (b) Aruba Control

(c) Experimental Case I (d) Aruba Subrogate

(e) Experimental Case II (f) Tulum Control

(g) Tulum Subrogate (h) hh105 Subrogate
Fig. 5. Elioth, Aruba, Tulum, and hh105. In these illustrations, the left panel displays the embedded space represented in blue and the corresponding domain
in pink, while the right panel showcases the signals used to compute this embedded space. See the text for a detailed explanation of the panels.
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TABLE IV
MAE FOR EACH OF THE METHODS TESTED IN THIS WORK.

Method Layers/Neurons MAE
PCA - 0,0089
Naive [32,3] 0,0085
CNN [8,3] 0,0085

Variational [32,3] 0,0086
LSTM [32,3] 0,0106

TABLE V
RECONSTRUCTION ERROR COMPUTED AS MAE FOR THREE DIFFERENT

PUBLICLY USED DATASETS.

Dataset MAE
hh105 Toilet 0,0085
Aruba Room 0.0029
Tulum Room 0.0099

encompassed various factors, including the proportion of cases
allocated for training and testing, different sample window
sizes, the consideration of variable normalization, and the
determination of the appropriate number of layers and neurons
for the aforementioned machine learning models (see Table I).

The circadian reality of the signals has shown the need to
incorporate the time variable. Using widely overlapping daily
time windows (24h) provided a cyclical perspective of the sam-
ples if they were represented sequentially. The incorporation
of the normalization Z-max (division by the maximum) and Z-
score (null mean and unit variance) improved the convergence
and quality parameters, understood as errors of the selected
figure of merit (MAE). The Z-score provided the best results
when all the variables were incorporated jointly, and the Z-
max was used in the individualized analysis of variables. The
formulation of very complex architectures with high depth
(many layers) and high dimensionality (many nodes per layer)
did not show better results than the case of using a single layer
with a reduced number of nodes. That is why a single layer
with eight nodes has been proposed.

Given the results shown in Table I, tests were carried
out again with the hh105 database in two rooms for each
sensor in PCA and the different types of AE (Naive, CNN,
Variational, LSTM) with different lighting, temperature, and
presence sensors (see Tables II, III and IV. The analysis of the
importance of each one of the sensors in the reconstruction
of the test error (MAE) for each method showed that in
the case of hh105-toilet sensors ((Illumination (LS011/06)
and Presence (MA011)) or hh105-room sensors (Illumination
(LS010/12/13/16) and Presence (M10/12/13/16), those that
provided the most information were the lighting sensors in all
methods. CNN was the best, with the lowest reconstruction
error (MAE).

Figure 4 shows the embedded space generated for all cases
within the Toilet hh105 database. We can see the validation
error obtained and the superimposed training and test sets in
blue and orange, respectively. In (b-d), we can see the details
of the embedded space for several cases of the training subset,
with the spiral shape of the latent spaces notable, giving an
idea of the quasi-periodicity of the analyzed data.

Once the previous experiment was conducted to tune the
free parameters of the proposed method, namely the scheme

TABLE VI
DESCRIPTION OF ENVIRONMENTAL ANOMALIES.

Variable Description
Humidity Low (A1) reduction by 40% for 3 days (3cd)

High (A2) increase by 40% for 3cd
Temperature Low (A3) reduction by 40% for 3cd

High (A4) increase by 40% for 3 cd
Lighting Low (A5) not increase light in daylight periods

High (A6) light is not dimmed at night for 3cd

TABLE VII
DESCRIPTION OF STATE ANOMALIES.

Lifestyle Description
Sedentary (S): Daily
(P1)

Lengthening of intervals of sitting in the chair

S: Nocturnal (P2) Staying on the chair for hours
S: Afternoon (P3) Staying on the couch before eating
Movement (M): At
dawn (P4)

Sensor morning activation after hours before usu-
ally

M: At night (P5) Gets up and sits down repeatedly
M: In regular hours
(P6)

Unusual activity of the user (get up or sit down)

of dimensional reduction, the number of neurons, and the
size of windows and overlaps, the method was tested on two
different publicly available databases: the Aruba and Tulum
datasets. Table V shows the performance of the selected
method in terms of reconstruction error computed as MAE
when compared with the hh105 dataset. As can be seen,
the obtained MAE in both new datasets is close to that
obtained using hh105, ensuring that the presented method is
generalizable to different databases.

