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PAPER

Predicting Amyloid-β Positivity in Alzheimer’s  
Disease: Comprehensive Analysis of Feature  
Selection and Machine Learning Models  
for Accurate Identification

ABSTRACT
To accurately identify individuals at risk of Alzheimer’s disease (AD), it is crucial to develop 
precise tools for predicting amyloid-β (Aβ) positivity in the brain. We used data from the 
Alzheimer’s Disease Neuroimaging Initiative (ADNI) to analyze 1,377 human subjects. These 
participants were divided into five groups: cognitive normal (CN), subjective memory com-
plaints (SMC), early mild cognitive impairment (EMCI), late mild cognitive impairment (LMCI), 
and confirmed AD. Each group was further divided into ten subgroups based on sex, resulting 
in a comprehensive analysis. The dataset was used to create and evaluate the performance of 
15 machine learning (ML) models. A set of 17 potential predictors was generated by combin-
ing variables from different categories, including six demographic factors (such as age), ten 
measurements (such as ADAS13), and APOE4 status. Through ML-based predictive modeling, 
several cognitive assessment measures, including ADAS13, demonstrate significant impor-
tance in multiple ML models. The highest accuracies in the 10 subgroups were 0.875, 0.892, 
0.778, 0.850, 0.771, 0.739, 0.781, 0.791, 0.879, and 0.903, respectively. The collection of ML 
models consists of practical and valuable risk feature scores that can significantly enhance the 
identification of individuals who are likely to test positive for Aβ.
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1	 INTRODUCTION

Alzheimer’s disease (AD) is a chronic neurodegenerative condition that has 
affected millions of senior citizens worldwide. Furthermore, in the United States 
alone, an estimated 6.7 million seniors aged 65 and older will be living with AD 
in 2023 [1], and perhaps many more are showing symptoms of early-onset AD. 
Typically, patients with AD have an extended asymptomatic period during which 
neuropathological changes accumulate [2]. One crucial strategy to combat AD is the 
early identification of individuals before the onset of dementia [3]. Early diagnosis of 
AD offers various benefits, including timely treatment and intervention to slow the 
progression of AD and improve overall quality of life [4].

Amyloid-β plays a crucial role as a pathological marker in diagnosing AD and is 
an early event in the development of AD pathology [5]. Elevated levels of Aβ levels or 
an increased Aβ42/Aβ40 ratio in cerebrospinal fluid (CSF) have been associated with 
a higher risk of developing AD, and disease-modifying therapies (DMTs) that target 
Aβ deposits have been the focus of numerous clinical trials [6].

Positron emission tomography (PET) imaging using Aβ-specific tracers enables 
the visualization and measurement of amyloid plaques in the brain, facilitating the 
diagnosis and monitoring of disease progression [7]. However, CSF analysis is an 
invasive procedure that can potentially cause pain for patients. Additionally, some 
individuals may not be able to undergo a lumbar puncture due to factors such as 
back deformity, infection, or the risk of brain herniation [8]. Although amyloid PET 
imaging is preferred in some instances, its utilization in clinical and trial settings is 
limited due to patient concerns regarding radiation exposure and high out-of-pocket 
costs [9].

Given the scale of the affected population, screening using CSF and PET would 
impose significant pressure on the healthcare system. Access to affordable cogni-
tive assessments can provide significant advantages to individuals worldwide, par-
ticularly those in underdeveloped countries. In these regions, low-cost diagnostic 
methods can be utilized for screening purposes, while more expensive tests can be 
reserved for high-risk patients only. It is therefore critical to develop an effective, 
affordable, and non-invasive screening method to identify individuals who are at 
risk of developing Alzheimer’s disease.

Recent studies have demonstrated the efficacy of neuropsychological tests in 
diagnosing AD and identifying individuals at risk of AD progression [10]. Two nota-
ble tests, namely the Montreal Cognitive Assessment (MoCA) [11] and the clinical 
dementia rating scale sum of boxes (CDRSB) [12], have emerged as promising low-
cost screening tools for patients showing signs of early-stage AD. They are standard-
ized tools that can be easily administered and scored, making them suitable for 
large-scale studies and various clinical settings. However, these tools have limita-
tions, including sensitivity and specificity issues, limited scope, and concerns regard-
ing inter-rater reliability.

