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PAPER

A State Table SPHIT Approach for Modified 
Curvelet-based Medical Image Compression

ABSTRACT
Medical imaging plays a significant role in clinical practice. Storing and transferring a large 
volume of images can be complex and inefficient. This paper presents the development of 
a new compression technique that combines the fast discrete curvelet transform (FDCvT) 
with state table set partitioning in the hierarchical trees (STS) encoding scheme. The curvelet 
transform is an extension of the wavelet transform algorithm that represents data based on 
scale and position. Initially, the medical image was decomposed using the FDCvT algorithm. 
The FDCvT algorithm creates symmetrical values for the detail coefficients, and these coeffi-
cients are modified to improve the efficiency of the algorithm. The curvelet coefficients are 
then encoded using the STS and differential pulse-code modulation (DPCM). The greatest 
amount of energy is contained in the coarse coefficients, which are encoded using the DPCM 
method. The finest and modified detail coefficients are encoded using the STS method. A vari-
ety of medical modalities, including computed tomography (CT), positron emission tomog-
raphy (PET), and magnetic resonance imaging (MRI), are used to verify the performance of 
the proposed technique. Various quality metrics, including peak signal-to-noise ratio (PSNR), 
compression ratio (CR), and structural similarity index (SSIM), are used to evaluate the com-
pression results. Additionally, the computation time for the encoding (ET) and decoding (DT) 
processes is measured. The experimental results showed that the PET image obtained higher 
values of the PSNR and CR. The CT image provides high quality for the reconstructed image, 
with an SSIM value of 0.96 and the fastest ET of 0.13 seconds. The MRI image has the shortest 
DT, which is 0.23 seconds.

KEYWORDS
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1	 INTRODUCTION

Image compression techniques have been a crucial topic in the image-processing 
community for almost 50 years. It has become a crucial subject and is booming 
due to its wide application in various fields, such as medicine, agriculture, and 
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defense [1–6]. In the classical definition, image compression refers to reducing the 
size of an image without degrading its quality [2]. The smaller image size requires 
less storage space and directly increases the transmission bandwidth. However, a 
higher compression ratio typically impacts the quality of the reconstructed images. 
Thus, researchers emphasize the need for improved compression techniques.

On the other hand, medical image processing is significant due to its ability to 
provide clear visualization and quantitative analysis [7–8]. Information visualiza-
tion of medical images is used to diagnose patients’ diseases. One medical embod-
iment thus, carries a lot of data that has been generated by various medical tools 
such as computed tomography (CT) [9], positron emission tomography (PET) [10], 
ultrasound (US) [11], magnetic resonance imaging (MRI) [12], and X-rays [11]. The 
organization of the memory units has been affected by the vast amount of data that 
needs to be processed in the context of medical algorithms. The data and interme-
diate data must first be stored in a larger amount of space before being used for the 
subsequent operation. The majority of subfields in medical image processing also 
contribute to matrix transformation procedures [13–16].

Previously, wavelets and related multi-scale representations have been widely 
used in all areas of signal and image processing. The reason is that wavelets have 
good performance for piecewise smooth functions in one dimension [15]. However, 
wavelets suffer from limitations in representing the edges of an image. It requires a 
large number of coefficients to analyze the images. Hence, a new multi-scale trans-
form known as the curvelet transform has been introduced to overcome the limita-
tions of wavelets. The Curvelet offers optimal sparsity for curved images, objects, 
and wave propagators [17].

This paper proposes a technique for image compression using a modified fast dis-
crete curvelet transform (FDCvT). The medical image was decomposed into several 
levels to obtain the curvelet coefficients. These coefficients are large and complex 
and indirectly affect the algorithmic computations. Hence, the main philosophy of 
this research is to modify the curvelet coefficients before they are employed in the 
encoding schemes. Practically, the curvelet coefficients have symmetrical properties, 
in which the duplicated coefficients can be deleted to reduce the complexity of the 
algorithm.

