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A B S T R A C T

Background/Aim: In atrial fibrillation (AF) ablation procedures, it is desirable to know whether a proper
disconnection of the pulmonary veins (PVs) was achieved. We hypothesize that information about their
isolation could be provided by analyzing changes in P-wave after ablation. Thus, we present a method to
detect PV disconnection using P-wave signal analysis.
Methods: Conventional P-wave feature extraction was compared to an automatic feature extraction procedure
based on creating low-dimensional latent spaces for cardiac signals with the Uniform Manifold Approximation
and Projection (UMAP) method. A database of patients (19 controls and 16 AF individuals who underwent a
PV ablation procedure) was collected. Standard 12-lead ECG was recorded, and P-waves were segmented and
averaged to extract conventional features (duration, amplitude, and area) and their manifold representations
provided by UMAP on a 3-dimensional latent space. A virtual patient was used to validate these results further
and study the spatial distribution of the extracted characteristics over the whole torso surface.
Results: Both methods showed differences between P-wave before and after ablation. Conventional methods
were more prone to noise, P-wave delineation errors, and inter-patient variability. P-wave differences were
observed in the standard leads recordings. However, higher differences appeared in the torso region over the
precordial leads. Recordings near the left scapula also yielded noticeable differences.
Conclusions: P-wave analysis based on UMAP parameters detects PV disconnection after ablation in AF
patients and is more robust than heuristic parameterization. Moreover, additional leads different from the
standard 12-lead ECG should be used to detect PV isolation and possible future reconnections better.
1. Introduction

Atrial Fibrillation (AF) refers to a supraventricular tachyarrhythmia
characterized by uncoordinated atrial electrical activation of the atria
with a lack of mechanical contraction [1]. The electrocardiogram (ECG)
represents the electrical activity of the heart, and it is comprised of
a P-wave, a QRS complex, and a T-wave produced by atrial depo-
larization, ventricular depolarization, and ventricular repolarization,
respectively [2]. The ECG during AF typically shows an irregular
ventricular rhythm, absence of discrete P-waves, and irregular and
swift atrial activity. The underlying mechanisms of this arrhythmia
are not completely understood. However, the rapid firing of electrical
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foci located in myocardial sleeves entering the pulmonary veins (PVs)
seems to play an essential role in the genesis and maintenance of AF,
as well as other complex electrical, histologic, and anatomic changes
of the atria. It is currently assumed that the primary goal of the AF
ablation procedure is to achieve complete and long-lasting electrical
isolation of all PVs. This disconnection is obtained by performing
a transmural lesion (full-thickness lesion that completely disconnects
PV [3]) in the portion of the left atrium (LA) surrounding the ostium of
each PV using radiofrequency or cryothermal energy. The application
techniques of this second case have evolved throughout history, and the
Cryoballoon procedure is currently usual and widely described in the
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literature due to its advantages over other methods, especially for the
isolation of the PVs [4]. The electrical activity in the PVs is evaluated
during the ablation procedure using a circular multielectrode catheter
inserted into the vein. The ablation is successful when all PVs are
electrically isolated from the LA tissue. However, recurrences of the
AF after an acutely effective ablation procedure are not uncommon,
and the clinician must know if the recurrence may be related to an
electrical reconnection of one or more PVs or a different mechanism. A
new invasive procedure is required to obtain this information, placing
a diagnostic catheter again in each PV and checking their electrical
connection with the surrounding LA.

A non-invasive technique giving information on the electrical sta-
tus of the PVs would be highly desirable to avoid the need for this
transvenous invasive approach. The ablation procedure abolishes the
electrical activity of the PVs and surrounding LA areas, thus modifying
the characteristics of the P-wave in the ECG. Changes in the P-wave
duration, dispersion, and morphology have been described after a
successful ablation, reflecting the loss of electrical activity in the PV
area [5,6]. More precise detection and definition of these changes might
be helpful to recognize, using a non-invasive technique, if the PVs are
still electrically isolated in patients with arrhythmia recurrences after
a previous acutely successful AF ablation procedure.

Therefore, the main goal of this study is the non-invasive detection
of PV disconnection after a cryoballoon procedure. For this purpose,
we compare conventional feature extraction and manifold analysis of
the P-waves. In addition, we use a virtual patient to explore if, apart
from the standard leads, other signals over the torso surface might help
to detect P-wave changes after the ablation procedure and, thus, PV
disconnection.

The outline of the document is as follows. Next section summarizes
related works. Later, a general notation, ECG datasets (control and
AF ablation groups), and advanced simulations are described. Then,
preprocessing stages of the ECG are summarized, the ECG-based P-wave
biomarkers are defined, and the UMAP algorithm and its character-
istics are detailed. Section 4 shows the results corresponding to ECG
preprocessing and quality control, ECG datasets, and in-silico predic-
tions. Results of the heuristic biomarkers are then compared with the
results of the UMAP-based biomarkers in Section 5. Finally, results are
discussed, and conclusions are drawn.

2. Related works

ECG analysis in general, and of the P-wave in particular, requires
a pre-processing stage followed by the heartbeat segmentation be-
fore features extraction [7]. Therefore, wave delineation algorithms
are commonly used for heartbeat segmentation to obtain morpho-
logical differences and parameters identified in the clinical literature
as characteristic of different pathologies. In this direction, relevant
articles are published annually that present improvements and new
delineation algorithms [8,9], which use different heuristic character-
istics and delineation strategies to examine both the variables and
their changes in different circumstances. Occasionally, this delineation
can exhibit noisy behavior, significant sensitivity to thresholds and
design parameters, and variability between patients. For this reason,
in this work, it is proposed to use the characteristics obtained from
multiple learning techniques to extract the relevant information from
P-waves automatically. To do this, we evaluate the potential of the
recently proposed method of Uniform Manifold Approximation and
Projection (UMAP) [10,11], which is capable of compressing a high-
dimensional input space into a low-dimensional latent space, where the
most relevant and intrinsic characteristics of a plurality of signals are
consolidated.

The standard 12-lead ECG usually includes all the information
needed for diagnosis. However, in some cases, cardiac phenomena can
be unnoticed when using the standard 12-lead ECG. The body surface
potential mapping (BSPM) can overcome this limitation thanks to the
2

increased number of electrodes used. While the standard 12-lead ECG
records the cardiac electrical activity from 9 sites, the BSPM records it
on the entire torso surface, providing further regional information and
even showing where in the heart an event might be located [12]. For
this reason, we surmised in this work that BSPM might be useful to see
changes in P-waves after an ablation procedure and provide additional
information to the standard 12-lead ECG. We use a virtual patient to
analyze the best region of the torso to observe those changes.

Cardiac computational models were developed to improve the un-
derstanding of cardiac electrophysiology and arrhythmias. Nowadays,
the heart electrical activity can be multiscale modeled from the cellular
level to the body surface. Therefore, computational models simulate
the flux of currents through the ionic channels in the cellular mem-
brane, the resultant membrane potential, its spreading throughout the
myocardium, and, finally, the propagation of the electrical signals gen-
erated by the heart and their registration at the torso surface [13]. So,
using computational models, we can build virtual patients. In the last
years, the use of atrial models in AF-related studies has exponentially
increased [14], demonstrating that they can be useful and powerful
tools that complement research based on clinical recordings.

