
applied
sciences

Article

Modeling a New AQM Model for Internet Chaotic Behavior
Using Petri Nets

José M. Amigó 1,2 , Guillem Duran 1,2, Ángel Giménez 1,2 , José Valero 1,2 and Oscar Martinez Bonastre 1,2,*

����������
�������

Citation: Amigó, J.M.; Duran, G.;

Giménez, Á.; Valero, J.; Bonastre, O.M.

Modeling a New AQM Model for

Internet Chaotic Behavior Using Petri

Nets. Appl. Sci. 2021, 11, 5877.

https://doi.org/10.3390/app11135877

Academic Editors: João Paulo Barros

and Luis Gomes

Received: 3 June 2021

Accepted: 21 June 2021

Published: 24 June 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Departamento de Estadística, Matemáticas e Informática, Universidad Miguel Hernández de Elche,
Avda. Universidad s/n, 03202 Elche, Spain; jm.amigo@umh.es (J.M.A.); guillem.db@gmail.com (G.D.);
a.gimenez@umh.es (Á.G.); jvalero@umh.es (J.V.)

2 Centro de Investigación Operativa, Universidad Miguel Hernández, Avda. de la Universidad s/n,
03202 Elche, Spain

* Correspondence: oscar.martinez@umh.es

Abstract: Formal modeling is considered one of the fundamental phases in the design of network
algorithms, including Active Queue Management (AQM) schemes. This article focuses on modeling
with Petri nets (PNs) a new scheme of AQM. This innovative AQM is based on a discrete dynamical
model of random early detection (RED) for controlling bifurcations and chaos in Internet conges-
tion control. It incorporates new parameters (α, β) that make possible better stability control over
oscillations of an average queue length (AQL) at the router. The PN is validated through the matrix
equation approach, reachability tree, and invariant analysis. The correctness is validated through the
key properties of reachability, boundedness, reversibility, deadlock, and liveness.

Keywords: Petri nets; Internet; congestion control; AQM; dynamical systems; chaos; bifurcation

1. Introduction

The Internet is a network that is designed to handle the load of streams of diverse
traffic. Since its invention more than five decades ago [1,2], the Internet has become a
key instrument for billions to stay in contact with everyone, and its expansion has been
uninterrupted. At the time this writing, with much of the world staying at home due
to the worldwide pandemic situation, the Internet is experiencing an unprecedented
surge in usage. In consequence, an evident increase in Internet traffic has been caused
by manifold online activities, such as remote working, distance learning, and video calls,
among others. In Ref. [3], the impact on the Internet performance (latency, packet loss,
etc.) of the COVID-19 lockdown is evaluated. Due to this extraordinary situation for data
networks, the topic of congestion control has arisen and needs active queue management
(AQM) algorithms in routers supporting Internet traffic. AQM algorithms should be able to
actively control the average queue length (AQL) and thus to be able to prevent congestion
as much as possible. A large increase in traffic and poor congestion control can cause
network performance to partially or fully degrade and, consequently, impact applications.
In addition, the design process of AQM schemes should make use of formal description
techniques in the various steps of implementation. This article is an extended version of
the outcomes appearing in [4]; it focuses on modeling with Petri nets (PNs) a new discrete
dynamical model of AQM for congestion control, due to the chaotic behavior of Internet
traffic. The PN formalism is a powerful method for modeling, and the precise nature of
the graphical representation facilitates the understanding of the behavior of our AQM.
For validation, we used PN mathematical methods that satisfy key properties, such as
reachability, boundedness, reversibility, deadlock, and liveness.

The remainder of this article is organized as follows. Section 2 presents the related
work and motivation—chaotic behavior of Internet traffic, congestion control, and formal
description techniques. Section 3 introduces our dynamical model of AQM. Section 4

Appl. Sci. 2021, 11, 5877. https://doi.org/10.3390/app11135877 https://www.mdpi.com/journal/applsci

https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-1642-1171
https://orcid.org/0000-0001-5513-8961
https://orcid.org/0000-0002-3531-0012
https://doi.org/10.3390/app11135877
https://doi.org/10.3390/app11135877
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/app11135877
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app11135877?type=check_update&version=2

Appl. Sci. 2021, 11, 5877 2 of 16

presents our solution based on Petri nets. Section 5 discusses the validation and correctness.
Section 6 shows the numerical simulations and performance study based on the outcomes
appearing in [4]. Finally, Section 7 presents the conclusions and ongoing work.

2. Related Work and Motivation

Chaos means deterministic behavior that is sensitive to its initial condition. The branch
of mathematics known as dynamical systems, discrete and continuous, uses bifurcation
theory [5] to study chaos in multiple fields, including engineering (see [6–10]). A bifurcation
occurs when a small, smooth change made to the parameter values of a system causes a
sudden qualitative or topological change in its general behavior. Generally, a bifurcation
diagram shows the possible long-term values (equilibria/fixed points or periodic orbits)
of a chaotic system as a function of a bifurcation parameter in the system. It is usual to
represent stable solutions with a solid line and unstable solutions with a dotted line.

The majority of Internet traffic is generated and controlled by Transmission Control
Protocol (TCP), which has chaotic properties: nonlinearity, determinism, order in dis-
order, sensitivity to initial conditions, and unpredictability. Several decades ago, these
major features in Transmission Control Protocol/Internet Protocol (TCP/IP) networks were
demonstrated through the phenomenon called the fractal nature of Internet traffic [11].
Thus, it was revealed how extreme sensitivity to initial conditions (also known as the
butterfly effect) and odd periodicity are inherent properties in TCP/IP networks that sup-
port fundamental applications such as web and electronic mail transmission, respectively,
among others. Dynamical systems study internet behavior through bifurcation theory,
modeling and reproducing the complexity of chaotic behavior of the TCP-like model for
congestion control (see [11–17]).

In addition, queue management in routers plays an important role in taking care of
congestion from network traffic. Thus, one of the main functions of AQM is to detect
emerging congestion early, before the queues in the routers overflow and the packets are
dropped [18]. Numerous studies on AQM congestion control schemes have been proposed
(see [19–22]), and among different taxonomies, they can be classified into the queue-based
category. These schemes do not directly control the arrival rate at the queue, the congestion
is observed by the average or instantaneous queue length, and the aim is to stabilize the
queue length. How to stabilize the queue length around an expected target regardless
of nonlinear traffic loads requires fine-tuning of when and how to govern buffering and
queue management. Moreover, queue-based AQM schemes have been studied from the
perspective of chaos theory that also solve congestion control problems by using bifurcation
analysis (see [23–26]).

Regarding the design of new communication protocols, including AQM schemes, the
literature offers various formal description techniques (FDT) [27] that cover all relevant
phases from specification to validation. As evidence, the majority of worldwide institutes
of standardization in telecommunications, such as the International Organization for
Standardization (ISO), the International Telecommunication Union (ITU), the European
Telecommunications Standards Institute (ETSI), the Institute of Electrical and Electronics
Engineers (IEEE), the Internet Research Task Force (IETF), and others, recognize the wide
spectrum of FDT [27]: Specification and Description Language (SDL), Simple ProMeLa
Interpreter (Spin), Language Of Temporal Ordering Specifications (LOTOS), Estelle, and
Petri nets, among others.

Many of these FDT offer a complementary approach based on mathematical prop-
erties, which can be automatically applied to design and validate the correctness of an
algorithm. In this article, we will use Petri nets (PNs) as FDT that are applied to the field of
telecommunications engineering (see [28–31]. Due to space constraints in this article, the
reader is directed to [28] for further explanation concerning the mathematical properties of
the PNs that are used in Section 4. The next section introduces our dynamical model of
queue-based AQM.

