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Restoring Activities of Daily Living Using an
EEG/EOG-Controlled Semiautonomous and Mobile

Whole-Arm Exoskeleton in Chronic Stroke
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Abstract—Stroke survivors with chronic paralysis often have dif-
ficulties to perform various activities of daily living (ADLs), such as
preparing a meal or eating and drinking independently. Recently,
it was shown that a brain/neural hand exoskeleton can restore
hand and finger function, but many stroke survivors suffer from
motor deficits affecting their whole upper limb. Therefore, novel
hybrid electroencephalography/electrooculography (EEG/EOG)-
based brain/neural control paradigms were developed for guiding
a whole-arm exoskeleton. It was unclear, however, whether hemi-
plegic stroke survivors are able to reliably use such brain/neural-
controlled device. Here, we tested feasibility, safety, and user-
friendliness of EEG/EOG-based brain/neural robotic control
across five hemiplegic stroke survivors engaging in a drinking
task that consisted of several subtasks (e.g., reaching, grasping,
manipulating, and drinking). Reliability was assumed when at least
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75% of subtasks were initialized within 3 s. Fluent control was
assumed if average “time to initialize” each subtask ranged below
3 s. System’s safety and user-friendliness were rated using Likert-
scales. All chronic stroke patients were able to operate the system
reliably and fluently. No undesired side effects were reported.
Four participants rated the system as very user-friendly. These
results show that chronic stroke survivors are capable of using
an EEG/EOG-controlled semiautonomous whole-arm exoskeleton
restoring ADLs.

Index Terms—Activities of daily living (ADL), brain-computer
interface (BCI), brain-machine interface (BMI), chronic stroke,
electroencephalography (EEG), electrooculography (EOG),
exoskeletons, hemiparesis, rehabilitation robotics, sensorimotor
rhythms, shared control.

I. INTRODUCTION

S TROKE is one of the leading causes for long-term dis-
ability in the adulthood worldwide [1]. Besides cognitive

and sensory impairments, particularly loss of hand and arm
function impedes the ability of stroke survivors to engage in
various activities of daily living (ADLs) such as preparing a
meal or eating and drinking independently. As a consequence,
stroke survivors frequently reported reduced quality of life and
limited autonomy [2]. Therefore, effective restoration of hand
and arm motor function after stroke is of great importance.
However, there is no accepted gold standard in the treatment
of stroke survivors with little or no capacity to move the arm or
fingers [3], [4]. Most established rehabilitation methods such as
constraint-induced movement therapy [5] require some remain-
ing grasp function and are therefore not applicable for stroke
survivors with complete hand and finger paralysis. Moreover,
many stroke survivors also suffer from limited or nonexistent
arm and shoulder function.

Recently, it was shown that brain/neural hand exoskeletons
(B/NHEs) are capable of fully restoring hand and finger function
despite complete paralysis, e.g., due to cervical spinal cord
injury [6]. Such devices translate modulations of electric, mag-
netic, or metabolic brain activity, e.g., related to imagined or
attempted movements of the paralyzed fingers, into actual finger
movements driven by electromechanical actuators [7]–[10]. The
best established approach for such application uses modulations
of sensorimotor rhythms (SMR, 8–12 Hz) recorded by EEG
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and quantified as SMR event-related desynchronization (SMR-
ERD).

It was demonstrated that also stroke patients with cortical
lesions and severe or complete finger paralysis are able to operate
such brain/neural-controlled system, i.e., to drive an orthotic
device opening and closing their paralyzed hands [7], [11].

While studies on upper limb motor function after stroke found
that distal weakness, particular of finger movements, is more
profound than shoulder and elbow weakness [12], motor com-
pensation associated with learned nonuse, joint contractures, and
pain [5], [13] may further affect whole-arm motor function.

Using an active hand exoskeleton, stroke survivors may be
capable of securely grasping and holding different objects of
daily living, but may remain unable to lift up and move these
objects. Grasping a glass and drinking, for example, requires
hand function and whole arm motor coordination for reaching
and grasping a cup before guiding it to the mouth for drinking.