3. ECG datasets and simulations

In order to detect P-wave changes in AF ablation patients, we
studied the P-waves characteristics and their possible variations in
duration and morphology before and after a cryoablation procedure.
An example of the P-waves stability for healthy individuals and of
P-waves changes after an ablation procedure is shown in Fig. 1(a–
b). A two-fold approach was followed to comprehensively analyze the
scope of conventional and UMAP-based feature extraction methods. On
the one hand, a clinical dataset was assembled to provide the natural
conditions of P-wave recordings in clinical environments. On the other
hand, detailed computational simulations were conducted to provide
a noise-free environment and extend the analysis of the 12-lead ECG
recordings to the complete torso. We start by establishing a standard
notation for all the subsequent sections.

3.1. Notation

Let 𝑆 denote a two-dimensional continuous surface (or manifold) in
a three-dimensional space, and let r𝑆 be the set of points in this surface,
which is defined as

r𝑆 ≡ {r ∈ 𝑆, 𝑆 ∈ R3} (1)

where r stands for the position vector of any point in the three-
imensional space. In our case, surface 𝑆 can, for instance, represent

the torso 𝑇 or the epicardium 𝐸, and the potential fields changing with
ime on them are denoted as 𝑣𝑇 = 𝑣(r𝑇 , 𝑡) and 𝑣𝐸 = 𝑣(r𝐸 , 𝑡).

A geometrical mesh can represent a continuous surface due to
discretizing it. For instance, by using a set of sensors on 𝑆, a single

easurement point 𝑖 on a mesh surface can be denoted as

𝑛(r) = r𝑆 ⋅ 𝛿(r − r𝑛) (2)

here 𝛿(r) is a Dirac’s delta function in the spatial domain, and {s𝑛, 𝑛 =
,… , 𝑁𝑆} is a discrete set of 𝑁𝑆 points where measures are sampled
n surface 𝑆, and they are the nodes of this mesh. The measurement
esh on 𝑆 is given by

𝑚
𝑆 (r) =

𝑁𝑆
∑

𝑛=1
𝛿(r − r𝑛) (3)

here superindex 𝑚 refers to the mesh operator given by the discrete
et of measurement points.

With this notation, the epicardium (the torso) surface operator is
iven by e (r) (by t (r)) and its sampling mesh is given by r𝑚 (r) (by
𝑛 𝑛 𝐸
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Fig. 1. P-waves corresponding to 30-s segments and their corresponding template. P-waves from a healthy (a) and AF ablation individual (b), and template corresponding to the
P-waves from a healthy (c) and AF ablation (d) individual. P-waves/template corresponding to the first recording/pre-ablation recording in blue; P-waves/template corresponding
to the second recording/post-ablation recording in red.
r𝑚𝑇 (r)). Accordingly, a set of points sampled on the torso mesh is just
given by

𝑣𝑚𝑇 = 𝑣𝑇 r𝑚𝑇 (r) (4)

and it consists of a set of spatial samples {𝑣𝑇 ,𝑛; 𝑛 = 1,… , 𝑁𝑇 }. These
detailed torso sampling can be obtained either with advanced BSPM or
with detailed simulations including the torso.

If we think of l𝑗 as a different set of partially virtual points, with 𝑗 =
1,… , 12, which are associated with the measurement of the standard
12-lead ECG, we have that

𝑣𝑙𝑇 = 𝑣𝑇 l𝑚𝑗 (r) (5)

gives us a representation of the potentials measured in the conventional
ECG, denoted as 𝑣𝑙𝑇 .

3.2. ECG datasets

In this work, a patient database compounded by 35 electrocardio-
graphic records was collected and analyzed by expert clinicians from
Hospital Clínico Universitario Virgen de la Arrixaca (HCUVA) in Murcia
(Spain). These records were selected, based on the inclusion criteria,
from a more extensive database compounded from studies performed
in HCUVA Electrophysiology Laboratory in the last years. The database
was divided into two groups, with the following inclusion criteria: the
control group (19), where no ablation or drug test was performed,
and the AF ablation group (16), where PVs cryoablation with a cry-
oballoon was carried out. Two 30-second segments corresponding to
the standard 12-lead ECG were extracted from each recording, with
a time difference of about two hours. In the AF ablation group, the
first segment corresponds to the procedure start (before any actuation
was done), and the second corresponds to the procedure end (after
PVs isolation). The device used to monitor the heart activity worked
at 1 kHz sampling rate with a resolution of 5 μV.

3.3. Ablation simulations

A virtual patient was used to analyze changes between pre- and
post-ablation recordings in synthetic P-waves generated through in-
3

silico modeling (Fig. 2).
Fig. 2. Virtual patient. Left: 3D atrial model and cryoablation lesions (in red) after
pulmonary veins isolation. Right: The torso model comprised seven regions, namely,
the general torso, bones, blood, ventricles, atria, lungs, and liver.

Atrial electrical activity under paroxysmal AF (PAF) conditions
was simulated in the realistic 3D model of the human atria, com-
prised of the main anatomical structures, atrial heterogeneity, and
fiber direction [15]. The membrane electrical activity of every sin-
gle atrial myocyte was modeled by the Courtemanche–Ramirez–Nattel
ionic model [16], modified to incorporate the electrical remodeling ob-
served under PAF conditions [17]. The monodomain formalism solved
electrical activity in the 3D model with ELVIRA software and a constant
time step of 0.01 ms [18]. After 1 min of stabilization of single-
cell models at a basic cycle length of 500 ms, we stabilized the 3D
atrial model for 10 s (20 pulses). Atrial activation was initiated by
applying a stimulus of 28 pA/pF amplitude and 2 ms duration in the
sinoatrial node region. Cryoablation lesions in the PVs were modeled
by non-conductive tissue (see Fig. 2).