Specifically, research has indicated that there is variability in terms of sex and 
APOE ε4 status within populations, which influences how MCI among patients 
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with AD may be assessed [13]. Notably, women diagnosed AD tend to experience 
a more rapid decline in cognitive function compared to their male counterparts. 
Similarly, females with MCI exhibit greater cognitive decline than males [14]. The 
presence of APOE ε4 gene carriers also significantly influences cognitive changes. 
Women generally demonstrate superior verbal memory abilities throughout their 
lives compared to men, even in factors related to AD, such as beta-amyloid accumu-
lation in the brain [15]. Interestingly, even when measurable pathological changes 
are present, women with normal cognitive function often display better verbal 
memory skills. This could potentially affect the accuracy of memory-based assess-
ments when screening women for early AD-related changes [16]. Consequently, 
clinicians are advised to use them in conjunction with other assessments and 
clinical judgments to gain a comprehensive understanding of an individual’s  
condition [17].

Predicting Aβ status accurately and cost-effectively is crucial for overcom-
ing diagnostic limitations and reducing healthcare costs [9]. ML methods have 
emerged as a promising avenue in AD research, offering unique opportunities to 
predict essential biomarkers such as Aβ and improve diagnosis, prognosis, and risk 
assessment [18]. However, such studies are still in their infancy because limited 
validation of personalized predictions of AD status has been reported in the liter-
ature [19].

To this end, our study aims to develop a precise ML algorithm for predicting 
Aβ status by combining diverse scoring results. The objectives are as follows:  
1) Feature importance ranking: In the ADNI dataset, the random selection algo-
rithm is used to calculate and rank the importance of all features in each model. 
This step serves as the foundation for our predictive modeling. 2) Aβ positivity 
prediction: Utilizing the significant scores obtained from step 1, we employ 15 ML 
models to forecast positive results for protein Aβ. These predictions are crucial in 
evaluating the probability of Aβ positivity among individuals at risk. 3) Optimal 
feature set and models: The evaluation process involves combining the results 
from steps 1 and 2 to determine the optimal feature set and models. This step is 
critical for refining our ML algorithm to accurately predict Aβ status. Our compre-
hensive scoring system includes the Montreal cognitive assessment (MoCA), the 
functional activities questionnaire (FAQ) [20], the everyday cognition-self-reported 
(ECog-SP) [21], the longitudinal dementia evaluation-total (LDELTotal) [22], the AD 
assessment scale-cognitive (ADAS-Cog) [23], and the mini-mental status examina-
tion (MMSE) [24]. Our approach utilizes various scoring components to enhance 
performance for different subpopulations, thereby improving diagnostic accuracy 
at all stages of Alzheimer’s disease.

https://online-journals.org/index.php/i-joe
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2	 METHODOLOGY

2.1	 Study	designs	and	participants

The data used in this project was obtained from a public database called ADNI 
(http://adni.loni.usc.edu) [25]. Although a continuous study, there have been several 
phases of ADNI: ADNI-1, ADNI-GO, ADNI-2, and ADNI-3 (current). In each phase, 
participants with varying cognitive statuses (i.e., CN, SMC, EMCI, LMCI, and con-
firmed AD) were recruited. Figure 1 illustrates our selection process for individuals 
from different ADNI studies. This inclusion allows us to incorporate participants at  
various stages of the disease.

Fig. 1. A flowchart showing the proposed data processing pipeline

The standardized uptake value ratio standardized uptake value ratio (SUVR) [26] 
was used to quantitatively assess amyloid positivity, allowing for the measurement 
of amyloid plaque accumulation. Higher SUVR values indicate a greater presence of 
amyloid. The SUVR was calculated by averaging the weighted mean cortical reten-
tion value from the frontal, cingulate, parietal, and temporal regions and dividing 
it by the SUVR of the cerebellum [27]. In this study, the binary classification of amy-
loid positivity in the reference model was determined by using a cut-off value of  
SUVR ≥ 1.11 [28].

In the ADNI study, participants undergo comprehensive assessments, including 
clinical evaluations, neuropsychological testing, neuroimaging scans, and biomarker 
measurements [29]. For our analysis, we focused on data collected at baseline, as this 
is when amyloid PET takes place. The details regarding the sample size and charac-
teristics of the individuals included in our analysis can be found in Table 1.

https://online-journals.org/index.php/i-joe
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The five diagnostic groups (CN, SMC, EMCI, LMCI, and AD) were determined based 
on participants’ baseline diagnostic results. The amyloid status of participants was 
obtained either from the baseline visit or from the nearest visit with an available 
amyloid status that corresponded to the baseline diagnosis. The visit date associated 
with the amyloid status was used to merge with other data files, such as the memory 
impairment score. Recognizing the significance of sex as a moderating factor in AD 
research, we further stratified the data for each diagnosis group into two subgroups: 
females and males.