Therefore, we developed a novel brain/neural-controlled
whole-arm exoskeleton actuating the shoulder, elbow and hand
to assist in ADLs [14]. It was unclear, however, whether
chronic stroke patients with upper-limb paralysis could use
such brain/neural-controlled system to perform a complex task,
e.g., grasping and drinking from a glass of water. The ability
to perform such task would be very important, however, to
broaden the scope of assistive brain/neural exoskeletons toward
restoration of ADLs in everyday life environments [15].

Here, we investigated feasibility, safety, and user-friendliness
of EEG/electrooculography (EOG)-based brain/neural robot
control after chronic stroke to operate a vision-guided semi-
autonomous whole-arm exoskeleton for restoration of ADLs.

II. METHODS

The EEG/EOG-controlled semiautonomous whole-arm ex-
oskeleton comprised the following components and control
modules.

A. Whole-Arm Exoskeleton

The whole-arm exoskeleton consisted of two submodules:
the newly developed shoulder-elbow exoskeleton NeuroExos
Shoulder-elbow Module β (NESM β, which evolved from
NESM α [16]) combined with a wrist-hand exoskeleton de-
scribed in [17].

The novel second generation shoulder-elbow exoskeleton
(NESM β, Fig. 1) [18] features several enhancements toward
use for ADLs compared with previous versions, e.g., used in
[14]. Foremost, the NESM β allows for mobile use because
all elements were fully integrated into a wheelchair. Despite
its compact design, essential requirements in terms of compli-
ance, powerful actuation, and safe human-robot interaction are
fulfilled. The self-aligning mechanism for improved comfort
and wearability allows to follow the same passive movements
of the shoulder complex as in NESM α, but integrated into a
much more compact structure. The frame to fixate the shoulder-
elbow exoskeleton into a wheelchair was customized and offers
the possibility to have a battery-operated portable exoskeleton.
Moreover, thanks to a flipping mechanism integrated in each

Fig. 1. Image of the NESM β that was fully integrated into a wheelchair for
mobile use. The shoulder-elbow exoskeleton can be flipped so that either the left
or right upper extremity becomes mobilized.

joint allowing to manually change the arm configuration, the
NESM β can mobilize the left or right upper extremity while the
previous version could only mobilize the right arm and hand.
The mechanical structure of the arm exoskeleton comprised
four series-elastic actuation (SEA) units to realize shoulder
abduction/adduction (SAA), shoulder flexion/extension (SFE),
shoulder intra/extra rotation (SIE) and elbow flexion/extension
(EFE). Relative to its zero-configuration with the arm laying
parallel to the trunk, the four active joints allow for the following
range of motions (ROMs): [0°, 85°] sA/A and sF/E, [−90°,
30°] sI/E and [10°, 100°] eF/E. Additionally, the SEA units can
deliver up to 35 Nm for SAA and SFE, and up to 15 Nm for SIE
and EFE.

The wrist-hand exoskeleton was composed of a 1-DOF
(degree-of-freedom) wrist module that performed the activation
of the pronation/supination movement, and of a 4-DOFs hand
exoskeleton that allowed for flexion/extension of the thumb,
index, middle and ring finger as well as pinky, simultaneously
[17]. The abduction/adduction of the thumb was fixed in a
predefined position.

B. EEG/EOG Control Interface

EEG was recorded from five conventional recording sites over
motor cortical areas of the patient’s ipsilesional hemisphere
(dependent on the lesion location either F3, T3, C3, Cz, and
P3, or F4, T4, C4, Cz, and P4 according to the international
10/20 system). Two additional electrodes were placed at the
left and right outer canthus for EOG recordings. Reference and
ground electrode were placed at FCZ and FpZ, respectively.
All biosignals were sampled at 1 kHz and amplified by a wire-
less passive-electrode EEG system (LiveAmp, Brain Products
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GmbH, Gilching, Germany). Passive polyamide-based solid-gel
electrodes [19] were used to provide high wearing comfort and
to make hair washing after the experimental session obsolete, a
critical point to increase user-friendliness of EEG recordings in
patient populations with severe paralysis.