Once the atrial activity was simulated, extracellular potentials were
computed over the whole torso model by approximating the bidomain
formalism implemented in MATLAB (MathWorks, Natick, MA) with
custom-made routines [15]. Bidomain equations can be partially de-
coupled by assuming equal anisotropy ratios for intracellular (D𝑖) and
extracellular (D𝑒) conductance tensors

D𝑒 = 𝜆D𝑖 (6)

Therefore, in the heart domain, we can describe changes in the trans-
membrane potential (𝑣 ) and the extracellular potential (𝑣 ) [19] as
𝑚 𝑒
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follows

∇(D∇𝑣𝑚) = 𝐶𝑚
𝜕𝑣𝑚
𝜕𝑡

+ 𝑖𝑖𝑜𝑛 (7)

∇(D∇𝑣𝑒) = − 1
1 + 𝜆

∇(D∇𝑣𝑚) (8)

where D = 1
1+𝜆D𝑖 is the equivalent conductivity tensor, 𝑖𝑖𝑜𝑛 is the

transmembrane ionic current, and 𝐶𝑚 is the membrane capacitance
in the cellular model. In the two-steps bidomain approximation for
the extracellular potential calculation, we first computed 𝑣𝑚 in the
eart tissue through Eq. (7) (monodomain formalism) and then approx-
mated 𝑣𝑒 through Eq. (8) in the whole torso volume. The following
oundary conditions, which consider the heart to be immersed in a
on-conducting bath, were applied,

̂ ⋅ (D∇𝑣𝑚) = 0 (9)
n̂ ⋅ (D∇𝑣𝑒) = 0 (10)

ince the heart is immersed in the whole torso model, extracellular
otentials were calculated in the entire domain (heart and torso outside
he heart region). Therefore, we included the governing equations for
he solid conductor associated with the torso and modified the bound-
ry conditions at the heart-torso interface. Extracellular potentials in
he torso domain were calculated by solving the following Laplace
quation

(D𝑇∇𝑣𝑇 ) = 0 (11)

here 𝑣𝑇 and D𝑇 are the extracellular potentials and the heteroge-
eous conductance tensor in the torso, respectively, and the boundary
ondition is 𝑣𝑒 = 𝑣𝑇 (is n̂ ⋅ (D∇𝑣𝑇 ) = 0) at the heart-torso interface
at the torso-air non-flux interface). As a result, we obtained the P-
aves by computing 𝑣𝑇 at any virtual electrode located throughout

he torso surface (𝑣𝑚𝑇 ). Among these potentials, 𝑣𝑙𝑇 corresponds to the
ignals at the standard 12-lead ECG. Simulated P-waves with a time
esolution of 1 ms were registered during sinus rhythm propagation
efore cryoablation and after PVs isolation.

. Processing and feature extraction

.1. Signal conditioning and P-wave features

Potential Preprocessing. In a real environment, the measured po-
entials of interest are often embedded in noise from various other
nvironmental electrical sources, which can be seen as noise with
ifferent properties. The potential field measured through the 12-lead
CG, 𝑣𝑙𝑛(𝑡), can be denoted as

𝑙
𝑛(𝑡) = 𝑣𝑙𝑇 (𝑡) +𝐻(𝑡) + 𝐵(𝑡) + 𝑅(𝑡) (12)

here 𝐻,𝐵, and 𝑅 represent the additive high-band pass Gaussian
oise, the low-band pass baseline noise, and other noise contributions,
espectively, for all the ECG leads. Different preprocessing stages are
sed to reduce noise in our measurements. We denote them here as
ignal operators 𝛷𝐻 and 𝛷𝐵 , and they act on each ECG-measured signal
eparately so that

𝑣̂𝑙𝑇 (𝑡) = 𝛷𝐵(𝛷𝐻 (𝑣𝑙𝑛(𝑡))) (13)

here 𝑣̂𝑙𝑇 denotes the denoised potentials on the ECG channels. In our
ase, 𝛷𝐻 operator consisted of a low-pass filter (cut frequency 50 Hz,
th-order Butterworth with zero phase), and 𝛷𝐵 was implemented
ith a spline-based trend removal with nodes spaced 0.75 s [20].
hese kinds of noise are known to be the most present in ECG signals.
or determining the parameters of 𝜙𝐻 operator, the filter order was
crutinized not to distort the signals, especially in the fast-changing
aves (QRS complex), and the cut-off frequency was determined by
nsuring that the morphology of P-waves and T-waves were respected
nd no aberrance was included. For determining the parameters of
4

𝐵 operator, the time-window separation between nodes corresponded
o an interval generally including one heartbeat at most during sinus
hythm, and the residual baseline was represented to check that the
RS was not distorted [21]. A custom tool was created to represent

hese properties in all the cases. Several authors thoroughly checked
he data quality in terms of this and other processing stages.
ECG Segmentation and P-wave Matrix. For the ECG leads, the seg-

entation process yields two matrices. On the one hand, operator
𝑆 denotes the segmentation from each measured cardiac signal to a
atrix of beat templates, X𝑙𝑏, in such a way that

𝑙
𝑏 = 𝛷𝑆 (𝑣̂𝑙𝑇 (𝑡)) (14)

denotes the matrix including in each row the averaged beat for each
lead after QRS detection and beat alignment in the preprocessed 12-
lead ECG for a given patient. This operator included a threshold cri-
terion for compensating the positive or negative polarity of the QRS
beat for each lead and patient. Once QRS complexes were temporally
identified along the recording, the ECG was segmented into aligned
beats, taking as a reference the position of the maximum value in the
QRS complex, and averaged on a per-lead basis. Also, the confidence
interval for every beat template was obtained on each signal.

The P-wave data matrix can be obtained from the beat data matrix
using an additional operator 𝛷𝑃 , as follows

P𝑙 = 𝛷𝑃 (X𝑙𝑏) (15)

In the case of ECG recordings, the P-waves were aligned in the operator
for yielding time support of 150 ms, ensuring to include of the P-
wave but not the QRS onset. Also, a Hamming window was used for
each P-wave to minimize the interference of ending 𝑇 waves and QRS
onset. The operator included P-wave median obtention, the confidence
interval of which was also computed for each lead.

Note that we can obtain a P-wave data matrix from the torso
measurements on the mesh in the simulations. We denote this P-wave
matrix as P𝑇 , and in this case, no P-wave alignment is needed, and
no Hamming window is used, as ventricular activity is not simulated.
Signals can be restricted to the P-wave with a well-determined onset
time.

P-wave Features. A set of features was engineered to extract the rel-
evant information from P-wave templates. We can denote this feature
extractor operator as 𝛷𝐹 , and it represents the calculation of a new
feature data matrix

F𝑙 = 𝛷𝐹 (P𝑙𝑝𝑟𝑒,P
𝑙
𝑝𝑜𝑠𝑡), F𝑇 = 𝛷𝐹 (P𝑇𝑝𝑟𝑒,P

𝑇
𝑝𝑜𝑠𝑡) (16)

where F𝑙 (F𝑇 ) denotes the feature data matrix for the 12-lead ECG (for
the torso measurements on the torso mesh), obtained each in pre- and
post-ablation conditions.

Each feature of the data matrix aims to measure some aspects of the
nature of the P-wave. The following metrics were used:

1. 𝑓1 was the correlation coefficient between the P-wave templates
in pre- and post-ablation conditions.

2. 𝑓2 was the mean absolute difference between the P-waves in pre-
and post-ablation conditions.

3. 𝑓3 was the correlation coefficient between the beat templates in
pre- and post-ablation conditions.

4. 𝑓4 was the difference in durations of the P-waves in pre- and
pot-ablation conditions.

5. 𝑓5 was the difference in amplitude of the P-waves peaks in pre-
and post-ablation conditions.

6. 𝑓6 was the difference in the area of the P-waves in pre- and
post-ablation conditions.

Note that these features are obtained by a specific operator, which is
integrated with the notation of 𝛷𝐹 operator. Hence, specific design
decisions have to be made on the implementation of these operators.