2.2	 Model	creation

Demographics. To construct our model, we aimed to incorporate established risk 
factors associated with amyloid positivity. Therefore, we utilized six demographic 
variables extracted from the ADNI dataset: age, years of education, Hispanic ethnic-
ity, race (classified as White, African American, or other), marital status (classified 
as married, never married, divorced, or widowed), and family history of dementia. 
Due to the limited number of participants from racial groups other than White or 
African American, we combined them into a single group. Notably, APOE ε4, along 
with age and ADAS-cog, were identified as the three significant risk factors for pre-
dicting amyloid status [30].

Sex. Women have demonstrated an advantage in verbal memory, suggesting 
that memory-based measures may be less effective in screening women for early 
changes associated with AD. Furthermore, the strong memory performance exhib-
ited by women may mask early signs of the disease, making it less effective to pre-
dict the presence of brain amyloid using memory test scores, especially in women 
without detectable memory deficits [31]. Therefore, it is crucial to develop separate 
statistical prediction models for each subpopulation stratified by sex and APOE ε4 
status. This is important because there is heterogeneity observed in individuals with 
SMC, LMCI, and AD. Based on these differences, we have constructed separate mod-
els for females and males at each stage of the disease.

Cognitive tests. This study utilized three subsets of the ADAS-cog (ADAS13, 
ADAS11, and ADASQ4), which cover a range of 0 to 70, 0 to 70, and 0 to 10, respec-
tively. These subsets were used to comprehensively evaluate cognitive functioning 
and specifically assess memory function. In addition to the ADAS-cog scores, the ML 
models incorporated various variables, including the CDRSB scores ranging from  
0 to 10 [32], MMSE scores ranging from 0 to 30, LDELTOTAL scores ranging from 0 to 25 
[33], FAQ scores ranging from 0 to 30 [20], and Ecog-SP scores ranging from 1 to 5 [34].  
LDELTOTAL is a component of the Wechsler Memory Scale-Revised (WMS-R) and 
serves as a specific measure for assessing memory function.

Performance metrics. The ML model with the highest average accuracy is con-
sidered the optimal model. Accuracy is commonly defined in terms of true positives 
(TP), true negatives (TN), false positives (FP), and false negatives (FN). These terms 
are used to calculate accuracy in the following manner:

 Accuracy
TP TN

TP TN FP FN
�

�
� � �

 (1)

The Matthews Correlation Coefficient (MCC) is a measure of the quality of binary 
classification models. It TP, TN, FP, and FN to provide a balanced evaluation of the 
model’s performance. The MCC ranges from -1 to +1, with +1 indicating a perfect 
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classifier, 0 indicating a random classifier, and -1 indicating a classifier that per-
forms worse than random. The formula to calculate MCC is as follows:

 MCC
TP TN FP FN

TP FN TP FP TN FP TN FN

�
� � �

� � � � � � �

( )

( ) ( ) ( ) ( )

 (2)

By incorporating these neuropsychological scores into the ML models, our aim 
was to capture the participants cognitive performance and functional abilities. This 
would provide a comprehensive assessment of their cognitive status and enhance 
the predictive capabilities of the model.

2.3	 Machine	learning	models

To improve the accuracy of amyloid pathology prediction models and accommo-
date diverse data patterns, various ML models were implemented. These models 
offer flexibility in capturing different types of information. Table 2 presents the ML 
methods that were used, along with their relevant R packages and corresponding 
categories.

Table 2. ML models in the R package

ID ML Models R Package

 1 Boosted classification trees ada

 2 Tree models or rule-based models C5.0

 3 Stochastic gradient boosting gbm

 4 Generalized linear model glm

 5 k-nearest neighbors knn

 6 Linear discriminant analysis lda

 7 Boosted logistic regression LogitBoost

 8 Random forest ranger

 9 Random forest rf

10 Factor-based linear discriminant analysis Rflda

11 Recursive partitioning and regression trees rpart

12 Support vector machines with linear kernel svmLinear

13 Support vector machines with polynomial kernel svmPoly

14 Support vector machines with radial basis function kernel svmRadial

15 Bagged CART treebag

In the context of our study, Monte Carlo simulations were utilized to assess 
the performance of our ML models for predicting amyloid positivity. During each 
Monte Carlo simulation, the complete dataset was randomly divided into a train-
ing dataset (80%) and a testing dataset (20%). The caret package was used to train 
the models by utilizing the train function. Furthermore, the expand-grid function 
was used to perform a grid search and determine the optimal hyperparameters 
for each model [35]. The train control function in the R package was also used to 
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specify the cross-validation settings, such as the number of folds and the type of 
resampling.