Appl. Sci. 2021, 11, 5877 3 of 16

3. Dynamical Model for Congestion Control
Definition of Our Dynamical Model

Random early detection (RED) [32] is considered the pioneer queue-based AQM,
and it is one of the most extensively investigated techniques for congestion avoidance.
However, RED and its variants (see [33–39]), among others, suffer from parametrization
problems, and community research is still ongoing to study new modifications, some of
them using chaos theory (see [23–26]). The presented dynamical model of AQM is based
on a generalization of the RED algorithm that improves performance. It uses the moving
average of the queue length (AQL) to detect congestion and makes possible better stability
control over oscillations of the AQL. When the AQL is below a minimum threshold, the
packets are put into the buffer at the router. When the AQL exceeds the maximum threshold,
the packets are dropped. When the AQL is between the minimum and the maximum
threshold, the packets are randomly dropped according to some control parameters of our
AQM. Concretely, the linear dropped packet probability distribution p of typical RED is
replaced by the beta distribution (Equation (1)), providing two additional parameters (α, β)
with the aim of increasing the controllability of RED dynamics. Namely:

p(x; α, β) =

0 x < qmin,

pmax Iz(α, β) qmin ≤ x ≤ qmax,
1 x > qmax,

(1)

Iz(α, β) =
B(z; α, β)

B(1; α, β)
, (2)

B(z; α, β) =
∫ z

0
tα−1 (1− t)β−1dt, z =

x− qmin
qmax − qmin

(3)

where B(z; α, β) is the incomplete beta function (Equation (3)) and Iz(α, β) is the regularized
incomplete beta function (Equation (2)). The value of x represents the AQL; qmin and qmax
are the minimum and maximum thresholds of the queue size, respectively; and pmax ∈ [0, 1]
is a selected drop probability. One of the advantages of our AQM model is that for properly
chosen α and β values, the stability ranges extend beyond their bifurcation values in the
original formulation (i.e., α = β = 1), which recovers the original model of RED. In Ref. [40],
we provide a further mathematical perspective of our dynamical model presented in this
article. Next, the Algorithm 1 shows a high-level view of how our AQM works for each
packet arrival.

Appl. Sci. 2021, 11, 5877 4 of 16

Algorithm 1. Drop mechanism for each packet arrival.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 4 of 17

Algorithm 1. Drop mechanism for each packet arrival.

Input: New_Pkg

Output: Drop = {True, False}

1: AQL = Calculate_AQL;

2: if AQL < qmin then

3: Accept_packet;

4: Fill_buffer(New_Pkg);

5: Drop = False;

6: else

7: if (qmin ≤ AQL ≤ qmax) then

8: Values(α,β);

9: Drop_probability = Calculate_Drop_probability(pmax Iz(α,β));

10: if Drop_probability = “Discard”then

11: Drop_packet;

12: Drop = True;

13: else

14: Accept_packet;

15: Fill_buffer (New_Pkg);

16: Drop = False;

17: else //AQL is greater than qmax

19: Drop_packet;

20: Drop = True;

21: return Drop

The next sections show how the presented AQM is modeled with PNs and validated

mathematically through the matrix equation approach, reachability tree, and invariant

analysis.

4. Formal Description of Our Dynamical Model Using Petri Nets

In this section, we present a formal description of our dynamical model of AQM

using PNs. The precise nature of the PN graphical representation facilitates the

understanding of the behavior of our AQM scheme represented in Figure 1.

4. Formal Description of Our Dynamical Model Using Petri Nets

In this section, we present a formal description of our dynamical model of AQM using
PNs. The precise nature of the PN graphical representation facilitates the understanding of
the behavior of our AQM scheme represented in Figure 1.

To begin with, we introduce the fundamentals of PNs that are used for the formal
specification of our AQM. Once the specification is introduced, PN theory and its analysis
techniques based on algebraic methods are applied for verification and correctness. Due
to space constraints in this article, the reader is directed to [28] for further explanation
concerning the mathematical properties of PNs applied to the design and validation
process.

A PN is a directed graph described by places (represented by circles) and transitions
(represented by bars), which are connected to each other with arcs. Connections between
nodes of the same type (i.e., place to place and transition to transition) are not allowed.
The places can contain zero or more tokens (represented by dots) that fire the transitions.
The dynamic structure of a PN is defined by the movements of tokens from one place to
another and is referred to as marking, i.e., it represents the PN status according to the fired
transitions. Our dynamical model of AQM is a PN represented by (P, T, F, W, G, M0),
where:

P = {P1, . . . ,Pn} is a finite set of n places. The places hold the token (or tokens) and
show the PN marking during its evolution.

T = {T1, . . . ,Tm} is a finite set of m transitions. They are the active events of the PN,
which are used to change the position of the token (or tokens) during the evolution of the
PN. In addition, the transitions can have guards that can restrict their firing, and they must
be evaluated as true for the transition to be fireable.

Appl. Sci. 2021, 11, 5877 5 of 16Appl. Sci. 2021, 11, x FOR PEER REVIEW 5 of 17

Figure 1. Petri net of our AQM scheme with initial marking.

To begin with, we introduce the fundamentals of PNs that are used for the formal
specification of our AQM. Once the specification is introduced, PN theory and its analysis
techniques based on algebraic methods are applied for verification and correctness. Due
to space constraints in this article, the reader is directed to [28] for further explanation
concerning the mathematical properties of PNs applied to the design and validation
process.

A PN is a directed graph described by places (represented by circles) and transitions
(represented by bars), which are connected to each other with arcs. Connections between
nodes of the same type (i.e., place to place and transition to transition) are not allowed.
The places can contain zero or more tokens (represented by dots) that fire the transitions.
The dynamic structure of a PN is defined by the movements of tokens from one place to
another and is referred to as marking, i.e., it represents the PN status according to the fired
transitions. Our dynamical model of AQM is a PN represented by (P, T, F, W, G, M0),
where:

P = {P1,…,Pn} is a finite set of n places. The places hold the token (or tokens) and show
the PN marking during its evolution.

T = {T1,…,Tm} is a finite set of m transitions. They are the active events of the PN,
which are used to change the position of the token (or tokens) during the evolution of the
PN. In addition, the transitions can have guards that can restrict their firing, and they
must be evaluated as true for the transition to be fireable.

In addition, T and P are disjoint sets: P ∩ T = ∅, P ∪ T ≠ ∅.
F ⊆ (PxT) ∪ (TxP). F is a set of arcs (flow relation), where (PxT) is a set I of input arcs,

which connect places to transitions. A place p is called an input place of a transition t if
there exists an input arc from p to t. Then, (TxP) is a set O of output arcs, which connect
transitions to places. A place p is called an output place of a transition t if there exists an
output arc from t to p. A transition (an event) has a certain number of input and output
places representing the pre- and post-conditions of the event, respectively.

Figure 1. Petri net of our AQM scheme with initial marking.

In addition, T and P are disjoint sets: P ∩ T = ∅, P ∪ T 6= ∅.
F ⊆ (PxT) ∪ (TxP). F is a set of arcs (flow relation), where (PxT) is a set I of input arcs,

which connect places to transitions. A place p is called an input place of a transition t if
there exists an input arc from p to t. Then, (TxP) is a set O of output arcs, which connect
transitions to places. A place p is called an output place of a transition t if there exists an
output arc from t to p. A transition (an event) has a certain number of input and output
places representing the pre- and post-conditions of the event, respectively.

W: F→ {1,2,3,. . . } is a weight function. The arcs are labeled with their weights (positive
integers). Labels for unity weight are usually omitted. Consequently, a PN is said to be
ordinary if all of its arc weights are 1s.

G = {G1,. . . ,Gm} are the guards. They are Boolean expressions constructed by using the
variables to enable and fire the associated transition under certain conditions.

Mo = {M1,. . . ,Mn} is the initial marking. M is a marking state that assigns to each place
a non-negative integer. If a marking assigns to the place p a non-negative integer k, we say
that p is marked with k tokens. Graphically, we place k tokens in place p. A marking is
denoted by a vector M of n components, where n is the total number of places. The p-th
component of M, denoted by M(p), is the number of tokens in place p. Mo represents where
the tokens are positioned initially.