On the other hand, the mean absolute error (MAE) among pre-

and post-ablation P-waves was selected to account for the morphology
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Fig. 3. Description of features 𝑓4 (duration), 𝑓5 (amplitude) and 𝑓6 (area). (a) The whole beat template corresponds to a patient of the dataset. (b) Simulated P-wave.
changes which could be produced due to ablation. Moreover, its nor-
malized value (NMAE) was computed for better individual comparison.

For comparing the pre- and post-ablation P-waves, a template com-
prised of the median P-wave of the complete recording was used (not
applicable for simulated P-waves since only a beat was simulated).
An example of the templates for the first and second recording of a
control and an AF ablation individual is provided in Fig. 1(c–d). A
Tukey window (0.75) was used to smooth the boundaries and reduce
the border effect [22] due to T-waves or QRS-complexes, which might
lie inside the P-wave window, with minimum impact on expected
morphology. The circular correlation coefficient was obtained for each
relative delay among both P-wave templates, and the delay yielding the
maximum correlation coefficient was used to align them.

Regarding 𝑓4 (duration), 𝑓5 (amplitude), and 𝑓6 (area) features, an
adaptation of the Phasor Transform algorithm for delineation of ECG
fiducial points was used [23]. Since PVs contribution corresponds to
the last part of the P-wave [24], only the portion between the P-wave
peak and the P-wave offset was considered for pre- and post-ablation
comparison. The duration was defined as the difference between the
time instants corresponding to the P-wave peak and P-wave offset;
amplitude, as the P-wave peak; and area, as the integral of the P-wave
limited to its duration (see Fig. 3). An unpaired t-test checked whether
P-waves duration, amplitude, and area differed between the control
and AF ablation groups. Also, a paired t-test checked whether the same
variability could be observed among both registers within each group
(95% confidence intervals).

In simulated signals, 𝑓4, 𝑓5, and 𝑓6 were extracted from the P-
wave at each point on the torso surface (𝑣𝑚𝑇 ). In contrast, in clinical
signals, these features were extracted from the P-wave template in each
standard lead recording (𝑣𝑙𝑇 ).

4.2. P-wave embeddings and UMAP-based features

The UMAP algorithm is a recently proposed manifold learning
and dimension reduction technique. By using a theoretical framework
based on Riemannian geometry and algebraic topology, this algorithm
provides us with a non-linear mapping from the original input space
to an embedded space where geometrical properties are preserved.
The UMAP algorithm has been compared with other manifold learning
techniques, such as t-distributed stochastic neighbor embedding (t-
SNE) [25], which are often used for visualization purposes, and it
is considered to better preserve the global structure of the original
space after contraction to the embedding space, with good runtime
performance. As UMAP has no computational restrictions on the em-
bedding dimension, it is being used as a general dimension reduction
technique for machine learning applications [26]. In summary, the
UMAP algorithm performs dimension reduction by using the distances
5

among the feature vectors of a dataset, denoted as f𝑛, {𝑛 = 1,… , 𝑁}.
A strong assumption of the algorithm is that the feature vectors are
uniformly distributed, which does not hold in many cases. However, it
is partly compensated by tuning its free parameters in practice.

The algorithm can be summarized as follows [10]. As a first step,
a weighted directed graph representation, denoted as W matrix, is built
for the feature data, in which each feature vector is a vertex, and the
distances among neighbors determine the edges. If we choose a 𝐾-
order neighborhood, element f𝑛 is linked to its 𝐾 closest neighbors,
f1𝑛,… , f𝐾𝑛 , sorted out according to their distance to it. The neighborhood
membership degree is established in terms of said distances, yielding
the graph weights of the element to its 𝐾 neighbors. The closest element
f1𝑛 is assigned a membership of 1, and we denote its distance to f𝑛 as
𝜆𝑛. The weights are then defined by

𝑤𝑘𝑛 = exp

(

−
𝑑(f𝑛, f𝑘𝑛) − 𝜆

𝜎

)

(17)

where 𝜎 is a free parameter of the algorithm. This expression represents
a heat kernel, and its use was justified before [27]. The 𝜎 parameter
ensures that for each data element f𝑛, the density of the circle centered
at f𝑛 and with a radius equal to the distance to the 𝐾 neighbors are
about the same for each f𝑛, which is accomplished by imposing
𝐾
∑

𝑘=1
𝑤𝑘𝑛 = log2(𝐾) (18)

After determining graph matrix W, the dimension reduction into low-
dimensional space R𝑑 is done (typically, 𝑑 = 2 or 𝑑 = 3) by using
the Laplacian eigenmaps. The 𝑛th feature vector is represented as a
vector of coordinates g𝑛 ∈ R𝑑 . Their components are the coordinates
concerning the eigenvectors of the Laplacian associated with G, with
the eigenvalues associated in descending order. Then, we can define a
graph W′ from R𝑑 points, similarly to the previous step, except for the
weights between g𝑛 and g𝑚, which are now defined by

𝑤(g𝑛, g𝑚) =
1

1 + 𝑎
(

‖g𝑛 − g𝑚‖2
)𝑏 (19)

where free parameters 𝑎 and 𝑏 are chosen, so that function 𝜓 realizes
a smooth approximation of 𝛹 , being defined by

𝜓(g𝑛, g𝑚) = 1

1 + 𝑎
(

‖g𝑛 − g𝑚‖2
)𝑏 (20)

𝛹 (g𝑛, g𝑚) = 𝑒𝑥𝑝
(

−‖g𝑛 − g𝑚‖
)

(21)

This smooth approximation allows us to derive the cross-entropy
between W and W′ graphs, which determines attractive and repulsive
forces among the data, and a force-directed graph layout algorithm is
subsequently computed. Then, each element of R𝑑 acts as a physical
point under those two forces until a physical equilibrium is obtained.
The cross-entropy is now minimized between the two graphs. UMAP
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returns an element of R𝑑 for each element in the original dataset, using
he cross-entropy of a graph on each of them.
Feature Measurements in the UMAP Embeddings. The UMAP approx-

imation to this problem is based on comparing the differences among
pre- and post-ablation studies by computing differences among their
manifolds. In this way, the complete processing stage is created as fol-
lows. First, we defined the operator 𝛷𝑖

𝑀 , which is the UMAP transform
optimized for 𝑖th pre-ablation case. Second, this operator is applied
on 𝑖th pre- and post-ablation signals, creating two different manifolds
which contain the latent information about the processed signals. This
explanation can be summarized in a mathematical way by

𝑀 𝑖
𝑝𝑟𝑒 = 𝛷𝑖

𝑀 (𝑋𝑖
𝑝𝑟𝑒), 𝑀

𝑖
𝑝𝑜𝑠𝑡 = 𝛷𝑖

𝑀 (𝑋𝑖
𝑝𝑜𝑠𝑡) (22)

where 𝑀𝑝𝑟𝑒
𝑖 (𝑀𝑝𝑜𝑠𝑡

𝑖 ) is the manifold computed for 𝑖th case, and 𝑋𝑖
𝑝𝑟𝑒

(𝑋𝑖
𝑝𝑜𝑠𝑡) represents the input space, which can be compounded by 𝑃 𝑙𝑗 ,

their derivative, the time signal, among others.
Once the pre- and post-ablation manifolds are computed, the follow-

ing step extracts features that can model the differences among pre- and
post-ablation signals. For this purpose, we can define a manifold feature
extractor, which is denoted as 𝛷𝑀𝐹 , and it represents the calculation
of a new feature data vector