B. Anomaly Detection

As mentioned, in the traditional clustering approaches,
DD can be done through support vectors (SV). Instead of
directly kernelizing the metric or clustering algorithm, here
we attempt to describe data distribution in feature spaces with
a hypersphere of minimum volume enclosing all data points
except outliers, resulting in a hypersurface in the original input
space. This idea leads to several algorithms, such as the One-
Class Support Vector Machine (OC-SVM) and the SVDD.

Once the normality space has been analyzed and considering
the definition of anomaly described above, it is necessary to
consider the possibility of characterizing the normality spaces
on the original domains that allow the correct interpretability
and validation of the results obtained. The detected anomaly
and its corresponding signal from the original space were
displayed to do this. The results obtained for the case of
the Elioth database showed a broad normality regime with
very little or no expression of anomalies. This reality is fully
consistent with the behavior in the short-term test regime
with healthy individuals, without behaviors of statistical sig-
nificance throughout the records made. That is why, based
on actual signals, a new set of records that simulate several
eventualities was synthetically generated. These surrogated
anomalies were classified according to whether the modified
variable was an ambient or state variable. Here follows the
description of the implemented anomalies (see Table VI and
VII).
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For the Elioth dataset, the complete study signal is built by
incorporating the normal signals corresponding to a month and
a half of recording (groups of signals from 1 to 12), and the
concatenated surrogate signals with the anomalies A1 to A6
and P1 to P6 (groups 13 to 19). This signal is then introduced
into the previously tuned algorithm to evaluate the normality
spaces using the methodology mentioned earlier. In the case of
hh105, Aruba, and Tulum, the experimental setup was slightly
different. In these cases, we manually introduced anomalous
P6 events on the 7th and 22nd day. The algorithm designed for
this purpose allows us to display, across different groups of 5-
day samples, both the generated population normality spaces
and the score metrics (distance to the classification surface
and domain description or SVDD). This metric (score) can
be observed in the last graph in the right column of Fig. 5.
The normality surface is observable in the three-dimensional
graphs presented in the respective columns of the figures. It is
worth noting that in certain instances, the surrogate anomaly
exerts a significant influence on the calculated embedding,
making it challenging to discern the normality surface. The
various experiments allowed us to validate how increasing
the width of the domain detector decreases the ability to
detect anomalies in the test. Conversely, a width that is too
narrow resulted in a high number of false positives. This
fact emphasizes the importance of fine-tuning this method for
correct detection.

In general, Fig. 5 represents together a set of representative
plots for benchmarking purposes. Panels (a, c, and e) corre-
spond to scenarios within the Elioth dataset: the Elioth control
case, the Elioth surrogate case where humidity before sample
300 and temperature after sample 300 have been altered (Case
I), and the Elioth surrogate case where humidity was altered
between sample 150 and the end of the record. Panels (b and d)
relate to scenarios within the Aruba dataset: the Aruba control
case and the Aruba surrogate case, where the first motion sen-
sor was altered around sample 144. Panels (f and g) correspond
to scenarios within the Tulum dataset: the Tulum control case
and the Tulum surrogate case, where the first motion sensor
was altered around sample 144. Finally, Panel (h) pertains to
a scenario within the hh105 dataset: the hh105 toilet surrogate
case, where the first motion sensor was altered around sample
144. In the case of the Elioth dataset, the y-axis on the signal
panel represents various parameters, including humidity (H),
illumination (I), temperature (T), couch occupancy sensor state
(A), count of couch occupancy sensor activations over a period
(#A), couch occupancy sensor activation duration (DA), hour
(Hr), and SVDD value (SVDD). For the other datasets, the
signal panel y-axis corresponds to different sensor signals as
specified in each dataset sensor list, along with the hour and
the SVDD value.