Once the optimal hyperparameters for a given ML model was determined, the 
model was evaluated on the testing dataset. To ensure the statistical stability of the 
results, the analysis was repeated 1000 times for each ML model. The training and 
performance assessment procedures are summarized in Figure 2.

Fig. 2. The evaluation and training process for 15 commonly used ML models

Figure 2, illustrates the evaluation and training process for 15 commonly used ML 
models. The process includes using 10-fold cross-validation, repeated 1000 times, for 
each classification model. The outcome of each model is determined by considering 
the average value obtained through this process.

Feature selections. In this study, we faced the challenge of handling a rela-
tively large number of features, which can lead to computational inefficiencies and 
increase the risk of overfitting. To address these challenges, we employ the forward 
model selection method called the Akaike Information Criterion (AIC) [36]. This 
approach offers a streamlined path to search for the optimal set of features, mini-
mizing computational complexity and facilitating the identification of the most rele-
vant predictors for amyloid positivity.

The process involved fitting F models, with each model incorporating one of 
the F features. The model with the lowest AIC was chosen, and its correspond-
ing feature was designated as the first feature, denoted as X(1). In the subsequent 
step, F-1 models were fitted using one of the remaining features, along with X(1) 
from the previous step. The feature selected for the second position was the one 
associated with the model that had the lowest AIC among these F-1 models. Let’s 
assume this second feature is X(2). By following this procedure, the ordering of 
the subsequent F-2 features, X(3), …, X(F) was determined. For this study, a multiple 
logistic regression model was used as the statistical model to determine the fea-
ture ordering.
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To address the computational challenges posed by the large number of feature 
combinations (2F), we have implemented a different approach. We focused on F 
combinations represented by Zi = {X(1), …, X(I)}, where i = (1, 2, …, F) This reduced set of 
combinations provides an efficient means to assess the importance of these features 
in predicting amyloid positivity. By utilizing this new stochastic ordering approach, 
we were able to determine the relative significance of each feature more efficiently. 
Moreover, this approach offers a streamlined path to search for the optimal set of 
features, minimizing computational complexity and facilitating the identification of 
the most relevant predictors for amyloid positivity.

3	 RESULT	AND	DISCUSSION

Table 3 presents information on various variables, including gender, amyloid 
levels, age, education, and Hispanic ethnicity, in the context of different clinical 
stages of AD and healthy controls. In each group, males were generally older and 
had a higher level of education compared to females. As AD progressed, the cog-
nitive assessment scores (ADAS13, ADAS11, ADASQ4, CDRSB, and EcogSP total) 
increased, indicating a greater level of cognitive impairment. Conversely, the scores 
for MoCA, MMSE, and LDELTOTAL decreased, reflecting a decline in cognitive func-
tion. Generally, females exhibited better performance compared to males across 
these measures.

P-values were computed to compare the five groups (CN, SMC, EMCI, LMCI, and 
AD) for each characteristic, there were no significant differences. Among these 
characteristics is Hispanic ethnicity across the five groups. However, the remain-
ing demographic and clinical characteristics exhibited statistically significant varia-
tions among the groups. Notably, there were significant variations between genders 
in terms of amyloid levels, age, education, race, marital status, APOE ε4, family  
history, ADAS13, MoCA, CDRSB, MMSE, LDELTOTAL, FAQ, EcogSPTotal, ADAS11, 
ADASQ4, and GDS across different clinical stages of AD and control groups. 
Consequently, these features were chosen for their role in predicting levels of  
amyloid. They were included as predictors in the ML models to evaluate their impor-
tance and effectiveness in predicting the desired outcomes.

The stochastic ordering method was used to assess the significance of features 
in each model. However, it is important to note that the rankings of features may 
differ among models because the predictive relevance of features for amyloid pos-
itivity can vary within each specific model. Figure 3 visually presents the results 
of the analysis, illustrating the number of features investigated for each model-
ity. It includes a count of features ranging from 1 to 16 and highlights significant 
values for features from 1 to 5. This range encompasses a diverse range of model 
complexities.