𝐹 𝑖𝑝𝑟𝑒 = 𝛷𝑖
𝑀𝐹 (𝑀

𝑖
𝑝𝑟𝑒), 𝐹

𝑖
𝑝𝑜𝑠𝑡 = 𝛷𝑖

𝑀𝐹 (𝑀
𝑖
𝑝𝑜𝑠𝑡) (23)

where 𝐹 𝑖𝑝𝑟𝑒 (𝐹 𝑖𝑝𝑜𝑠𝑡) is the manifold features vector computed for the
𝑖th case, and 𝑀 𝑖

𝑝𝑟𝑒 (𝑀 𝑖
𝑝𝑜𝑠𝑡) represents the previously computed UMAP

manifold for the 𝑖th case.
Preprocessing employed for the experiments in this section was

slightly different from the one used in the previous section. For each
recording, P-waves were segmented, and a Tukey window was applied
to reduce the border effect. Afterward, signals were aligned by circular
correlation, selecting those with a high correlation coefficient. Then,
for each lead, five different P-wave templates were created by using 10,
25, 50, 75, and 90 percentiles from the previously highly correlated se-
lected P-waves. Subsequently, ten time-shifted variants of each P-wave
template were computed using the sliding window technique. After, the
feature matrix was created by joining the P-wave templates, the time-
shifted variants, and the time axis. Finally, once the feature matrices
were computed for both registers from the same patient (pre- and post-
ablation registers in the case of the AF ablation group individuals), they
were normalized by z-score, taking the mean and standard deviation
from the pre-ablation feature matrix.

On simulated BSPM records, feature extraction only varied in the
preprocessing stage. Every single signal was cropped to get the P-
wave depolarization, a Tukey window was applied to reduce the border
effect, and they were aligned by circular correlation. After, the fea-
ture matrix was created by joining the preprocessed signals, and two
different features were calculated, namely, 𝑉 𝑎𝑙𝑀𝑎𝑥, computed as the
maximum of the absolute difference among pre- and post-ablation
records on the same spatial position, and 𝑃𝑜𝑠𝑀𝑎𝑥, computed as the
time instant where the 𝑉 𝑎𝑙𝑀𝑎𝑥 value was reached.

. Results

This section is structured as follows. First, a preprocessing and delin-
ation stage was applied. In order to validate the algorithm developed
n this previous stage, as well as to evaluate the quality of the ECG
absence of artifacts and noise), heuristic characteristics were obtained
nd compared in both control and AF ablation individuals. The pre-
iously computed features were used to feed a linear support vector
achine (SVM) classifier designed to detect the AF ablation presence,

n which the feature weights allowed us to scrutinize their relevance
nd interpretability. Second, the UMAP technique extracted crucial
eatures from the previously used ECG database, and the classification
erformance was similarly benchmarked. Finally, the same approaches
ere used on simulated signals from the advanced atrial and torso
6

odels. This allowed us to quantify these detection techniques on not c
only standard leads but also whole torso registers and to obtain more
detailed insight and clinical description of the role of the features
obtained as relevant from patients.

5.1. Preprocessing, quality control, and heuristic features

P-wave stability among different beats was studied for control and
AF ablation recordings. Fig. 4 depicts the template comprised of the
median P-wave of the complete recording on a control (a) and AF
ablation (b) subject, as well as the confidence intervals for the P-waves
on both subjects (panels c and d). The control case presented high
stability among the first (blue) and second (pink) follow-up recording
P-waves, with similar confidence intervals. In contrast, the AF abla-
tion case presented wider confidence intervals corresponding to the
post-ablation recording (pink) compared to the pre-ablation recording
(blue). Variations in duration and amplitude among pre- (blue) and
post-ablation (pink) P-waves were stronger than for the control case.
These differences observed between the control and AF ablation group
appeared for any individual, which evidences that changes larger than
the intrinsic variability of P-waves for a subject might be present in the
P-wave morphology and duration after AF ablation.

We subsequently computed previously presented features (see
Figs. 5,6,7). Features showed apparent differences among the control
(blue) and AF ablation (orange) groups. On the one hand, P-waves tem-
plates showed a correlation coefficient (𝑓1) near 1 in control, whereas
it turned lower in AF ablation, as shown in Fig. 5(a). On the other
hand, the mean absolute difference (b) and normalized mean absolute
difference (c) generally yielded greater scatter in AF ablation cases (𝑓2
and 𝑓2𝑛). Whole-beat template correlation (𝑓3) was used to check the
method robustness Fig. 6(a). In this case, some variability can be seen
due to noise and natural fluctuation, but in general, beat templates
remained stable, thus indicating that the segmentation process was
successful. Finally, features 𝑓4, 𝑓5, and 𝑓6 were obtained from P-
wave templates for both control and AF ablation groups. Differences
in duration (Fig. 6(b)), amplitude (Fig. 6(c)), and area (Fig. 7(a))
were slighter for control patients compared to the ablation group,
indicating that changes in morphology and duration can be seen after
an AF ablation procedure. More substantial differences were observed
in the case of amplitude and area features, while variations in duration
were slight. All the calculations were supervised and adjusted in terms
of preprocessing parameters to ensure data quality in the template
comparisons and feature extraction. As depicted in Figs. 5,6,7 the
increase of variability in the AF ablation group is better observed in
different leads for different patients.

After applying a paired t-test for the control group, no significant
differences were observed between P-waves templates of the first and
second recordings in terms of duration and amplitude (as shown in
Table 1, the null hypothesis was accepted with p-values of 0.1682 and
0.0821, respectively), whereas differences in the area were observed (p-
value = 0.0012). In the case of the AF ablation group, significant differ-
ences among P-waves corresponding to pre- and post-ablation record-
ings were observed for all three features, which meant that changes in
P-waves appeared after an ablation procedure. Finally, when comparing
the control and AF ablation groups through an unpaired t-test before
ablation (only the first recording for each individual was considered),
no significant differences were visible for P-waves duration, amplitude,
and area. For first and second control recordings and first and sec-
ond AF ablation recordings, mean value ± standard deviation were,
respectively: 0.0271 ± 0.0288, 0.0292 ± 0.0160, 0.0265 ± 0.0370
and 0.0299 ± 0.0376 s in case of P-wave duration; 0.0518 ± 0.0373,
.0539 ± 0.0377, 0.0527 ± 0.0324 and 0.0458 ± 0.0322 mV in case of
-wave amplitude; 0.8336 ± 0.9063, 0.9453 ± 0.9362, 0.8546 ± 0.9413
nd 0.5894 ± 0.9509 s⋅mV in case of P-wave area. Differences between
re- and post-ablation recordings are evident for the AF ablation group.
n addition, bigger variability in P-wave duration, amplitude, and area

an be observed for AF ablation individuals compared to controls.