Additionally, a PN follows some rules that our AQM model monitors as well. A
transition t is said to be enabled if each input place p of t is marked with at least w(p, t)
tokens, where w(p, t) is the weight of the arc from p to t. A firing of an enabled transition t
removes w(p, t) tokens from each input place p of t and adds w(t, p) tokens to each output
place p of t, where w(t, p) is the weight of the arc from t to p. Furthermore, an enabled
transition t may or may not fire depending on whether the guards take place.

If there is a guard g in a transition t, the associated rules must be evaluated. For the
above rules of transition enabling, there is a concept related to the capacity of a place p.
Initially, it is assumed that each place p can accommodate an unlimited number of tokens.
In addition, it is natural to consider an upper limit to the number of tokens that each place
can hold. Each place p has an associated capacity K(p), the maximum number of tokens

Appl. Sci. 2021, 11, 5877 6 of 16

that p can hold. For a transition t to be enabled, there is an additional condition that the
number of tokens in each output place p of t cannot exceed its capacity K(p) after firing t.

Once the structure and rules are presented, the PN depicted in Figure 1 represents our
AQM model at initial marking M0 = (1,0,0,0,0,0,0,0,0,1). There are 10 places (n = 10, P1,. . . ,
P10) and 12 transitions (m = 12, T1, . . . ,T12). Table 1 shows further details of our PN.

Table 1. Places, transitions, and guards of AQM.

Place Description

P1 A new packet comes from the Internet (network) to the router, which is ready.
P2 The packet is received.
P3 The AQM gets the average queue length (AQL) at the router.
P4 The packet is accepted because the AQL is below the min. threshold.
P5 The AQM gets the probability pmax Iz (α, β).
P6 The packet is rejected because the AQL is over the max. threshold.
P7 The packet is accepted (not discard the result of pmax Iz (α, β)).
P8 The packet is rejected (discard the result of pmax Iz (α, β)).
P9 The packet is put into the buffer queue to be transmitted to the destination.

P10 The AQM ready for receiving the next packet.

Transition Description

T1 Input a new packet; the router is ready.
T2 Start the transmission of the packet once received.
T3 The AQL is below the min. threshold. Check guard G1.
T4 The AQL is between thresholds. Check guard G2.
T5 The AQL is over the max. threshold. Check guard G3.
T6 Fill the buffer with the received packet.
T7 Drop the packet; the AQL is over the max. threshold.
T8 Do not discard the packet. Check guard G4.
T9 Discard the packet. Check guard G5.

T10 Input the packet into the buffer.
T11 Reject the packet.
T12 Leave the buffer. The packet is transmitted.

Guard Description

G1 (qmin < AQL) = True. Guard associated to transition T3
G2 (qmin ≤ AQL ≤ qmax) = True. Guard associated to transition T4
G3 (AQL > qmax) = True. Guard associated to transition T5
G4 Not Discard = True. Guard associated to transition T8
G5 Discard = True. Guard associated to transition T9

Each place shows where the token is located, and the transitions are actions of our
AQM model. The guards are on transitions T3, T4, T5, T8, and T9. Regarding the capacity,
the places have capacity K = 1 to show how our AQM runs actions on the packet and router.
The PN starts on T1 enabled, i.e., there is an incoming packet, the router is ready (P1), and
AQM is ready (P10). Once T1 and T2 are fired, our model gets the AQL.

As said before, transitions T3, T4, T5, T8, and T9 have guards that restrict their firing.
The PN fires T3 or T5 (fill buffer or drop packet) if the AQL is below qmin or over qmax,
respectively. If the AQL evaluates qmin ≤ AQL ≤ qmax as true, T4 starts and P5 gets the
probability to detect where the stabilization is at the average router queue length. The PN
fires T8 or T9, not to discard or discard the packet according to the value from probability
pmax Iz(α, β). T10 and T11 mean input buffer or reject packet—that is, whether the packet
is filled into the buffer or discarded, respectively. T12 is fired when the packet leaves the
buffer, and P10 restarts the PN for more incoming packets.

5. Validation

We used well-known methods in the literature [28] for the validation of the PN. We
applies the matrix equation approach, reachability tree method, and invariant analysis.

Appl. Sci. 2021, 11, 5877 7 of 16

5.1. Matrix Equation

In this approach, the validation is described by algebraic equations. First, we present
the matrix equations that govern the dynamic behavior of our AQM (Figure 1). For a
PN with n places and m transitions, the incidence matrix C = (Cij), is a matrix (n×m)

represented in Equation (4) and defined by Cij = C+
ij − C−ij , where the post-conditions

matrix C+
ij = w(i, j) is the weight of the arc from transition j to its output place i, and the

pre-conditions matrix C−ij = w(j, i) is the weight of the arc to transition j from its input place
i. The PN of our AQM is ordinary, i.e., all of its arc weights are 1s, and the interpretation is
as follows:

C+
ij =

{
1, there is arc from tj to pi
0, there is arc from tj to pi

C−ij =

{
1, there is arc from pi to tj
0, there is arc from pi to tj

C = C+ − C− =

0 1 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0 0 1 0 0
0 0 0 0 0 0 1 0 0 0 1 1

−

1 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0
0 0 1 1 1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 1 1 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0 0 0 0 0

=

−1 1 0 0 0 0 0 0 0 0 0 0
1 −1 0 0 0 0 0 0 0 0 0 0
0 1 −1 −1 −1 0 0 0 0 0 0 0
0 0 1 0 0 −1 0 0 0 0 0 0
0 0 0 1 0 0 0 −1 −1 0 0 0
0 0 0 0 1 0 −1 0 0 0 0 0
0 0 0 0 0 0 0 1 0 −1 0 0
0 0 0 0 0 0 0 0 1 0 −1 0
0 0 0 0 0 1 0 0 0 1 0 −1
−1 0 0 0 0 0 1 0 0 0 1 1

(4)

Second, the matrix equation approach calculates the PN evolution as a result of firing
a transition T from M0 to state M. For the case of one fired transition, this is done with the
equation of state:

M = M0 + C·tj, (5)

where M0 is the initial marking and C is the incidence matrix calculated in Equation (4).
The vector tj is called the trigger vector, which contains all transitions as a column. The j-th
component of tj is 1, which means that the transition Tj is fired, and the others are 0. In
Equation (6), we show the evolution of our PN to the next marking when the transition T1
is fired, i.e., a new packet arrives from the network to the router in ready mode.

Appl. Sci. 2021, 11, 5877 8 of 16

M = M0 + C·t1 =

1
0
0
0
0
0
0
0
0
1

+

−1 1 0 0 0 0 0 0 0 0 0 0
1 −1 0 0 0 0 0 0 0 0 0 0
0 1 −1 −1 −1 0 0 0 0 0 0 0
0 0 1 0 0 −1 0 0 0 0 0 0
0 0 0 1 0 0 0 −1 −1 0 0 0
0 0 0 0 1 0 −1 0 0 0 0 0
0 0 0 0 0 0 0 1 0 −1 0 0
0 0 0 0 0 0 0 0 1 0 −1 0
0 0 0 0 0 1 0 0 0 1 0 −1
−1 0 0 0 0 0 1 0 0 0 1 1

·

1
0
0
0
0
0
0
0
0
0
0
0

=

0
1
0
0
0
0
0
0
0
0

(6)

In addition, the matrix equation approach can calculate the PN evolution with a
sequence of fired transitions. Thus, a marking M is said to be reachable from M0 if there
exists a sequence of firings σ that transforms M0 into M. This is done with the equation of
state:

M = M0 + C·σ. (7)

The vector σ = tj1 + tj2 + . . . + tjk is called the firing vector of the sequence of
fired transitions tj1tj2 . . . tjk, where ji ∈ {1, 2, . . . , m}. We show the evolution of our PN
from M0 to the marking equivalent to the dropped packet because the AQL is over the
maximum threshold, i.e., the sequence of firings T1, T2, and T5 and the firing vector σ

(1,1,0,0,1,0,0,0,0,0,0,0).

