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PAPER

Computer Vision-Based Approach for Automated 
Monitoring and Assessment of Gait Rehabilitation  
at Home

ABSTRACT
This study presents a markerless video-based human gait analysis system for automatic assess-
ment of at-home rehabilitation. A marker-based MoCap system (Vicon) is used to evaluate the 
accuracy of the proposed approach. Additionally, a novel gait rehabilitation score based on 
the Dynamic Time Warping (DTW) algorithm is introduced, enabling quantification of reha-
bilitation progress. The accuracy of the proposed approach is assessed by comparing it to a 
marker-based MoCap system (Vicon), which is used to evaluate the proposed approach. This 
evaluation results in mean absolute errors (MAE) of 4.8° and 5.2° for the left knee, and 5.9° and 
5.7° for the right knee, demonstrating an acceptable accuracy in knee angle measurements. The 
obtained scores effectively distinguish between normal and abnormal gait patterns. Subjects 
with normal gait exhibit scores around 97.5%, 98.8%, while those with abnormal gait display 
scores around 30%, 29%, respectively. Furthermore, a subject at an advanced stage of rehabil-
itation achieved a score of 65%. These scores provide valuable insights for patients, allowing 
them to assess their rehabilitation progress and distinguish between different levels of gait 
recovery. The proposed markerless approach demonstrates acceptable accuracy in measuring 
knee joint angles during a sagittal walk and provides a reliable rehabilitation score, making it 
a convenient and cost-effective alternative for automatic at-home rehabilitation monitoring.
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1	 INTRODUCTION

Rehabilitation is a crucial aspect of healthcare to achieve universal health 
coverage. According to [1], approximately 2.41 billion people received rehabilita-
tion for their health conditions in 2019, indicating a significant increase of 63% 
compared to the numbers recorded in 1990. This expanding rehabilitation need is 
largely unmet. In some lower-class countries, more than half of the people in need do 
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not receive sufficient rehabilitation care. Thus, the World Health Organization has 
launched the Rehabilitation 2030 initiative to address this rapidly enlarging unmet 
rehabilitation demand and relieve the difficulty among these people [2]. At-home 
rehabilitation offers the opportunity to address this need, especially when incorpo-
rating digital tools to facilitate and automate monitoring and exercise guidance. This 
allows individuals to receive timely feedback and support from healthcare profes-
sionals, even if they cannot physically be present. 

In the context of gait rehabilitation, the knee joint angle is one of the main param-
eters to analyze biomechanical factors [3], identifying deficiencies or abnormali-
ties, and guiding the development of targeted rehabilitation strategies [4]. Recently, 
motion capture (Mocap) systems have been increasingly adopted for gait analyzing 
equipment, offering enhanced precision in measuring joint angles. Generally, there 
are two types of MoCap systems: optical-based (marker or marker-less), and inertial 
sensors. The marker-based MoCap systems utilize cameras to track the movement of 
reflective markers attached to individuals. In the study by Ota et al. [5], the VICON 
system was proposed. These systems are known for their high accuracy in measuring 
human motion kinematics and are often considered the gold standard when com-
pared to other motion capture (MoCap) systems. However, the marker-based MoCap 
system has notable disadvantages. It necessitates precise marker attachment and suit-
able lighting conditions. Additionally, it is limited by available space, can be expen-
sive, and necessitates the use of markers. The imaging quality is also susceptible to 
variations caused by reflective objects and occlusion. In the studies cited in [6], [7], 
inertial measurement units (IMUs) were introduced. These are compact devices that 
can be attached to different body parts, including the feet, legs, and hips, to accurately 
measure movement and orientation. IMUs have the advantage of providing real-time 
feedback on gait patterns during rehabilitation, making them suitable for both clini-
cal and home settings. However, it is important to note that IMUs can vary in cost, and 
higher-quality IMUs may be expensive, which can limit their accessibility for certain 
clinics or patients. Additionally, the utilization of IMUs requires specialized expertise 
in data analysis and interpretation, which may present a challenge in some settings.

