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Abstract 

This thesis investigated the impact of artificial intelligence on radiographers’ image 

interpretation.  A literature review revealed heterogeneity in the way that studies 

investigating AI for fracture identification were reported. Impressive performances were 

reported in all studies (n=30) however, the metrics used in many papers may be unfamiliar to 

clinicians, such as prevalence agnostic metrics to allow for imbalanced datasets.   

A survey was carried out to establish UK radiographers’ perceptions of clinical AI (n=411) 

and found that UK radiographers do not feel well prepared for the future with AI 

technologies in the clinical radiology setting and desire more training.  Less than a third of 

Reporting Radiographers responding indicated that they were confident in explaining the AI 

output to service users and other healthcare practitioners.  Indication of overall performance 

of the system and visual explainability of the AI focus would serve to increase users’ trust.   

The impact of AI feedback on student and qualified radiographers’ rates of decision-

switching and automation bias was investigated and found that students were more likely 

than radiographers to change their mind following AI feedback.  Heatmap feedback caused 

increased rates of decision switching across both groups.  Both groups followed incorrect 

advice (automation bias).  This was more prevalent in the student group.  

The final study investigated factors impacting reporting radiographers’ trust when using AI.  

Participants agreed with binary diagnosis more often than the heatmap feedback (86.7% 

agreement with AI diagnosis) and disagreed with the heatmap feedback on 45.8% of 

pathological cases (n=66). Correlations were found between trust and agreement with both 

binary and heatmap AI feedback.   

This work will assist with development and procurement, encouraging consideration of forms 

of AI feedback which will be beneficial to users.  The findings should be used to guide 

educators on the contents of programmes to upskill the workforce and educate students in AI.   
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Chapter 1 - Introduction 

 1.1 A brief history of Artificial Intelligence and its applications in medicine  

By its most basic definition, a ‘computer’ processes, stores and analyses information. In the 

1820s and 30s Charles Babbage developed designs for the ‘Analytical Engine’ and later 

‘Difference Engine’ - machines that could accomplish simple mathematical processes such as 

addition, subtraction, multiplication and division.  Some would argue that these provided a 

springboard for development of modern computer technology.  While translating Babbage’s 

paper on the design of the Analytical Engine, Ada Lovelace published the first ‘programming 

code’ and recognised the potential of the machine for other, potentially non-numeric, 

applications.  The Belfast-born brothers William and James Thompson later developed an 

analogue computer capable of more complex calculations and ocean tide predictions, which 

was constructed in 1872 (Copeland, 2020).  Later in the 20th century, Haan and Bush 

developed the first mechanical analogue computer system, paving the way for the famous 

developments of Alan Turing and his team to build systems which, many say, permitted 

earlier termination of World War Two, saving millions of lives (Copeland, 2006, cited in 

Copeland, 2020; Barfield, 2020).   

The term Artificial Intelligence (AI) was coined by John McCarthy in 1956, defining AI as 

‘the science and engineering of making intelligent machines’.  In the intervening years to the 

present day there have been periods of rapid development of health technologies, where 

funding was plentiful – where AI and computing research and development could flourish.  

However, there have also been a number of ‘quiet’ periods, termed ‘AI winters’, between 

roughly 1974 to 1980 and again from approximately 1987 to 1993 (Chang, 2020). 

The first artificially intelligent systems used in medicine were ‘rule based’ systems.  The 

computer was programmed with a series of ‘if then’ rules to output a decision.  These 

systems were developed by human programmers with input by domain (clinical) experts, for 

example the CASNET model for glaucoma diagnosis, MYCIN for assistance with antibiotic 

prescribing, DXplain, a medical encyclopaedia and differential diagnosis assistant, and in 

radiology, computer Assisted/Aided Diagnosis (CAD) systems in mammography and lung 

nodule detection using chest radiographs (Castellino, 2005; Sim et al., 2019; Chang, 2020; 

Kaur et al., 2020; Sutton et al., 2020).  Whilst these systems were useful, they were not fully 

utilised due to issues with performance, integration into existing computer systems and 



Page 22 of 516 

 

ethical issues regarding the apportioning of responsibility (Philpotts, 2009; Langlotz et al., 

2019; Sutton et al., 2020).  Some of these issues still pervade today.   

The developments of more sophisticated computers with greater storage and processing 

capabilities and the availability of large datasets for training have permitted new ways of 

using existing system architectures, such as the current use of artificial neural networks 

(ANN) for computer vision tasks (Meijering, 2020) (Figure 1.1).  These systems exhibit 

performances exceeding those of human-programmed, rule-based systems and pervade much 

of the professional literature today (Liew, 2018; Hirschmann et al., 2019). Neural networks 

are an example of Machine Learning (ML), a subset of AI referring to the ability of a system 

which can teach itself, based on labelled examples, much in the same way that a child learns.  

Deep learning (DL) is a further subset of ML and refers to a neural network which can teach 

itself, by either examples ‘labelled’ by humans, called ‘supervised learning’ or by 

‘unsupervised learning’, where the system identifies the patterns in the data on its own, 

without human intervention (Erickson et al., 2017; Hirschmann et al., 2019).   

These systems make use of complex computation, resulting in parts of the functionality of the 

model being hidden from the user and developer – the so-called ‘black box’ of AI. The user 

may not be able to fully discern and appreciate the model idiosyncrasies and therefore be 

unable to mitigate against them. Whilst the future of medicine with AI appears promising, 

human users should exercise due caution and leverage the benefits of the tools available with 

cognisance of the potential issues inherent with these more advanced systems.  A precis of 

terms related to modern AI is provided in Table 1.1. 
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Figure 1.1 – Artificial Intelligence, Machine and Deep Learning schematic 

(Liew, 2018; Haenlein and Kaplan, 2019; Hirschman et al., 2019; IBM, 2021)   

Table 1.1 – Introduction to AI terminology 

Artificial Intelligence 

(AI)  

The ability of a computer to accomplish human-like tasks.  

Machine Learning (ML)  ML is an AI system which can learn independently of human input by making a 

series of predictions or ‘guesses’ about an input and adjusts itself based on feedback 

from an established ‘ground truth’.  

Deep learning (DL)  DL is a subset of ML (and therefore AI) containing more processing layers – hence 

the term ‘deep’.  Multiple layers allow for the accomplishment of more sophisticated 

tasks, e.g., the 2016 Alpha Go programme, natural language programming and image 

recognition.  

Artificial Neural 

Networks (ANN)  

An AI system inspired by the function of the human brain using layers 

of interconnected nodes (artificial neurons) 

Convolutional Neural 

Networks (CNN)  

An advanced ANN, where neurons, and layers of neurons, can share 

information relating to the importance of detected features to other groups 

of neurones.  This ability makes CNNs particularly good for 

complex for computer vision and image recognition tasks.  

(Adapted from Rainey et al., 2021) 

    

AI  

• The ability of a computer to accomplish human-
like tasks 

• Make decisions/outcomes based on input  only 
(bottom-up processes) 

MACHINE LEARNING 

• Makes use of examples to learn and 
iteratively improve 

• Artificial Neural Networks are loosely 
based on the function of the human 
brain 

• Much processing takes place in 
‘hidden layers’  

DEEP LEARNING 

• Machine learning systems with 
many layers – hence the term 
‘deep’. 

• More complex system 
• Better performance in many 

tasks 
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 1.1.1 Artificial Intelligence use in radiography and radiology 

As described, advances in computational power and developments of other aspects of the 

digital ecosystem, such as the availability of some large datasets, have permitted the 

development of models capable of executing more complex tasks than ‘rule-based systems’ 

(knowledge engineered expert systems) of the past.  Vision is a particularly complex task 

which, until recently, was thought to be unachievable by computers.  The ImageNet 

challenge, launched in 2010, attempted to change this by provision of a large, labelled dataset 

for the training of computer vision models.  AlexNet, a convolutional neural network (CNN) 

won the challenge in 2012, achieving performances previously not thought possible 

(Krizhevsky et al., 2017).  This provided a springboard for the use of this model architecture 

for computer vision tasks in medicine, such as image interpretation tasks in radiology, 

ophthalmology, cardiology and dermatology (Yamashita et al., 2018; Bond et al., 2019; Chan 

et al., 2020).  

Clinical decision support systems are intended to support medical decision making, 

increasing the accuracy of the decision, and therefore improving patient outcomes (Sutton et 

al., 2020). As mentioned, forms of computer assistance in diagnosis have been in place since 

the 1980s, when rapid developments in computer technology, such as the use of graphic user 

interfaces (GUIs) allowed for wider adoption and usability of computers by the general 

public (Ambinder, 2005).  Problems with high false positive rates and integration with 

current electronic systems meant that these technologies were not fully utilised (Philpotts, 

2009; Langlotz, 2019; Sutton et al., 2020).  The development of more advanced Electronic 

Care Record (ECR) systems and increased computational power in more recent years has 

meant that newer systems are now being developed. These report greater accuracies and 

reductions in false positive rates, with AI applications reporting performances equal to or 

even exceeding radiologists. For example, a study by Rao et al. (2021) investigated the 

performance of a Food and Drug Administration (FDA) approved AI model for detection of 

intracranial haemorrhage on computed tomography (CT) scans. Their study found, that on 

5585 ‘negative-by-report’ cases (i.e., reported by a radiologist as having no haemorrhage 

present) over eight clinical sites, the AI model detected haemorrhage on a further 28 of these 

scans.  Of these, 16 were later agreed by a neuroradiologist, determining these to have been 

missed on the initial interpretation, i.e., a false negative rate of 1.6% on initial diagnosis by 

radiologists.   
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Applications of AI for dose reduction have been investigated with the goal of providing 

acceptable image quality at a reduced dose.  Decreasing radiation dose will increase noise 

and decrease spatial resolution, therefore degrading the quality of the image.  Studies 

investigating the use of AI to optimise radiation received by patients have reported reductions 

of between 36-70% in the paediatric patient population (Ng, 2022) with similarly impressive 

findings of a 25% reduction being reported in adult CT (Missert et al., 2020). This was all 

achieved whilst the diagnostic quality of the image(s) was maintained. Applications of AI at 

the patient facing platforms for instance identification checking, calculating contrast volumes 

and automated patient positioning has brought AI into direct contact with the patient like 

never before, with radiographers acting as the bridge between the patient and technology 

(NHS, 2019b; Hardy and Harvey, 2020; Malamateniou et al, 2021b). 

The efficiency of workflows impact timeliness of diagnosis and subsequently, the patient 

journey. Many studies expound the beneficial impact of AI on the patient in terms of 

diagnostic accuracy, but automated patient pathways and triage have also been proposed to 

expedite and streamline the patient journey. This is demonstrated in a study by Wiggins et al. 

(2021) in a simulation of how AI might be incorporated in all stages of the pathway of a 

patient presenting with symptoms of acute stroke. This study describes how AI can provide 

automated examination request, decision support, triage based on significant findings, a semi 

structured report and then prioritise the patient on the radiologist’s work list, therefore 

expediting the patient journey to the necessary clinical specialism and treatment.  

As mentioned, AI has also been developed for use in diagnostic decision making from 

medical and radiographic images, with the first paper proposing computers as a human 

adjunct in diagnosing pathology from radiographic images as early as 1963 (Lodwick et al., 

1963).  This proposed system converted radiographic images of the chest into numerical data, 

which was then stored on a computer that carried out statistical analysis. In the 

1980s, traditional computer aided detection (CAD) systems were beginning to 

be integrated into clinical radiology to detect human-programmed patterns in images to guide 

the clinician to areas requiring further attention (Savadjiev et al., 2019; Wong et al., 

2019).  Newer AI systems report higher accuracies (Liew, 2018; Hirschmann et al, 2019) and 

more efficient training processes, as the AI learns from exposure to examples rather 

than human feature extraction and programming (Shen et al, 2017; Chan et al., 2020) 
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However, the success of these data driven algorithms rely on the availability of large volumes 

of data for training (Shen et al., 2017; Rajpurkar et al., 2018).    

As mentioned in section 1.1, many algorithms currently in development for image 

interpretation are based on Artificial Neural Network architectures (ANNs) (Anwar et al., 

2018; Tang et al., 2018).  These systems are inspired by the function of the human brain by 

using interconnected neurones or nodes which differentiate and make sense of different parts 

of the image. This form of AI can make predictions by either unsupervised or supervised 

learning (Erickson et al., 2017 Hirschmann et al., 2019).  In unsupervised learning, the 

system will identify similarities of feature in images and sort the images into groups, for 

instance, grouping of patients with similar bone density (Hirschmann et al., 

2019).  Supervised learning is used when the AI is required to make diagnostic predictions 

based on data.  In this case, the system or model is exposed to a large volume of examples, 

where the correct outcome or ‘ground truth’ label is known. The model then makes a series of 

decisions or predictions and receives feedback.  ANNs are refined based on 

iterative feedback by assigning greater or lesser importance to particular nodes or artificial 

neurons by adjusting the ‘weights’ assigned to the neurons, using backpropagation (Erickson, 

2019).  This modulation will be tested again and adjusted to bring the AI prediction nearer to 

the ground truth label, usually the presence or absence of pathology or severity of a 

condition.  By determining the importance of various decisions based on a known outcome, 

the model can then learn the attributes of the input which were most significant 

in determining a particular outcome (Kohli et al., 2017; Savadjiev et al., 2019).  The 

ANN retains these weights and patterns of activation of the nodes if a correct prediction is 

made (Kohli et al., 2017). Optimisers, such as ‘ADAM’, ‘Gradient Descent and Momentum’, 

are used to help speed up the process by changing the learning rate of the model or assigning 

weights to particular nodes to reach acceptable accuracy more quickly and minimises the 

difference between the desired performance and the current performance of the model (called 

‘loss’ or ‘cost’) (Doshi, 2019). For example, an ANN might be exposed to a dataset of 

radiographic images where the outcome is known, for instance whether a fracture is 

present or not, and the algorithm learns based on the known diagnosis until an acceptable 

accuracy for fracture detection has been reached.  The exact reasoning by which the machine 

does this, however, is not clear due to a latent intermediate stage of processing, the so-called 

‘black box’ of AI.  This stage takes place deep within the many layers of the system, hence 

the term ‘deep learning’ (DL). As discussed, one type of ANN, which has been gaining 
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attention recently in the field of computer vision and medical image interpretation, is the 

CNN.  A CNN is a more sophisticated type of ANN which contains at least one convolutional 

layer, where weightings are shared between adjacent nodes, a pooling layer which identifies 

the location of the input in relation to the whole image and a flattening layer which results in 

the output of the image features.  This data is then ready for input into the ANN.  These 

networks are proving to be particularly useful for image recognition tasks due to their ability 

to filter certain parts of the image, extracting what is important in arriving at the correct 

output and making sense of spatial features on an image, i.e., they can also analyse where the 

data has come from on an image,  and are therefore able to be optimised and efficient for this 

purpose, see Figure 1.2 below. 