For online processing and classification, the BCI2000 soft-
ware platform was used [20]. EEG signals were first bandpass-
filtered at 1–30 Hz to remove drifts and high frequency noise.
Afterwards, surface Laplacian filters were applied to increase
signal-to-noise ratio of the targeted electrodes at C3 or C4.
Surface Laplacian filtering was shown to be very effective in
allowing for specific SMR-ERD detection while suppressing
signal modulations due to distant sources (e.g., eye blinks) [21].
Ipsilesional SMR-ERD during the attempt to open or close the
right or left hand was calculated based on the power method
by Pfurtscheller and Lopez da Silva [22]. In order to remove
low-frequency drifts as well as high frequency noise, EOG
signals were bandpass-filtered at 0.1–5 Hz.

C. High-Level Control Strategies

For user intention detection and control of the whole-arm
exoskeleton, a shared-human robot control strategy based on
a finite-state machine (FSM) was adopted. In this article, the
FSM allowed the user to effectively perform the drinking task by
taking the inputs from the recording devices and by controlling
the whole-arm exoskeleton accordingly. In particular, the FSM
controlled the transition between the subtasks as triggered by
the user’s biosignals [14]. In contrast to Crea et al. [14], there
were no time constraints during activation of the interface.

A central server (based on the Yet Another Robotic Plat-
form messaging system, YARP) managed the communication
between all modules.

D. Low-Level Control Strategies

The shoulder-elbow exoskeleton motion was planned by
means of a learning by demonstration (LbD) approach based
on dynamic movement primitives (DMPs), with a well-defined
landscape attractor [23]–[25]. This attractor allowed replicating
the recorded trajectory through a weighted sum of optimally
spaced Gaussian Kernels. As for a typical LbD method, trajecto-
ries performed by a demonstrator were first recorded in the joint
space during the execution of ADLs by healthy subject wearing
the exoskeleton (i.e., a hands-on approach was applied). Sub-
sequently, distinctive features (called DMP parameters) were
extracted using the locally weighted regression algorithm and
used to train a neural network (NN) that learned the motion
features and the robot’s inverse kinematics. In particular, the
NN was trained through the Levenberg–Marquardt supervised
learning algorithm in order to associate DMP parameters and
robot joint target positions to context factors taken as input (i.e.,
object position and task to be performed).

Thereafter, provided successful detection of the appropriate
biosignal, the trained NN provided the proper set of DMP
parameters and robot joint target positions for computing the
set of DMPs that best fitted the desired task.

TABLE I
DEMOGRAPHIC AND CLINICAL DATA OF STROKE SURVIVORS

For both the shoulder-elbow and wrist-hand exoskeletons, a
position control in the joint space was adopted to drive the joint
positions along a reference value or trajectory.

E. Participants

Five poststroke patients with severe hemiparesis (time since
injury: 6.2 ± 5.8 years) were invited to a 2 h experimental
session at the Campus Bio-Medico University of Rome, Italy.
Detailed information for each stroke survivor is provided in
Table I. Besides demographic data, the side of the hemiparesis
as well as the upper-extremity Fugl-Meyer Assessment (FMA)
score for the shoulder, elbow and forearm subsection (FMA
S-E-F) and for the wrist and hand subsection (FMA W-H) are
listed. While the stroke lesion in one participant affected left
fronto-parieto-temporal areas, stroke lesions of the other four
participants affected the right fronto-parieto-temporal areas.
The lesion location was determined based on clinical magnetic
resonance imaging.

All participants provided written informed consent before
entering the study. The study protocol was in line with
the Declaration of Helsinki and was approved by the lo-
cal ethics committee (Comitato Etico Università Campus
Biomedico di Roma, reference number: 01/17 PAR ComEt
CBM) and by the Italian Ministry of Health (Registro - classif.
DGDMF/I.5.i.m.2/2016/1096).