Recently, there has been a growing interest in markerless-based systems, specifi-
cally pose-estimation algorithms. These algorithms utilize computer vision and deep 
neural networks to extract motion kinematics information accurately. This advance-
ment presents new possibilities for the adoption of more effective methods for extract-
ing MoCap data [8]. One example of these technologies is OpenPose, an open-source 
computer vision library. OpenPose utilizes deep neural networks to estimate the posi-
tions of human body joints, enabling the creation of 2D or 3D models of moving indi-
viduals [8]. In comparison to other MoCap systems mentioned earlier, this technique 
stands out as affordable and easy to set up, also a standard numerical camera can 
be used without special measurement equipment or environment [10]. This feature 
makes it suitable for simple integration and low-cost usage in home-based rehabilita-
tion assessments. Video-based pose estimation has emerged as a valuable tool in the 
field of human gait rehabilitation, enabling the targeting of specific issues to enhance 
patients’ quality of life. Numerous studies have focused on extracting human gait char-
acteristics using pose estimation techniques. In [11], the author used the OpenPose 
approach to extract several gait parameters including joint angles. For instance, in a 
study referenced as [10], the authors utilized linear regression analysis to investigate 
the feasibility of estimating radiographic values from OpenPose measurements of 
knee angles in patients with knee osteoarthritis. This research aimed to enhance reha-
bilitation strategies for such patients. In another study referenced as [12], the authors 
compared spatiotemporal gait parameters, lower-limb sagittal plane joint kinematics, 
and condition-specific clinically relevant parameters. They simultaneously obtained 

https://online-journals.org/index.php/i-joe


iJOE | Vol. 19 No. 18 (2023) International Journal of Online and Biomedical Engineering (iJOE) 141

Computer Vision-Based Approach for Automated Monitoring and Assessment of Gait Rehabilitation at Home

data using 3D motion capture and sagittal and frontal plane videos. This comprehen-
sive analysis was crucial in identifying and understanding specific deficits that need 
to be addressed before initiating treatment for gait rehabilitation. Additionally, a study 
mentioned as [13] emphasized the potential impact of measuring movement kine-
matics through pose estimation, specifically in post-stroke rehabilitation. The authors 
proposed interpreting clinically relevant movement parameters calculated using pose 
estimation, particularly based on OpenPose. This approach facilitated individualized 
care and improvements in post-stroke rehabilitation practices.

These studies collectively underscore the importance of utilizing pose estimation- 
based data acquisition in gait rehabilitation to facilitate targeted treatment strategies, 
personalized care, and improved rehabilitation outcomes. However, it is important 
to note that there are still limitations associated with these procedures. These lim-
itations can be summarized as follows: 1) Determining specific features: There is a 
need to identify and extract precise features that provide comprehensive informa-
tion about all phases of the gait cycle. This would enable a more detailed under-
standing of the patient’s gait and guide treatment planning accordingly. 2) Limited 
comparative analysis: The procedures described in these studies primarily focused 
on comparing and monitoring the level of rehabilitation in patients. While this is 
valuable for tracking progress, it may be necessary to expand the scope of analysis 
to gain deeper insights into the effectiveness of different interventions and their 
impact on gait rehabilitation. Addressing these limitations could further enhance the 
utilization of pose estimation-based data acquisition in gait rehabilitation, enabling 
a more comprehensive understanding of gait dynamics and facilitating more effec-
tive and personalized treatment approaches. 

In our study, we proposed a markerless-video based gait analysis system for auto-
matic assessment of at-home rehabilitation. This system was able to deal with the 
abovementioned critical limitations. As noted, several studies have been conducted 
on this topic, but our methodology differs in many ways. First, we presented and 
validated the chosen pose estimation model in measuring knee angles during typical 
gait analyzing exercises. Secondly, after extracting critical gait cycle features, our 
aim was to calculate the rehabilitation score, which empowers both patients and 
healthcare providers with valuable insights. This scoring system leads to improved 
treatment strategies and better overall rehabilitation results. By quantifying the 
rehabilitation progress through the score, healthcare professionals can tailor inter-
ventions more effectively to each individual’s needs and monitor their advance-
ments over time. For patients, the rehabilitation score provides tangible feedback, 
fostering motivation and engagement in their recovery journey. Additionally, aggre-
gated data from these scores can contribute to research, advancing our understand-
ing of rehabilitation efficacy and optimizing outcomes for individuals with various 
gait-related challenges.