Neural networks are particularly useful to determine patterns from large amounts of 

unstructured data. This type of ML is capable of analysis of multiple types of data input, such 

as text, spoken sentences (speech recognition and natural language processing) and image 

data (computer vision).  NNs can process a large amount of data in a short time with high 

accuracy, however they also require a large amount of data to train them.  This is a particular 

problem in the health care setting where there remains limited availability of open access 

datasets for training and the time and complexities of the process of deidentifying this type of 

data.  Other disadvantages of NNs include their susceptibility to over fitting, resulting from 

the exposure to large amounts of data, where the model can learn specific features of the 

presented data and therefore the eventual model may not generalise well when presented with 

new data from a distinct dataset.  This may be an issue when there are particular subgroups of 

underrepresented data.   This form of ‘algorithmic bias’ can have significant consequences as 

the model can potentially underdiagnose a particular pathology in a group (related to factors 

such as gender and ethnicity) as discussed by Norori et al, 2021. 

The complexity of the model, which permits the performance gains over simpler models may 

also result in the functionality of the system being poorly understood by both the developer 

and the end-user.  This is known as the ‘black-box’ of AI and this has promoted the 

development of various means of explaining the decision making of the AI through, for 

example, visual representations of areas of an image which the AI found most important in 

making its decision.  This has come to be known as ‘Explainable AI’. 
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Figure 1.2 Simplified artificial neural network (ANN) 

Due, in part, to some of these issues, trust and ethical issues exist due to the way ANNs and 

other DL models reach their decisions.  These issues have been raised in several professional 

publications (RCR, 2018; HCPC, 2020; ISRRT and EFRS, 2020), and notably, in a joint 

statement by a worldwide radiology stakeholders’ group (Geis et al., 2019).  These 

publications recognise the obvious benefits and necessity to incorporate AI into radiology but 

cautions that significant research should still be conducted into how AI should be 

utilised.  They also emphasise the need for the clinicians and professionals involved in use 

and development of these systems to have an in-depth knowledge of their functionality. 

Furthermore, The Royal College of Radiologists (RCR) position statement on AI (2018) and 

The Society and College of Radiographers (SCoR) (Malamateniou et al., 2021) guidance 

document on AI both caution that there should be robust Quality Assurance (QA) systems in 

place from the stage of initial implementation and information of the performance of these 

systems available to users. 

 1.1.2 Artificial Intelligence for image interpretation on plain radiographs 

There has been an increase in the use of radiology services in England by 26% from 20/21 to 

21/22, with the use of plain radiography increasing by 30% to 21.8 million procedures per 
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annum (NHS England, 2022). Furthermore, the Care Quality Commission’s (CQC) 

Radiology Review found that 97% of hospital trusts in England reported that they were 

unable to provide reports within the required time, although the report also notes that there 

was a lack of standardisation on the expected reporting turnaround times in the UK (CQC, 

2018). To support the workforce, meet the reporting expectations and ensure patient safety, 

the Getting It Right First Time (GIRFT) report recommends training more reporting 

radiographers and using AI to support some aspects of image interpretation in the future 

(Halliday et al., 2020).  This is reiterated in the NHS ‘Diagnostics: Recovery and Renewal’ 

(‘The Richard’s Report’) (2020b) which recommends that a minimum of 50% of plain 

radiographic images should be reported by a radiographer.  However, with an average 

radiographer vacancy rate of 10.5% in the UK (SoR, 2021), the report recognises that this 

aim will require the training and recruitment of an additional 4000 radiographers.  The NHS, 

in its Long-Term Plan also promotes the role AI and advanced technologies could play in the 

future of healthcare (NHS, 2019a). 

It is estimated that the implementation of an effective AI system for automated image 

reporting could reduce the time that radiology professionals spend reviewing images by 20%, 

and thus liberate 890,000 hours of radiologist time per annum in the UK NHS (NHS, 2019b).  

This time can be spent doing non automatable tasks such as providing personalised patient 

care (Liew, 2018).   

 1.1.3 Drivers for implementation 

There are several significant drivers to the development of AI as a tool in the health care 

setting, namely, time constraints / efficiency, error avoidance or minimisation and workflow 

augmentation (Erickson et al, 2017; Liew, 2018; SECTRA, 2020).  As mentioned, the NHS is 

under significant pressure due to the rising demand on services on an already stretched 

workforce.  The COVID-19 pandemic has impacted staff in the NHS in unprecedented ways, 

with many clinicians experiencing burn-out and fatigue (RCR, 2020; SoR, 2020; NHS, 

2020b).    

Current focus centres on systems being developed to augment processes in healthcare rather 

than replace professions or areas of practice entirely.  Machines with the ability to automate 

tasks perceived to be mundane or time consuming have been proposed, increasing efficiency 

and redistribute clinician time to non-automatable tasks, such as patient care, as previously 
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mentioned (NHS., 2019b).  A machine will perform repetitive, well-defined tasks tirelessly 

and with consistent results (Erickson et al., 2017) and potentially reduce error, which may 

present in the human due to a combination of factors such as fatigue, disturbances or 

distractions by other tasks and level of experience (Gundry et al., 2018).  

These benefits are being recognised at the highest levels of NHS management.  The NHS 

(2019c) offered funding to encourage development and incorporation of AI systems to 

replace human input in UK hospitals.  Moreover, the NHS 10-year plan promotes 

technological development, and articulates the desire for the NHS to be world leaders in the 

field of medical AI within 10 years (NHS, 2019a). 

 1.1.4 Barriers to implementation  

Despite many of the early issues with computer assistance in medicine, as introduced in 

section 1.1, such as impressive performances reported using new technologies, modern 

hospital information systems and evidence of the need for technological support to sustain the 

health service, there remain barriers to effective implementation of digital technologies. 

Many of these barriers are now related to the functionality and understanding of the most 

recent model architectures, which are more difficult for the non-expert user to interpret.  Lack 

of sufficient education in modern technology, including complex algorithms (such as CNNs), 

trust and technology-based biases have been discussed extensively in the literature (Kelly et 

al., 2019; Schuur et al., 2021).  In a survey of African radiographers, Botwe et al. (2021) 

found that 82.2% (of 151 respondents) felt that a lack of education will be a significant 

barrier to the successful implementation of AI in radiology.  This is supported in a study by 

Abuzaid et al. (2020) in the United Arab Emirates which found that 73.9% of 153 

radiographers and radiologists surveyed felt that a lack of education would be a barrier to 

adoption of AI and that 68.8% of respondents did not have even a basic understanding of the 

technology.  Other proposed barriers include a lack of understanding of how the use of AI 

will impact future roles, with a perception of AI ‘taking over jobs’, however, this is less 

pervasive more recently as we gain a greater understanding of the fragility of the technology 

and the need for human oversight at all stages, thus enabling the creation of new job roles 

(Strohm et al., 2020; ISRRT and EFRS, 2020; French and Chen, 2019; Malamateniou et al., 

2022).  This is discussed further in Chapter three. 
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1.2 Specific issues with modern AI 

As previously addressed, modern forms of data-driven AI perform better than older rule-

based systems, however the architectures of these systems which enable their performance 

mean that they are less well understood by the human user.  This can lead to issues with user 

trust and creates legal and ethical challenges, which still need to be addressed (Geis et al., 

2019).  There is some debate on the level of information which should be provided to the 

patient to allow them to make informed decisions on their care (Richardson et al., 2021).   

1.2.1. Biases 

Various cognitive biases that can exist in radiology for example confirmation, anchoring and 

framing bias have already been reported (Table 1.2). However, these are recognised and 

acknowledged as human tendencies and clinicians can therefore attempt to mitigate against 

these.  Automation bias is a relatively new phenomenon and can be defined as the tendency 

of the human user to trust the decision of the AI over their own.   
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Table 1.2 – Human biases in radiological image interpretation (adapted from Busby et 

al., 2017 and Onder et al., 2021) 

Bias Definition 
Attribution bias Diagnosis of a clinical condition based on known attributed of the presenting 

patient (i.e., stereotyping) 
Alliterative bias Bias caused by the findings from previous examinations impacting the findings 

of the current examination. 
Availability bias Diagnostic decisions based on other, unrelated recent cases which may have 

come to the attention of the reader 
Regret bias Over diagnosis of a condition resulting from a previous miss or underdiagnosis 

Framing bias Error resulting from the reader viewing the examination through the lens of the 
clinical question (‘framing’) and therefore potentially missing other information 
from the examination  

Premature 
closure/Satisfaction of 
search 

Initial findings accepted as final diagnosis without further scrutiny or 
verification of findings 

Anchoring bias Related to the above, where the reader becomes fixated on their first 
opinion/diagnosis and discounts other information which disputes initial 
diagnosis 

Confirmation bias The reader seeks out supporting information to support initial finding, related to 
anchoring bias 

 

In the field of computer aided detection (CAD) in mammography, Philpotts (2009), 

recognised that the timing of the use of a computer-aided detection tool should be optimal 

and not used to decide against performing additional procedures where the interpreter would 

otherwise recommend so.  In a systematic review on the subject, Goddard et al. (2011), 

attempts to clarify the extent of the problem and provide information on any potential 

mitigating factors, discussed further in Chapter four. 

There remains a gap in understanding how a clinical end-user will interact with modern forms 

of AI, particularly considering the previously discussed literature evidencing a workforce 

who feel insufficiently educated for these technologies.  With the forms of modern 

technology in use in radiology, as described in previous sections, there are unique challenges 

which have not existed before such as automation bias.  Diagnostic errors can result from the 

assessment of a radiographic image causing an error of commission, where the user may 

determine there is pathology where there is none, or an error of omission, where the user fails 

to detect the pathology which is present. They may make these errors based on either their 

own assessment of the evidence or from feedback from the AI used.  Automation bias is the 

error which results from the incorrect decision influenced by the AI diagnosis (Goddard et al., 
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2014; Bond et al., 2018), i.e., the user chooses the decision of the AI, against their own.  

Complete reliance on a perfect system will always improve a users’ diagnostic accuracy, 

however, this may not always be the case with clinical AI.  Hype from equipment vendors 

and published literature may cause users to believe that the tool they are using will 

outperform them in all cases. Research into automation bias specifically in radiography and 

radiology is minimal at present but has been investigated in part in other scenarios, such as 

the aviation and financial sectors (Goddard et al., 2012; Dastin, 2018). There is only one 

study, published in June 2023, which investigates the impact of AI on radiologists’ diagnostic 

accuracy when interpreting chest radiographs (Bernstein et al., 2023).  This study found that 

an incorrect interpretation by the AI caused the radiologist to change their mind to an 

incorrect decision also. The study reports the use of a bounding box to explain the AI focus 

and found that the visual feedback mitigated any initial error.  There have also been some 

investigations in other fields of medicine. For instance, in clinical decision support systems 

for prescribing (Goddard et al., 2014) and interpretation of electrocardiograms (Bond et al., 

2018).  In both studies, inexperienced clinicians were found to be more susceptible to 

automation bias and in the prescribing study, more experienced clinicians were more likely to 

become anchored to their initial decision, indicating a lack of trust in the AI feedback, 

therefore not gaining the benefit of the technology.   

Decision switching refers to a user changing their mind from their initial decision because of 

external input, or by reassessing the same information.  This can be positive or negative, as 

described above.  Ideally input from an AI decision support tool would cause the user to 

either confirm their initial correct diagnosis or change their mind in a positive direction.  

Ignoring the feedback from a decision support tool may be detrimental also, where 

opportunities to improve diagnostic decision making are missed.  Some studies reporting that 

the accuracy of human decision making is improved with the use of an AI decision support 

tool, however studies by Goddard et al., 2014 and Bond et al., 2018, have found that more 

experienced users may be more likely to be anchored to their initial decision, therefore 

potentially not gaining full benefit from the AI.  This underuse may be due to a lack of trust 

in the system.  

1.2.2 Trust 

The level of clinician’s trust has been cited as a potential issue with the optimal integration 

and implementation of AI (Fazal et al., 2019; Kitamura and Marques, 2021).  Much of the 
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literature and professional debate has been focussed on methods to ensure a trust balance, 

resulting in neither over reliance (automation bias) nor under use resulting from a lack of 

trust.  

The creation of new job roles, such as clinical “AI champions” have been proposed to 

demystify and provide a point of contact for any queries in the clinical department (van 

Duffelen, 2020). A study by Strohm et al. (2020) in The Netherlands, found that the provision 

of this role in the department was integral to the effective implementation of an automatic 

bone age assessment model in the clinical setting. The reassurance that an experienced, 

expert clinician has in depth knowledge of the system in use may support other clinicians 

with less expert knowledge of AI applications to use the system more responsibly.  It has 

been proposed in the Topol Review (NHS, 2019b) that these expert clinicians should be 

intricately involved, from inception of the idea, i.e., identification of a clinical need, 

development of the AI, implementation and testing in the clinical environment (Quinn et al., 

2021).  This should ensure the clinical perspective is always present, resulting in a system 

that is optimised for use in the clinical department, increasing user knowledge and 

engendering trust. 

As well as the human biases and trust issues associated with clinical AI, there are also biases 

evident which are intrinsic to the model itself.  These can be due to the way in which the 

model is trained, for instance under-sampling of a particular population, ethnic group, sex or 

socioeconomic subset of the target population (Chung et al., 2021; Gichoya et al., 2022).  

Many of these are only becoming evident in recent years as the systems are in the clinical 

setting or nearing clinical deployment.  Knowledge of these biases may further compound the 

lack of trust in medical AI.   

 1.2.3. Explainable AI to overcome bias and trust issues 

The interaction with, and the impact of, the type and timing of AI feedback on human end-

users has recently been investigated in the literature (Gaube et al., 2021; Evans et al., 2022).  

Explainable AI (XAI) has been suggested to increase trust and allow the ethical, responsible 

use of AI, where the user can modulate their trust in the system based on some explanation of 

the decision making of the system used (Kumar et al., 2018; Geis et al., 2019).  This may be 

optimally calibrated on a case-by-case basis, where the trust in the AI decision for one 
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individual case can be calibrated based on the feedback given for that case alone. However, 

decisions regarding the users’ trust may be impacted by a more holistic perception of the 

feedback gained i.e., it may be detrimental to the users’ trust in AI in general if they are 

consistently presented with inadequate forms of AI feedback.  A study by Gaube et al. (2021) 

evaluated various forms of heatmap feedback and found that even the best available heatmap 

models did not accurately represent the area of attention of the AI and were ‘coarse’ at best.  

Other explainability sceptics have debunked the promise of XAI, urging caution in waiting 

for an acceptable form of AI explainability to be developed.  Some suggest that creating an 

educated workforce, with clear communication of the performance of the tool and robust QA 

of AI tools in clinical use would be a more reliable way to calibrate trust in the model used 

(Ghassemi et al., 2021; Shah, cited in Miller, 2021).  The format of any explainability should 

suit the end-user and task, rather than the developer, therefore cognisance of the needs of the 

clinician should be considered when providing feedback used to arrive at a level of trust 

acceptable to the clinician and the task (Shah, cited in Miller, 2021).  These specific trust 

issues were not so prevalent when using older systems, such as the rules-based models 

described in section 1.1, due to their inherently explainable architectures. However, more 

complex models with more impressive performances are less interpretable to the human user 

and developer alike as the input may be more complex and the processing may be based on 

non-linear models, such as neural networks.  This is known as the ‘explainability paradox’ 

and may become even more of an issue in the future as more complex systems are developed 

(Evans et al., 2022).  Understanding should be gained on the preferences of the user, the 

ethical and legal requirements.  This may change depending on the task (Shah, cited in 

Miller, 2021).   