Computers in Biology and Medicine 155 (2023) 106655L. Martinez-Mateu et al.
Fig. 4. P-wave templates and confidence intervals of the 12-lead ECG. Templates corresponding to a control (a) and an AF ablation (b) individual, obtained as the median P-wave
of the whole 30-s recording, and confidence intervals of the P-waves corresponding to the same control (c) and AF ablation (d) individuals. Results associated with the first and
second recordings are depicted in blue and pink, respectively.
Aiming to determine an indicator for a change detection system
based on the tested features (𝑓1, 𝑓2, 𝑓2𝑛, 𝑓3, 𝑓4, 𝑓5, and 𝑓6), a classifier
was implemented using a linear SVM in order to get an interpretable
classifier via its weights. The presented classifier exhibited a 77.78%
accuracy. According to our previous results, duration and amplitude
difference (𝑓4 and 𝑓5) and correlation coefficient values (𝑓1) among
pre- and post-ablation P-waves ruled the classification, as it can be seen
in Fig. 7(b).
7

5.2. UMAP features and classification performance

To measure differences among pre- and post-ablation recordings,
the UMAP algorithm was applied. Results are summarized in Figs. 8–
10. Fig. 8, panels (a) and (b) show the Euclidean distance between
the pre- and post-ablation embeddings for control and AF ablation
groups, respectively. The control group generally exhibited lower dis-
tances than the AF ablation group. However, the border effect was
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Fig. 5. Quality control and engineered features (𝑓1, 𝑓2, 𝑓2𝑛) from P-wave (see text for further details). (a) Correlation metrics corresponding to the P-wave template (𝑓1); (b)
mean absolute difference (𝑓2) and (c) normalized mean absolute difference (𝑓2𝑛) between P-waves templates. Comparisons were made between both recordings about each patient.
Graphs show features for all leads and all patients (the control group is shown in blue and the AF ablation group is in orange).
still noticeable in control due to the low performance of the UMAP
for low amplitude inputs, as the first 50–75 samples corresponded
to the baseline. This behavior can be better observed in panels (c)
and (d), depicting an example of embedding for the control and AF
ablation groups, respectively. In the control case (c), pre- (blue) and
post-ablation (orange) embeddings were closer than in the AF ablation
case (d). Nevertheless, this distance increased in the regions of the
embeddings that correspond to the baseline in the recordings. Higher
distances among pre- and post-ablation embeddings for the AF ablation
group highlighted changes in P-waves after the AF ablation procedure.
Fig. 9(a–d) shows the embedding distance metric over two control and
8

AF registers. Orange colored background superimposed on the plots
represents the segments of the recordings for which the pre- and post-
ablation distance over-passed a threshold. It should be noted the proper
functioning of the method. Distance values were low in those control
cases, with negligible differences between both recordings. They did
not reach the threshold (b). In contrast, in AF ablation cases with dif-
ferences between the pre- and post-ablation recordings, distance values
were high, over-passed the threshold, and segments of the recordings
with remarkable morphological differences were indicated with the
orange-colored background (d). Therefore, this method was able to
discriminate between pre- and post-ablation recordings. However, it
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Fig. 6. Quality control and engineered features (𝑓3, 𝑓4, 𝑓5) from P-wave (see text for further details). (a) Correlation metrics corresponding to the whole beat template (𝑓3); (b)
differences in duration (𝑓4) and (c) differences in amplitude (𝑓5) for P-wave templates. Comparisons were made between both recordings about each patient. Graphs show features
for all leads and all patients (the control group is shown in blue and AF ablation group is in orange).
might fail in this discrimination for those control cases showing strong
P-wave morphology changes (a) or those AF ablation cases with slight
changes on P-waves before and after the ablation procedure (c).

Finally, after processing each patient, a linear SVM was used to
classify the registers as control or AF ablation groups according to the
9

previously computed pre- and post-ablation embedding distance, result-
ing in a classifier with 94.44% accuracy. Fig. 10 shows the classifier
weights. As depicted, higher weights in the classification correspond to
the region over 125 to 200 samples. This is the P-wave position in the
considered window (concretely, the last part of the P-wave).
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Fig. 7. Quality control and engineered features (𝑓6) from P-wave (see text for further details). (a) Differences in areas (𝑓6) for P-wave templates. Comparisons were made between
both recordings about each patient. Graphs show features for all leads and all patients (the control group is shown in blue and AF ablation group is in orange). (b) Linear SVM
weights for 𝑓1, 𝑓2, 𝑓2𝑛, 𝑓3, 𝑓4, 𝑓5, 𝑓6, and bias. Different colors are used for each feature.
Although an exhaustive comparison between different automatic
feature extraction methods is out of the scope of this work, the t-
SNE and PCA (Principal Components Analysis) [28] methods were also
tested. In the case of the t-SNE method, there was no clear differentia-
tion between control and AF ablation groups regarding the detection of
P-wave changes after ablation. In addition, this method does not allow
the projection of the second recordings on the first recording embedded
space to see the time differences between them (in the case of the
AF ablation group, these recordings correspond to the pre- and post-
ablation signals). On the contrary, the PCA method, which also reduces
the dimensionality but allows the mentioned projection, showed larger
P-wave differences for the AF ablation group than for the control group.
However, when these results were used to feed a linear SVM classifier
designed to detect P-wave changes and thus, the AF ablation presence,
the classifier exhibited a 72.22% accuracy, compared to the 77.78%
and 94.44% obtained with conventional features extraction and the
UMAP method, respectively.

5.3. Results on advanced simulations

In this section, computational simulations were used to check
whether differences observed in P-wave morphology from patients can
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also be detected in a virtual patient. We also scrutinized whether
standard leads are recording those differences or whether it would be
recommendable to use additional leads to detect PV isolation and future
potential AF ablation reconnections.

For this purpose, simulated P-wave recordings over the whole torso
surface (𝑃 𝑇 ) were used. The processing applied to simulated signals
was slightly different from that used with clinical data (see Section 4.1
for further details). Then, features extraction was performed using
heuristic methods (𝑓4, 𝑓5, and 𝑓6, obtained according to previously
computed fiducial points) and the UMAP algorithm. Simulation results
summarized in Figs. 11 and 12 agree with clinical results obtained from
patients since standard leads showed differences among pre- and post-
ablation recordings. Color-coded spatial information provided by torso
maps (Fig. 11) showed that P-wave differences over the torso surface
were observed for both UMAP and heuristic maps, with slight variations
among maps regarding the region of the torso where they are visible.
Maps built with UMAP information depicted, on the one hand, the
position of the maximum difference between the pre- and post-ablation
recordings for all nodes within the torso surface, and on the other hand,
the value of this difference. Both map patterns resembled, although
the maximum value map showed the most decisive differences between
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Fig. 8. Different measurements and examples from UMAP latent features. The Euclidean distance among pre- and post-ablation embedding spaces for control (a) and AF ablation
(b) groups. Embedding example for control (c) and AF ablation (d) registers (pre-ablation projection in blue, post-ablation projection in orange). In the control group, no ablation
was performed, and pre- and post-ablation recordings correspond to two different recordings from the same patient unrelated to an ablation procedure.
pre- and post-ablation limited to smaller regions on the torso, compared
to the position map.