The remainder of this paper is structured as follows: In section 2, the methodology 
of the proposed approach and a general architecture is presented. In section 3, the 
results of the study are presented. Section 4, discusses the study’s results is presented.  
While Section 5 provides a conclusion and outlines challenges for future studies.

2	 METHODOLOGY

2.1	 Overview

The workflow of the approach is illustrated in Figure 1. It consists of five pro-
cessing steps. The first step is the video acquisition of the human gait using a  
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low-cost camera. The second step is the pose estimation using the OpenPose frame-
work, then the landmark coordinates extraction with a specific focus on the legs by 
correcting any incorrect estimations. In the third step, the extracted coordinates are 
utilized to determine the knee angles of the subjects, considering the hip, knee, and 
ankle coordinates. In the fourth and fifth steps, the resulting signal is used to extract 
seven features for each gait cycle. The sixth step and final one involved determining 
the rehabilitation score.

Fig. 1. Block diagram of processing steps

2.2	 Computer	vision-based	knee	angle	estimation

Estimation of knee angles using computer vison method requires three main 
processes: pose estimation, landmarks coordinate extraction, relative angle calcu-
lation. Pose estimation is performed using OpenPose framework, a deep learning- 
based system that uses convolutional neural networks to estimate the pose of a 
person in the video [9], its architecture employed is illustrated in Figure 2. It uti-
lized the Visual Geometry Group (VGG)-19 algorithm within OpenPose. Initially, the 
video clips were converted into frame-by-frame images and fed into the VGG-19 
algorithm. After passing through the convolution and pooling layers of the VGG-19 
algorithm, the images were transformed into a feature map (F). This feature map 
played a crucial role in identifying the specific joint under examination and estab-
lished its connection to the corresponding individual depicted in the image. The fea-
ture map generated from the initial stage underwent a series of subsequent stages, 
with each stage comprising two branches. In Branch 1, the primary objective was 
to estimate the location of the joint and create a confidence map indicating the like-
lihood of its existence. Branch 2 was focused on estimating the part affinity fields 
(PAFs, denoted as ‘L’), which determined the connections between joints based on 
these PAFs. The confidence map and PAFs obtained from the first stage were then 
used in the following stages to repeat the process and generate the skeleton repre-
sentation. Through multiple stages and two branches, it estimated joint locations, 
created confidence maps, and calculated part affinity fields to generate the skeletal 
structure of the subjects and display an output JSON file representing the coordina-
tion landmarks results.
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Fig. 2. OpenPose architecture

In previous research performed by the authors in [14], OpenPose was trained to 
generate three different poses with varying numbers of estimated key points: (a) MPI, 
the most basic model which can estimate 15 important key points, (b) the COCO model, 
a set of 18 points, and (c) the BODY_25 pose consisting of 25 key points. As shown in 
Figure 3, the MPI and COCO models include descriptors for the feet and pelvic center, 
while the BODY_25 pose model is the most detailed and is used in this study.

Fig. 3. OpenPose models: (a) MPI, (b) COCO, (c) Body_25
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The extracted coordinates of the hip, knee, and ankle are used to calculate the 
knee angle using the vector product method. To measure the knee angles with the 
proposed approach, we followed the following steps.

First, a video of the subject has been obtained in the required posture, walking in 
sagittal from right to left or left to right, by ensuring that the video provides a clear 
view of the hip, knee, and ankle joints. Next, OpenPose is used to extract the coordi-
nates of the hip, knee, and ankle joint centers from the video. The outputs are a video 
representing the pose estimation skeleton, and JSON files representing 2D coordi-
nates of the key points. In the end, the (x–y) coordinates of the hip, knee, and ankle 
were used to calculate the knee angle θKnee (1) from the angles of the shank θShank and 
thigh θThigh showed in Figure 4. The equation is based on the fact that the knee joint 
is situated between the shank and thigh segments, and the angle at the knee can be 
calculated as the difference between the angles of these two segments [15]. The sec-
ond equation, θShank (2) is used to calculate the angle of the shank segment from the 
coordinates of the knee and ankle joint centers. The third equation, θThigh (3) is used 
to calculate the angle of the thigh segment from the coordinates of the hip and knee 
joint centers. The measurements were repeated for each frame of the video to obtain 
a series of knee angles according to the frames. 