Saporta et al. (2022) recently published a study examining the differences in human and AI 

localisation of pathology on chest radiographs and found that there is a lack of precision in 

localisation capabilities of heatmap feedback when pathologies are small or take the form of a 

more complex shape.  Additionally, a study by Kaur et al., 2020, investigating data scientists’ 

interaction with AI feedback, note that these expert users over-relied on the interpretability 

tool provided but were unable to accurately describe why the visual explainability output of 

the model highlighted the area that it did, therefore indicating that although they relied on it, 

that they didn’t understand it.  Ghassemi et al., 2021, propose that the current explainability 

methods mooted in the literature may offer ‘false hope’ and that rigorous QA through 

validation and communication with users may be a more robust means of ensuring 



Page 36 of 516 

 

responsible use of clinical models.  Venugopal et al., (2022) support this but also note that 

there are issues around the reporting metrics used to interrogate the performance of the 

system (Qin et al., 2019, cited in Venugopal et al., 2022).  Whilst understanding of an AI 

system is important, it is also prudent to note that not all human decisions are explainable. A 

study by Cadario et al., (2021) investigated the differences in subjective and objective 

understanding of, (i) decisions made by human doctors and (ii) an algorithm for detection of 

skin cancer.  There were 400 subjects recruited to the study who were asked to indicate their 

level of understanding in how the doctor reached their decision compared with an AI model 

on the same task. The study found that there was a statistically significant difference in 

perceived subjective understanding of the human and algorithmic decision making (p<0.001).  

A quiz to test the participants’ objective understanding of the decision-making process was 

designed to quantitatively measure objective understanding and found no significant 

difference between understanding of algorithmic and human decision making (p=0.43), 

despite the subjective differences reported. This indicates that participants in this study 

thought they could understand the human thought processes better that that of an AI model, 

however, when objective testing of this was conducted, this was found to not be the case.  

The authors (Cadario et al., (2021) note that the human decision-making process is no more 

objectively transparent than a ‘black box’, a phrase which is more commonly attributed to 

modern AI systems. 

1.3 Theoretical framework  

The studies contained in this thesis are broadly based on behaviour and change theory.  

Although this is a relatively new area of research in this field, previous studies have 

developed frameworks specifically to investigate human interaction and technology 

acceptance.  The BEhaviour and Acceptance fRamework (BEAR) integrates four 

frameworks: the Unified Theory of Acceptance and Use of Technology (UTAUT), the 

Human Organisation and Technology-fit Framework (HOT-fit), the Consolidated Framework 

for Implementation Research (CFIR) and the Theoretical Domains Framework (TDF) 

(Camacho et al., 2020).  BEAR comprises a choice of 22 domains. Six of which are used in 

this research: 

• Knowledge 

• Skills, ability and competence (perception of) 
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• Role and Identity (including professional identity and organisational commitment) 

• Beliefs about capabilities 

• Memory, attention and decision processes (including cognitive process of choice) 

• Emotions (including uncertainty/trust) 

1.4 Conclusion/Summary  

In conclusion, developments of AI technology in recent years have transformed healthcare 

and the landscape of medicine would be very different without it.  Patients have benefitted 

from the use of various types of computer input in their care, perhaps without even realising 

it.  Exciting possibilities exist with the use of more complex forms of AI and perhaps the use 

of these systems will be necessary to ensure the future of healthcare – where clinicians can be 

freed up to have better patient contact and less onus on the accomplishment of repetitive 

tasks.  As clinicians, the patient is the centre of all that we do and because of this we need to 

make sure that we are using new technologies responsibly – this may mean not over relying 

on the system, resulting in automation bias errors, nor under using it through lack of trust 

developed from poor understanding.  

This research aims to clarify the current landscape of AI in radiography, provide insights into 

the clinicians’ need and preference for education, provide direction for developers in the 

optimal forms of feedback provided to clinical users and provide detail on any potential 

automation bias and trust issues that may exist within the professional population.  There is a 

paucity of literature describing the perceptions of radiographers in the UK on the impact of 

AI on the profession and their preferences for interventions to ensure the responsible use of 

clinical AI in this field.  There is a dearth of information available on the impact of various 

forms of AI feedback on clinical radiographers’ accuracy and rates of decision switching.  

The recent study by Bernstein et al., 2023, indicated that inaccurate feedback from an AI may 

generate inaccurate diagnostic decisions by radiologists when interpreting chest radiographs, 

however this has not been investigated in the radiographer population, nor using other plain, 

non-contrast, projection-based radiographic images. There are some studies suggesting that 

experience may have an impact on how the clinical user interacts with AI (Goddard et al., 

2014; Bond et al., 2018), although, to the researcher’s knowledge, this has not been 

conducted in radiology to date.  Understanding the impact of AI on radiographers is 

imperative as government strategies are indicating that AI development and the development 
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of the use of radiographers in reporting are strategies for the future sustainability of the NHS.  

Hence, this research is timely for informing the implementation stage of AI in radiography. 

1.5 Aim and Objectives 

1.5.1 Aim 

The aim of this thesis was to investigate how radiographers perceive and interact with AI for 

clinical decision support using plain radiographic images of the appendicular skeleton.  

 1.5.2 Objectives  

1. To provide an overview of developments in AI for use in diagnosis of acute pathology 

(fractures) on plain radiographic images (Chapter two) 

 

2. To investigate UK radiographers’ perception of their knowledge, skills, confidence 

and the future of the profession with AI as used in clinical radiography (Chapter 

three) 

 

3. To investigate the perspectives of reporting radiographers on the current and future 

developments of AI for clinical decision support when providing diagnosis on 

radiographic images (Chapter three) 

 

4. To investigate the impact of different forms of AI feedback on diagnostic accuracy, 

automation bias and trust on student and qualified radiographers (Chapter four) 

 

5. To investigate the factors impacting reporting radiographers’ trust in AI for clinical 

decision support for use in providing diagnosis from plain radiographs of the 

appendicular skeleton (Chapter five) 
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Chapter 2 - Scoping review  

As discussed in Chapter one, AI is becoming more prevalent in clinical radiology 

departments, with many current applications, and hopes for further development in the future.  

One area of practice being impacted by AI is the identification of abnormality/pathology on 

radiographs.  The literature contains many examples of AI for assistance in diagnostic 

decision making on mammograms and chest radiographs, however, there is less information 

on the performance of AI for use in pathology detection on plain skeletal radiographs.  This is 

despite plain radiography being the most commonly conducted radiographic examination in 

the UK (NHS England, 2022), and the first line of investigation following trauma of the 

appendicular skeleton.  This is particularly relevant to radiographers as professionals bridging 

the gap between the patient and technology. 

This scoping review was published in Intelligence Based Medicine. Since publication a 

further fourteen eligible articles have been retrieved through regular updates of searches and 

data has been added to this chapter accordingly.  The papers retrieved since publication are 

highlighted in blue in the results tables (2.3 – 2.5). 

 

Results from this study have been published in ‘Intelligence Based Medicine: 

Rainey, C., McConnell, J., Hughes, C., Bond, R., McFadden, S., (2021a) Artificial 

intelligence for diagnosis of fractures on plain radiographs: A scoping review of current 

literature. Intelligence-Based Medicine (5) https://doi.org/10.1016/j.ibmed.2021.100033. 

(Appendix 2.1) 

 

  

https://doi.org/10.1016/j.ibmed.2021.100033
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2.1 Introduction 

As described in Chapter one, the use of radiology services in England has increased by 26% 

in the years preceding the 2021/22 Diagnostic Imaging Dataset Annual Statistical Release 

(NHS England, 2022) with plain radiography making up the majority of these procedures 

(21.8 million – an increase of 30% from the preceding year 20/21).  Serious concerns have 

been uncovered in some hospital trusts in England, with 97% of hospital trusts  stating that 

they could not meet reporting requirements within contracted hours (CQC, 2018).  

Furthermore, most delays were found in the provision of a radiological report for plain 

radiographic images.  Artificial intelligence (AI) systems have been proposed to positively 

impact time efficiency within healthcare and, as such, the implementation of these systems 

has been prioritised in the NHS long term plan (NHS, 2019b). It is estimated that the 

implementation of an effective AI system for automated image reporting could liberate 

clinician’s time for patient facing tasks, such as support and patient care (NHS, 2019a).   

Fractured bones are a common reason for attendance at emergency departments around the 

world (Jennison and Brinsden 2019), however, the use of AI to identify fractures on 

appendicular skeletal radiographs remains a relatively unexplored area. The Global Burden of 

Diseases, Injuries and Risk Factors Study (GBD), conducted in 2019 and published in 2021, 

reports that there were 178 million new fractures sustained globally in 2019, an increase of 

33.4% since 1990 (GBD 2019 Fracture Collaborators, 2021).   

With plain radiography being the initial imaging modality used to investigate many non-

complex fractures (NICE, 2018) it can be assumed from these figures that radiographic 

imaging for fracture identification contributes significantly to the workload of 

both radiologists and radiographers. 

 2.1.1 Reporting of artificial intelligence in medical imaging studies  

As the field of AI in medical imaging grows, effective dissemination of results of 

experimental studies to the end user is needed.  This includes details of the development and 

performance of the model in order for the reader to interrogate the system proposed.  The 

publication of detailed explanation and programming code availability, will allow for 

replication and validation of the proposed AI. This will permit more efficient development 

into clinically useful tools (Nagendran et al., 2020). This transparency of reporting and 



Page 41 of 516 

 

potential to independently test the proposed systems may also improve clinicians’ trust by 

allowing independent validation of the performance of the system (Ghassemi et al., 2021; 

Shah, cited in Miller, 2021).  However, as AI in medical imaging in its current format is still 

relatively new, clinical staff may not yet have the understanding to allow them to engage with 

the literature on modern AI, as discussed in Chapter one.   

This Chapter provides an up-to-date review of the literature on the development of AI tools 

for fracture detection on radiographic images, and area which may impact radiographers in 

the near future.  The Chapter extracts information from the included papers and synthesises 

the pertinent points for a clinical audience. A summary of key concepts which are discussed 

in this review are presented in Table 2.1, below. 

Table 2.1: Summary of key concepts 

Support vector 

machines (SVM)  
SVM are an older type of ML usually used in two-category classification tasks.  

Training dataset  ML models are trained by exposure to multiple labelled examples, ‘the training 

set’ e.g. many images of a ‘cat’, ‘dog’, ‘flower’.   
Validation dataset  The validation set allows an initial impression of the performance of the model for fine-

tuning of the model.    
Test dataset  The test set is usually an unseen set of data, held-out from training and validation and 

used to provide final performance metrics of the model.  
K-fold cross 

validation  
  

Used for training and validation/testing using limited datasets by splitting the dataset 

into random number (k-) of groups (folds).  Each fold will be used k times for training 

the model as well as validation/testing, therefore maximising the learning potential of the 

model e.g. in 4-fold cross validation the dataset is split into 4 groups.  Different ‘folds’ 

can then be used for training and testing, e.g., for the first model, folds 1 and 2 are used 

for training, fold 3 for validation and fold 4 for testing.  The next will then use folds 2 

and 3 for training, fold 4 for validation and fold 1 for testing and so on. (Brownlee, 2020) 
Class balancing  
  

Balanced classes have an equal number of desired outputs in each category.  For 

example, in binary fracture classification (fracture/no fracture) an optimal training set 

would have a 1:1 split of fracture/no fracture for training, therefore maximising the 

ability of the ML to recognise both classes, although this does not usually replicate 

the real-world scenario.   
Precision Precision, or positive predictive value (PPV) is an indication of how many positive 

predictions were actually positive. It is calculated using ‘true’ and ‘false’ positive (TP, 

FP) predictions: Precision = TP / TP + FP 
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Recall Recall (or sensitivity) describes the ability of the model to correctly predict the presence 

of pathology and is calculated using ‘true’ positive (TP) and ‘false’ negative (FN) by the 

following equation: 

Recall = TP / TP + FN 
Dice similarity 

coefficient (DSE) or 

F1-score  

DSE or F1-score is a metric used to describe the similarity between two responses or 

outputs, in this case, AI predictions and ground truth.  It is particularly useful in studies 

such as those described in this review as it takes both recall and precision into account 

and therefore is a suitable single metric which can accurately and efficiently report the 

performance of an ML on an imbalanced dataset.  
Cohen’s kappa A prevalence agnostic metric used to quantify inter-rater agreement.  The calculation 

takes into account the chance of any agreement occurring by chance. 

2.2 Aim and objectives 

2.2.1 Aim 

The aim of this review is to synthesise the available literature on the performance of AI 

models to predict fractures on plain radiographic images.   

2.2.2 Objectives: 

1. To conduct a systematic search of all available literature on AI for diagnosis of 

fracture from plain radiographs to identify the current stage of development of such 

systems. 

2. To precis the methodologies used to train and test these systems in a manner suitable 

for health professional audience. 

3. To draw conclusions regarding the state-of the-art of AI development in this area by 

providing information on the best performing models as reported in the literature. 

4. To provide recommendation on the suitability of the reporting format of these studies 

for a health care professional audience.   

 2.3 Methodology 

2.3.1 Database search strategy  

The search strategy for this review was designed in conjunction with a subject specialist 

librarian and followed the Prisma Scoping Reviews checklist (Appendix 2.2). 
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A search was conducted using broad search terms ‘artificial intelligence’ and ‘computer aided 

diagnosis’ was conducted on: Cochrane Library, PROSPERO, Ethos, ProQuest Dissertations, 

Google Scholar, JBI Database of Systematic Reviews and Implementation Reports.  Results 

from this search were screened and none were found to match the search criteria and 

objectives of this paper.   

A literature search was conducted in September 2019 and rerun in March 2020 and 

December 2020.  At this point a paper was published on the findings in Intelligence Based 

Medicine (Appendix 2.1).  Updates were checked for periodically up to the 19th April 2023 

on the electronic academic databases Medline, Embase, CINAHL, Inspec and PubMed using 

the following key terms:  

(artificial intelligence OR deep learn* OR machine learn*) AND (computer aided diagnosis 

OR clinical decision mak* OR automated diagnosis) AND (radiology OR radiography) with 

limits English language and human. A date range of 2016-present was applied to give an 

insight into the state-of-the-art of this rapidly evolving field and to attempt to ensure that the 

model architectures described in the literature were comparable.  The first study in this field 

using ‘modern’ machine learning (ML) techniques was, to the best of the authors’ 

knowledge, a study by Olczak et al., in 2017, as cited in Chung et al., 2018.  The year 2016 

was then chosen as an assurance that any earlier literature was identified.   