Additionally, the curvelet coefficients are further converted into a stream of inte-
ger values using two proposed encoding methods. The first encoding method uses 
the state table set partitioning in hierarchical trees (STS), which is an improved 
version of the set partitioning in hierarchical trees (SPIHT) algorithm. State tables 
are used instead of lists. The differential pulse code modulation (DPCM) encoding 
technique is used to encode the remaining curvelet coefficients. The compression 
results are evaluated using various quality metrics, such as peak signal-to-noise ratio 
(PSNR), compression ratio (CR), and structural similarity index (SSIM). Additionally, 
computation times for the encoding (ET) and decoding (DT) operations are also con-
sidered. Experimental results over a large number of medical images have shown 
an improvement in both PSNR and CR values. Additionally, it provides the high-
est SSIM at different bitrates and the shortest ET and DT to compute the proposed 
algorithm.

The remainder of the paper is organized as follows: Section 2 summarizes the 
related work. The mathematical background for the curvelet transform and SPIHT 
algorithm is described in Section 3. Section 4 describes the proposed compression 
method. The results and discussions are explained in Section 5. Finally, the conclusion 
and future directions for further research are discussed in Section 6.
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2	 RELATED	WORKS

More than 50,000 patients are critically admitted to hospitals and medical facil-
ities every year [18]. As a result, medical imaging files increase in size and require 
more storage space. Moreover, high-speed and efficient bandwidth transmission is 
necessary for the transfer of medical data between hospitals. Considering the cur-
rent circumstances, medical image compression has become prevalent in the field of 
medical informatics. Image compression typically benefits by decreasing the amount 
of storage space required for archiving in hospitals, thereby reducing the overall 
storage cost [19–20]. In the following, an overview of medical image compression 
methods will be provided.

An approach for medical image compression based on the embedded zero-tree 
wavelet (EZW) coder is briefly described in [7]. The main objective of this paper is to 
investigate and explore the viability of the EZW wavelet coder for compressing ther-
apeutic and medical images. The EZW algorithm applies a similar method to the dis-
crete wavelet transform (DWT), where the image is decomposed into different levels 
using wavelet filters. Then, the generated unit cells are separated into a predomi-
nant pass and a subordinate pass. In the first pass, the initial threshold is assigned 
to half of the maximum coefficient of the pixel value. Additionally, a zig-zag method 
is used to scan the coefficients. The simulation results show that the performance of 
the proposed methodology is influenced by the type of medical modalities and the 
storage format utilized. This result was verified based on the recorded PSNR values.

Another issue in medical image compression is presented in [19]. A compression 
technique for medical images is proposed, utilizing wavelet-based sparsification and 
coding. The proposed compression technique is based on adaptive scan wavelet dif-
ference reduction (ASWDR). Moreover, the ASWDR technique employs index coding, 
binary representation, and adaptive coding. One of the advantages offered by the 
ASWDR coding technique is that the coefficients at all levels of the image decomposi-
tion are scanned systematically. Moreover, the ASWDR coding technique is efficient 
in preserving the detailed values of an image. The results of the proposed methodol-
ogy show that a structure similarity of 97.5–99.5% is achieved, and the biorthogonal 
6.8 wavelet (Bior6.8) is found to be the most suitable for the chosen medical image 
in terms of compression ratio.

Q. Min et al. [21] have proposed a lossless medical image compression technique 
based on anatomical information and deep neural networks. This work aims to 
enhance the compression of medical images by utilizing a combination of anatom-
ical knowledge and deep neural network (DNN) technology. In this compression 
scheme, the segmentation process involves dividing the medical image into multiple 
regions based on its anatomy. By dividing the image into regions, the compression 
algorithm can treat each region differently and exploit the anatomical information to 
compress the data more effectively. The numerical results support the validity of the 
proposed technique as an effective solution for data compression. It provides 38% 
better results for CR parameters compared to JPEG-2000. However, the proposed 
compression scheme was only tested on the CT image. It is better to utilize multiple 
medical imaging modalities, such as MRI, PET, and X-ray, to validate the results.