	 θKnee = θShank + (180 - θThigh) (1)
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Fig. 4. Joint angles representation
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2.3	 Gait	cycle	analysis

The gait cycle refers to the sequence of events that occur during one complete 
stride or walking cycle Figure 5. It begins when one foot makes initial contact with 
the ground and ends when the same foot makes contact again. The gait cycle consists 
of two phases, the stance phase and the swing phase [16]. The stance phase begins 
when the foot makes initial contact with the ground and continues until the foot 
leaves the ground. It can be further divided into several events:

– Initial Contact: During this phase, there is a transfer of body weight towards the 
forward limb. The heel functions as a pivot point, allowing the knee to flex to 
absorb shock. Ankle plantar flexion further restricts the heel’s rocking motion as 
the forefoot makes contact with the floor.

– Loading Response: The weight-bearing phase where the foot accepts the body’s  
weight.

– Midstance: The point where the body’s weight is directly over the foot.
– Terminal Stance: The period when the body moves forward over the foot.
– Pre-Swing: The transition phase as the foot prepares to leave the ground.

The swing phase, starts when the foot leaves the ground and ends when the foot 
makes initial contact again. It can be further divided into subphases:

– Initial Swing: The leg begins to move forward as the foot leaves the ground.
– Mid-Swing: In the second phase of the swing period, the limb is propelled for-

ward through increased hip flexion, allowing the knee to extend naturally due to 
gravity. Simultaneously, the ankle continues dorsiflexing until it reaches a neu-
tral position. This phase begins when the swinging limb aligns with the stance 
limb and concludes when the swinging limb is positioned forward with a vertical 
tibia, indicating an equilibrium between hip and knee flexion postures.

– Terminal Swing: The leg starts to slow down in preparation for the next 
stance phase.

Fig. 5. Human gait cycle phases

To characterize the human gait from knee angles, five peaks and two times were 
identified as showing in Figure 6. These critical points corresponded to a one gait 
cycle. For instance, we determined the peak extension angle during the swing-
to-stance phase, which represents the maximum extension of the knee as the leg 
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transitions from swing to stance. Additionally, we identified the peak flexion angle 
during the loading response, indicating the maximum flexion of the knee as the foot 
makes contact with the ground. The peak extension angle in the terminal stance, 
peak flexion angle in the swing, and the peak of maximum knee extension adjacent 
to the heel strike were also determined, and ends by measuring the knee angle in 
the terminal swing.

To provide a comprehensive understanding of the gait cycle, we further calcu-
lated two times, the first one representing the time between the peak of the extension 
angle during the swing-to-stance phase and the peak extension angle in terminal 
stance, capturing the stance period, while the second denoted the time between the 
peak extension angle in terminal stance and the peak of the maximum knee extension 
adjacent to heel strike. This was in order to provide a comprehensive understanding 
of the gait cycle, indicating the swing period. These times provided crucial insights 
into the duration and timing of the stance and swing phases within the gait cycle.

By employing this approach, we can achieve a more precise and detailed charac-
terization of the gait cycle, capturing the distinctive features and patterns exhibited 
by knee angles throughout the various phases. 