To minimise the risk of introducing bias to this review, grey literature was sought from the 

following resources: Google Scholar, specialised databases (National Rehabilitation 

Information Centre, and the National Institute for Health Research Journals Library), and the 

International Clinical Trials Registry Platform. Hand searching of reference lists of articles 

and previous reviews was also performed to identify additional trials that were potentially 

eligible.  

RefWorks Legacy® version was used to manage papers identified as a result of these 

searches.  Duplicates were removed and all papers were screened for eligibility by reading 

titles and abstracts when the title did not adequately describe the study.  The inclusion and 

exclusion criteria detailed in Table 2.2 were applied.  Each remaining paper was read in full, 

and inclusion and exclusion criteria were applied again.  This process is clarified in Figure 

2.1 and further detail is given in Appendix 2.2 on the Prisma Scoping Review checklist.  
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Figure 2.1 – Prisma flow chart  

2.3.2 Data analysis  

Each paper was read thoroughly, and data was extracted under the 

following headings: Anatomical area, pathology focus, determination of truth/reference 

standard, ML description/techniques, feature engineering detail, training set/method, test 

set/method, class balancing, performance metrics/results, methods to explain ML decision 

and explanations of misclassifications.  Investigation into code availability was conducted by 

search of both the paper and any supplementary data provided.   
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2.3.3 Inclusion/Exclusion criteria 

Please see Table 2.2 for full details.   

Table 2.2 – Inclusion and exclusion criteria applied to search results  

Inclusion   Exclusion   
Diagnostic imaging – conventional radiography  

  
All bone fracture diagnostic studies  

  
Recent publications – 1st January 2016-19th April 2023 

(final search before thesis write up) 
  

Experimental study (with performance results)  

Specialised imaging – CT, NM, MRI, mammography  
  

Non-diagnostic procedures – therapies and 
segmentation  

   
Artificial intelligence used for any other reason other 
than obtaining / assisting with diagnosis of fractures  

  
Studies published before 2016  

  
Information only papers – no experimental results  

  
 

2.4 Results 

Following searching of academic databases listed 8174 papers were identified.  An 

additional two papers were identified from grey literature and reference lists of included 

articles.  In total, 1198 duplicate papers were removed.  Following application of inclusion 

and exclusion criteria, by means of manual title and abstract screening of the remaining 6978 

papers, 57 papers remained. All papers were read in full, and 27 papers were excluded for the 

reasons outlined in Figure 2.1.  At this stage, 30 studies remained for full data analysis.  A 

final inspection of grey literature and full search on all databases was conducted on the 19th 

April 2023 to identify any final updates.  Two papers were unavailable due to institutional 

access issues.  One of these papers has been located through a search on ARXIV and is 

included in this review.  The one remaining paper is discussed in the recommendations 

section and details are in the reference list of this paper.  

Extracted data is presented in full in Tables 2.3, 2.4 and 2.5.   

2.4.1 Anatomical area (Table 2.3) 

All studies included were determining either the presence of a fracture or classification 

of fracture severity.  Anatomical area varied across the studies:  
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• Twelve studies focussed on hip or pelvis fractures (Badgeley et al., 2018; Cheng et 

al., 2019; Damien et al., 2019; Urakawa et al., 2019; Jiménez-Sánchez et al., 2020; 

Krogue et al., 2020; Tanzi et al., 2020; Yu et al., 2020; Alzaid et al., 2021; Sato et al., 

2021; Wang et al., 2021; Tanzi et al., 2022)  

• Seven studies focused on the scaphoid, wrist and/or distal radius (Kim and 

McKinnon, 2018; Lindsey et al., 2018; Gan et al., 2019; Blüthgen et al., 2020; 

Hendrix et al., 2021; Oka et al., 2021; Li et al., 2022),  

• Three on dental fractures (Fukuda et al., 2019; Son et al., 2021; Shahnavazi and 

Mohamadrahimi, 2023),  

• Two studies investigated a range of anatomical areas (Olczak et al., 2017; Ma and 

Luo, 2021) 

• Two studies used AI to determine the presence of fracture on spinal radiographs 

(Cheng et al., 2022; Chou et al., 2022),  

• One on proximal humerus (Chung et al., 2018),  

• One paper focused on ankle fractures (Kitamura et al., 2019),  

• One study located skull fractures (Jeong et al., 2023) and  

• One on hand fractures (Ureten et al., 2022) as listed in Table 2.3.   

Fracture detection was the pathological focus in all studies.  

2.4.2 Pathology focus (Table 2.3) 

Featured models used both binary detection and multi-class classification as outcomes, i.e., 

presence of fracture, expressed as a binary prediction (fracture/no fracture) and classification 

of fracture severity and location of fracture as multi-class problems.  Binary classes used to 

predict hip, wrist, ankle and hand fractures were reported in the studies, while fracture 

location and multi-class discrimination was determined for hip, spine and shoulder 

radiographs.  One study used only a region of interest (ROI) box (i.e., a quadrilateral outline 

superimposed on the image to indicate the region of most importance to the AI in making its 
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decision) to identify the area of abnormality on orthopantomographic images, rather than 

textual diagnoses (Fukuda et al., 2019).   

2.4.3 Prediction classes (Table 2.3) 

Seventeen of the thirty studies reported the ability of a CNN to predict the presence or 

absence of a fracture only (Olczak et al., 2017; Badgeley et al., 2018; Kim and MacKinnon., 

2018; Lindsey et al., 2018; Cheng et al., 2019; Damien et al., 2019; Gan et al., 2019; 

Kitamura et al., 2019; Urakawa et al., 2019; Blüthgen et al., 2020; Hendrix et al., 2021; Ma 

and Luo, 2021; Oka et al., 2021; Sato et al., 2021; Wang et al., 2021; Jeong et al., 2023; Li et 

al., 2022).   Eleven studies included some discrimination of the location or severity of any 

identified fractures (Chung et al., 2018; Jiménez-Sánchez et al., 2020; Krogue et al., 2020; 

Tanzi et al., 2020; Yu et al., 2020; Alzaid et al., 2021; Son et al., 2021; Cheng et al., 2022; 

Chou et al., 2022; Tanzi et al., 2022; Ureten et al., 2022).    The studies on dental fractures by 

Fukada et al., 2019 and Shahnavazi and Mohamadrahimi, 2023 reported the output by region 

of interest bounding boxes.  In four studies, established classification systems were used to 

describe the output.  Alzaid et al., 2021 used the ‘Vancouver’ classification system for 

periprosthetic hip fractures. The AO classification of hip fractures was used by Jiménez-

Sanchez et al., 2019, Tanzi et al., 2020 and 2022. Chung et al., 2018 used Neer’s 

classification for proximal humeral fractures.   

2.4.4 Reference standard (Table 2.3) 

Three studies determined truth from radiologist reports already available in the clinical notes 

or trauma registry only (Badgeley et al., 2018; Cheng et al., 2019; Ma and Luo, 2021).  The 

means of verification of truth is unclear in three studies (Olczak et al., 2017; Son et al., 2021; 

Wang et al., 2021).  The paper by Olczak et al., 2017 indicated that ‘automated language 

extraction’ applied to radiologists’ reports, along with ‘multiple visits’ was used (p.582).  

Eleven studies obtained ground truth references from either consensus diagnosis 

from several ‘experts’ in the field (radiologists and/or orthopaedic surgeons) or verified the 

report accompanying the images (Chung et al., 2018; Kim and MacKinnon, 2018; Lindsey et 

al., 2018; Cheng et al., 2019; Fukuda et al., 2019; Gan et al., 2019; Kitamura et al., 2019; 

Blüthgen et al., 2020; Jiménez-Sánchez et al., 2020; Krogue et al., 2020; Alzaid et al., 

2021).   Seven studies used additional imaging or operative reports to confirm diagnosis 

(Urakawa et al., 2019; Yu et al., 2020; Hendrix et al., 2021; Cheng et al., 2022; Chou et al., 
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2022; Li et al., 2022; Tanzi et al., 2022).  Three studies used images from Radiopaedia®.  In 

two of these studies the reference standard determination is not explicitly stated, but assumed 

to be diagnoses from the webpage (Damien et al., 2019; Ma and Luo, 2021).  In the third 

study using Radiopaedia® images, the diagnosis was confirmed by consensus diagnosis from 

two maxillofacial surgeons (Shahnavazi and Mohamadrahimi, 2023).   

Nine studies also required the experts to provide ROI indication for the pathological area on 

the image (Lindsey et al., 2018; Fukuda et al., 2019; Gan et al., 2019; Blüthgen et al., 2020; 

Jiménez-Sánchez et al., 2020; Krogue et al., 2020; Alzaid et al., 2021; Jeong et al., 2023; 

Shahnavazi and Mohamadrahimi, 2023).  

2.4.5 ML description/techniques (Table 2.4) 

All studies included in this review used CNNs to achieve desired output of either fracture 

detection or classification. One study reported the use of a SVM in addition to a CNN 

to delineate the iliopectineal line on pelvic radiographs (Damien et al., 2019).  SVMs are a 

different type of ML and are used usually in classification tasks (Damien et al., 2019; 

Erickson et al., 2019).  One study used ‘You Only Look Once’ (YOLO v4) for initial object 

detection, followed by a Random Forest architecture for classification using the numerical 

data obtained from a ResUNet neural network (Cheng et al., 2022).  Random Forests are not 

neural networks, but rather an ensemble of decision trees, operating independently to make a 

prediction based on discrete numerical data, such as the vertebral height data in this study 

which was used to predict the presence of vertebral fracture. A YOLO algorithm is a CNN 

with fast object identification capabilities (Redmon et al., 2016), which, because of its speed, 

has been used in self-driving cars and identification of objects on video in real time 

(Chablani, 2017).  Li et al. (2020) also used a YOLOv3 model for detection of the scaphoid 

region prior to fracture classification.  A conference paper included in this review proposes a 

novel neural network ensemble (‘CrackNet’) for identification for localisation of bone (based 

on anatomical region) and identification of fracture on plain radiographs of multiple 

anatomical areas.  They describe the use of an existing neural network (ResNet) with 

additional convolution layers to allow for initial identification and segmentation of the 

anatomical area, followed by diagnosis on the area of interest. One study used YOLOv4 for 

the detection of fracture on dental panoramic images by application of a bounding box around 

the fractured region, although the data provided to describe the methodology in this study is 

unclear in many places (see Table 2.4). 
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There was little commonality in the types of neural networks chosen for training on the 

specific tasks. Networks reported in the papers include: 

InceptionV3, DenseNet, ResNet, DetectNet, RetinaNet, MobileNet, EfficientNet, 

GoogLeNet and another used a U-Net model.  A further three studies used a combination of 

CNNs to determine the best performing networks (Olczak et al., 2017; Kitamura et al., 2019; 

Tanzi et al., 2020).  These included one study using a combination of VGG networks (with 

differing numbers of layers from 8 to 19 layers), Network-in-Network (14 

layers) and CaffeNet (8 layer) (Olczak et al., 2017) and another using Inception 

V3, ResNet 101 and Xception models, individually and together for best performance 

(Kitamura et al., 2019). One study used an Inception V3 network in a cascade for 

hierarchical multi-class discrimination (Tanzi et al., 2020).  One study used Vision 

Transformers (ViT) to detect pelvic fractures following segmentation using YOLOv3 (Tanzi 

et al., 2022).  Transformers are usually associated with Natural Language Processing (NLP) 

tasks but have been adapted for use in computer vision (Cordonnier et al., 2020).  Each image 

is broken into ‘patches’ which the model then interprets individually, rather like it would do 

with words. The transformer then identifies any relationships between the image patches 

(Raghu et al., 2022).  

2.4.6 Feature engineering (Table 2.4) 

Most studies state that the images used to train and test the systems have been downsized to 

the dimensions required by the AI model.  These ranged from 224 x 224 pixels for 

proximal femur (Jiménez-Sánchez et al., 2020; Krogue et al., 2020) to 900 x 900 pixels for 

segmented regions on orthopantomographic images (Fukuda et al., 2019).  One study used 

images resized to 1024 x 512 pixels (Lindsey et al., 2018).  One study described resizing 

from 16 to 8 bit (Jeong et al., 2023) and in another study, the size of the training images 

depended on the segmented region (scaphoid) of ‘around’ 300 x 300 pixels (Li et al., 2022). 

2.4.7 Training set/method (Table 2.4) 

The dataset used to educate the AI system is usually referred to as the ‘training set’.  The size 

of the training set varied considerably between studies depending on whether the AI model 

was trained using radiographic images or by transfer learning. Transfer learning is the process 

by which an AI system is trained on a dataset of images which are different to those in the 

final task.  This can be beneficial as a larger dataset may be available for general 
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images, which reduced the number of images needed when training the model for the 

eventual task. For example, the ImageNet database of common objects is a large dataset of 

images of everyday objects which is commonly used as initial training for ML models for 

fine tuning (Badgeley et al., 2018; Jiménez-Sánchez et al., 2020; Kim and MacKinnon, 2018; 

Yu et al., 2020).  The parameters and initial weights are set for image recognition tasks in 

general (i.e., on the ImageNet objects) and then more efficiently refined for the eventual task 

by exposure to a further dataset of images specific to the desired task, for example wrist 

radiographs. Various optimisers were reported in the included papers and were used to make 

the training process more efficient (as described in Chapter 1 and Table 2.4).  The largest 

dataset used for training was a CNN study that pretrained the system with 100,855 body 

part radiographs (foot, elbow, shoulder, knee, spine, femur, ankle, humerus, pelvis, hip, 

and tibia) (Lindsey et al., 2018).  This system was  fine-tuned and validated using 31,940 

wrist radiographs, which was the focus of the study.    

The study with the smallest training set determined the angulation of the iliopectineal line as 

a determinant of fracture (Damien et al., 2019). A total of 75 radiographs obtained from an 

online radiology reference resource (Radiopaedia.org) were used to train the neural 

network, although it should be noted that this study was mainly investigating the use 

of an SVM and, therefore, not directly comparable to the other studies.   

Fourteen studies provided demographic information on the composition of the datasets used 

for training in the form of patient sex and mean age, therefore allowing assessment of any 

potential bias present in training (Chung et al., 2018; Badgeley et al., 2018; Cheng et al., 

2019; Fukuda et al., et al., 2019; Gan et al., 2019; Jiménez-Sánchez et al.,2020; Krogue et al., 

2020; Tanzi et al., 2020; Urakawa et al., 2019; Yu et al., 2020; Hendrix et al., 2021; Sato et 

al., 2021; Cheng et al., 2022; Jeong et al., 2023) 

2.4.8 Test set/method (Table 2.4) 

The size of the datasets used for testing were highly variable. The study by Olczak et 

al. (2017), which included four anatomical regions, tested the AI model on 25,645 images, 

the highest number of test images from the included studies. The SVM study by Damien 

et al. (2019) tested its algorithm on only 14 images. The remaining studies have test sets 

ranging from 100 - 3900 images. All studies used unseen test sets, except for 

five studies where the full dataset was used for training and testing with k-fold cross-
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validation, with four using five iterations of training and testing (k=5) (Fukuda et al. 2019; 

Tanzi et al., 2020; Cheng et al., 2022; Li et al., 2022) and one where k=20 (Yu et al., 

2020) (for description of k-fold cross validation see Table 2.1). 