The results showed how with the CNN method, it was
possible to conveniently detect a large part of the anomalies
through the red crosses (red x), as can be seen in Figure 5 (c),
(d), (e), (g), and (h). In the same way, it can be observed
that the samples corresponding to the normality space are
included within the surface of the SVDD. In greater detail,
after adjusting the parameters as previously indicated and
appropriately setting the SVDD width, the proposed algo-

rithm accurately detects all environmental anomalies within
the Elioth dataset. However, it does not effectively identify
anomalies associated with state variables in this particular
dataset. In contrast, the algorithm successfully detects state
variable surrogations in the Aruba, Tulum, and hh105 datasets.
This success can be attributed to the fact that these datasets
primarily consist of state variables, which exert a strong
influence on the generated embedding. Their anomalies were
exceptionally detected during the synthesized anomalies for
this last set of variables. This result is consistent with the
exploratory analysis in the design phase, which suggested a
limited participation of the state variables in the generated
model.

IV. DISCUSSION

Our presented work proved that MnL estimation techniques
could provide significant advantages in the latent variables
retrieved compared to linear techniques. The reconstruction
of the original multidimensional recordings tends to preserve
the essence of the data, and DD provides regions of normality
consistent with representations of users’ daily activity in these
spaces. The proposed system can detect deviations from the
usual routine and classify them as anomalies.

Similarities between the analyses of the hh105, Aruba, and
Tulum public databases and results obtained for the case of
Elioth validate the methods used in this analysis. Our methods
based on DL, moderate complexity (AE of minimum MSE),
offer better compactness of the natural embeddings extracted
from the data than multivariate methods classics like PCA.

Many methods have been applied to detect anomalies, and
more recently, ML [21] and DL [22] are widely used in this
context. The application of MnL techniques in the field of
AAL, specifically for HAR, has posed a research challenge
due to the diversity and nature of raw data. We conducted an
exhaustive analysis and comparative methodology of complex
latent spaces obtained from different MnL techniques. As
mentioned earlier, multiparametric indoor sensor anomalies
could be represented by a moderate number of latent variables
generated by MnL techniques. Our algorithms can capture sub-
tle changes in the usual patterns of daily activities, reflecting
early indicators of atypical situations. Both LSTM and SVM
demonstrated good accuracy in routine activities captured
with gyroscopes and accelerometers in the aged population
([8], [7]). CNN provided the best results compared to other
invertible methods. In other elaborate approaches [27], entropy
measurements were employed. They detected anomalies with
real data of daily activities carried out by elderly people in
residences, distinguishing them from those carried out by staff
or visitors’ relatives.

The use of other types of contractive MnL algorithms, such
as Uniform Manifold Approximation and Projection (UMAP)
[28] could yield relevant advantages, as far as they work
on the estimated topology of the input space to map it into
low-dimensional latent spaces efficiently. UMAP has been
conveniently implemented and analyzed during the analysis
process. The non-existence of an inversion technique to the
reconstructed space implemented in the platforms used in this
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work has not allowed its characterization based on the figures
of merit used and, therefore, was discarded as a utility model.

Some studies [29] have proposed using ML architectures
like LSTM, CNN, or its combination (ConvLSTM) and con-
cluded that multi-task learning effectively assesses the fall risk
of older adults from accelerometer sensor data. Meanwhile,
other research groups [30] have used SVM to recognize six
ambulation activities with smart insoles. The inertial sensors
were shown to be reliable for the recognition of dynamic
activities. In contrast, pressure sensors worked better for
stationary activities, and the highest accuracy was achieved
by combining both types of sensors. New ML algorithms
have been proposed and used to classify older adults at low
or high risk of falling using inertial sensor data collected
from a smartphone, and they worked better than standard ML
techniques [31]. This group [14] classifies the techniques that
generate better results in sensor datasets, and Recurrent Neural
Networks considerably improve hit rates. A review of Tiny ML
with novel wearable systems incorporating micro-controller
units for monitoring, p.e., elderly fall detection, can provide
several advantages over cloud computing [32].

SVDD-type techniques in the latent space on surrogated
real signals with environmental anomalies were adequate for
detecting anomalies with the selected optimum settings. On
the contrary, the limited contribution of individual anomalies
has shown the need to broaden the analysis, particularizing
these separately from the environment and including the need
to establish new signal formulation models and labeling that
improve the detection capabilities of the techniques designed
here.