This range encompasses diverse levels of model complexities. Upon examination 
of the data, several observations can be inferred:

The assigned scores for each feature vary across different ML models, indicating 
that the importance of features in predicting the target variable can differ depend-
ing on the algorithm used. Among the models, the RF, GBM, and ADA models consis-
tently assign high importance values to most features, indicating their effectiveness 
in capturing complex relationships.

Features such as ADAS13, CDRSB, LDELTOTAL, and MOCA receive relatively high 
importance values across multiple models. This suggests that cognitive assessment 
measures play a crucial role in predicting the target variable, potentially indicating 
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their significance in evaluating cognitive decline. Additionally, the presence of 
ADAS13 in several models underscores its significance in assessing cognitive impair-
ment and its potential for identifying individuals at risk of cognitive decline.

Age and the presence of the APOE4 gene (APOE ε4) are consistently identified 
as important features in various models [37]. This finding aligns with existing sci-
entific knowledge that emphasizes age and genetic factors as significant contribu-
tors to neurodegenerative diseases such as AD. Incorporating these genetic markers 
enhances the models’ ability to predict cognitive decline.

The ECOGSP total feature demonstrates varying importance values across different 
machine learning models, indicating that it may have a more nuanced relationship with 
the target variable. Further investigation is needed to understand its precise impact.

Unexpectedly, the performance on the delayed memory task of the GDS, FAQ, and 
EcogSP total did not significantly contribute to the model’s ability to predict under-
lying amyloid status. This finding suggests that the limited sensitivity and specificity 
of these measures may not be sufficient for accurately predicting amyloid accumu-
lation during the early stages of AD.

Socio-demographic factors such as PTEDUCAT, PTMARRY, and PTETHCAT gen-
erally receive lower importance values, suggesting that they may have a rela-
tively weaker association with the target variable compared to the cognitive and 
genetic factors.

Fig. 3. Heatmap showcasing the importance of features in each model

In Figure 3, each feature is represented by a row, while each column represents 
a specific ML model. The values within the table indicate the assigned importance 
scores for each feature by the corresponding ML model. These scores reflect the rel-
ative significance of each feature in predicting the target variable. The scale ranges 
from 1 to 5, with 5 indicating the highest importance and 1 indicating the lowest 
importance.
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k)

a) b)

c) d)

e) f)

g) h)

i) j)

Fig. 4. The relationship between the number of features (from 1 to 16) and the accuracy of 15 ML models in each subgroup. (a) Accuracy of  
15 ML models in CN_F; (b) Accuracy of 15 ML models in CN_M; (c) Accuracy of 15 ML models in SMC_F; (d) Accuracy of 15 ML models in SMC_M; 

(e) Accuracy of 15 ML models in EMCI_F; (f) Accuracy of 15 ML models in EMCI_M; (g) Accuracy of 15 ML models in LMCI_F; (h) Accuracy of  
15 ML models in LMCI_M; (i) Accuracy of 15 ML models in AD_F; (j) Accuracy of 15 ML models in AD_M; (k) legend of 15 ML models
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Upon examining Figure 4, which depicts the accuracy of 10 subgroups with vary-
ing numbers of features, several observations can be made:

The CN group (CN_F: 0.754 to 0.875; CN_M: 0.766 to 0.892) is shown in  
Figure 4a and b. The ADA and rpart algorithms emerge as the top performers for  
CN_F and CN_M, respectively. Conversely, models such as Logitboost and svmLinear 
demonstrate relatively lower scores in comparison. Interestingly, svmPoly and svm-
Radial consistently achieve similar scores for both subgroups, indicating compara-
ble prediction accuracy for both outcomes.

SMC group (SMC_F: 0.509 to 0.778; SMC_M: 0.645 to 0.850) in Figure 4c and d. The 
ADA and GBM consistently demonstrate strong predictive capability for both SMC_F 
and SMC_M, while the Ranger consistently performs well. Models like Logitboost 
and svmLinear consistently show relatively lower scores. Notably, svmPoly and 
svmRadial performed similarly well in both subgroups.

EMCI group (EMCI_F: 0.590 to 0.771; EMCI_F: 0.552 to 0.739) in Figure 4e and f.   
Overall, the GBM, Ranger, and RFlda also show promising performance with 
above-average scores for both EMCI_F and EMCI_M. Conversely, models such as 
rpart, svmLinear, and treebag consistently exhibit lower scores.