2.4.9 Class balancing (Table 2.4) 

Class balancing describes the correction of the prevalence of any class in the 

dataset.  Imbalanced classes can occur in many real-life scenarios, such as detection of fraud 

and disease state.  This means that for any dataset gathered in these cases, there is likely to be 

a majority and minority class. This is true in fracture identification and many other medical 

imaging cases.  Training an ML on imbalanced datasets will result in the model being biased 

to the majority class.  This is obviously highly undesirable in medical imaging, where 

misclassification of a positive case will have significant consequences.   

Class balancing techniques can be adopted to ensure there are equal numbers of images in 

each prediction class for training.  This is important when training the algorithm so that the 

AI system can equally learn the patterns in each class equally and learn to discriminate. There 

are a number of methods to correct class imbalance.  Data scientists can often intentionally 

under sample the majority class, apply weights to the algorithm to penalise the majority class 

or artificially up-sample the underrepresented class by creating synthetic cases.  

Of the papers included in this review, only three studies reported the used of perfectly 

balanced classes.  One study reported that classes were balanced examination-wise, for 

training, i.e., the number of images in each class for training were not perfectly balanced (689 

fracture, 752 no fracture apparent) (Kitamura et al., 2019).  Classes were balanced 

intentionally by perusal of radiology reports to achieve balance.  The other study (Ma and 

Luo, 2021) artificially balanced classes by data augmentation (rotation and changing the 

image background) of the training set.  Sato et al. (2021) had balanced classes by specific 

selection of fractured and non-fractured classes. 

The study using a Visual Transformer to detect fracture on pelvic radiographs by Tanzi et al., 

2022, used a number of methods to reduce the potential of bias caused by imbalanced classes.  

They describe oversampling of underrepresented classes by data augmentation and assigning 

increased weight to underrepresented classes, although they are not clear if this results in 

perfectly balanced classes.  The study by Hendrix et al. (2021), using a CNN for detection of 
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fracture on plain radiographs of the scaphoid, describes an intentional balance of classes for 

testing by selection of equal number of fractured and non-fractured cases, but it is not clear if 

this is also the case in the training and validation sets.   

The greatest discrepancy between classes was reported in a study where the proposed model 

was trained using a dataset with only 3% of images in the fracture class (Badgeley et al., 

2018), although the identification of fracture was only one focus of this large study. 

Interestingly, this study tested the model on both balanced and imbalanced datasets and 

reported a significantly higher area under the precision-recall curve for the balanced dataset, 

therefore indicating that the model is able to correctly detect the fracture class better in the 

balanced dataset.  The remainder of the studies had more equally balanced classes, ranging 

from 31.7% fracture (Blüthgen et al., 2020) of a small training set, n=166, to one study with 

equally balanced classes for training (Kitamura et al., 2019).    

In five studies the fracture class was greater than the no fracture class (Badgeley et al., 2018; 

Blüthgen et al., 2020; Fukuda et al., 2019; Gan et al., 2019; Urakawa et al., 2019) although 

there were five classification classes in one of these studies (Blüthgen et al., 2020).  Cases 

across the five classification categories in this study were balanced: 346, 514, 269, 247 and 

515 for the anatomical areas: greater tuberosity, surgical neck, three-part fractures, four-

part fractures, and no fracture classes respectively. Non-fracture classes were removed for 

specific training in classification of fracture severity in this study (Blüthgen et al., 2020). One 

study used a compensation mechanism for training a dataset with unbalanced classes by 

assigning greater weight to the lesser-represented group (Tanzi et al., 2022).  One study 

balanced classes by patient pathology in a hip fracture study, however, 

as individual hips were isolated for compilation of the final dataset, this actually resulted in 

imbalanced classes (Yu et al., 2020).  The study describes how further ‘normal’ cases were 

then intentionally identified from the Electronic Medical Record to increase the minority 

class, which in this study was the ‘normal’ class. In one study (Shahnavazi and 

Mohamadrahimi, 2023) all images included in the study had fracture present, but the focus of 

the research was to detect the location of the fracture on dental panoramic images.   

Class balancing the test set is also harmless, as metrics such as sensitivity and specificity are 

‘prevalence agnostic’, i.e., the outcome does not relate to the prevalence of any class in the 

dataset, however metrics such as accuracy are biased to disease prevalence (the dominant 

class - referred to as the ‘accuracy paradox’). For example, it is possible that for a very low 
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prevalence condition (i.e., presence of rare disease) a model could have a very impressive 

accuracy by simply predicting that the disease is not present in any case considered.  It could 

be argued that it would be helpful for the ML to be tested on a dataset replicating the clinical 

scenario, where there are likely to be imbalanced classes to gain true understanding of the 

model performance.  Reporting metrics should be chosen carefully to give an accurate 

measure of the performance of the ML on imbalanced datasets.  This is further discussed in 

section 2.5.   

Of the studies included in this review, six studies used intentionally balanced datasets for 

testing (Blüthgen et al., 2020; Cheng et al., 2019; Gan et al., 2019; Jiménez-Sánchez et al., 

2020; Kitamura et al., 2019; Hendrix et al., 2021).  Only one study had very imbalanced test 

dataset (Badgeley et al., 2018).  One study used a balanced, external dataset (MURA) to test 

the generalisability of the model (Blüthgen et al., 2020).  Another study used a prospective 

sample from the clinical environment, although these examinations were obtained from the 

same hospital as the training images and there is no information on the balance of classes in 

either the testing or training datasets (Lindsey et al., 2018). Ma and Luo, 2021, supplemented 

their dataset of hospital images with images from Radiopaedia®, but these were not ‘held 

out’ specifically for testing purposes, but rather contribute to the training and validation 

datasets also. 

2.4.10 Performance metrics/results (Table 2.5) 

Considered by date of publication, the oldest study (Olczak et al., 2017) compared the 

performance of five networks and found a VGG-16-layer network to have the highest 

accuracy of 83% (95% CI 80-87%).  Three studies were published in 2018 (Chung et al., 

2018; Kim and MacKinnon, 2018; Lindsey et al., 2018) and each used different CNNs for 

different anatomical areas.  One study reported top-1 accuracy, which represents the ability of 

the AI to select the correct classification from a number of available options.  In this 

case, five classification options for proximal humeral fracture were presented and the AI was 

able to correctly classify in 96% of cases (Chung et al., 2018).  The remaining two studies 

published in 2018 focussed on detection of wrist fractures using different network 

architectures (Kim and MacKinnon, 2018; Lindsey et al., 2018).  Both studies reported 

performance by Area Under the Receiver Operating Curve (AUC), sensitivity and 

specificity.  Both reported AUC exceeding 0.95, sensitivities of 0.939 (Lindsey et al., 



Page 54 of 516 

 

2018) and 0.954 (Kim and MacKinnon, 2018) and specificities of 0.945 (Lindsey et al., 

2018) and 0.88 (Kim and MacKinnon, 2018).   

Five studies published in 2019 focused on determining hip or pelvis fractures from pelvic 

radiographs (Badgeley et al., 2018; Cheng et al., 2019; Damien et al., 2019; Jiménez-Sánchez 

et al., 2020; Urakawa et al., 2019). One study used a DenseNet 121-layer 

network to determine and characterise proximal femur fractures with three prediction classes, 

including normal and reported AUC of 0.98, accuracy of 91%, sensitivity and specificity of 

98% and 84% respectively and F1 score of 0.916 (Cheng et al., 2019).  Some of the 

same metrics were used to report the results from a study using a VGG16 model to predict 

hip fractures with AUC, accuracy, sensitivity and specificity reported as 0.984, 95.5%, 93.9% 

and 97.4% respectively, although F1 score was not used as a reporting metric (Urakawa et al., 

2019).  Another 2019 study described a ResNet50 model which was trained to detect hip 

fractures on cropped images, with regions delineated both manually by an expert, and 

automatically by an AlexNet model. Results indicated that the model performed equally 

well on both sets of cropped images with accuracy, precision, recall and F1 score for the 

manually cropped images of 93%, 93%, 94%, 94% and automatically localised images 

of 93%, 94%, 93% and 93% (Jiménez-Sánchez et al., 2020).  In the same year, another study 

reported less positive results.  In this study an Inception V3 network was used to determine 

proximal femoral fracture in a two-class problem (fracture / no fracture) and found that 

AUC dropped from 0.78 to 0.52 when all ‘confounding variables’ were removed from the 

images (Badgeley et al., 2018).  This was despite the study using a pretrained network which 

was retrained on a dataset of over 20,000 pelvis radiographs.  However, more promising 

results were reported using an Inception V4 network on a different anatomical area for binary 

classification of fractures on cropped radiographs of the distal radius.  Sensitivity, specificity 

and accuracy were reported as 90%, 96% and 93% respectively (Gan et al., 2019). 

A further study published in 2019 adopted a different methodology to quantify 

iliopectineal line disruption to determine fracture using an SVM and CNN as a classifier to 

determine fracture with reported accuracy, sensitivity and specificity of 92.9%, 80% and 99% 

respectively (Damien et al., 2019).  However, detail of the neural network used in this study 

is not stated.    

Studies published in 2020 reported promising results using a range of models: a ViDi 

v.2 manufacturing CNN (Blüthgen et al., 2020), DenseNet 169 (Krogue et al., 2020), and two 
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studies reported results using an Inception V3 model (Tanzi et al., 2020; Yu et al., 2020), 

although one study maximised the results by using the model in cascade with an additional 

binary network for further discrimination between classes (Tanzi et al., 2020).  Three of the 

four studies reported AUC as a performance metric with results for binary classification 

(Blüthgen et al., 2020; Krogue et al., 2020; Yu et al., 2020) ranging from 0.80, on an external 

dataset of wrist radiographs (Blüthgen et al., 2020) to 0.994 in a study using an Inception V3 

to predict hip fractures using regions of interest cropped by experts (Yu et al., 2020).  The 

remaining study reported accuracy, precision, recall and F1 scores (defined in Table 2.1) 

for comparable binary tasks (Tanzi et al., 2020), detailed in full in Table 2.5.  

There were seven studies included in this review published in 2021 (Alzaid et al., 2021; 

Hendrix et al., 2021; Ma and Luo, 2021; Oka et al., 2021; Sato et al, 2021; Son et al., 2021; 

Wang et al., 2021).  All studies with the exception of the study by Wang et al., 2021, reported 

a combination of metrics, including AUC, sensitivity (or recall), positive predictive value 

(precision), F1 scores and accuracy.  Wang et al., (2021) reported ‘average precision’ only for 

their model detecting femoral fractures.  The highest AUC was reported in a study by Oka et 

al., (2021) using a VGG-16 model for detection of distal radius fractures (AUC 0.991) and 

the lowest, in a study using DenseNet-121 for scaphoid fracture detection (AUC 0.87).  This 

was compared with clinical radiologists and found to be comparable (radiologists’ AUC 

0.83).  Ma and Luo (2021) and Son et al. (2021), did not report AUC, however, gave an 

overall indication of the performance of the system using F-measure, with F-measure of 

0.8850 and 0.875 for multiple regions and mandibular fracture detection for Ma and Luo 

(2021) and Son et al. (2021) respectively.   

Of the five studies published in 2022 (Cheng et al., 2022: Chou et al., 2022; Li et al., 2022: 

Tanzi et al., 2022; Ureten et al., 2022), only two reported accuracy, sensitivity and specificity 

as the only measure of performance (Chou et al., 2021; Ureten et al., 2022).  Performances of 

93.36% for spinal fractures (Chou et al., 2022) and 93.3% for wrist fractures (Ureten et al., 

2022) were reported. The remainder used some combination of precision, recall and F-

measure, with the highest performance in a study using a Vision Transformer to detect pelvic 

fractures reporting an F-measure of 0.95 (Tanzi et al., 2022). 

There were two studies included in this review which were published in 2023 (Jeong et al., 

2023; Shahnavazi and Mohamadrahimi, 2023).  The study on skull fractures by Jeong et al. 

(2023) reported performance using precision, recall, true positive and negative and false 
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positive and negative.  The study by Shahnavazi and Mohamadrahimi (2023) focussed on 

mandibular fractures and used accuracy, sensitivity and specificity as reporting metrics.  As 

sensitivity and recall are the same measure, these metrics can be compared.  Jeong et al., 

2023, report recall of 0.6698 in detection of the location of skull fractures using RetinaNet, 

while Shahnavazi and Mohamadrahimi, 2023, report sensitivity of 100% for detection of 

mandibular fractures on orthopantomograms.  This means that the model (Faster RCNN) was 

able to localise fractures on all occasions.  The performance of the model was measured by 

the degree of overlap of the model localisation with the ground truth localisation.  The model 

was less able to determine when there was no fracture present (specificity 83.33%), 

performing worse than the human interpreters (AI: 83.33%, Human: 92.22%).   

2.4.11 Methods to explain ML decision (Table 2.5) 

Eighteen studies reported some method of AI explanation:  twelve studies by heatmap 

(Lindsey et al., 2018; Cheng et al., 2019; Blüthgen et al., 2020; Krogue et al., 2020; Tanzi et 

al., 2020; Yu et al., 2020; Alzaid et al., 2021; Hendrix et al., 2021; Sato et al., 2021; Li et al., 

2022; Tanzi et al., 2022; Jeong et al., 2023) and six studies by a region of 

interest (ROI) bounding box (Fukuda et al., 2019; Jiménez-Sánchez et al., 2020; Ma and Luo, 

2021; Son et al., 2021; Wang et al., 2021; Shahnavazi and Mohamadrahimi, 2023) with high 

agreement in all cases.    