F. Experimental Setup, Control Paradigm, and Protocol

The study participants were comfortably seated into a
wheelchair placed in front of a table where the cup was posi-
tioned (Fig. 2). Once the participants were equipped with the
biosignal recording devices, EEG/EOG control signals were
individually calibrated in [14]. For EOG calibration, the partici-
pants were instructed to perform five short horizontal oculover-
sions (HOVs) to each side. Based on the recorded EOG sig-
nals, an individual HOV detection threshold was computed.
Afterwards, a SMR-ERD detection threshold was determined
based on randomly presented externally paced instructions in-
dicating either the attempt to move the paralyzed hand or to
rest. For robust threshold estimation, a total of 42 trials were
performed. Each calibration trial lasted 5 s with an inter trial
interval of 4 s. To find an optimal SMR-ERD threshold, a
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Fig. 2. Experimental setup. The hemiparetic stroke survivors were sitting in
a wheelchair equipped with a whole-arm exoskeleton mounted to the patient’s
paretic arm and hand. EEG and EOG were recorded using surface electrodes
attached to the participant’s head. In order to calculate reliability and fluent
control, participants received visual instructions shown on a display in front of
them.

band-pass filter (±3 Hz) was applied to the frequency showing
highest SMR-ERD modulation within the SMR frequency range
(8–12 Hz). The SMR-ERD threshold was then set at the two
above-mentioned standard deviations the average SMR power
during activation. All calibration parameters were determined at
the beginning of the session and remained unaltered.

After calibration, all participants received detailed instruc-
tions about the experimental paradigm and design once more,
and were familiarized with the EEG/EOG control paradigm.
After familiarization, all participants were instructed to perform
a total of 15 drinking tasks. Each task consisted of the following
subtasks (defined by states of the FSM): i) performing HOV to
trigger the shoulder-elbow unit to reach the cup. The position
of the cup was a priori determined by an RGB-D camera; ii)
continuously closing the hand exoskeleton by generating SMR-
ERD exceeding the SMR-ERD detection threshold to grasp and
lift the cup. Once lifted, the cup was autonomously guided to the
user’s mouth; iii) performing HOV to placing back the cup on the
table iv) opening the hand by generating a SMR-ERD exceeding
the SMR-ERD detection threshold to release the glass and go
back to neutral state (Table II).

During online control within the FSM-states ii) and iv), SMR-
ERD modulations were continuously translated into hand open-
ing or closing movements as long as the SMR-ERD threshold
was exceeded. Relationship between the time the SMR-ERD
detection threshold was exceeded and exoskeleton movements
was linear to increase the degree and intuitiveness of control
(Fig. 3). This constitutes an important advancement compared
to previous studies in which SMR-ERD was used as a trigger
for movement initiation in [14]. A full hand exoskeleton opening

TABLE II
BMI CONTROL COMMANDS TO INITIALIZE AND EXECUTE DRINKING TASK

Fig. 3. Upper panel:SMR, 8–13 Hz event-related desynchronization SMR-
ERD over time (blue solid line). The black dashed line represents the SMR-ERD
detection threshold for hand exoskeleton opening or closing movements deter-
mined during calibration. Lower panel: Course of full hand exoskeleton closing
motion related to the time the SMR-ERD detection threshold was exceeded
(linear relationship).

or closing motion was achieved when the SMR-ERD detection
threshold was exceeded for a time of 3 s in total.

At any given moment, participants were able to stop (veto)
the ongoing action/subtask by performing HOV and reset the
whole-arm exoskeleton to neutral state.

G. Offline Data Analysis

“Time to initialize” (TTI) each subtask was evaluated as time
between visual indication to initialize the subtask and detection
of the appropriate biosignal, i.e., SMR-ERD or HOV, respec-
tively. Fluent control was assumed when average TTI ranged
below 3 s [14]. Reliable control was assumed when at least 75%
successful initializations were performed within 3 s. Feasibility
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Fig. 4. TTI EOG/EOG control commands. Average TTI ranged below 3s
(dashed line) documenting fluent control across both control modalities. Center-
lines of boxplot show median, while crosses show the mean. Box limits indicate
the 25th and 75th percentiles.

of successful EEG/EOG brain/neural robot control after chronic
stroke was assumed if the criteria for reliable and fluent control
were met. After the session, user-friendliness and safety aspects
were assessed by a five-level Likert scale questionnaire.