Regarding maps based on heuristic features, they had similar pat-
terns in which maximum differences can be observed in the same region
on the torso surface. Duration, amplitude, and area maps correspond
to the absolute value of the difference between the P-wave duration
(f4), amplitude (f5), and area (f6) of pre- and post-ablation recordings.
The duration map is much more inhomogeneous than the amplitude
map, probably due to the high sensitivity of the Phasor Transform
method [23] to slight variations in the recordings when detecting the
P-wave offset compared to the detection of the P-wave peak. Map
discontinuities appeared in torso regions close to the atria, where
local activation containing different wavefronts propagating in differ-
ent directions produced strong fluctuations in the simulated P-waves.
More homogeneous regions were those far from the atria, containing
smoother P-waves. Transitions on the amplitude map for neighboring
electrodes were smoother than in the case of the duration map. As a
result, the amplitude map was much more regular, with a broad region
of maximum differences in the center of the top anterior torso and
below the diagonal between the left shoulder and the mid-right side
of the posterior torso. Finally, the area map mixed patterns described
by the duration and amplitude maps.
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In general, as observed in Fig. 11, the color-coded torso maps sug-
gested several regions on the torso surface different from the standard
leads location to be the best position to record maximum differences
in P-waves after an ablation procedure. Therefore, we located three
different grids of 9 electrodes in different regions on the torso surface
to cover the maximum differences shown by all the maps. The first and
second grids of electrodes, called front 1 and front 2, respectively, were
located in the anterior torso, whereas the third grid, called back, was
set in the posterior torso. They are shown in Fig. 11 over the maps
(pink, white and green). In addition, electrodes corresponding to the
standard leads are also depicted over the maps in gray. Fig. 12(a–d)
shows the P-waves corresponding to each of the nine electrodes for the
front 1, front 2, and back grids and the standard leads, respectively. For
each panel, differences between pre- (blue) and post-ablation (orange)
P-waves can be observed. However, those differences seemed visually
more significant for the front 2 (b) and back (c) grids compared to the
front 1 grid (a), and standard leads electrodes (d). Panel (e) shows
the signal resulting from the subtraction of the post-ablation to the
pre-ablation P-wave. As expected, differences in the first half of the
P-wave (before the red dotted line) were minimal, while in the second
half (after the red dotted line), they considerably increased. This was
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Fig. 9. Examples of control registers with a high (a) and low (b) embedding distance metric value, and AF ablation registers with a low (c) and high (d) embedding distance
metric value (pre-ablation recording in blue, post-ablation in orange). Low (high) values of the embedding distance metric indicate the absence (existence) of pre- and post-ablation
differences. In the control group, no ablation was performed, and pre- and post-ablation recordings correspond to two different recordings from the same patient unrelated to an
ablation procedure.

Fig. 10. Classification weights for a linear SVM classifier made for an input space of UMAP latent features.
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Fig. 11. Color-coded maps on the virtual patient. From left to right: UMAP features (position and value of the maximum difference) and heuristic features (𝑓4, 𝑓5 and 𝑓6). Top
row: anterior torso; bottom row: posterior torso. Electrodes corresponding to the standard leads are depicted in gray, grid 1 in pink (front 1), grid 2 in white (front 2), and grid
3 in green (back).
Table 1
Comparison between P-waves of both recordings for the control
(top) and AF ablation (middle) group, and between the first
recording of both groups (bottom). h0 is the null hypothesis;
CI is confidence interval.

Control group

h0 p-value CI

Duration 0 0.1682 [−0.0051, 0.0008]
Amplitude 0 0.0821 [−0.0046, 0.0002]
Area 1 0.0012 [−0.1785, −0.0448]

AF-Abl. group

h0 p-value CI

Duration 1 0.0052 [−0.0058, −0.0010]
Amplitude 1 3.44×10−5 [0.0037, 0.0101]
Area 1 1.22×10−7 [0.1701, 0.3603]

Control vs AF-Abl. group

h0 p-value CI

Duration 0 0.8552 [−0.0057, 0.0069]
Amplitude 0 0.7958 [−0.1986, 0.1566]
Area 0 0.8165 [−0.0077, 0.0059]

due to the PV isolation since PVs contribute to the last part of the P-
wave. Finally, to quantify whether standard leads were optimal when
detecting changes in P-waves after ablation or, on the contrary, the
suggested grids of electrodes better-collected P-waves variations, we
calculated the root mean square (RMS) of the signals shown in panel
(e). Panel (f) depicts a boxplot for each grid tested, and the standard
leads electrodes for the first half of the P-wave (top), the second half
of the P-wave (middle), and the whole P-wave duration (bottom). The
RMS value of the difference signal in each electrode is depicted. The
differences between different grids and standard leads were minimal
in the first half of the P-wave. However, in the second half of the P-
wave, the front 1 and front 2 grids clearly showed more significant
differences than the standard leads and the back grid. In addition, the
front 2 grid and the standard leads showed higher variability between
electrodes, probably due to the irregular maps in the regions where
those electrodes were located. Nevertheless, as shown in panels (a)–(d),
P-waves amplitudes vary among grids and between different electrodes
in the same grid, and absolute values of the observed differences might
falsify results. Therefore, the bottom graph in panel (f) shows the RMS
values of the normalized signals in (e). In this case, the grid that better
detects P-waves variations among pre- and post-ablation signals is front
2, followed by the standard leads, front 1, and finally, the back grid.
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As before, the front 2 grid and the standard leads presented higher
variation between different electrodes concerning the changes observed
in the P-waves. The front 1 and back grids presented more stable results
among their electrodes.

6. Discussion

Clinical evidence suggests that, after the process of ablation of the
PVs as a therapeutic tool for the elimination of AF, on many occasions,
fibrillation processes recur. In this direction, and with the aim of vali-
dating the existence of real and complete electrophysiological isolation
of the PVs, in this work we have carried out a thorough analysis of the
P-wave before and after ablation. To do so, we evaluated the success
of the presented procedure, by comparing conventional extraction of
characteristics on clinical and simulated ECG signals with automatic ex-
traction based on integrated signal processing using the UMAP method.
The novelty of this study is that: (1) the UMAP algorithm can overcome
one of the limitations of the ablation procedures since it can be used
as a non-invasive technique to verify proper PVs isolation during the
intervention without prolonging it, and without the need of the ECG
delineation; (2) the UMAP algorithm can also be used during follow-
up visits as a non-invasive technique to check that the PVs are still
disconnected; (3) additional leads seem to be necessary on the anterior
and posterior torso to better detect proper PVs disconnection.