2.4.12 Misclassification explanation (Table 2.5) 

Fourteen studies make some attempt to offer explanation for misclassifications (Olczak et al., 

2017; Cheng et al., 2019; Fukuda et al., 2019; Gan et al., 2019; Blüthgen et al., 2020; Krogue 

et al., 2020; Tanzi et al., 2020; Yu et al., 2020; Alzaid et al., 2021; Jeong et al., 2021; Sato et 

al., 2021; Cheng et al., 2022; Chou et al., 2022; Li et al., 2022).  Full detail is presented in 

Table 2.5.  One study investigated the effect of the removal of ‘confounding variables’, such 

as those variables relating to the patient and ‘hospital process’, for example, patient age, sex 

and body mass and scanner type, scanner model, scan priority and time of day of the 

scan, from hip radiographs.  They found that when these confounding factors 

are removed, the performance of the AI dropped from AUC 0.78 AI performed no better than 

chance (AUC 0.52) (Badgeley et al., 2018).  A study using an AI model to identify teeth with 

vertical root fractures reported that the model misclassified more often in teeth which have no 

endodontic treatment and that recall rates were low for maxillary incisors, although an 
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explanation for this is not offered (Fukuda et al., 2019).  In another study, the misclassified 

images were examined, along with other images in the imaging series, and it was discovered 

that when the AI found an image to incorrectly contain fracture, the fracture may have been 

evident in another image in the series (Olczak et al., 2017).  One study reported that the AI 

misclassified on two images from the test set of 100 images by inspection of heatmaps 

produced but an explanation for this is not proffered (Cheng et al., 2019).  Other studies 

reported that the AI mistook normal anatomical detail (suture lines and vascular grooves in 

the skull study by Jeong et al., 2021 and lung markings, diaphragm and bowel gas in the 

vertebral fracture study by Chou et al., 2022) for fractures.  The presence of other 

pathology/ies caused error in the study by Cheng et al., 2022 who reported that the AI was 

more likely to misclassify vertebral fractures when the patient had scoliosis or multilevel 

fracture.  Studies also reported a lack of ability of the AI to discriminate between fracture 

subclasses (Krogue et al., 2020; Tanzi et al., 2020; Alzaid et al., 2021), 

and misclassification due to the usual fracture traits not being visible on 

the particular projection presented to the AI (Gan et al., 2019).  One study found that the AI 

was unable to detect subtle fractures as well as apparent ones (Sato et al., 2021) 

2.4.13 Code availability (Table 2.5) 

Only four studies made their programming code available to the reader (Badgeley et al., 

2018; Kitamura et al., 2019; Hendrix et al., 2021; Chou et al., 2022).  Programming code or 

‘source code’ is the text written by a computer programmer which is used to provide 

instruction to a computer, examples of which include Java, C, C#, C++ and Python (McGee, 

2023). The type of code used in these studies was not investigated as it is beyond the scope of 

this thesis.  The availability of code, along with transparent experimental methodology is 

essential to be able to replicate the study and to test model generalisability on other datasets. 

2.4.14 Clinical integration and prospective sampling 

No studies have been integrated into the clinical workflow for testing.  All studies, except for 

those already mentioned using k-fold cross validation, used entirely unseen test sets, taken 

from the entire dataset before training.  One study compared the model performance on an 

unseen internal and external dataset in testing (Blüthgen et al., 2020) and only one study 

obtained a prospective sample over a three-month period in testing (Lindsey et al., 2018).  In 

this study, images were acquired from a set date onward, rather in retrospect from the 
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hospital database.  This study found that there was little difference in the model’s ability to 

detect fracture on a test set retrained from the training set and a prospective sample with AUC 

of 0.97 and 0.98, respectively.  

It is clear from these findings that there are many variations in both the systems being used, 

the training and validation methods and the process by which data from these studies are 

articulated.  

2.5 Discussion 

Reported results demonstrate that ML based on ANNs and other forms of modern 

AI can detect fractures from radiographic images with impressive accuracies.  Studies 

included in this review indicate that this is achieved using a variety of AI model types and 

training/testing methods.  Studies included also varied in the methods to determine a 

‘reference standard’ or ‘ground truth’ for the images used for both training and testing.  

Each study reported the model performance using some combination of AUC, accuracy, 

sensitivity, specificity, precision, recall, Cohen’s kappa and F1 score (or Fβ / F-measure (see 

Table 2.1).  The most frequently described metric was AUC, although twelve studies did not 

report some AUC results (Olczak et al., 2017; Damien et al., 2019; Fukuda et al., 2019; Tanzi 

et al., 2020; Ma and Luo, 2021; Son et al., 2021; Cheng et al., 2022; Chou et al., 2022; Tanzi 

et al., 2022; Ureten et al., 2022; Jeong et al., 2023; Shahnavazi and Mohamadrahimi, 2023). 

AUC and Receiver Operating Characteristics (ROC) are metrics commonly used to assess the 

performance of ML systems and other classification tasks.  

It is imperative that reporting metrics used to report ML performance should be explainable, 

understood by the end-user and should be appropriate to the task to accurately reflect the 

performance of the model.  When the classes in the training dataset and the prevalence of the 

outcomes in the eventual population dataset are balanced, reporting metrics which may 

already be familiar to clinicians can be used to evidence model performance, for example, 

sensitivity, specificity, and accuracy.  This is not usually the case in pathology identification 

and in many medical applications.  The disease class is usually the minority class.  

Misclassification of this class would obviously be undesirable and the choice of a model 

which was unable to detect pathology would be useless.  If standard reporting metrics were 

used it would be possible to report a high accuracy for a model which had a propensity to 
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predict all ‘no pathology’ (majority class) outcomes, which would therefore be highly 

specific but essentially not fit for purpose.   

As discussed, some studies trained and tested the algorithm on balanced, or almost balanced 

datasets.  This is an ideal situation in training, as the model will ‘learn’ to identify both 

classes equally, however, when the model is eventually applied to the clinical setting it will 

have to perform well on a naturally imbalanced dataset.  The reported accuracy, sensitivity 

and specificity metrics used to report the model performance are an indication of how well 

the model performs in the laboratory only.  One study tested their algorithm on a prospective 

clinical dataset, reporting accuracy, sensitivity, and specificity but there was no indication of 

the balance of classes in this test dataset, therefore these metrics may not permit accurate 

assessment of the model performance.  

In clinical ML tasks, where there is likely to be a majority and minority class, it is imperative 

to report findings using metrics which incorporate allowances for the imbalanced prevalence 

of the target population to give an accurate representation of the ML performance and for 

comparison between different models for the same task.  For this purpose, precision, recall, 

Fβ and AUC have been recommended in the literature (Stephens et al., 2020; England and 

Cheng, 2018). 

Precision, recall and Fβ incorporate the following measures of performance: 

• true positive (TP), where the ML predicted pathology in agreement with the reference 

standard,  

• true negative (TN), where the ML predicted that there was no pathology in agreement 

with the reference standard,  

• false positive (FP) where the ML predicted pathology where the reference standard 

did not, and  

• false negative (FN), where the ML predicted no pathology, where the reference 

standard indicated that there was pathology.   

Recall (or sensitivity or true positive) describes the ability of the model to correctly predict 

the presence of pathology and is calculated by the following equation (Fukuda et al., 2019): 
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Recall = TP / TP + FN 

Precision, or positive predictive value (PPV) can be used to report the ability of the model to 

identify pathology as a proportion of all positives i.e., it is an indication of how many positive 

predications were actually positive, therefore giving an indication of the number of disease 

cases which were misinterpreted. 

Precision = TP / TP + FP 

From these metrics, Fβ can be calculated as a single measure to represent the model 

performance.  Fβ is simply the harmonic mean of precision and recall (England and Cheng, 

2018).  The value of β will determine the weighting of recall in the calculation.  For tasks 

such as those used in pathology identification, where it is important for the model to be able 

to identify both the presence and absence of pathology correctly, a score of one is used.   

Therefore, F1 = 2 (precision x recall / precision + recall), as reported in many of the studies in 

this review. 

These metrics provide an interpretable overview of the overall performance of the model and 

are usable in all scenarios as these metrics are prevalence agnostic.  They are, however, based 

on the use of prediction classes (pathology/no pathology or classification of severity of 

pathology), rather than the more usual prediction score output provided by ML systems (i.e., 

a numerical certainty provided by the AI, as will be utilised in Chapters four and five of this 

thesis).  A suitable threshold value to provide a positive prediction class needs to be decided 

to provide this.  Additional information may therefore be gained using a metric capable of 

analysing full prediction scores.  These scores can be plotted in a Receiver Operating 

Characteristic curve (ROC).  Inspection of this graph will allow the best choice of threshold 

value for determining prediction class to be chosen by determining acceptable balance 

between sensitivity and specificity for the specific task.  The area under the ROC curve 

(AUC) allows for direct comparison of different models (or choice of parameters) in a single 

metric, which is suitable for use in moderately imbalanced datasets.  Reporting of F1 and 

AUC as a minimum will provide simple, comparable single metrics which will be 

interpretable by clinicians and data analysts alike, providing accurate reporting of the 

performance of the model with both balanced and imbalanced datasets and therefore improve 

confidence in critique of proposed models as they are presented in the clinical setting.  
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However, although AUC will provide a simple measure of performance for moderately 

imbalanced datasets, it may be overly optimistic in situations when the imbalance is more 

pronounced.  This may be the case in many healthcare examples, where the pathology class 

might be considerably in the minority. AUC can provide indication of the ability of the model 

to detect pathology (true positives and false positives) but will not then reflect the ability of 

the model to identify negative cases, which will make up the majority of the imbalanced data 

set when the non-pathological class is the majority class (Tran-The, 2021).  In these 

situations, ‘area under the precision-recall curve’ has been proposed as an alternative (Lador, 

2017).  This metric will also offer a single measure of performance but is a better indicator of 

the performance of the model as it represents the ‘trade-off’ between true positive rate and 

positive predictive value (i.e., recall and precision) (Brownlee, 2018).  Because this metric 

includes ‘precision’, it will provide indication of the ability of the model to detect true 

positives out of all positive predictions, and therefore less influenced by the large proportion 

of negative classes in the imbalanced dataset (Lador, 2017).   

Seven of the more recent studies, reported the performance of their model using precision, 

recall and F1 (Fukuda et al., 2019; Jiménez-Sánchez et al., 2020; Tanzi et al., 2020; Alzaid et 

al., 2021; Ma and Luo, 2021; Cheng et al., 2022; Tanzi et al., 2022).  

Cohen’s kappa (see Table 2.1) has also been proposed in some studies to provide a measure 

of inter-rater agreement and will give an indication of the agreement of the model prediction 

and the reference standard, although has not been extensively used in the included studies. 

As mentioned, most studies reported the model performance using AUC.  The best 

performing model which reported performance using AUC was in a study using AI to 

predict hip fractures.  The authors (Yu et al., 2020) quoted performances of 0.99 for a binary 

classification task using an Inception V3 model trained, validated and tested by 20-fold cross 

validation.  The training set used in this study was balanced, patient wise, for fracture/no 

fracture by intentional oversampling of the minority class.  The test set was not augmented.  

The determination of the reference standard in this study was by computed tomography 

and/or an operative report, therefore providing additional information than given by a report 

on the plain radiographic images alone.  Regions of interest (individual hips) were manually 

cropped by experts prior to interpretation by the AI.  It should be noted, however, that part of 

this study involved a multi-class discrimination task with less promising 

results reported (Table 2.5).  Heatmaps provided confirmation of the area of the image the AI 



Page 62 of 516 

 

deemed most important in determining its prediction, therefore adding to the reliability of 

these diagnoses.   

Lindsay et al. (2018) tested their model on both a proportion of the initial dataset and was the 

only study to report findings on a prospective sample of all wrist radiographs acquired from 

the same clinical setting from which the training set was acquired, although no information is 

given on the balance of classes in this dataset or its similarity to the training dataset.  The 

authors reported performance using sensitivity, specificity and AUC which give an indication 

of the overall model performance, although, as mentioned, may not give an overall 

impression if the test dataset was heavily imbalanced.  Prospective testing will allow for an 

indication of how the model will perform clinically, however, the generalisability of the 

model cannot be determined in this case as the test images were from the same clinical centre 

as the training dataset.   

One study reported results which were in contrast with other included studies.  Badgeley et 

al. (2019) also used an Inception V3 model to predict fracture on pelvic radiographs before 

and after removal of ‘confounding factors’.  The model performed well (AUC 0.78) on a 

dataset of 23,602 whole pelvis radiographs with a 3:1 training:test split, yet, following 

removal of patient trait details, scanner type and “other factors” the diagnostic accuracy 

dropped dramatically, and the system performed no better than chance (AUC 0.52).  It should 

be noted, however, that despite this study using a large training dataset, there were no class 

balancing attempts. The incidence of fracture in the entire dataset was 3% (n=779) and labels 

were inferred from the patient’s clinical notes, which the authors acknowledge as a limitation 

of the study.   

The quality of labels, or ‘reference standards’ / ‘ground truth’, used for training are of 

paramount importance (Table 2.3).  A system will only ever perform to the standard of 

the ground truth label that it is trained with (Kim and MacKinnon, 2018; Lindsey et al., 

2018). In eleven studies the reference standard was obtained from more than one clinician 

with experience in their field or by expert verification of an established diagnosis (Chung et 

al., 2018; Kim and MacKinnon et al., 2018; Lindsey et al., 2018; Fukuda et al., 2019; Gan et 

al., 2019; Jiménez-Sánchez et al., 2020; Kitamura et al., 2019; Blüthgen et al., 2020; Krogue 

et al., 2020; Tanzi et al., 2020; Alzaid et al., 2021).  For example, in the study by Chung et al. 

(2018), two subspecialised shoulder orthopaedists and one specialist musculoskeletal 

radiologist labelled the images.  Additional information from other modalities was 
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applied when the reports did not concur to achieve a match in seven studies.  In the dental 

study by Fukuda et al. (2019), oral and maxillofacial radiologists provided a region of interest 

around any fractured teeth on orthopantomographic images.  However, there are some studies 

where the diagnosis is taken from single radiologist report made at the time of the 

examination (Olczak et al., 2017; Badgeley et al., 2018; Cheng et al., 2019; Ma and Luo, 

2021).  This offers no indication of the reliability of the report provided, particularly as 

reports are usually generated in response to a clinical question and additional information 

from the image may be missed, although in one of these studies, other imaging and clinical 

course were investigated in equivocal cases (Cheng et al., 2019).  A system trained on images 

labelled by multiple experts and determining diagnosis from differing sources and eventual 

patient outcome should, in theory, perform best on unseen images, although this can only be 

assessed when the training methodologies are comparable.  It is proposed that there are 

limitations in even the best human generated reference standard as the model may be able to 

detect more subtle indicators from the images which are imperceptible to the human eye 

(Kim and MacKinnon, 2018).  The model with best performance reported from these studies 

used diagnoses from initial imaging, verified by a musculo-skeletal radiologist, following 

review of additional imaging or operative report, therefore confirming the initial diagnosis 

(Yu et al., 2020).    

For an AI model to be useful in the clinical setting, the model must have been exposed to 

sufficient inputs from different x-ray equipment, clinical setting, 

devices and acquisition techniques.  All reported models were tested on unseen datasets or by 

k-fold cross-validation, although, in many of the studies reviewed, the training and 

testing images were obtained from the same hospital, which calls into question 

the capabilities of the model to be generalisable to any clinical setting.  To investigate 

this, one study used an external dataset (MURA) to test its model and found that it did not 

perform as well on this dataset as on the internal dataset, where images from the same 

hospital as the training set were used, as noted in Table 2.5 (Blüthgen et al., 

2020).  Additionally, many studies reported that images were ‘downsized’ before training and 

testing.  A study conducted by Sabottke and Spieler (2020) investigated the impact of image 

resolution on the performance of DL models for use in detection of lung pathology on plain 

radiographic images of the chest.  The study found that the minimum acceptable pixel 

dimension varied depending on the size of pathology being detected, with a decreased model 

performance reported in instances where downsized images were used for smaller 
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pathologies, such as lung nodules, compared to larger pathology, such as thoracic masses as 

is evident in Figure 2.2.  Figure 2.2 is reproduced from this study with kind permission from 

the authors and the ©Radiological Society of North America. 