A new method for lossless image compression, specifically designed for telemed-
icine images, is presented in [22]. The medical image was compressed using delta 
compression. The method converts an image into a binary row vector and iden-
tifies repetitive sequences of unique elements. The resulting reduced data is then 
encoded using entropy coding for further compression. The process is then reversed 

https://online-journals.org/index.php/i-joe


 92 International Journal of Online and Biomedical Engineering (iJOE) iJOE | Vol. 20 No. 1 (2024)

Ja’afar et al.

for decoding. In addition, the proposed technique was tested on various medical 
images, such as X-rays, CT scans, MRI scans, and US. Two evaluation parameters, the 
CR and bits per pixel (BPP), are calculated to measure the effectiveness of the pro-
posed technique. Moreover, the experimental results were compared with previous 
and existing compression techniques such as JPEG-2000, DPCM, and lossless region 
of interest (ROI) compression. The proposed method has been shown to be more 
efficient than the JPEG-2000 method, and it produces an exact reconstruction of the 
original image. However, the details of the delimiter compression are not discussed 
in this work.

An evaluation of hybrid medical image compression for improved diagnosis was 
conducted [23] by H. A. Elsayed et al. This work primarily focuses on medical image 
compression using the non-decimated wavelet transform (NDWT) and a combina-
tion of lossy and lossless compression techniques. The issue raised in this is that most 
medical images contain a large volume of image data that is not fully utilized for fur-
ther analysis. Therefore, the proposed methodology combines both lossy and loss-
less compression techniques to achieve superior results. The input image is resized 
to 8 × 8 and converted from RGB to grayscale. After the pre-processing, the image 
is subjected to two vector quantization algorithms, namely Linde, Buzo, and Gray 
(LBG) or K-means clustering techniques. Zigzag scanning is then used to transform 
the outcome into a vector. Continuously, the compressed image undergoes additional 
lossless compression using either run-length encoding (RLE), Huffman coding, or 
arithmetic coding. In summary, the sequences of NDWT, K-means clustering, zigzag 
scanning, and the RLE encoding algorithm yield improved results in terms of CR and 
PSNR. However, this work only uses a chest X-ray image to evaluate performance.

All the previous works discussed are summarized in Table 1. It has been estab-
lished that by employing transform-based compression algorithms in lossy tech-
niques, better results can be achieved. The most commonly used transform-based 
algorithm for this purpose is the wavelet transform. In addition, combining the lossy 
and lossless techniques makes it possible to achieve a balance between reducing file 
size and preserving quality, which is suitable for medical images. Another point of 
concern is the input data or medical images used for experimental analysis of per-
formance. Only works in [7] and [22] utilized more than one medical image, while 
the remaining works only used US, CT, and X-ray images. Hypothetically, efficient 
results can be achieved by considering various input data when evaluating per-
formance. Furthermore, the standard parameters used in analyzing compression 
performance include PSNR and CR. In image compression analysis, these param-
eters are commonly used. Hence, additional assessment parameters are needed to 
effectively analyze the data.

Table 1. Summary of the previous works

Refs. Medical Image Techniques
Performance Evaluations

PSNR CR

[7] MRI, US, X-ray Lossy – EZW 

[19] US Lossy – ASWDR  

[21] CT Lossless – DNN  

[22] X-ray, CT, MRI, US Lossless 

[23] X-ray Hybrid – lossy 
and lossless
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3	 MATHEMATICAL	BACKGROUND

3.1	 Curvelet	transform

The curvelet transform is a high-dimensional wavelet transform used to ana-
lyze an image with various scales and directions. The multidimensional theory is 
enhanced by the multiresolution design of the curvelet transform. In the wavelet 
domain, the image is divided into approximation and detail subbands of various 
scales that are smaller than the scale of the original image. A third attribute of signal 
localization, in addition to size and space, distinguishes the curvelet from other sig-
nal processing techniques. Generally, there are two major revisions of the curvelet 
transform, known as the first and second generations of the curvelet transform. The 
first generation, also known as Curvelet-99, uses a complex procedure that includes 
ridgelet analysis. Initially, the image is divided into several sub-images using a series 
of disjoint clusters. Each cluster is further processed using the ridgelet transform. 
However, the performance of the first generation is too slow because the image 
boundaries are treated by periodization. Thus, the second generation is proposed to 
overcome the drawbacks of the first generation.

In the second generation of the curvelet transform, the ridgelet analysis step is 
discarded in order to reduce the complexity of the algorithm. In addition, it han-
dles the image boundaries using mirror extension. Thus, making the second gen-
eration curvelet transform more efficient and faster. FDCvT utilizes the advantages 
of fast Fourier transform (FFT). The image and curvelet are divided into the Fourier 
domain at various scales and orientations. Then, a spatial domain convolution tech-
nique is applied between the curvelet and the image. Finally, the inverse FFT is used 
to calculate the curvelet coefficients.