M = M0 + C·σ =

1
0
0
0
0
0
0
0
0
1

+

−1 1 0 0 0 0 0 0 0 0 0 0
1 −1 0 0 0 0 0 0 0 0 0 0
0 1 −1 −1 −1 0 0 0 0 0 0 0
0 0 1 0 0 −1 0 0 0 0 0 0
0 0 0 1 0 0 0 −1 −1 0 0 0
0 0 0 0 1 0 −1 0 0 0 0 0
0 0 0 0 0 0 0 1 0 −1 0 0
0 0 0 0 0 0 0 0 1 0 −1 0
0 0 0 0 0 1 0 0 0 1 0 −1
−1 0 0 0 0 0 1 0 0 0 1 1

·

1
1
0
0
1
0
0
0
0
0
0
0

=

1
0
0
0
0
1
0
0
0
0

(8)

Occasionally, the matrix equations can show that a marking M is unreachable from
M0. The previous implication is that if Equation (7) has no natural solution, then M is
unreachable from M0 for the firing vector σ. As evidence, we can see in our AQM that some
states (places in the PN) are unreachable from M0, e.g., the probability pmax Iz(α, β) cannot
be calculated only with T4 if the sequence of transitions T1 and T2 is not fired previously.
Next, the analysis based on the reachable tree will show graphically the reachable states
with the associated sequence of fired transitions using the equation of state Equation (7).

5.2. Reachability Tree

In this approach, the validation proves how our AQM model runs the different states
once an incoming packet is received at the router. Concretely, this approach validates the
PN graphically as a labeled graph in which the nodes are the different reachable markings
of the PN. The nodes are connected by arcs labeled by the transition name. The reachability
tree starts from the root, which is labeled with the initial marking M0. For every new state
reachable from the root, there is an arc labeled with the transition that once fired goes to
that new marking of the PN. With all nodes, we proceed in a similar way as the case of the
root. Figure 2 shows the reachability tree that covers every reachable state (markings at the
PN) of our AQM model.

Appl. Sci. 2021, 11, 5877 9 of 16
Appl. Sci. 2021, 11, x FOR PEER REVIEW 10 of 17

Figure 2. Reachability tree of our AQM.

5.3. Invariance Analysis
Next, we introduce the invariance analysis of our model. Invariants look for

properties that remain constant with respect to certain patterns of executing the PN.
Furthermore, invariants are used later to prove the properties of our AQM, such as
reversibility and boundedness. We use the two most widely studied classes of invariants
for the PN [28]. First, a natural solution of the equation C ∙ 𝑥 = 0 is called a transition
invariant (T-invariant). It indicates a sequence of transitions (firing vector x with one entry
for each transition), which leads back to the initial marking M0. Table 2 shows the T-
invariants for our AQM. They are the different firing vectors that return to the initial state
for the next incoming packet at the router. Figure 3 shows each T-invariant, with the
transition flow colored in purple.

Table 2. T-invariants in our AQM.

T-Invariant Content Description
1T-inv (1,1,1,0,0,1,0,0,0,0,0,1) Accept packet, AQL below min. threshold
2T-inv (1,1,0,0,1,0,1,0,0,0,0,0) Drop packet, AQL over max. threshold
3T-inv (1,1,0,1,0,0,0,1,0,1,0,1) Accept packet, AQM probability function
4T-inv (1,1,0,1,0,0,0,0,1,0,1,0) Reject packet, AQM probability function

Figure 2. Reachability tree of our AQM.

5.3. Invariance Analysis

Next, we introduce the invariance analysis of our model. Invariants look for properties
that remain constant with respect to certain patterns of executing the PN. Furthermore,
invariants are used later to prove the properties of our AQM, such as reversibility and
boundedness. We use the two most widely studied classes of invariants for the PN [28].
First, a natural solution of the equation C·x = 0 is called a transition invariant (T-invariant).
It indicates a sequence of transitions (firing vector x with one entry for each transition),
which leads back to the initial marking M0. Table 2 shows the T-invariants for our AQM.
They are the different firing vectors that return to the initial state for the next incoming
packet at the router. Figure 3 shows each T-invariant, with the transition flow colored
in purple.

Table 2. T-invariants in our AQM.

T-Invariant Content Description

1T-inv (1,1,1,0,0,1,0,0,0,0,0,1) Accept packet, AQL below min. threshold
2T-inv (1,1,0,0,1,0,1,0,0,0,0,0) Drop packet, AQL over max. threshold
3T-inv (1,1,0,1,0,0,0,1,0,1,0,1) Accept packet, AQM probability function
4T-inv (1,1,0,1,0,0,0,0,1,0,1,0) Reject packet, AQM probability function

Second, a natural solution of the equation y · C = 0 is called a place invariant (P-
invariant). A P-invariant is a vector with one entry for each place. It indicates that the
number of tokens in all reachable places satisfies some linear invariant. Once a P-invariant
called y is calculated, the following holds for every reachable state M : y·M0 = y · M.
P-invariants are more difficult to detect than T-invariants. This is because the former are
involved with the entire space state and all possible executions directions of the system
(AQM in our case). Table 3 shows the P-invariants of our AQM for any reachable place M
represented at the reachability tree of Figure 2.

Appl. Sci. 2021, 11, 5877 10 of 16Appl. Sci. 2021, 11, x FOR PEER REVIEW 11 of 17

1T-inv 2T-inv

3T-inv 4T-inv

Figure 3. T-invariants of our AQM.

Second, a natural solution of the equation 𝑦 ∙ 𝐶 = 0 is called a place invariant (P-
invariant). A P-invariant is a vector with one entry for each place. It indicates that the
number of tokens in all reachable places satisfies some linear invariant. Once a P-invariant
called y is calculated, the following holds for every reachable state 𝑀: 𝑦 ∙ 𝑀 = 𝑦 ∙ 𝑀. P-
invariants are more difficult to detect than T-invariants. This is because the former are
involved with the entire space state and all possible executions directions of the system
(AQM in our case). Table 3 shows the P-invariants of our AQM for any reachable place M
represented at the reachability tree of Figure 2.

Table 3. P-invariants in our AQM.

P-Invariant Content Description
1P-inv (1,1,0,0,0,0,0,0,0,0) Router ready, received packet
2P-inv (0,1,1,1,1,1,1,1,1,1) AQM in process, received packet

For any reachable place M, the vector y (1,1,0,0,0,0,0,0,0,0) of the 1P-inv is a natural
solution of the equation 𝑦 ∙ 𝐶 = 0 and it holds the linear invariant 𝑦 ∙ 𝑀 + 𝑦 ∙ 𝑀 = 𝑦 ∙ 𝑀 + 𝑦 ∙ 𝑀 = 1, where 𝑦 =(0,...,0,1,0,…,0) and 1 is located in the j position. That is,
the token can be only in one of the places 𝑦 or 𝑦 . This P-invariant (1P-inv) indicates
a similarity with the mutual exclusion behavior in our AQM. Initially, P1 holds a token,
and, once transition T1 is fired, the token moves to place P2. Next, transition T2 is fired,
and P1 holds the token at the same time that our AQM continues processing the packet
through place P3. Figure 4 shows how the token can be in places P1 or P2 but never in
both in any reachable marking place, i.e., the router is ready for a new packet once the
current one has passed to AQM.

Figure 3. T-invariants of our AQM.

Table 3. P-invariants in our AQM.

P-Invariant Content Description

1P-inv (1,1,0,0,0,0,0,0,0,0) Router ready, received packet
2P-inv (0,1,1,1,1,1,1,1,1,1) AQM in process, received packet

For any reachable place M, the vector y (1,1,0,0,0,0,0,0,0,0) of the 1P-inv is a natural
solution of the equation y · C = 0 and it holds the linear invariant yp1· M0 + yp2· M0 =
yp1· M + yp2· M = 1, where ypj =(0,...,0,1,0, . . . ,0) and 1 is located in the j position. That is,
the token can be only in one of the places yp1 or yp2. This P-invariant (1P-inv) indicates a
similarity with the mutual exclusion behavior in our AQM. Initially, P1 holds a token, and,
once transition T1 is fired, the token moves to place P2. Next, transition T2 is fired, and P1
holds the token at the same time that our AQM continues processing the packet through
place P3. Figure 4 shows how the token can be in places P1 or P2 but never in both in any
reachable marking place, i.e., the router is ready for a new packet once the current one has
passed to AQM.