 

Figure 2.2: Example of the effect of pixel dimension on image quality.   

(The patient in this image is a 60-year-old male with thoracic mass.) 

 

Critique of the impact of any data augmentation is therefore required to ensure that the model 

performance best represents the requirements of the pathology to be applicable in the clinical 

situation.  

Despite studies reporting impressive performances and transparent methodologies, AI 

systems using neural networks are approached with caution (Fazal et al., 2018; Yang et al., 
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2020).  This is due, in part, to a lack of clarity in how the system determines its 

diagnosis and any failures being incomprehensible to clinician end-users and ML experts 

alike, due to the complexity and size of the parameters in the algorithm (Ryes et al., 

2020).  Many studies did not offer detailed explanation for any misclassifications of the AI 

models used, although many studies used heatmaps or bounding boxes (ROIs), as 

described in section 2.3.11 and 2.3.12, to visually represent the region the model used to form 

its prediction (Table 2.5). Of these studies, all stated that the heatmaps demonstrated the 

model’s agreement with the fracture region determined as ‘ground truth’.  These system 

augmentations can affect how the human engages with and trusts the machine.  This can be 

called ‘human-computer interaction’.  The end-users of such systems, clinicians, need to be 

comfortable with their interaction and with the functionality of these machines. This is 

particularly important when using the most modern types of ML, as described in this review. 

The need for ‘interpretable’ and explainable AI (XAI) has driven the development of means 

to provide the user with interfaces which provide information on how the system has 

determined its predictions (Ryes et al., 2020).  Visual representations in the form of ‘saliency 

maps’, ‘heatmaps’ and other novel visualisation methods (Kumar et al., 2018; Yang et al., 

2020) are one way of gaining insight into the rationale for the decision, by highlighting the 

pixels which the algorithm found most important.  Using heat maps and other forms of 

explainable AI feedback, our interaction with these systems will hopefully become more 

natural and acceptable, even to the non-expert (Alqaraawi et al., 2020).   

From this review it is clear that without standardisation of both reporting metrics, benchmark 

datasets and high-quality labels, an assessment of the best performing variables, such as 

training methods, ground truth determinations and AI model types and architectures cannot 

take place. One study tested their model on an open access dataset (Blüthgen et al., 2020), 

however, no studies used any open access datasets for the training of their models.  There 

remains a dearth of large, publicly available datasets for use on training AI, in large part due 

patient privacy and permission concerns, although this is improving with the inception of 

endeavours such as the Grand Challenge (https://grand-challenge.org/), which provides a 

platform for ML competitions, including the safe uploading of datasets for training and 

testing.  The Radiological Society of North America (RSNA) have also issued ‘Challenges’ 

for AI development with focus on specific pathology or anatomical area 

(https://www.rsna.org/education/ai-resources-and-training/ai-image-challenge) and provide 

labelled datasets for developers to develop systems for ‘detection, localisation and 

https://grand-challenge.org/
https://www.rsna.org/education/ai-resources-and-training/ai-image-challenge
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categorisation of abnormal features’.  The use of high-quality datasets, with reliable reference 

standards will eliminate bias introduced by the acquisition of data from one clinical centre 

and allow for accurate comparison of the models (Langlotz et al., 2019).  To the authors’ 

knowledge, there is only one publicly available dataset for plain musculoskeletal radiographs 

(MURA) (Rajpurkar et al., 2018). 

Clarity regarding the predicted performance of the models in situations mimicking the ‘real 

world’ scenario using simple, reliable reporting metrics along with end-user acceptable 

feedback and explanation will assist in allocation of appropriate trust and implementation of 

these systems into useful clinical application.  The availability of code and transparent 

reporting of methodologies used to train, validate and test the datasets, including specifics of 

hardware, system and network requirements are essential to replicate the studies in different 

settings and therefore permit the testing of the validity and generalisability of the models 

(Nagendran et al., 2020).   

Modern forms of AI have been developed by computer programmers and data analysts, 

therefore papers reporting the experimental results of these studies are written for this 

audience, an issue which has been raised in clinical literature (Al-Zaiti et al., 2022), leading 

to the development of standardised systems for reporting, something which has been lacking 

until recently.  Several checklists have become available such as the Checklist for Artificial 

Intelligence in Medical Imaging (CLAIM) (Mongan et al, 2020), based on a modification of 

the Standards for reporting of Diagnostic Accuracy Studies (STARD) (Bossuyt et al., 2003) 

and the DECIDE-AI checklist for early-stage clinical trials (Vasey et al., 2022), although 

these became available only recently and, therefore, after the publication of some papers on 

AI for clinical applications. The use of this, or similar checklists should guide AI researchers 

on the publication of findings to allow for robust review and comparison of the AI models 

that are being proposed.  Only one study included in this review (Shahnavazi and 

Mohamadrahimi, 2023), published this year, stated that they had followed a reporting 

checklist (CLAIM checklist, Mongan et al., 2020). This may be due to the relatively recent 

publication of checklists such as those discussed above.  

2.6 Limitations 

Due to the wide variability of methodologies and performance metrics reported, a full 

systematic review and meta-analysis could not be carried out, as the researcher had initially 
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intended. Many papers made it through the initial search, leaving 6978 papers for inspection 

by the authors.  This demonstrates that the search criteria may have been too broad and there 

is the potential that human fatigue would result in important papers being missed, although 

this is not thought to be the case. However, automation of the process of extraction of 

relevant studies could be useful when large numbers of studies are identified for review 

and in particular in studies not limited to one area of practice, such as this one.   

One study (Thian et al., 2019) was not available for inclusion in this study, due to 

institutional restrictions.    

This review is conducted through the lens of clinical applicability of AI systems with insight 

into the computer science principles behind AI systems development and therefore depth on 

the data/computer science content may be lacking. 
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2.7 Results tables (Tables 2.3 – 2.5) 

Table 2.3 – Anatomical and pathological focus of AI model  

Author / Country / 
Year   

Anatomical area   Pathology focus   Prediction classes – 
description/number   

Determination of truth/reference standard   

Alzaid et al., 2021. 
UK 

Femur / hip Fracture  Fracture detection – 
fracture/no fracture 

Classification (Vancouver type 
A, B, C and no fracture) 

Two ‘clinical experts’ (meaning unclear) provided annotation, class labels and bounding boxes.  
59% of images annotated by both experts – remainder of images by one only.   

Badgeley et al, 2019.   
USA 

Pelvis / hip   Hip fracture   Two - Fracture / no fracture   Inferred from patient's clinical notes: radiologist comment: 'acute fracture' or 'no acute fracture'.   

Bluthgen et al, 2020.   
Switzerland   

Wrist (distal radius) 
single and multi-view 

comparison   

Distal radius fracture/no 
fracture   

Two - defect (0 - fracture); 
intact (1 - no fracture).   

TRAINING SET - radiology reports + confirmation by two radiology residents (3rd and 5th year) 
using electronic healthcare record, CT scans and images.     

EXTERNAL SET (MURA) - interpreted by radiology residents as above for fracture / no fracture. 
AREA AGREEMENT – Region of interest drawn by radiologists (agreement with each other if 
Dice Similarity Coefficient (DCE) = 0.7) and deep learning system agree if overlap (does not 

state by how much).   
Cheng et al., 2019.   

Taiwan   
Pelvis   Hip fracture   Two – fracture/no fracture  Diagnosis from trauma registry.  Computed Tomography (CT), clinical course and other imaging 

used to determine equivocal cases.   
Cheng et al., 2022.   

Taiwan   
Spine Vertebral fracture Three – fracture/no 

fracture/other AND four – no 
fracture (‘normal’) burst 

fracture, compression fracture, 
other 

CT/ Magnetic Resonance Imaging (MRI) review for all cases 

Chou et al., 2022. 
Taiwan 

Spine Fractures  Four – grade 0 (normal, grades 
I, II and III (fractured, with 

increasing degrees of height 
loss) 

CT and MRI scans interpreted by a spinal surgeon (10 years clinical experience) and radiologist 
(20 years clinical experience).  Disagreement was resolved by discussion. 

Chung et al, 2018.   
South Korea 

Proximal humerus 
(shoulder) single view   

Fracture - detection and 
classification.   

Five - Neer's classification of 
proximal humerus fractures - 

four types of fracture + normal 
= five classifications   

Two shoulder orthopaedists and one radiologist (musculoskeletal specialist).  When no 
agreement from independent reports, CT and other imaging is checked.  If still no agreement, 

image excluded.   

Damien et al, 2019.   
Lebanon 

Pelvis fracture - 
iliopectineal line only   

Iliopectineal line 
disruption   

Two - Positive / negative for 
fracture.  Feature extraction, 

size of connected components, 
number of connected 

components (or 'parts' of 
pelvis)   

Unclear – Radiopaedia® diagnoses assumed    

Fukuda et al, 2019.   
Japan   

Dental OPG   Vertical root fractures   Region of interest indication by 
ML   

Two oral and maxillofacial radiologist and one endodontist set regions of interest containing 
fractures.   

Gan et al, 2019.   
China  

Distal radius   Fractures – distal radius 
(wrist)  

Initial region of interest – 
localisation of distal radius 

only.  

Radiology report plus verification from two senior orthopaedists (in cases of no agreement, 
consensus was obtained from a third senior orthopaedist and corresponding CT scans)   
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Two – fracture / no fracture on 
final regions of interest.   

Hendrix et al., 2021. 
The Netherlands  

Scaphoid Scaphoid fractures Segmentation and fracture 
detection – fracture/no fracture 

Original radiologist reports and confirmed by an MSK radiologist with 30 years’ experience for 
fracture detection in training set.  Test set labels from radiology reports only.  Further CT 

confirmation for test set..   
Jeong et al., 2023. 

Korea 
Skull  Skull fractures ? fracture/no fracture – not 

entirely clear.  Heatmaps 
presented on images but not 

explicitly discussed. 

Region of interest bounding box indicating presence of fracture, drawn by two neurosurgeons.  
Determination of consensus not clear.   

Jiménez-Sanchez et 
al., 2019. 

Proximal femur  Fractures – localisation 
and classification  

1) Binary classification – 
Fracture/no fracture  

2) Discrimination – classes AO 
classification: A, B and no 

fracture  

Three clinical experts provided class labels and localisation of the head of femur using region of 
interest boxes: one trauma surgeon, one senior radiologist and one trauma surgery resident 

(5th year) evaluated a split of the dataset each.  

Kim and McKinnon, 
2018.   

UK 

Wrist (lateral)   Fractures - distal radius 
or ulna   

Two - Fracture / no fracture   Radiology report and registrar verification   

Kitamura et al, 2019.   
USA 

Single and multi-view 
ankle.   

Fractures   Two - Fracture / no fracture   Radiology reports reviewed by radiologist and 4th year radiology resident.   

Krogue et al, 2020.   
USA  

Hip  Fractures  Binary task: fractured/not 
fractured  

Classification task:   
Fractured (undisplaced femoral 
neck, displaced femoral neck 

fractures, intertrochanteric 
fractures)  

Unfractured  
Containing hardware (previous 
internal fixation, arthroplasty)  
Localisation by bounding box   

Review by two orthopaedic residents.  In cases of uncertainty, computed tomography, magnetic 
resonance imaging and post-surgical imaging was used as confirmation.  

Li et al., 2022. 
China 

Scaphoid Scaphoid fractures Fracture/no fracture Radiological reposts confirmed by CT/MRI for fracture and CT/MRI and other radiographic 
features for the non-fracture patients. 

Lindsay et al., 2018.   
USA 

Wrist   Fractures   Two - fracture / no fracture   One or more senior sub-specialist orthopaedic surgeons using a bounding box to locate 
pathology.   

Ma and Luo, 2021. 
China  

Multiple Fracture Localisation and identification 
of bone. Presence of fracture 

Radiopaedia® diagnoses and ‘hospital DICOM files’ - ? diagnoses from existing report (unclear) 

Oka et al., 2021.  
Japan 

Wrist Fracture Fracture/no fracture Clinical diagnosis by orthopaedic surgeons, including clinical findings and imaging results 

Olczak et al., 2017.   
Sweden   

Hand, scaphoid, wrist 
and ankle.   

Fractures, body part, 
laterality and exam 

view   

Three for pathology- 
yes/no/missing fracture.     

Side: Left/Right.     
View: distal, Antero-posterior, 

oblique, proximal, radial, 
lateral, ulnar, missing.     
Body part:  finger, thumb, 

scaphoid, hand, wrist, ankle, 
missing.     

Automated language extraction from radiologists' reports, along with ‘multiple visits’.  Other 
information (laterality, body part, view) from DICOM headings.   
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Sato et al., 2021. 
Japan 

Hip fractures Proximal femoral 
fracture 

Presence/absence of fracture Two orthopaedic consultants with inter-observer reliability of kappa=0.91. 

Shahnavazi and 
Mohamadrahimi, 2023. 

Iran 
**reported according to 

CLAIM checklist ** 

Dental panoramic for 
mandibular fracture  

Fractures (mandible)  Fracture location identified by 
bounding boxes (LabelMe®) 

Panoramic radiographs obtained from clinical centres and online resources (Radiopaedia® and 
open-access biomedical image search engine (NIH). 

Area of interest (mandible) identified by a single dentist and confirmed by another. 
Images were annotated by two oral/maxillofacial radiologists by consensus.   

Son et al., 2021. 
Korea 

Dental panoramic for 
mandibular  

Fractures  Anatomical location of fracture 
(6 classes) OR fracture shape 

(2 classes) 

Unclear  

 Tanzi et al., 2020.   
Italy, Sweden 

Proximal femur    Classification of 
fractures  

1) Three-class discrimination 
(AO classification: unfractured, 

type A fracture, type B 
fracture)  

2) Sub-classification of the type 
A fracture – A1, A2 and A3.   

 Senior trauma surgeon and specialist orthopaedist reviewed all images in initial dataset.    

Tanzi et al., 2022. 
Italy, France 

Proximal femur Classification of fracture 
and complexity and 

severity of displacement 

AO classification: Unbroken, 
A1, A2, A3, B1, B2 and B3 

Initial patient referral and intraoperative diagnosis.  Confirmation by review from two radiologists 

Urakawa et al., 2019.  
Japan  

Inter trochanteric hip 
fractures   

Detection of fracture   Two: fracture/no fracture   Single orthopaedic surgeon using antero-posterior hip radiographs (in 91.7% of cases), lateral 
hip radiographs (50 patients), computed tomography (seven patients) and magnetic resonance 

scan results (90 patients) and surgical intervention.  
Ureten et al., 2022. 

Turkey 
Hand fractures Fracture Three: fracture wrist, fracture 

phalanx and normal 
Radiological reports plus re-evaluation by orthopaedist (5+ years’ experience) and radiologist 

(5+ years’ experience) 
Wang et al., 2021. 

China  
Femur fractures Fracture  Fracture / no fracture Unclear 

Yu et al., 2020. USA  Proximal femoral 
fractures   

Detection of fracture  Two: fracture/no fracture + 
localisation: transcervical, 

intertrochanteric, 
subtrochanteric. 