With latent variables, Murase et al. [33] propose a generator
of anomalous variables to train an anomaly detector that
makes differences between atypical/normal variables. Jiang
[34] proposes a novel mechanism to learn the temporal pat-
terns of event sequences of common daily activities. Delay-
caused anomalies are detected by comparing the sequence with
the learned patterns and achieving high accuracies for daily
activities like using the toilet. In [35], an approach for identi-
fying the sources of abnormalities in human activities of daily
living was successfully proposed with OC-SVM. A systematic
literature review of randomized controlled trials [36], studies
with assistive technologies showed positive results in well-
functioning but not in frail older adults, suggesting that this
is still an active research field with space for improvement.
Our system can detect different anomalies in the daily living
activities of elderly users based on sensor networks at home,
and the ML algorithms proposed can detect potential risks for
the user, including alertness levels of anomalies.

Several limitations and challenges remain. The definition of
anomalous behavior has been done here from a DD viewpoint
on a window of multiparametric measurements projected onto
a low-dimensional latent space. It is evident that some anoma-
lous behavior repeated with time can become as usual for the
system, as far as it will consist of a sub-cloud of points in the
overall latent space. Therefore, the machine learning definition
of anomaly should be worked for each specific application in
conjunction with the risks that could be established a priori
or as essential, if this is possible. Similar considerations can

be made for establishing the statistical description and merit
figures for detection (false positives, false negatives), which, in
general, should be dependent on the system to be implemented.
The performance will be initially tied to the adequate choice
of the domain bandwidth in the DD problem, but refinements
on temporal observation windows can be readily established
according to the nature and critical requirements of each
practical application.

In future works, we want to deepen the study of anomalies,
which are formally very similar to other configurations of
normality, if attention is paid to the temporary configuration
of other instants. For this reason, we propose an improvement
by studying new schemes for classifying input signals and pre-
labeling that facilitate powerful descriptions of the posterior
latent space by incorporating such input information. In addi-
tion, establishing frequencies of different sampling, especially
on presence signals, could offer new analysis frameworks. It
is proposed to carry out superior analyses in how much sam-
pling frequency, as well as evaluating extending the sampling
windows temporal analyses to sections of weeks, months, or
years so that they can obtain patterns related to weekly cycle
behaviors or cycle seasonality that could help to classify the
events better.

The proposed framework can be extended to other types of
scenarios, such as smart factories or the internet of vehicles, in
which some studies [37], [38] have demonstrated the utility of
SVDD as an anomaly detector. The presented model can offer
a novel approach to these problems by analyzing the manifold
and understanding the strength of each variable in the final
decision. In this way, our processing can help enhance the
interpretability of the model by inspecting the shape of the
manifold created, allowing us to select the number and type
of sensors that provide the best anomaly detection rate with
the fewest sensors.

V. CONCLUSIONS

In this study, we have demonstrated the potential benefits
of employing manifold nonlinear estimation techniques over
traditional linear approaches in home monitoring environ-
ments. Our results indicate that these techniques can yield
enhanced latent variable representations. Moreover, the quality
of multidimensional recording reconstruction is a reliable in-
dicator of the latent-space quality. Through domain detection,
we have successfully identified regions of normality aligned
with typical individual activities within these spaces. This
system capacity to detect deviations from routine behavior and
classify anomalies opens promising avenues for applications
in the AAL sector. Our work lays the foundation for further
exploration and refinement of information retrieval methods
from Manifold Nonlinear Learning data models in this domain
and probably in others, such as Industrial IoT.

In conclusion, the presented results underscore the signifi-
cance of non-linear manifold estimation in IoT data analysis,
particularly for AAL applications. The findings here affirm
the value of focusing on the quality of latent spaces and
their relationship to the reconstruction of original multidi-
mensional recordings. This approach to domain detection
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has demonstrated its practical utility in identifying normal
activity patterns within these spaces and detecting anomalies.
We encourage continued research into MnL data models,
spurring advancements in data analysis methodologies and
their meaningful utilization in the context of improving the
quality of life and healthcare in AAL systems.
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