Fig. 6. The gait cycle features extracted, F1: extension angle in the swing to stance phase, F2: maximum knee 
flexion during stance phase, F3: maximum knee extension during terminal stance phase, F4: maximum knee 
flexion during the swing phase, and F5: maximum knee extension adjacent to heel strike. F6 and F7 are the 

difference time between F1–F3 and F3–F5

2.4	 Rehabilitation	assessment

In this study, we used the Dynamic Time Warping (DTW) algorithm to calculate 
the rehabilitation score of patients using the template data previously extracted. 
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The DTW algorithm was used to measure the similarity between two temporal 
sequences that may vary in speed or time [17]. It was originally developed for time 
series analysis and is widely used in recognizing similar patterns even if they occur 
at different speeds or time scales [18]. It is a powerful tool for time series analysis 
and pattern recognition tasks. The main idea behind DTW is to find the optimal 
alignment between two sequences, allowing for some local deformations in the time 
axis to find the best match. It takes into account both temporal shifts and amplitude 
variations between the sequences. The DTW algorithm [19] is presented below:

DTW Algorithm

Input: T: Template features, M: Measured features
Output: X: Optimal Time Warping Distance
Cost Matrix C shape (n+1, m+1);
Where n and m are the dimensions of the input vectors T and M;
p is the order of norm;
for i←1 to n do
| C[i,0] ←∞;
end
for i←1 to n do
| C[0,i] ←∞;
end
for i←0 to n-1 do
   for j←0 to m-1 do
  | C[i+1,j+1] ←|T [i] -M [j]|p + min(C[i,j ],C[i+1,j ])
   end
end
return X

The final accumulated distance is the similarity score between the two sequences. 
Smaller distances indicate greater similarity, while larger distances imply more 
dissimilarity. Therefore, the DTW algorithm proved to be highly appropriate for 
identifying score rehabilitation.

The DTW distance is transformed into a range between 0 and 1 using the linear-
ization and the min max normalization [20] methods, which employs the following 
equation (4):

 X
X X

X XNorm

min

max min

�
�

�
 (4)

Where X represents the measured distance for each feature, Xmin is the minimum 
distance and the Xmax is the maximum distance calculated.

As a result, the rehabilitation score (SScore) can be calculated using the subsequent 
equation (5), standardized to a scale of 0 to 100 points. Lower percentages suggest 
an abnormal gait or an early stage of gait rehabilitation, whereas higher percentages 
indicate a normal gait.

 SScore = (1 - XNorm) * 100 (5)

2.5	 Validation	procedure	

In this study, we validated the knee angle measurement using the publicly avail-
able GPJATK dataset [21]. This dataset comprises 166 data sequences involving 
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32 individuals walking normally. Each participant walked in a straight line over a 
known distance of 6.5 m from right to left (refer to Figure 7). The dataset comprises 
a motion capture (MoCap) database capturing three-dimensional movements and 
joint angles using 10 markers. The MoCap data was recorded using a VICON system 
consisting of 10 MX-T40 cameras, each with a resolution of 2352 × 1728 pixels, and 
a recording rate of 100 Hz. This specific portion of the GPJATK dataset serves as our 
reference.

Additionally, the dataset includes 2D video recordings obtained from four cali-
brated and synchronized video cameras. Each sequence’s video data has a resolu-
tion of 960 × 540 pixels at a frame rate of 25 fps. We used the recordings captured by 
two cameras (C1 left and C3 right) to verify our proposed approach. 

The synchronization between the video and motion capture data was achieved 
using VICON’s MX-Giganet technology [21]. The output of the reference system was 
down-sampled to match the rate of the used cameras.

Fig. 7. Arrangement of data acquisition

To evaluate the accuracy of the measurements, we employed the Mean Absolute 
Error (MAE) [22]. Thus, the MAE represents the difference between the MoCap ref-
erence value obtained using the VICON system and the measured value acquired 
using the proposed markerless video-based method. The formula used for calculat-
ing the MAE is denoted as (6).

 

1

1 n

ii
MAE x x

n ι=
= −∑  (6)

Where xi is the reference, x
ι
 is the measured value, and n is the total number of 

data points.
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The rest of the GPJATK dataset and another dataset of abnormal human gait in 
different levels of rehabilitation was taken from the Mission Gate dataset [23]. The 
videos format used is in mp4 with a frame rate of 30 fps:

– A1: Woman with a chronic hemiparetic gait.
– A2: Woman who suffers from gait dystonia (advanced rehabilitation level).
– A3: Man, with a gait against cerebral lesions.
– A4: Woman with multiple Sclerosis Gait.
– A5: Man, with a hemiplegic gait.
– A6: Man, with the gait of Parkinson’s disease. 

were used in the second part, which consist to calculate the rehabilitation score.