On the P-wave Variability and UMAP Features. The variability of the
P-wave is an accepted fact for cardiac electrophysiology. However,
according to the literature, severe alterations of its parameters have
been described concerning cardiac affections, especially in AF condi-
tions. Variations in the P-wave morphology leading to a primary and a
secondary P-wave template [29], prolonged duration of the P-wave [30,
31] and a significant variability over the intrinsic dispersion of the P-
wave interval [32] have been pointed out as AF indicators. In this work,
we found less P-wave variability over time for control individuals than
for AF ablation patients, which is in agreement with literature [33].
In addition, we hypothesized that after an ablation procedure, P-wave
changes might occur. These differences could be used as an indica-
tor of the PVs isolation success and to detect later reconnections in
follow-up recordings for those patients who underwent an AF ablation
procedure. Our results confirmed this hypothesis. Statistically signif-
icant differences were observed between the pre- and post-ablation
recordings for heuristic features (duration, amplitude, and area). They
were corroborated with UMAP results, in which euclidean distances
between the pre- and post-ablation embeddings were smaller for the
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Fig. 12. Differences between pre- and post-ablation simulated recordings. P-waves corresponding to front 1 (a), front 2 (b), and back (c) grids, and standard leads (d). Pre- and
post-ablation recordings in blue and orange, respectively. Difference between the pre- and post-ablation recording for each electrode (e), with signals from front 1 grid in blue,
front 2 in yellow, back in green and standard leads in purple. The red dotted line splits the P-wave into two halves. Root mean square values (f) from signals in (e) for the first
half (top) and the second half (middle) of the P-waves and for the whole P-wave duration when normalizing signals by their maximum (bottom).
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control than for the AF ablation group. Although the UMAP algorithm
has already been applied to ECG signals for dimensionality reduction
and features extraction [34], to our knowledge, this is the first work
using it to detect P-waves changes after PVs isolation. The accuracy of
the classifier to discriminate between control and AF ablation groups
improved when feeding the SVM with UMAP characteristics instead of
with conventional heuristic features (94.44% versus 77.78%).

On the Simulation Results. In terms of the P-wave analysis, results
obtained for in-silico modeling are consistent with our results derived
from clinical data and the findings in the literature. In particular,
the synthetic models studied here and the tools developed made it
possible to visualize variations in the duration and morphology of the
P-wave, mainly in its last part, as a result of the sharp reduction of
the electrophysiological activity due to the ablated tissue. The use of
standard 12-lead ECG for AF remains limited to its diagnosis in clinical
practice [35]. In this work, we proposed new use for the ECG. On the
one hand, it can be used to check if PV isolation was successful during
an ablation procedure. On the other hand, it can later detect potential
PVs reconnection during follow-up visits and prior AF recurrences.
Furthermore, in in-silico simulations, we observed that variations in P-
waves after PVs isolation were not homogeneous over the whole torso
surface. This led us to suggest the location of additional electrodes to
the standard leads in those regions on the anterior and posterior torso
surface with more substantial differences. BSPM has already been used
for the study of AF organization, and complexity [36–38]. However, to
our knowledge, this is the first work that employs BSPM to detect PV
isolation using P-wave analysis.

In addition, it has been demonstrated that when translating this
methodology to clinical practice, there is no need to record potentials
over the whole torso surface. Only a few electrodes well located on the
anterior torso, over the region of the precordial leads, and on the pos-
terior torso, near the left scapula, are necessary. A previous simulation
work [24] stated that left PVs contribution to the P-wave was better
observed in this region of the posterior torso. Petrutiu and colleagues
also demonstrated that RA and LA frequency gradients can be non-
invasively monitored by using additional posterior lead recordings
since LA electrical activity is better observed in posterior torso loca-
tions [39]. This is in agreement with our results. Torso maps showed
considerable differences between pre- and post-ablation recordings
near the left scapula, where we suggested setting a grid of electrodes.
However, although differences on the posterior torso seemed to be
better concentrated in the last part of the P-wave, recordings are of
lower amplitude in this region. Therefore, differences are lower than in
the anterior torso recordings. In our simulations, the most substantial
differences appeared on the anterior torso, over the precordial leads,
where we also suggested locating additional electrodes. This might be
because we are simulating cryo-ablation. Therefore, a comprehensive
portion of the LA besides the PVs was ablated. Consequently, this
ablated region’s lack of contribution to the P-waves might be seen in
the anterior torso. Finally, it should be noted that maps built based
on UMAP characteristics and heuristic features present a similar trend
regarding the pre- and post-ablation differences patterns. However,
UMAP information yielded less noisy and more homogeneous maps.

On the Ablation Implications. Clinical consensus establishes the ab-
lation method as the most effective procedure to isolate PVs. On the
other hand, the verification of the success of this procedure supposes
prolonging the intervention or carrying out another equally invasive
subsequent procedure. The existence of a non-invasive procedure that
allows both verifications at the time of the intervention, and later in
time for periodic monitoring of any possible re-connections, is consid-
ered of great interest since it would allow its review in non-hospital
outpatient systems [40,41].

Limitations and future work. This work focused on detecting P-wave
changes after PV isolation. For this purpose, we compared conven-
tional feature extraction (P-wave fiducial points detection and P-wave
15

duration, amplitude, and area calculation) with the automatic UMAP
algorithm. The major limitation of this study might be related to the
size of the patient database. In future works we expect to increase the
number of recruited individuals and to extend the study to patients with
reconnections and to the analysis of intermediate signals, after each
PV isolation, to detect potential reconnections and locate the PV to be
isolated again in order to avoid AF recurrences.

Another limitation of this study is that we did not exhaustively
compare the UMAP algorithm with other methods for feature extraction
to find the best method for this clinical application, as it was out of
the scope of this work. UMAP results were only compared to PCA and
t-SNE methods, the UMAP method yielding better performance. Since
the main goal of this study was to detect P-waves changes after PV
isolation without ECG delineation and fiducial points detection due to
the limitations associated with this type of method, and the best results
were obtained with the UMAP algorithm, we chose it as a proof-of-
concept to solve this clinical problem. Additional research to find the
best method for this clinical application could be carried out as a future
independent study by testing, among others, autoencoders.

7. Conclusion

In this work, we demonstrated that AF ablation drives singular and
recognizable P-wave changes. Those changes can be used to check PVs
isolation success during the procedure and it might be useful to evalu-
ate persistent PVs isolation in patients with arrhythmia recurrences. We
also demonstrated that the UMAP method can be a promising alterna-
tive to the heuristic characterization of P-waves (i.e., those employing
features such as duration, amplitude, or area). The former is less
prone to noise and avoids potential inaccuracies due to the delineation
process of the fiducial points. Furthermore, it allows for highly accurate
classification of ECG recordings between two different groups: control
and AF ablation. In addition, computational models and simulations
showed their value in enhancing the information retrieval from clinical
data. They suggest that standard leads are not optimal for detecting
PVs isolation, and additional leads on the anterior and posterior torso
should be used for better achievements in P-wave ablation.
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