On the other hand, there are two methods that can be used to compute the cur-
velet coefficients: the unequally spaced fast Fourier transform (USSFT) and the 
wrapping-based method. Theoretically, both methods produce the same output. 
However, the wrapping-based method is faster and more efficient in terms of com-
putation time. Hence, in this work, the wrapping-based method was utilized in the 
proposed compression technique. Generally, there are three steps involved in using 
the wrapping-based method. First, a 2-D image is processed using the FFT algorithm 
to generate FFT coefficients. The FFT coefficients are then partitioned into a collec-
tion of digital tiles. At the final step, an additional four sub-steps are utilized for each 
digital tile, as follows:

1. Convert the tile to the origin;
2. Wrap the parallelogram shaped support of the tile around a rectangle centered 

at the origin;
3. Employ the inverse FFT algorithm to the wrapped support; and
4. Compute the curvelet array to the collection of curvelet coefficients.

Before decomposing the input image using the wrapping-based method, three 
parameters are calculated: the number of scales nscales, the number of orientation ℓj , 
and the number of angular panels nquad. For a 2-D image with a size of 128 × 128 pixels, 
it has five scales and eight orientations. At scale number two, there are four angular 
panels; at scales three and four, there are sixteen orientations with eight angular 
panels. The details of the calculations are described in Table 2, and the summarized 
values are recorded in Table 3.

https://online-journals.org/index.php/i-joe
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Table 2. Parameter calculation

Parameters Calculations

Number of scales (nscales) nscales = floor(log2(min(m, n, p))) −2
     = floor(log2(min(128, 128))) −2
     = 5

where m, n, p are the size of image 
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Table 3. Curvelet decomposition summarization

Number of Scales Number of Orientations Number of Angular Panels

1 1 1

2 8 4

3 16 8

4 16 8

5 1 1

Figure 1 illustrates the five scales (S1 to S5) of the FDCvT decomposition. At scale 
one (S1), the lowest subband contains the greatest amount of energy and is referred 
to as the coarse subband. While the highest-frequency coefficients are represented 
by the outermost subband (S5) and are known as the finest. The remaining curvelet 
coefficients are used from scale two (S2) to scale four (S4). Furthermore, the curvelet 
coefficients are separated into four quadrants. A further division into angular panels 
is made for the curvelet coefficients at each quadrant.
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Moreover, the curvelet oriented at an angle θ produces the same coefficients as 
the one oriented at an angle π+θ. In other words, the curvelet coefficients in the upper 
half (color wedges) and lower half (white wedges) are conjugate or symmetrical. 
Therefore, only half of the coefficients can represent an image instead of the actual 
coefficients. The first contribution of this research is based on modifying the cur-
velet coefficients by deleting the symmetrical coefficients (white wedges). Indirectly, 
reduce the dimensions and complexity of the architecture.
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Fig. 1. Five-scales of curvelet decomposition

3.2	 Set	partitioning	in	hierarchical	trees

Numerous encoding techniques have been developed to address the discrepancy 
between the position and value of coefficients at different frequency levels in an 
image. A high PSNR value and good image quality are provided by the set parti-
tioning in hierarchical trees (SPHIT) encoding technique. The SPHIT encoder goes 
through three fundamental steps: initialization, sorting pass, and refinement pass. 
The refinement pass is based on a pyramid structure decomposition. As illustrated 
in Figure 2, there are three lists involved in the encoding and decoding process; 
the list of insignificant pixels (LIP), the list of insignificant sets (LIS), and the list of 
significant pixels (LSP). The initial value of the threshold is established during the 
initialization phase, and the local intensity probability (LIP) is initialized with a set 
that includes all the coefficients in the lowest sub-band.