Appl. Sci. 2021, 11, 5877 11 of 16Appl. Sci. 2021, 11, x FOR PEER REVIEW 12 of 17

1P-inv 2P-inv

Figure 4. P-invariants of our AQM.

Additionally, we studied the P-invariant 2P-inv. For any reachable place M, the
vector y (0,1,1,1,1,1,1,1,1,1) of the 2P-inv is a natural solution of the equation y ∙ C = 0 and
it holds the linear invariant 𝑦 ∙ 𝑀 + 𝑦 ∙ 𝑀 + 𝑦 ∙ 𝑀 + 𝑦 ∙ 𝑀 + 𝑦 ∙ 𝑀 + 𝑦 ∙ 𝑀 + 𝑦 ∙ 𝑀 + 𝑦 ∙ 𝑀 + 𝑦 ∙ 𝑀 = 𝑦 ∙ 𝑀 + 𝑦 ∙ 𝑀 + 𝑦 ∙ 𝑀 + 𝑦 ∙ 𝑀 + 𝑦 ∙ 𝑀 +𝑦 ∙ 𝑀 + 𝑦 ∙ 𝑀 + 𝑦 ∙ 𝑀 + 𝑦 ∙ 𝑀 = 1. Figure 4 shows how the token can be only in one
of the places 𝑦 , 𝑦 , 𝑦 , 𝑦 , 𝑦 , 𝑦 , 𝑦 , 𝑦 , or 𝑦 , i.e., the AQM is processing the
packet.

5.4. Analysis of Properties
Once our scheme was validated with different methods, we proved the major

properties.

5.4.1. Reachability
Reachability is a central property that is present in our AQM model. This proves that

our AQM model can execute different states once an incoming packet is received from the
network and reaches the router. The reachability tree (Figure 2) shows how every state of
our AQM is reachable, some of them by different vectors of transitions.

5.4.2. Boundedness
Boundedness prevents information from getting lost, i.e., our AQM runs every

incoming packet using our dynamical model. In a PN, a place p is said to be k-bounded if
the number of tokens does not exceed a number 𝑘 ∈ ℕ for any marking reachable from
M0. In this article, we used 𝑘 = 1 to show how each packet is processed in our AQM.
Boundedness has also been proved in the analysis of P-invariants (Table 3). We also
studied boundedness with K = buffer length, i.e., changing the capacity of places in the
PN represented in Figure 1.

5.4.3. Reversibility
Reversibility shows the life cycle of our AQM running each packet coming from the

Internet (or network) to the router. A PN is said to be reversible if for each marking state
M, the initial marking M0 is reachable from M. The reachability tree showed how the
different markings (nodes in Figure 2) return to the initial node to process the next packet.
Our AQM is restarted through the node (1,0,0,0,0,0,0,0,0,1), the P1 router ready for the
next packet, and the P10 AQM is ready for receiving the next packet. Reversibility is
demonstrated also by the T-invariants (Table 2), which return the AQM model to the
initial state M0.

Figure 4. P-invariants of our AQM.

Additionally, we studied the P-invariant 2P-inv. For any reachable place M, the vector
y (0,1,1,1,1,1,1,1,1,1) of the 2P-inv is a natural solution of the equation y · C = 0 and it holds
the linear invariant yp2· M0 + yp3· M0 + yp4· M0 + yp5· M0 + yp6· M0 + yp7· M0 + yp8· M0
+yp9· M0 + yp10M0 = yp2· M + yp3· M + yp4· M + yp5· M + yp6· M + yp7· M + yp8· M +
yp9· M + yp10· M = 1. Figure 4 shows how the token can be only in one of the places
yp2, yp3, yp4, yp5, yp6, yp7, yp8, yp9, or yp10, i.e., the AQM is processing the packet.

5.4. Analysis of Properties

Once our scheme was validated with different methods, we proved the major
properties.

5.4.1. Reachability

Reachability is a central property that is present in our AQM model. This proves that
our AQM model can execute different states once an incoming packet is received from the
network and reaches the router. The reachability tree (Figure 2) shows how every state of
our AQM is reachable, some of them by different vectors of transitions.

5.4.2. Boundedness

Boundedness prevents information from getting lost, i.e., our AQM runs every in-
coming packet using our dynamical model. In a PN, a place p is said to be k-bounded if
the number of tokens does not exceed a number k ∈ N for any marking reachable from
M0. In this article, we used k = 1 to show how each packet is processed in our AQM.
Boundedness has also been proved in the analysis of P-invariants (Table 3). We also stud-
ied boundedness with K = buffer length, i.e., changing the capacity of places in the PN
represented in Figure 1.

5.4.3. Reversibility

Reversibility shows the life cycle of our AQM running each packet coming from the
Internet (or network) to the router. A PN is said to be reversible if for each marking state M,
the initial marking M0 is reachable from M. The reachability tree showed how the different
markings (nodes in Figure 2) return to the initial node to process the next packet. Our AQM
is restarted through the node (1,0,0,0,0,0,0,0,0,1), the P1 router ready for the next packet,
and the P10 AQM is ready for receiving the next packet. Reversibility is demonstrated also
by the T-invariants (Table 2), which return the AQM model to the initial state M0.

Appl. Sci. 2021, 11, 5877 12 of 16

5.4.4. Deadlock

Deadlock is the state of a system, in our case the AQM model, in which no action can
take place. A PN is said to be deadlock free if for any reachable marking state M, there is
an enabled transition. That is, the PN is in deadlock if no transition is enabled at marking
state M. Figure 2 shows how every reachable state (node in the reachability tree) fires a
transition next. That is an important property of our AQM model, i.e., it is deadlock free.

5.4.5. Liveness

Liveness ensures that a system eventually enters into a state, i.e., the system is live.
A PN is said to be alive if whatever marking state M is reached from M0, it is possible
to enable any transition at least once through some firing sequence. Figure 2 shows how
every transition can be fired. This property ensures that our solution effectively performs
its intended functions.

6. Numerical Simulations

Our AQM model, programmed with Python and Mathematica, followed the overall
design presented before with PNs. Next, we present the performance of our dynamical
model of AQM in comparison with the traditional RED algorithm. It was validated through
numerical simulations and bifurcation analysis of the parameters α, β on the AQL. This
section is based on the outcomes of [4], and the reader is directed to [4] for further details.

6.1. Simulation Scenario

The simulation scenario (Figure 5) was a network where a dominant bottleneck link is
shared by many connections. The scenario ran with a set of parameters, as given in [4].

Appl. Sci. 2021, 11, x FOR PEER REVIEW 13 of 17

5.4.4. Deadlock
Deadlock is the state of a system, in our case the AQM model, in which no action can

take place. A PN is said to be deadlock free if for any reachable marking state M, there is
an enabled transition. That is, the PN is in deadlock if no transition is enabled at marking
state M. Figure 2 shows how every reachable state (node in the reachability tree) fires a
transition next. That is an important property of our AQM model, i.e., it is deadlock free.

5.4.5. Liveness
Liveness ensures that a system eventually enters into a state, i.e., the system is live.

A PN is said to be alive if whatever marking state M is reached from M0, it is possible to
enable any transition at least once through some firing sequence. Figure 2 shows how
every transition can be fired. This property ensures that our solution effectively performs
its intended functions.

6. Numerical Simulations
Our AQM model, programmed with Python and Mathematica, followed the overall

design presented before with PNs. Next, we present the performance of our dynamical
model of AQM in comparison with the traditional RED algorithm. It was validated
through numerical simulations and bifurcation analysis of the parameters 𝛼, 𝛽 on the
AQL. This section is based on the outcomes of [4], and the reader is directed to [4] for
further details.

6.1. Simulation Scenario
The simulation scenario (Figure 5) was a network where a dominant bottleneck link

is shared by many connections. The scenario ran with a set of parameters, as given in [4].