3	 RESULTS

3.1	 Knee	angles	validation

To validate the accuracy of the proposed approach, we compared the knee angles 
estimated using OpenPose for both cameras left (C1) and right (C3) to the reference 
angles obtained from the Vicon system. The qualitative evaluation of the compatibil-
ity between the estimated results and related references is shown in Figure 8. From 
these results, we can notice that the right knee angle estimated using both cameras 
(C1 and C3) showed that there is not much difference from the reference. As well as, 
for the left knee angle, the result obtained from both cameras (C1 and C3) showed 
that there is not much difference from the reference.

Fig. 8. Representation of knee angles throughout the gait cycle estimated using OpenPose for both cameras Left (C1) and Right (C3), and 
Vicon system

Table 1 illustrates MAE values between OpenPose and Vicon outputs for right 
and left knee angles sorted by the precise position of the camera. For the right knee, 
the C3-based angle demonstrated the minimal error (MAE = 5.74°) than the C1-based 
angle (MAE = 5.98°), with a difference of 0.24°. For the left knee, the C1-based angle 
presented the minimal error (MAE = 4.89°) than the C3-based angle (MAE = 5.24°), 
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with a difference of 0.35°. These findings demonstrated acceptable accuracy, indicat-
ing the effectiveness of the proposed approach. Furthermore, these results highlight 
that the perspective of the participant relative to the camera viewpoints does not 
present a significant influence on the accuracy. 

Table 1. Mean absolute error (MAE ± STD) of knee angles calculated using OpenPose and VICON system

Camera Left Knee Right Knee

Left c1 4.8951° ± 0.9697 5.9866° ± 1.2726

Right c3 5.2460° ± 1.8312 5.7432° ± 1.0507

3.2	 Characterization	of	gait	patterns

We have calculated the ranges and means of normal gait cycle features in a 
healthy population and presented the findings in Table 2. Additionally, we have dif-
ferentiated between men and women to enhance precision. These results serve as a 
template for normal gait, which can be utilized to calculate the rehabilitation score 
and effectively assess and monitor the progress of individuals.

Table 2. Range and Mean ± STD of normal gait cycle features for men and women

Features
Range (Max–Min) Mean

Men Women Men Women

F1 9.15° 8.72 1.78° ± 3.35 1.71° ± 3.19

F2 10.51° 15.65° 16.47° ± 3.35 17.11° ± 4.67

F3 8.28° 11.39° 5.02° ± 3.12 4.98° ± 4.09

F4 10.11° 7.14° 65.5° ± 3.71 60.39° ± 2.7012

F5 10.4° 4.44° –0.7° ± 3.19 1.37° ± 0.79

F6 7 2 13 ± 1.67 15 ± 1.22

F7 3 3 18 ± 3.46 18 ± 2.23

In Figure 9, we extracted the abnormal gait cycle features of individuals exhib-
iting various abnormal walking patterns. For women patients, in the case of (A1) 
with chronic hemiparetic gait, we observed increases of 10.55° in F2, 3.26° in F3, 18 
in F6, and 3 in F7. Furthermore, there were gradual decreases of 0.99° in F1, 1.88° 
in F4, and 2.2° in F5 compared to the mean of normal gait cycles. For (A2) with gait 
dystonia, we observed increases of 3.18° in F3 and 2° in F7. Additionally, there were 
gradual decreases of 4.18° in F1, 4.58° in F2, 10.08° in F4, and 3.98° in F5 relative to 
normal. For (A4) with multiple sclerosis gait, we observed increases of 9.71° in F2, 
13.46° in F3, 3.18° in F5, and 1° in F6. Furthermore, there were gradual decreases 
of 4.55° in F1, 4.1° in F4, and 7 in F7 compared to normal. For men patients, in the 
case of (A3) with gait against cerebral lesions, we observed increases of 11.84° in 
F1, 5.71° in F2, 15.07° in F3, 2 in F6, and 9 in F7. Furthermore, there were gradual 
decreases of 3.65° in F3 and 1.88° in F4 when compared to the mean of normal 
gait cycles. For (A5) with hemiplegic gait, we observed increases of 3.62° in F1 and 
3.38° in F4. Furthermore, there were gradual decreases of 5.76° in F2, 3.92° in F3, 
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1.98° in F5, 1 in F6, and 2 in F7 compared to normal. For (A6) with Parkinson’s dis-
ease gait, we observed increases of 5.6° in F2, 3.32° in F3, 1.59° in F5, and 9 in F6. 
Furthermore, there were gradual decreases of 1.24° in F1, 0.45° in F4, and 6 in F7 
compared to normal.