III. RESULTS

A. Feasibility

While average TTIs (±s.d.) of all EEG-controlled closing
and opening hand-exoskeleton motions ranged at 1.82 ± 0.71 s
(median = 1.77 s [interquartile range = 1.22–2.24 s]), EOG-
controlled commands were initialized in average after 1.09 ±
0.46 s (median = 1.04 s [0.67–1.46 s]) (Fig. 4). 75% successful
EEG/EOG-controlled task executions were performed within
1.88 s in average (median = 1.80 s) documenting reliable
brain/neural robot control (Fig. 5 shows TTIs for each control
modality). Complete hand exoskeleton closing and opening
motions required in average 5.79 ± 1.18 s (median = 5.51 s
[4.87–6.43 s]).

B. User-Friendliness and Safety

User-friendliness of the system was rated at 87 ± 21% of
the maximum achievable score documenting a very good user
experience. With 91 ± 20% of the maximum achievable score,
also system safety was rated as very high by the hemiparetic
participants.

Most importantly, none of the stroke survivors reported any
side effects or adverse events during the use of the system
(such as discomfort or pain). The preparation and mounting
procedure were evaluated as comfortable and the participants
reported that the calibration instructions were easy to follow.
After familiarization, all participants felt safe during the drinking
paradigm (Table III).

IV. DISCUSSION

Up to one-third of all stroke survivors suffer from chronic mo-
tor deficits that impede their ability to perform ADLs [26], [27].
Driven by recent advancements in the field of wearable robotics
and noninvasive neurotechnologies, brain/neural-controlled ex-
oskeletons represent a promising tool to restore intuitive control
of movements after stroke. While it was shown that EEG/EOG-
based brain/neural control paradigms can be used to restore
the ability to eat and drink independently after high cervical
spinal cord injury [6], it remained unclear whether chronic
stroke patients with severe upper-limb paralysis and different
levels of chronicity (1–16 years poststroke) are capable of using
such paradigm to reliably operate a semiautonomous whole-arm
exoskeleton assisting in ADLs, such as grasping a cup and
drinking. Thus, the primary aim of this article was to demon-
strate feasibility, safety, and user-friendliness of a noninvasive
brain/neural whole-arm exoskeleton for upper limb movement
restoration across five chronic stroke patients engaging in a
drinking task. Due to the limited bandwidth of EEG-based
robotic control (typically allowing for real-time classification
of up to three features only, e.g., open versus close, hand versus
foot movements, or rest), the drinking task was divided into
several subtasks using a FSM and coupled with a context-aware
(vision-guided) actuator system. This considerably reduced the
amount of necessary control signals that have to be extracted
from the stroke survivor’s biosignals to execute the task, es-
sentially reducing such information for detection of the target
intention and a veto signal.

We found that all study participants were able to operate the
semiautonomous brain/neural-controlled whole-arm exoskele-
ton and achieved reliable and fluent control as tested during the
drinking task. In average, more than 75% of successful task
initializations were reached within 3 s (1.04 s for EOG and
at 2.64 s for EEG) documenting reliable control, whereas the
average TTI of all EEG/EOG-controlled operations ranged far
below 3 reflecting fluent operation (EOG: 1.09 ± 0.46 s, EEG:
1.82 ± 0.71 s). There were no adverse effects reported and all
participants felt safe to operate the system.

These results confirm that noninvasive EEG/EOG-based
brain/neural robot control is a suitable strategy to restore
ADLs in chronic stroke survivors with severe upper-limb motor
deficits. While, in principle, EEG or EOG could be used for
control of all tasks (e.g., EEG for reaching/retracting or EOG
for opening/closing the hand), we reasoned that the chosen
combination of EEG/EOG signals would provide a good bal-
ance between intuitiveness, reliability, and ease of use. One
important rationale for the chosen combination is based on the
source location and specificity of motor-related modulation of
electric brain activity. Previous studies have shown that the
cortical representation of finger and wrist muscles are larger
and more lateralized than representations of shoulder and upper
arm muscles [28]–[30]. Moreover, besides being more intuitive,
EEG exoskeleton control could also trigger neural recovery [31],
which makes EEG-control a potentially useful strategy in stroke
neurorehabilitation [32]. However, EEG control is also more
effortful and less reliable compared to EOG control. We thus
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Fig. 5. Fluency of brain/neural robot control using EOG (left panel) and EEG (right panel) signals. Each boxplot summarizes the relative number of successful
initializations with TTIs below discrete time intervals. Reliability was assumed when 75% of successful initializations were performed within 3s (i.e., TTI < 3s,
dashed line shows 75% threshold). For EOG control, the reliability criterium was met after 1.04 s in average (median = 1.16 s), while EEG control required 2.64 s
in average (median = 2.56 s) to meet this criterium. Centerlines of boxplot show median, while crosses show the mean. Box limits indicate the 25th and 75th
percentiles.