Figure 5. Network topology.

In this scenario, we interpreted the shared link as an intercontinental Internet link
with capacity C, and we assumed that the set of connections N uniformly have the same
round-trip propagation delay d (without any queueing delay). Rather than interpreting
this assumption as a requirement that the connections must have the same propagation
delay, we considered d as the effective delay that represents the overall propagation delay

Figure 5. Network topology.

In this scenario, we interpreted the shared link as an intercontinental Internet link
with capacity C, and we assumed that the set of connections N uniformly have the same
round-trip propagation delay d (without any queueing delay). Rather than interpreting this
assumption as a requirement that the connections must have the same propagation delay,
we considered d as the effective delay that represents the overall propagation delay of the
connections, or this could describe a case where the bottleneck link has a large propagation
delay that dominates the round-trip delays of the connections.

Appl. Sci. 2021, 11, 5877 13 of 16

6.2. Performance Study

The aim of this section is to show numerically the advantages of introducing two new
degrees of freedom in the probability function of the RED algorithm. It is well known that
the combination of TCP end-to-end congestion control and RED active queue management
can be modeled as a discrete-time dynamic system and that this system exhibits a variety
of irregular behaviors, such as bifurcation and chaos. A great amount of research has been
devoted to tune RED parameters to achieve good performance in different congestion
scenarios.

For our study, we used the first-order nonlinear dynamic feedback model given
in [24]. Considering this model, we performed a biparametric sweep of α and β ranging
from the 0.4 to 1, and for each of these values, we studied the behavior of two important
characteristics that provide information about the performance and stability of the system,
namely, the first bifurcation point when we consider as a bifurcation parameter the number
of connections (Figure 6a) and the average queue length when the system reaches stability
(Figure 6b).

Appl. Sci. 2021, 11, x FOR PEER REVIEW 14 of 17

of the connections, or this could describe a case where the bottleneck link has a large
propagation delay that dominates the round-trip delays of the connections.

6.2. Performance Study
The aim of this section is to show numerically the advantages of introducing two new

degrees of freedom in the probability function of the RED algorithm. It is well known that
the combination of TCP end-to-end congestion control and RED active queue
management can be modeled as a discrete-time dynamic system and that this system
exhibits a variety of irregular behaviors, such as bifurcation and chaos. A great amount of
research has been devoted to tune RED parameters to achieve good performance in
different congestion scenarios.

For our study, we used the first-order nonlinear dynamic feedback model given in
[24]. Considering this model, we performed a biparametric sweep of α and β ranging from
the 0.4 to 1, and for each of these values, we studied the behavior of two important
characteristics that provide information about the performance and stability of the system,
namely, the first bifurcation point when we consider as a bifurcation parameter the
number of connections (Figure 6a) and the average queue length when the system reaches
stability (Figure 6b).

(a) Bifurcation point when the parameter is the
number of connections N

(b) Value of the average queue length at
fixed point.

Figure 6. Results for selected (𝛼, 𝛽)-parametric sweeps in the region [0.4, 1] × [0.4, 1].

Numerical simulations showed that there are regions of the biparametric spectrum
where the system behavior presents much more favorable scenarios. Therefore, the
parameters can be adapted to improve the performance and stability of the network,
depending on the characteristics of the congestion scenarios, such as the number of
connections, the bandwidth, and the round-trip propagation delay. In Ref. [41],
bifurcation diagrams for specific values in different scenarios are discussed.

7. Conclusions
The issue of congestion control is still open, and one of the most important goals for

AQM schemes is how to manage the drop probability when congestion occurs. In this
article, we used PNs as a formal method for the design of a new AQM model that
contributes to detecting where stabilization occurs at the AQL. PN formalism is
demonstrated to be a powerful method for the mathematical modeling of our AQM
scheme. For the validation of our AQM scheme, the methods of PNs demonstrated to
satisfy the key properties of reachability, boundedness, reversibility, deadlock, and
liveness. To conclude this article, we give further details of ongoing work.

Figure 6. Results for selected (α, β) -parametric sweeps in the region [0.4, 1] × [0.4, 1].

Numerical simulations showed that there are regions of the biparametric spectrum
where the system behavior presents much more favorable scenarios. Therefore, the param-
eters can be adapted to improve the performance and stability of the network, depending
on the characteristics of the congestion scenarios, such as the number of connections, the
bandwidth, and the round-trip propagation delay. In Ref. [41], bifurcation diagrams for
specific values in different scenarios are discussed.

7. Conclusions

The issue of congestion control is still open, and one of the most important goals for
AQM schemes is how to manage the drop probability when congestion occurs. In this arti-
cle, we used PNs as a formal method for the design of a new AQM model that contributes
to detecting where stabilization occurs at the AQL. PN formalism is demonstrated to be a
powerful method for the mathematical modeling of our AQM scheme. For the validation
of our AQM scheme, the methods of PNs demonstrated to satisfy the key properties of
reachability, boundedness, reversibility, deadlock, and liveness. To conclude this article,
we give further details of ongoing work.

Ongoing Work

Once our AQM scheme is designed and validated mathematically, network simulation
is highly recommended prior to real development. Our ongoing work is the implementation
of our AQM model on the network simulator NS3 [42]. This section shows the primary

Appl. Sci. 2021, 11, 5877 14 of 16

details related to the accurate preparation of the traffic to be configured in the simulator.
First, the limitations of network simulators [43] when the simulation scenarios should
simulate the complex reality of the Internet are well known. Second, the question of
Internet traffic characterization has taken a long research history [44–47], and for a long
time, the Internet Engineering Task Force (IETF) [48] has recognized that it has been an
important challenge for network researchers and operators. The literature says also that the
identification and classification of network traffic are an important pre-requisite of network
management and also gives importance to the packet size distribution of typical Internet
applications [47]. Thus, we study the Internet traffic behavior by running real traffic traces,
and we must find a methodology that can characterize this traffic in the simulator. At
the time of writing this section, we made a study of the traffic created in our campus
network (see Figures 7 and 8). These graphs of statistics represent the number of TCP
connections per second and the bandwidth used (megabits per second) in the link of our
campus network to the Internet. The graphs were calculated with software for monitoring
networks [49], and the traffic came from many TCP connections to different worldwide
websites in the last week of March. We can see that the traffic is variable, since throughout
the day, there are many peaks and valleys. We considered these values for different setups
in the simulator, in conjunction with more parameters, such as buffer size, bandwidth
delay, and packet length, among others. For the analysis of how fast our approach is, the
software code of our AQM scheme is being implemented using, among others, metrics of
optimal computational cost.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 15 of 17

Ongoing Work
Once our AQM scheme is designed and validated mathematically, network

simulation is highly recommended prior to real development. Our ongoing work is the
implementation of our AQM model on the network simulator NS3 [42]. This section
shows the primary details related to the accurate preparation of the traffic to be configured
in the simulator. First, the limitations of network simulators [43] when the simulation
scenarios should simulate the complex reality of the Internet are well known. Second, the
question of Internet traffic characterization has taken a long research history [44–47], and
for a long time, the Internet Engineering Task Force (IETF) [48] has recognized that it has
been an important challenge for network researchers and operators. The literature says
also that the identification and classification of network traffic are an important pre-
requisite of network management and also gives importance to the packet size
distribution of typical Internet applications [47]. Thus, we study the Internet traffic
behavior by running real traffic traces, and we must find a methodology that can
characterize this traffic in the simulator. At the time of writing this section, we made a
study of the traffic created in our campus network (see Figures 7 and 8). These graphs of
statistics represent the number of TCP connections per second and the bandwidth used
(megabits per second) in the link of our campus network to the Internet. The graphs were
calculated with software for monitoring networks [49], and the traffic came from many
TCP connections to different worldwide websites in the last week of March. We can see
that the traffic is variable, since throughout the day, there are many peaks and valleys. We
considered these values for different setups in the simulator, in conjunction with more
parameters, such as buffer size, bandwidth delay, and packet length, among others. For
the analysis of how fast our approach is, the software code of our AQM scheme is being
implemented using, among others, metrics of optimal computational cost.