Fig. 9. Representation of abnormal gait cycles
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A boxchart illustrating the distribution of extracted feature values in the gait 
cycle, comparing normal and abnormal gait, is presented in Figure 10. Upon initial 
observation, the distributions appear distinct. Notably, for men, a significant shift 
is observed at the levels of F4 and F7. Conversely, for women, a noticeable shift is 
observed at the levels of F1, F3, F4, F6 and F7.

Fig. 10. Boxchart of extracted features in gait cycle for men and women

3.3	 Rehabilitation	score

In this part of the study, we aimed to calculate the rehabilitation score. The impor-
tance of a rehabilitation score for human gait lies in its ability to provide a quantita-
tive assessment of a person’s gait quality and rehabilitation progress. 

As shown in Table 3, the calculated score values are very significant, allowing us 
to measure the rehabilitation score in normal gait with an average score of 97.8% 
and abnormal gait with an average score of 26.6%. For the subject W5, who is a 
woman who suffers from gait dystonia at an advanced rehabilitation level, we note 
that the score of 65% clearly shows this information. Lower percentages on the scale 
indicate the presence of an abnormal gait or the early stages of gait rehabilitation. 
This early identification of abnormalities or rehabilitation needs allows healthcare 
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professionals to intervene promptly, tailor treatment plans, and address potential 
issues before they worsen. On the other hand, higher percentages suggest a more 
normalized gait, signifying successful rehabilitation and functional improvement. 
Such information is invaluable for patients, as it offers tangible feedback on their 
progress, instilling motivation and boosting confidence in their rehabilitation efforts. 
Additionally, healthcare providers can use these scores to monitor the effectiveness 
of interventions, compare outcomes among different patients, and optimize treat-
ment strategies. Ultimately, the rehabilitation score plays a vital role in promoting 
better gait rehabilitation outcomes, enhancing patient care, and fostering an active 
and targeted approach to gait-related challenges. 

Table 3. Rehabilitation score 

Subjects Score

Normal W1 97.5%

W2 96.8%

W3 100%

M1 98.8%

M2 100%

M3 93.8%

Abnormal W4 29%

W5 65%

W6 0%

M4 0%

M5 36%

M6 30%

4	 DISCUSSION

In this study, we presented a markerless video-based human gait analysis for 
automatic assessment of at-home rehabilitation. This approach relies on low-cost 
camera and deep learning algorithms. We measured the knee angles, and we 
extracted the specified features in a gait cycle, namely: (F1) extension angle in the 
swing to stance phase, (F2) maximum knee flexion during stance phase, (F3) max-
imum knee extension during terminal stance phase, (F4) maximum knee flexion 
during the swing phase, and (F5) maximum knee extension adjacent to heel strike, 
(F6) and (F7) are the time between (F1)–(F3) and (F3)–(F5). We evaluated the accuracy 
of the proposed approach against a marker pose estimation system (Vicon) using  
2 cameras positioning, C1 for the left side and C3 for right side. Results demonstrate 
an acceptable accuracy between knee angles obtained from our markerless-based 
method and marker-based reference system. The accuracy of the measurements is 
not influenced by the position of the camera, as indicated in Table 1. Notably, when 
the camera is correctly positioned relative to the knee, the MAE observed is 3.3° for 
the left knee using both cameras C1 and C3, the MAE observed is less than 5° for the 
right knee using both cameras C1 and C3. That simplifies the use of the proposed 
approach at home without the need for specific camera and positioning.
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These results were compared to previous studies focused on pose estimation 
approaches using the OpenPose framework. For instance, Jan Stenum et al. [11] 
reported an average MAE of 3.5° for the knee joint angle in the sagittal plane com-
pared to marker-based method. In another study in [10], the authors evaluated the 
accuracy of OpenPose in estimating sagittal plane knee joint angle by comparing it 
with the marker-based method. The study reported MAE values of 5.1° for the left 
knee and 5.6° for the right knee using the left camera. Furthermore, when utilizing 
the right camera, the MAE values were found to be 5.5° for the left knee and 5.6° for 
the right knee.