TABLE III
SUMMARY TABLE OF THE FIVE-LEVEL LIKERT SCALE QUESTIONNAIRE IN %.

(LIKERT SCALE FROM 1 = “STRONGLY AGREE”
TO 5 = “STRONGLY DISAGREE”)

reasoned that using EEG for hand opening/closing motions and
EOG for reaching/retracting would offer the optimal balance
between intuitiveness, reliability, and ease of use. Studies that
further investigate the optimal control strategies depending on
the purpose of brain/neural control (e.g., assistance in ADLs,
neurorehabilitation, or a combination of both, [15]) will be
necessary.

While all participants were able to modulate ipsilesional
SMR-ERD it cannot be excluded that stroke survivors with
extensive cortical lesions show limited or nonexistent ipsile-
sional SMR-ERD. In such case, calibration with a 64-channel
high-density EEG might be necessary to identify remaining

SMR modulations specifically related to movement attempts
with the paralyzed hand and finger.

In our study, all participants were brain-machine interface
(BMI)-naïve, i.e., they have never engaged in any brain/neural
robot control before. Nonetheless, they were all able to reliably
perform the drinking task shortly after calibration and familiar-
ization. All participants stated that the calibration instructions
were easy to follow. This underlines the applicability and practi-
cality of the presented brain/neural control paradigm to operate
assistive robotic devices.

While realtime classification of EEG signals does not al-
low to reliably differentiate different grasp-types (i.e., palmar
grasp, lateral pinch, etc.) or different movement trajectories,
such information can be inferred or extrapolated—to some
degree—by context-aware robotics. It is important, however,
that in such shared-control paradigm a reliable veto function
is implemented that allows the user to stop unwanted behavior
of the robotic device [33]. Future neurotechnologies, e.g., using
quantum sensors [34], [35], may overcome the current constraint
of limited spatial resolution when recording brain oscillatory
activity noninvasively.

While this article paves the way for larger clinical trials, it
remains to be shown how our results can be generalized to
multiple sessions and to other patient populations, e.g., with
traumatic brain injury, multiple sclerosis, or progressive neu-
rodegenerative disorders, such as amyotrophic lateral sclerosis.

Given that a number of randomized clinical trials suggest that
repeated use of brain-controlled exoskeletons can trigger neural
recovery [36], it is conceivable that the introduced paradigm will
also improve adoption of brain-controlled robotics in the context
of stroke neurorehabilitation [31]. Ideally, such device should
be mounted [37] and operated by the hemiplegic stroke survivor
without any assistance [15]. However, to achieve this, a number
of technical challenges need to be solved. For instance, the
whole-arm exoskeleton is currently integrated into a wheelchair
because the gears and motors do not allow for portability. While
this may be acceptable for patients who are unable to walk,
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e.g., individuals with quadriplegia after brain stem stroke, the
majority of stroke survivors are still capable of walking. Here,
development of a fully portable and lightweight and modular
soft-exoskeleton system [38] for the upper extremity might be a
promising venue.

Another technical challenge relates to the EEG-cap. Most
EEG electrodes are integrated into a textile cap that cannot be
mounted without another person’s assistance. Headsets using
soft electrodes, e.g., based on felt or conductive polymers, that
hemiplegic stroke survivors can put on unassisted are important
prerequisites to broaden the applicability of brain/neural assis-
tive systems. Here, minimizing the required recordings sites for
brain/neural robot control, particularly from the face region as
required for EOG recordings, would be particularly desirable
[37].

Due to the heterogeneity of remaining motor functions, any
strategy aiming at restoration of movement after stroke should
be highly individualized and oriented toward specific individual
needs [39], [40]. In this context, implementation of tools that
allow for longitudinal quality-of-life assessment and tracking of
the actual use of assistive systems in everyday life environments
will be critical.
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