Figure 7. Connections; campus network.

Figure 7. Connections; campus network.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 15 of 17

Ongoing Work
Once our AQM scheme is designed and validated mathematically, network

simulation is highly recommended prior to real development. Our ongoing work is the
implementation of our AQM model on the network simulator NS3 [42]. This section
shows the primary details related to the accurate preparation of the traffic to be configured
in the simulator. First, the limitations of network simulators [43] when the simulation
scenarios should simulate the complex reality of the Internet are well known. Second, the
question of Internet traffic characterization has taken a long research history [44–47], and
for a long time, the Internet Engineering Task Force (IETF) [48] has recognized that it has
been an important challenge for network researchers and operators. The literature says
also that the identification and classification of network traffic are an important pre-
requisite of network management and also gives importance to the packet size
distribution of typical Internet applications [47]. Thus, we study the Internet traffic
behavior by running real traffic traces, and we must find a methodology that can
characterize this traffic in the simulator. At the time of writing this section, we made a
study of the traffic created in our campus network (see Figures 7 and 8). These graphs of
statistics represent the number of TCP connections per second and the bandwidth used
(megabits per second) in the link of our campus network to the Internet. The graphs were
calculated with software for monitoring networks [49], and the traffic came from many
TCP connections to different worldwide websites in the last week of March. We can see
that the traffic is variable, since throughout the day, there are many peaks and valleys. We
considered these values for different setups in the simulator, in conjunction with more
parameters, such as buffer size, bandwidth delay, and packet length, among others. For
the analysis of how fast our approach is, the software code of our AQM scheme is being
implemented using, among others, metrics of optimal computational cost.

Figure 7. Connections; campus network.

Figure 8. Bandwidth; campus network.

Appl. Sci. 2021, 11, 5877 15 of 16

Author Contributions: Conceptualization, J.V., J.M.A., Á.G. and O.M.B.; formal analysis, J.V., J.M.A.,
Á.G. and O.M.B.; software, G.D.; validation, J.V., Á.G. and O.M.B.; writing—review, J.V., Á.G. and
O.M.B.; content discussion and final version, J.V., Á.G. and O.M.B. All authors have read and agreed
to the published version of the manuscript.

Funding: This research work was financially supported by FEDER/Ministerio de Ciencia e Inno-
vación, Agencia Estatal de Investigación, grant PID2019-108654GB-I00.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: We thank our referees for their constructive criticism. We are also grateful to José
Ramón García Valdés, network administrator of the Miguel Hernández University communication
network, for his support to run and supervise the network parameters discussed in the Ongoing
Work section.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Kleinrock, L. An early history of the internet [History of Communications]. IEEE Commun. Mag. 2010, 48, 26–36. [CrossRef]
2. Leiner, B.; Cerf, V.; Clark, D.; Kahn, R.; Kleinrock, L.; Lynch, D.; Postel, J.; Roberts, L.; Wolff, S. The past and future history of the

Internet. Commun. ACM 1997, 40, 102–108. [CrossRef]
3. Candela, M.; Luconi, V.; Vecchio, A. Impact of the COVID-19 pandemic on the Internet latency: A large-scale study. Comput.

Netw. 2020, 182, 107495. [CrossRef]
4. Duran, G.; Valero, J.; Amigó, J.M.; Giménez, A.; Bonastre, O.M. Bifurcation analysis for the Internet congestion. In Proceedings of

the IEEE INFOCOM, Paris, France, 29 April–2 May 2019; pp. 1073–1074.
5. Lorenz, E. Deterministic Non periodic Flow. J. Atmos. Sci. 1963, 20, 130–141. [CrossRef]
6. Moon, F.C. Chaotic and Fractal Dynamics: An Introduction for Applied Scientists and Engineers; Wiley: New York, NY, USA, 1992.
7. Banerjee, S.; Mitra, M.; Rondoni, L. Applications of Chaos and Nonlinear Dynamics in Engineering; Springer: Berlin/Heidelberg,

Germany, 2011; Volume 1.
8. Karimov, A.; Tutueva, A.; Karimov, T.; Druzhina, O.; Butusov, D. Adaptive Generalized Synchronization between Circuit and

Computer Implementations of the Rössler System. Appl. Sci. 2021, 11, 81. [CrossRef]
9. Karimov, T.; Nepomuceno, E.G.; Druzhina, O.; Karimov, A.; Butusov, D. Chaotic Oscillators as Inductive Sensors: Theory and

Practice. Sensors 2019, 19, 4314. [CrossRef]
10. Tutueva, A.V.; Artur, I.K.; Moysis, L.; Volos, C.; Butusov, D.N. Construction of one-way hash functions with increased key space

using adaptive chaotic maps. Chaos Solitons Fractals 2020, 141, 110344. [CrossRef]
11. Veres, A.; Boda, M. The chaotic nature of TCP congestion Control. In Proceedings of the IEEE INFOCOM, Tel Aviv, Israel, 26–30

March 2000; pp. 1715–1723.
12. Leland, W.E.; Taqqu, M.S.; Willinger, W.; Wilson, D.V. On the self-similar nature of Ethernet traffic. IEEE/ACM Trans. Netw. 1994,

2, 1–15. [CrossRef]
13. Cai, L.; Li, H.; Chen, B.; Wang, J. On the Chaotic Dynamics Analysis of Internet Traffic. In Proceedings of the International

Workshop on Chaos-Fractals Theories and Applications, Shenyang, China, 6–8 November 2009; pp. 361–364.
14. Kaklauskas, L.; Sakalauskas, L. Application of Chaos Theory to Analysis of Computer Network Traffic. In Proceedings of the

International Conference Applied Stochastic Models and Data Analysis, Vilnius, Lithuania, 30 June–3 July 2009; pp. 407–411.
15. Yan, G. Internet Congestion Control based on the Controlling Bifurcation and Chaos algorithm. In Proceedings of the IEEE

International Conference on Mechatronics and Control, Jinzhou, China, 3–5 July 2014; pp. 1500–1503.
16. Rezaie, B.; Motlagh, M.; Khorsandi, S.; Analoui, M. Analysis and control of bifurcation and chaos in TCP-like Internet congestion

control model. In Proceedings of the 15th International Conference on Advanced Computing and Communications, Guwahati,
India, 18–21 December 2007; pp. 111–116.

17. Huang, Z.; Yang, Q.; Cao, J. The stochastic stability and bifurcation behavior of an Internet congestion control model. Math.
Comput. Model. 2011, 54, 1954–1965. [CrossRef]

18. Jacobson, V. Congestion avoidance and control. ACM SIGCOMM Comput. Commun. Rev. 1998, 18, 314–329. [CrossRef]
19. Adams, R. Active queue management: A survey. IEEE Commun. Surv. Tutor. 2013, 5, 1425–1476. [CrossRef]
20. Nichols, K.; Jacobson, V. Controlling Queue Delay. ACM Queue 2012, 55, 42–50.
21. Alwahab, D.; Laki, S. A Simulation-Based Survey of Active Queue Management Algorithms. In Proceedings of the 6th

International Conference on Communications and Broadband Networking, Singapore, 24–26 February 2018; pp. 71–77.
22. Chitra, K.; Padamavathi, G. Classification and Performance of AQM-Based Schemes for Congestion Avoidance. Int. J. Comput.