Additionally, LSP is initially configured as an empty list, while LIS holds the coor-
dinates of all tree roots. The iterative sorting pass follows, where members of LIP are 
handled first, and subsequently, members of LIS are handled. The final processing of 
LSP items occurs at the refining stage, and these lists are updated each time a node 
is examined. Moreover, the SPIHT technique is self-adaptive and offers a high PSNR 
value for image compression applications. The main drawback of SPIHT is that it 
uses three lists to store the addresses of coefficients during operations [24]. These 
dynamic lists may, in the worst-case scenario, need to store more addresses than 
there are total coefficients.
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Fig. 2. The SPIHT algorithm

4	 PROPOSED	METHOD

To address the memory limitations of the SPIHT algorithm, the STS method makes 
use of a modified curvelet transform. Basically, the state table is used to store the state 
information for each coefficient. Based on their level of importance and their place-
ment in the image, this state information is used to determine which coefficients 
should be encoded and transmitted first. The state-table-based strategy enables the 
algorithm to avoid unnecessary calculations and effectively track the state of each 
coefficient during the encoding process. The suggested method relies on a state-table 
approach that records the status of each block of coefficients. The spatial orientation 
of each coefficient block at different levels is exploited.

In contrast to the Morton scan order employed in wavelet transforms, the scan 
order for curvelet coefficients is often based on a spiral pattern that starts in the 
center of the image and spirals outwards. The STS algorithm essentially utilizes the 
following components:

1. ST_SB: state table for the significance of block
2. ST_SDB: state table for the significance of descendant block
3. LCB: list of child block
4. LPB: list of parent block

The significance of each coefficient block is recorded in the state table ST_SB. 
A node is considered “1” if at least one of its associated coefficients is determined 
to be significant or if any of its descendant nodes are determined to be significant. 
On the other hand, the state table ST_SDB is used to indicate whether a node con-
tains any irrelevant data or not. A DPCM algorithm is used to encode the majority 
of energy coefficients. While the STS is used to encode the remaining coefficients. 
The image was split into chunks in STS, each consisting of two by two pixels. These 
blocks are considered nodes of the spatially oriented tree.

As illustrated in Figure 3, the proposed compression technique utilizes four 
stages. The symmetrical curvelet coefficients were removed at stage two in order 
to decrease the complexity of the algorithm. Then, at stage 3, the remaining coeffi-
cients were encoded using two different methods. The details and fine coefficients 
were encoded using STS, while the coarse coefficients were encoded using DPCM. All 
the encoded bitstreams are combined at the final stage, and the inverse processes 
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are employed to reconstruct the compressed image. The proposed compression 
algorithm using the modified FDCvT is described in Algorithm 1 as follows:

Algorithm 1: Algorithm to Compress Medical Image Using Modified FDCvT

Input: Medical image f (m, n) with a size of 512 × 512 − 8bits
Output: Compressed medical image
	 1	 Apply FDCvT to the input image to obtain the approximation and details coefficients
	 2	 if the coefficients are symmetrical
	 3	   Delete the half symmetry coefficients
	 4	 else
	 5	   Remain the coefficients
	 6	 if the coefficients contain wedges
	 7	   Encode using DPCM
	 8	 else
	 9	   Encode using STS
	10	 Analyze the output image quality in terms of PSNR, CR, SSSIM, ET and DT
	11	 end

Fig. 3. Proposed compression technique
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5	 RESULTS	AND	DISCUSSIONS

The proposed method is implemented and tested on a set of three medical images: 
CT, MRI, and PET. Moreover, objective quantitative evaluation is used to analyze the 
proposed compression method. Finally, an effective comparison with the previous 
works has been efficiently conducted.

5.1	 Experimental	setup

The experiment used MATLAB R2022b on Windows 10 Pro (64-bit) with an Intel Core 
i5 processor and 8 GB of RAM. The proposed denoising techniques were implemented 
using a MATLAB live script to observe the simulation results. Moreover, this experi-
ment uses the grayscale format and an image size of 512 × 512 for the medical image. 
A total of three medical images from different modalities were used as test data, includ-
ing MRI, PET, and CT images. The medical images were retrieved from the National 
Library of Medicine’s Lister Hill National Center for Biomedical Communications [18].

5.2	 Performance	evaluations

Different quality metrics, such as PSNR, CR, SSIM, and computational time for 
ET and DT processes, are evaluated to compile compression results. In addition, 
the effectiveness of the proposed method is evaluated in comparison with existing 
algorithms such as wavelet [25] and curvelet [26].