After validating the accuracy of the proposed approach, we proceeded to mea-
sure the mean values of the features for subjects with normal gait. These mean val-
ues would serve as a template to define the gait rehabilitation score. We employed 
the DTW algorithm to calculate the time between two sequences: the mean values of 
features in normal gait and the measured features of the subject undergoing reha-
bilitation. The resulting time was converted to a percentage using equation (6), pro-
viding a meaningful value. A percentage close to 100% indicates a normal gait, while 
0% signifies an abnormal gait prior to rehabilitation. To validate this equation, we 
tested it on individuals with normal gait and observed high scores around 93.8% to 
100%. In subjects with abnormal gait, lower scores were obtained, ranging from 0% 
to 36%. Additionally, we evaluated a critical case involving a subject at an advanced 
stage of rehabilitation, which resulted in a score of 65%. These scores demonstrate 
the efficacy of our approach in assessing rehabilitation progress and distinguishing 
between normal and abnormal gait patterns.

While our approach offers promising advantages in gait rehabilitation moni-
toring, it is important to acknowledge its limitations. One significant limitation lies 
in the database used for validation. The accuracy and reliability of results heavily 
depend on the quality and diversity of the data within the database. If the dataset is 
limited in size or lacks representation from various gait patterns, it may impact the 
generalizability and robustness of our approach to different populations or scenar-
ios. Additionally, an investigation into background clutter colors is another crucial 
aspect to consider. The presence of complex and varying backgrounds could poten-
tially interfere with the accuracy of pose estimation algorithms, leading to errors in 
gait analysis. To mitigate this influence on accuracy, further research and refinement 
of our approach are needed. Overall, addressing these limitations will be essential 
for enhancing the effectiveness and applicability of our gait analysis system in real-
world settings.

In conclusion, our approach demonstrates acceptable accuracy in measuring knee 
joint angles during a sagittal walk and provides a quantitative rehabilitation score. 
Moreover, our video-based approach proves to be highly portable and cost-effective 
compared to other motion capture (MoCap) systems. As a result, it presents a viable 
alternative for automatically monitoring home-based rehabilitation progress, pro-
viding a convenient and accessible solution for patients.

5	 CONCLUSION

In this study, we presented a markerless video-based human gait analysis sys-
tem for automatic assessment of at-home rehabilitation. Our approach relies on 
low-cost cameras and deep learning algorithms to measure knee angles and extract 
specified gait cycle features. The accuracy of our method was evaluated against a 
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marker-based reference system, and the results demonstrated an acceptable accu-
racy for knee angle measurements. Notably, the accuracy was not influenced by the 
camera’s position, making the system easy to use at home without specific camera 
requirements. 

We also introduced a gait rehabilitation score that utilizes the DTW algorithm to 
measure the time between normal gait features and the subject’s measured features. 
The resulting percentage-based score effectively distinguishes between normal and 
abnormal gait patterns and provides valuable insights into the individual’s rehabil-
itation progress.

Despite its advantages, we acknowledge some limitations in our approach. The qual-
ity and diversity of the validation database may affect the generalizability of results, 
highlighting the need for more extensive datasets. Additionally, we identified potential 
challenges related to background clutter colors that could influence pose estimation 
accuracy, warranting further research and refinements. In conclusion, our markerless 
video-based gait analysis system offers accurate measurements and provides a valu-
able rehabilitation score for monitoring progress. Its portability and cost-effectiveness  
make it a viable alternative for automatic at-home rehabilitation assessment. By 
addressing the identified limitations, our approach holds great promise for enhanc-
ing gait analysis and improving rehabilitation outcomes in real-world settings.
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