LMCI group (LMCI_F: 0.609 to 0.781; LMCI_M: 0.626 to 0.791) in Figure 4g and h. 
The models, such as KNN and rpart, demonstrated lower accuracies. Additionally, 
decision tree-based models, including treebag, generally yielded lower accuracies 
compared to other models.

AD group (AD_F: 0.669 to 0.879; AD_M: 0.794 to 0.903) in Figure 4i and j. The 
AdaBoost, C50, and GBM consistently achieved high accuracy, surpassing other models.  
Additionally, KNN LDA, and Ranger showed strong performance. Notably, the ADA 
consistently distinguished between AD_F and AD_M instances, while decision tree-
based algorithms C50 and ranger exhibited robust performance in capturing under-
lying patterns.

Table 3. The optimal ML model and features for each subgroup

Dia. Sex Opt. ML Num Features

CN F ADA  4 CDRSB, LDELTOTAL, MOCA, etc.

CN F GBM  4 ADAS13, AGE, MOCA, etc.

CN F svmPoly 13 CDRSB, LDELTOTAL, MOCA, etc.

CN M rpart 16(All) LDELTOTAL, MOCA, CDRSB, etc.

SMC F C50 15 MMSE, ADAS11, CDRSB, etc.

SMC M C50 15 MMSE, ADAS11, CDRSB, etc.

EMCI F C50 12 MMSE, ADAS11, CDRSB, etc.

EMCI M GBM  3 ADAS13, AGE, MOCA

LMCI F ADA 13 CDRSB, LDELTOTAL, MOCA, etc.

LMCI M svmPoly 14 CDRSB, LDELTOTAL, MOCA, etc.

AD F ADA  7 CDRSB, LDELTOTAL, MOCA, etc.

AD M ADA  5 CDRSB, LDELTOTAL, MOCA, etc.

AD M LDA 11 MMSE, ADAS13, ADAS11, etc.

AD M svmPoly 16(All) CDRSB, LDELTOTAL, MOCA, etc.

Notes: Dia: Diagnosis; Opt: Optimal.
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The ADA model consistently demonstrated strong performance across multiple 
groups and feature dimensions when compared to other models. This indicates its 
effectiveness in handling varying numbers of features. Similarly, the GBM, ranger 
and svmPoly models exhibited robust and consistent performance across different 
subgroups. On the other hand, simpler models such as decision trees or linear models 
may offer interpretability, providing insights into the relationships between features 
and predictions. Notably, ADA or LDA models tended to incorporate a higher num-
ber of features while maintaining good generalization and consistent performance.

Table 3 presents the findings of a dataset that includes diverse diagnoses, sex, 
ML models, the number of features, and their corresponding optimal features. It 
provides valuable insights into selecting the optimal ML algorithms and the specific 
features used for each subgroup.

4	 CONCLUSION

Our approach introduces a novel feature selection method that utilizes stochastic 
rankings of features to identify the optimal features within each subgroup, resulting 
in an optimal ML model. This approach aims to reduce fragility and enhance gener-
alizability, leading to improved interpretability of ML predictions. By selecting the 
most relevant features, we can improve the model’s robustness and its applicability 
to different scenarios. This claim is supported by the evidence presented in Figures 3  
and 4 from our research data and findings.

The unique characteristics and biomarkers associated with cognitive decline and 
neurodegenerative diseases are highlighted by the distinct combination of features 
specific to each diagnostic group. This correlation is strongly supported by the data 
presented in Table 2. The select features encompass a wide range of cognitive, func-
tional, demographic, and genetic factors that greatly contribute to the predictive 
accuracy of the ML models, as demonstrated through analysis.

Furthermore, the results underscore the significance of specific features and pro-
vide insights into the underlying factors that contribute to cognitive decline. This 
conclusion is supported by the data presented in both Figure 4 and Table 3. The 
observed variations in optimal ML algorithms and the number of features among 
different diagnoses and genders suggest that the underlying mechanisms and pre-
dictive factors for cognitive impairment may differ across patient groups. This com-
prehensive set enables early identification and intervention for individuals at risk of 
Aβ positivity, ultimately leading to improved outcomes.

While the findings offer valuable insights for future research and model selection 
in predicting disease progression, it is important to acknowledge the study’s limita-
tions. Potential confounding factors and the generalizability of the models to diverse 
populations should be taken into consideration [38]. To enhance the reliability and 
applicability of the models, future research should prioritize the validation and rep-
lication of these findings using larger and more diverse cohorts.
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