PSNR: Adequate parameters for measuring the quality difference between the 
original and compressed images. Higher PSNR indicates a better quality of the 
compressed or reconstructed image [27].
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CR: A measurement to quantify the size reduction produced by the image com-
pression algorithm. Higher CR indicates more data reduction has been achieved [27].
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SSIM: An objective image quality metric used to measure the similarity between 
two images. A value closer to one indicates better image quality [28].
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Figure 4 illustrates the three sets of sample medical images that were collected 
from the online image archive database for performance evaluation. There are PET 
axial views of the abdomen, CT axial views of the pelvis, and MRI axial views of 
the brain. In MATLAB, the image processing toolbox was used to implement and 
evaluate the performance of the proposed method.
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Fig. 4. Input medical images (a) PET, (b) CT, and (c) MRI

Each medical imaging technique produces different results, as indicated in 
Table 4. This is so because different machines with distinct properties are used to 
generate medical images. So, it is a valuable experiment to consider various medical 
modalities when analyzing the effectiveness of the suggested approaches. In order to 
adequately evaluate the results, two previous studies on the compression system are 
compared. The first work was proposed by P. Sreenivasulu and S. Varadarajan [25], 
and the second was presented by P. Chamberlin and S. Balasubramanian [27]. The 
previous works utilized a wavelet transform algorithm and the ROI method for 
image decomposition. Furthermore, the previous work in [25] used only MRI images, 
while the previous work in [27] used CT and MRI images. According to the table, the 
proposed compression technique provides better results in terms of PSNR and SSIM 
than the wavelet algorithm. In addition, eliminating the symmetry curvelet coeffi-
cients can reduce the execution time (ET) and data transfer (DT). Indirectly reduce 
the time required for image decomposition and reconstruction. On the other hand, 
previous works have not considered the time required to compute the algorithm.

Table 4. The results for image compression techniques on various medical images

Medical Images Parameters Proposed Technique [25] [27]

CT PSNR (dB) 34.4 NA 33.5

CR 4.3 NA 3.8

SSIM 0.96 NA NA

ET (s) 0.13 NA NA

DT (s) 0.44 NA NA

MRI PSNR (dB) 34.5 31.0 34.1

CR 4.1 3.9 4.4

SSIM 0.95 NA NA

ET (s) 0.35 NA NA

DT (s) 0.23 NA NA

PET PSNR (dB) 37.8 NA NA

CR 6.1 NA NA

SSIM 0.93 NA NA

ET (s) 0.52 NA NA

DT (s) 1.73 NA NA
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The relationship between BPP, PSNR, and SSIM is investigated using different 
algorithms: DWT with STS encoder, FDCvT with STS encoder, and the proposed 
method (modified FDCvT with STS and DPCM). With a higher BPP value, more bits 
are used to represent each pixel, which leads to a larger file size and greater detail 
in the image. A maximum PSNR value is reached at the highest BPP, as shown in 
Figure 5, and the PSNR value increases as the BPP rises. On the other hand, the 
experimental results show that the maximum SSIM value occurs at the highest BPP, 
as depicted in Figure 6.
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Fig. 5. The graph of PSNR vs. BPP for CT image
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Fig. 6. The graph of SSIM vs. BPP for MRI image

6	 CONCLUSION

This paper presents the implementation of FDCvT algorithms with the STS 
encoding scheme in compression systems. Efficient techniques for medical image 
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compression systems using the curvelet transform and modified SPIHT have been 
proposed. The experiment results have revealed that modifying the curvelet trans-
form algorithm indirectly increases the time taken for encoding and decoding. In 
addition, a comparative study also demonstrated that the proposed compression 
method yields superior results in terms of PSNR, SSIM, and CR. On the other hand, 
depending on the type of disease, each medical imaging modality is used to pro-
duce a specific kind of medical image. Therefore, the medical images used in this 
work as input (CT, MRI, and PET) are not from the same subject. Furthermore, the 
encoding methods used in developing the compression technique are limited to STS 
and DPCM. In the future, the proposed compression technique can be enhanced by 
combining different encoder methods, such as Huffman, to improve performance. 
Additionally, applying ROI extraction will improve algorithm computations and 
speed while preserving the diagnostic value.
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