Sci. Inf. Secur. 2010, 8, 331–340.

http://doi.org/10.1109/MCOM.2010.5534584
http://doi.org/10.1145/253671.253741
http://doi.org/10.1016/j.comnet.2020.107495
http://doi.org/10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2
http://doi.org/10.3390/app11010081
http://doi.org/10.3390/s19194314
http://doi.org/10.1016/j.chaos.2020.110344
http://doi.org/10.1109/90.282603
http://doi.org/10.1016/j.mcm.2011.05.002
http://doi.org/10.1145/52325.52356
http://doi.org/10.1109/SURV.2012.082212.00018

Appl. Sci. 2021, 11, 5877 16 of 16

23. Zheng, Y.G.; Wang, Z.H. Stability and Hopf bifurcation of a class of TCP/AQM networks. Nonlinear Anal. Real World Appl. 2010,
11, 1552–1559. [CrossRef]

24. Ranjan, P.; Abed, E.H.; La, R.J. Nonlinear instabilities in TCP-RED. IEEE/ACM Trans. Netw. 2004, 12, 1079–1092. [CrossRef]
25. Ding, D.; Zhu, J.; Luo, X. Hopf bifurcation analysis in a fluid flow model of Internet congestion control algorithm. Nonlinear Anal.

Real World Appl. 2009, 10, 824–839. [CrossRef]
26. Beneš, N.; Brim, L.; Pastva, S.; Šafránek, D. Digital Bifurcation Analysis of Internet Congestion Control Protocols. Int. J. Bifurc.

Chaos 2020, 30, 2030038. [CrossRef]
27. Babich, F.; Deotto, L. Formal methods for specification and analysis of communication protocols. IEEE Commun. Surv. Tutor. 2002,

4, 2–20. [CrossRef]
28. Murata, T. Petri nets: Properties, analysis and applications. Proc. IEEE 1989, 77, 541–580. [CrossRef]
29. Tang, S.; Hu, X.; Zhao, L. Modeling and Security Analysis of IEEE 802.1AS Using Hierarchical Colored Petri Nets. In Proceedings

of the IEEE GLOBECOM, Taipei, Taiwan, 8–10 December 2020; pp. 1–6.
30. Mahendran, V.; Gunasekaran, R.; Siva, C. Performance Modeling of Delay-Tolerant Network Routing via Queueing Petri Nets.

IEEE Trans. Mob. Comput. 2014, 13, 1816–1828. [CrossRef]
31. Wang, C.; Tao, Y.; Zhou, Y. Protocol Verification by Simultaneous Reachability Graph. IEEE Commun. Lett. 2017, 21, 1727–1730.

[CrossRef]
32. Floyd, S.; Jacobson, V. Random early detection gateways for congestion avoidance. IEEE Trans. Netw. 1993, 1, 397–413. [CrossRef]
33. Koo, J.; Song, B.; Chung, K.; Lee, H.; Kahng, H. MRED: A new approach to random early detection. In Proceedings of the 15th

International Conference on Information Networking, Beppu City, Oita, Japan, 31 January–2 February 2001; pp. 347–352.
34. Misra, S.; Oommen, B.; Yanamandra, S.; Obaidat, M. Random Early Detection for Congestion Avoidance in Wired Networks: A

Discretized Pursuit Learning-Automata-Like Solution. IEEE Trans. Syst. Man Cybern. 2010, 40, 66–76. [CrossRef] [PubMed]
35. Athuraliya, S.; Low, S.H.; Li, V.H.; Yin, Q. REM: Active queue management. IEEE Netw. 2001, 15, 48–53. [CrossRef]
36. Lin, D.; Morris, R. Dynamics of random early detection. In Proceedings of the ACM Conference on Applications, Technologies,

Architectures, and Protocols for Computer Communication, 14–18 September 1997; pp. 127–137. Available online: https://dl.acm.
org/doi/abs/10.1145/263105.263154 (accessed on 22 June 2021).

37. Lim, C.; Choi, C.; Lim, H. A weighted RED for alleviating starvation problem in wireless mesh networks. In Proceedings of the
33rd IEEE Conference on Local Computer Networks, Montreal, QC, Canada, 14–17 October 2008; pp. 841–842.

38. Zala, D.D.; Vyas, A.K. Comparative Analysis of RED Queue Variants for Data Traffic Reduction over Wireless Network. In
Recent Advances in Communication Infrastructure; Lecture Notes in Electrical Engineering; Springer: Singapore, 2020; Volume 618,
pp. 131–139.

39. Danladi, S.B.; Ambursa, F.U. DyRED: An Enhanced Random Early Detection Based on a new Adaptive Congestion Control. In
Proceedings of the 15th International Conference on Electronics, Computer and Computation, Abuja, Nigeria, 10–12 December
2019; pp. 1–5.

40. Amigó, J.M.; Duran, G.; Giménez, A.; Bonastre, O.M.; Valero, J. Generalized TCP-RED dynamical model for Internet congestion
control. Elsevier Commun. Nonlinear Sci. Numer. Simul. 2020, 82, 105075. [CrossRef]

41. Duran, G.; Valero, J.; Amigó, J.M.; Giménez, A.; Bonastre, O.M. Stabilizing Chaotic Behavior of RED. In Proceedings of the IEEE
International Conference on Network Protocols, Cambridge, UK, 24–27 September 2018; pp. 241–242.

42. NS-3, A Discrete-Event Network Simulator for Internet Systems. Available online: https://www.nsnam.org/ (accessed on 27
May 2021).

43. Rampfl, S. Network simulation and its limitations. In Proceedings of the zum Seminar Future Internet (FI), Innovative Internet
Technologien und Mobile Communication (IITM) und Autonomous Communication Networks (ACN), Munich, Germany,
30 April–31 July 2013; Volume 57, pp. 57–63.

44. Crovella, M.E.; Bestavros, A. Self-similarity in World Wide Web traffic: Evidence and possible causes. IEEE/ACM Trans. Netw.
1997, 5, 835–846. [CrossRef]

45. Williamson, C. Internet traffic measurement. IEEE Internet Comput. 2001, 5, 70–74. [CrossRef]
46. Jiayue, H.; Rexford, J.; Chiang, M. Design for optimizability: Traffic management of a future Internet. In Algorithms for Next

Generation Architectures; Springer: London, UK, 2010; pp. 3–18.
47. Wu, X.-L.; Li, W.-M.; Liu, F.; Yu, H. Packet size distribution of typical Internet applications. In Proceedings of the Interna-

tional Conference on Wavelet Active Media Technology and Information Processing, Chengdu, China, 17–19 December 2012;
pp. 276–281.

48. Awduche, D.; Chiu, A.; Elwalid, A.; Widjaja, I.; Xiao, X. Overview and Principles of Internet Traffic Engineering. Internet
Engineering Task Force (IETF) RFC 3272. 2002. Available online: https://datatracker.ietf.org/doc/rfc3272/ (accessed on 15 June
2021).

49. Pandora FMS (for Pandora Flexible Monitoring System), a Software for Monitoring Computer Networks. Available online:
https://pandorafms.com/ (accessed on 15 June 2021).

http://doi.org/10.1016/j.nonrwa.2009.03.008
http://doi.org/10.1109/TNET.2004.838600
http://doi.org/10.1016/j.nonrwa.2007.11.006
http://doi.org/10.1142/S0218127420300384
http://doi.org/10.1109/COMST.2002.5341329
http://doi.org/10.1109/5.24143
http://doi.org/10.1109/TMC.2013.25
http://doi.org/10.1109/LCOMM.2017.2695191
http://doi.org/10.1109/90.251892
http://doi.org/10.1109/TSMCB.2009.2032363
http://www.ncbi.nlm.nih.gov/pubmed/19884062
http://doi.org/10.1109/65.923940
https://dl.acm.org/doi/abs/10.1145/263105.263154
https://dl.acm.org/doi/abs/10.1145/263105.263154
http://doi.org/10.1016/j.cnsns.2019.105075
https://www.nsnam.org/
http://doi.org/10.1109/90.650143
http://doi.org/10.1109/4236.968834
https://datatracker.ietf.org/doc/rfc3272/
https://pandorafms.com/

	Introduction
	Related Work and Motivation
	Dynamical Model for Congestion Control
	Formal Description of Our Dynamical Model Using Petri Nets
	Validation
	Matrix Equation
	Reachability Tree
	Invariance Analysis
	Analysis of Properties
	Reachability
	Boundedness
	Reversibility
	Deadlock
	Liveness

	Numerical Simulations
	Simulation Scenario
	Performance Study

	Conclusions
	References