Musculoskeletal radiologist from antero-posterior radiographs and confirmed by either 
computed tomography or operative report.  

Localisation by classifying the fracture in one of three pre-specified areas  

 

Table 2.4 – AI development, training and testing methods  

Author / Country / 
Year   

ML description / 
techniques   

Feature engineering 
detail   

Training set/method   Training set 
demographics   

Test set/method 
(Sample size/ 

cases)   

Class balancing   

Alzaid et al., 2021. 
UK 

Classification task: 
ResNet50, VGG, 

DenseNet161 and 
Inception. 

Detection task: 
ResNet50 backbone 

Classification task: 
downsized to 224x224 

pixels (Inception images 
downsized to 299x299 

px). 
Flipping, rotation and 

scaling used.  

Classification task: both binary 
(fracture/no fracture) and multi 
class (A, B, C and no fracture).  
Binary task: 1272 images with 

fracture and 1272 normal.   
Multi class task: 375 normal, 88 
type A, 375 type B, 378 type C. 

No additional 
demographic data 
provided.  Fracture 

prevalence and 
classification as 
described under 

‘Training 

Multi class task: 1216 
studies (type A, B, C 

and normal: 7%, 
31%, 31%, 31% 

respectively) 

For multi class task the number of images for type 
B were excluded due to the number being “very 
high” (P.653), however a rationale for not ‘up-

sampling’ the other types is not clear – the number 
of images in type B more closely matches the other 

types and ‘normal’ with the exception of the 
minority class (type A).  
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with Faster R-CNN or 
RetinaNet 

 

Stochastic Gradient 
descent (SGD) used for 
optimisation.  Models 

trained until 
convergence (100 

epochs), batch size 8, 
momentum 0.9, learning 

rate 1x10-2. 
Detection task: different 

image resolutions.  
SGD optimisation.  

Trained until 
convergence (100 

epochs), batch size 2, 
momentum 0.9, learning 
rate for Faster R-CNN 

1x10-2, RetinaNet 
5x10-2 

Training 75%: validation 25% 
Detection task: fracture images 

from above dataset split into 
training and validation (assumed by 
the same proportion, although not 

explicitly stated)   

set/method’ 
heading 

Badgeley et al., 2019.   
USA  

Inception V3 pretrained 
on ImageNet   

299 x 299 pixels   23,602 hip radiographs   
Train:test 3:1.   

Optimised parameters from the 
ImageNet challenge. Penultimate 

layer is removed, leaving 2048 
image feature scores which are 

used in subsequent unsupervised 
models. Dimension reduction 

techniques were used to ‘visualise 
the distribution of image variation’ 

(p31). t-Distributed Stochastic 
Neighbor Embedding (t-SNE) 

projected the image feature vector 
into a 2d plane with the R package. 
(50 dimensions, perplexity 30, theta 

0.5, initial momentum 0.5, final 
momentum 0.8, learning rate 200) 

Female 66%  
Mean age 61  

Mean body mass 
index 28  

Number of 
scanners 11  

   

Train:test 3:1 of 
23,602 hip 

radiographs.  Confou
nding factors 

removed for testing - 
patient trait, scanner 

type and 'other 
information'    

Full dataset: 3% fracture n=779. 
Test set: 3% fracture  

No attempts to artificially balance classes.  

Bluthgen et al., 2020.   
Switzerland 

Manufacturing 
CNN.  Retrained for 

fracture detection.  ViDi 
image analysis software 

(deep learning).   

MURA dataset has a 
maximum pixel height of 

512 pixels. Internal 
dataset resized to 

match this.  Aspect ratio 
maintained.  .PNG 

format.  Single images 
used for 

training.  Images (AP 
and lateral) together on 
same image for test.   

524 radiographs.   
Grid search plug-in used to test 

hyperparameter combinations. Two 
best combinations used for training:   
Hyperparameters selected and best 

2 chosen to train:  Model 1 - 85 
pixels Model 2 - 60 pixels. Both: 

150 epochs, contrast 50%, aspect 
ratio 10%, rotation 10%, shear 

20%, scale 1-%, sampling density 
5, luminance 40%. 

Not explicitly 
stated   

INTERNAL and 
EXTERNAL (MURA) 

sets.  Internal 
set:  100 

radiographs, 42% 
fracture.  External 

set: 200 radiographs 
(AP and lateral) - 100 
cases.  50% fracture 
(50 cases/50 cases)   

Total training set: 524 radiographs, 166 fracture 
(31.7% fracture). 

Test set: external test set balanced: 50 fracture 50 
no fracture.  

Internal test set: 42% fracture.  
 

No attempts to artificially balance classes in training 
data set.  External data set intentionally balanced.   
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‘Data augmentation’ had a positive 
effect on model performance in the 

validation stage.   
Cheng et al., 2019.   

Taiwan 
DenseNet 121   Whole images.  Resized 

to 512 x 512 pixels with 
8-bit greyscale colour.   

Pretrained on limb radiographs - 
25,505 (90% train, 10% 

valid).  Retrained on pelvic 
radiographs - 3605 (80% train, 20% 

valid).  Batch size 8.  Adam 
optimiser used.   Initial learning rate 

of 10 -3 Final model trained on 60 
epochs. 

Data augmentation in training: 
zoom 10%, horizontal flip, vertical 

flip, rotation 10o   

 Mean age with 
fracture: 72.34  

Mean age without 
hip fracture:  

44.88  
Gender with hip 

fracture: 42% male  
Gender without hip 
fracture: 68.2 male  

100 pelvis 
radiographs: 25 

femoral neck 
fracture, 25 

intertrochanteric fract
ure, 50 no fracture.   

PELVIS training model: 1975 fracture/ 1630 
no fracture. 

Test set: balanced test set: 50 no fracture; 50 
fracture.  

No attempts to artificially balance classes in training 
set.  

Cheng et al, 2022.   
Taiwan   

YOLOv4 for prelimary 
segmentation, ResUNet 

for accurate 
segmentation and a 

Random Forest model 
for prediction of fracture 

Contract enhanced 
using histogram 

equalisation. 
Following segmentation, 
the authors (assumed) 
extracted features for 

classification task 
(heights of anterior, 
middle and posterior 
aspects of vertebra 

bodies). 

Full dataset: 390 x-ray images (i.e., 
3634 vertebrae).  5 fold cross 

validation: 4 for training and 1 for 
testing.   

Age range 27-91 
years.  Average 
age 75.12.  302 
female/88 male.  
Single level, 2-4 

level and 5+ level 
fractures: 271, 93 

and 26 
respectively. 

 

One of the 5 fold 
cross validation sets  

Not clear – individual vertebrae are segmented, 
there are 271 images with single level fractures but 

it is unclear how many ‘multi-level’ fractures are 
included.   No specific attempt to balance classes 

are mentioned.   

Chou et al., 2022. 
Taiwan 

Pretrained (ImageNet) 
ResNet 34, 

DenseNet121 and 
DenseNet201 

ensemble. 

“Image size and quality 
processing” pg. 513. 

“No contrast but 
padding” pg. 514 224 x 
224 pixels.   No further 

detail provided 

Pretrained models (ImageNet)  ImageNet “natural 
image2 pg. 513 – 
no further detail 

258 ‘older’ adults 
(mean age 78, range 
68-88 years) – 339 
vertebral fractures 
(grade I, II and III, 
139, 62 and 138 
respectively) and 
1725 no fracture. 
113 patient in the 

‘younger adult’ 
category (mean age 
36, range 20-49) – 

120 fractures (grades 
I, II and III, 89, 16 

and 15 respectively) 
and 728 no fracture.  

No mention of specific class balancing in test set.  

Chung et al., 2018.   
South Korea 

  Pretrained Microsoft 
ResNet-152, fine-tuned 

on images from 
dataset.   

Cropped images to 
include humeral head 

making 
up approximately 50% 
of image size.  256 x 

256 pixel (downsized)   

Full dataset - 1891 AP shoulder 
radiographs from 7 different 

hospitals.  Training on 9/10 of 
dataset + remnants.  Repeated 
three times.  Caffe 9 used on 

Ubuntu 16.04 with NVIDIA GTX 
1070.  ResNet fine-tuned final 

 Total dataset: 
1891 patients (591 
men, mean age: 

65   

1/10 of total 
dataset.  CNN v 
human study: 3 

groups of readers: 28 
GPs; 11 general 
orthopaedists; 19 

Full dataset: 1376 fracture cases, 515 normal from 
dataset of 1891 images. 346, 514, 269, 247 and 

515 for greater tuberosity, surgical neck, three-part 
fractures, four-part fractures and no fracture 

classes respectively.  
No attempts to artificially balance classes apparent 

in either training or test data sets.   
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layers: ‘base lr:  0.0001; max:  3 
epochs; step: 

2 epochs; gamma:  0.1; weight 
decay:  0.00001; train batch 

size:  24; 1 epoch.’ (suppl. data) 
Classification training: 

Non fracture radiographs removed 
to reduce overfitting. 

shoulder 
orthopaedists.   

Damien et al., 2019.   
Lebanon  

Support Vector 
Machines 

(SVM).  Neural network 
(limited information): 2 

hidden layer, six 
neurons per layer.   

Radiologist or surgeon 
selects Region of 

interest (ROI) 
demarcating 

iliopectineal line.  Image 
denoising and edge 
detection performed, 

then smoothed.   

Dataset 
from Radiopaedia ®radiographs.  N

eural network: 75 images for 
training + 11 for validation.     

100 for SVM   
SVM - radial basis function used as 

kernel. 
NN – two hidden layers, six 

neurones in each layer, hyperbolic 
tangent as activation function. 

Not explicitly 
stated   

14 images for 
testing   

% of training and testing images in each class is 
unclear. 

No attempts to artificially balance classes 
apparent.  

Fukuda et al., 2019.   
Japan 

Digits v 5.0 training 
system - 

customised DetectNet   

.JPEG images 
downsized to 900x900 

for ML   

300 Orthopantomographic images   
Total number of teeth not stated.   
Trained on Ubuntu 16.04 operating 

system, GEForce 1080Ti GPU 
(Nvidia) over 1000 epochs using 

Adam solver with an initial learning 
rate of 0.0001.  Five models 

created and tested with test set for 
each (five-fold cross validation). 

 50% male / female 
Mean age 66.05  

Five-fold cross 
validation.  Four parts 
of dataset train and 

validation.  Repeated 
five times, changing 
TEST dataset each 

time.     

300 OPG - 330 fractured teeth in total.  Total teeth 
not stated.   

At least one vertical root fracture per OPG.   
Test set: demographics of test data set not 

explicitly stated  
No attempts to artificially balance classes in training 

or test data sets.  

Gan et al., 2019.   
China  

Inception V4: authors 
reported that this ML 
has achieved ‘state of 
the art results in recent 

image classification 
contests’ (p. 396)  

Whole radiograph 
.JPEG images, resized 

to 600 x 800 
pixels.  Resultant region 

of interest containing 
distal radius resized to 

200 x 200  

Training dataset: 2040 antero-
posterior wrist radiographs: 1341 
with fracture, 699 no fracture for 
region of interest identification.  

Resultant region of interest 
radiographs + augmentation:  

6120 images: 4023 with fracture, 
2097 no fracture for final testing 

and validation (15% for validation)  
For diagnostic CNN: 

Google open source TensorFlow 
1.11.0 on 

Ubuntu 16.04. NVIDIA Titan X. 
‘Optimizer, stochastic gradient 

descent; batch size, 100; dropout, 
0.5; 20,000 iterations; initial 

learning rate, 0.001; learning rate 
decay type, fixed.’ (Suppl data) 

Entire dataset: 
1366 men, 

974 females. 
With fracture: 56% 
men, 44% female. 
Without fracture: 
63% men, 37% 

female. 
Mean age 

48 (mean age with 
fracture: 48, 
without: 48) 

  

300 antero-posterior 
wrist radiographs: 

150 with fracture, 150 
no fracture  

1341 fracture/699 no fracture in initial dataset. 
Following augmentation: 4023 fracture/2097 no 

fracture in final (region of interest) dataset used for 
training.  Augmentation was not intended to 

balance classes  
Balanced test dataset (150 # / 150 no #). 

Hendrix et al., 2021. 
The Netherlands 

Segmentation and 
detection (DenseNet-

121) CNNs.  

Scaphoid size 
normalised and 

1846 patients, 3000 radiographs.  
Adam optimiser, mini batch 

sampling with class balanced data, 

Training set for 
detection of 

fracture: 

190 patients, 190 
images: 59.5% male, 
40.5% female, mean 

Classes balanced in testing. 
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padding/cropping 
applied.   

initial learning rate 1x10-4.  Data 
augmentation of images: horizontal 
flip, box bounding shift, rotation and 
Gaussian noise adjustment. (suppl 

data) 

49.2% male, 50.8% 
female.  Mean age 
42 years. 38.8% 

fracture/61.2% no 
fracture. 

 

age 43, 50% fracture, 
50% no fracture. 

Jeong et al., 2023. 
Korea 

RetinaNet with ResNet 
50, 100 and 150 

backbones 

Skull radiographs (three 
views) downsized to 8 

bit (from 12 bits) 
1639 images (fracture 810, normal) 

from a total of 2026 images (991 
fracture and 1035 normal) obtained 

from 741 patients 

319 women, 412 
men.  Mean age 42 

+/- 26 years.  

Remaining 387 
images from training 

set used to test 

Entire dataset: n=2026 images 
Fracture n=991, normal n=1035.  Retrospective 

data gathered – skull fracture cases as per 
radiologist report.  Normal images gathered for 

training.  No further detail given. 
Jiménez-Sanchez et 

al., 2019. 
Spain, Germany and 

France 

For classification task: 
ResNet, pretrained on 

ImageNet.  
For 

localisation: AlexNet.  

ResNet; radiographs 
downsized to 224 x 224 

pixels  
AlexNet: radiographs 

downsized to 227 x 227  

Initial dataset: 780 subsequently 
sampled pelvis radiographs of 
patients with proximal femur 
fractures. 4% of patients had 

antero-posterior projections.  The 
remainder had antero-posterior and 
lateral projections. Most cases had 
one non-fractured proximal femur.  

Train:validate:test  
70:10:20%  

Training on a Linux based 
workstation (16GB RAM, Intel 

Xenon CPU at 3.5 GHz, 64 GB 
GeForce GTX 1080). 

Stochastic gradient descent for 
optimisation.  Models trained until 
convergence (Classification and 
localisation: 80 and 200 epochs 

respectively).  Batch size 64.  
Momentum 0.9 for all models. 

Learning rate initialised 1 x 10-2 for 
classification and 1 x 10-8 for 
localisation.  Decay varied. 

69% female.  
Mean age 

75.7 + 13.2  

1) Binary 
classification task: 

not 
fractured/abnormal: 

115/115  
2) Discrimination 

task: Classes A, B 
and no fracture: 55; 

60; 55.  

Data augmentation: translation, scaling and rotation 
Training set of pelvises with at least one fractured 

hip. Pelvis radiographs (two femora) were parted in 
two (one femur each image) resulting in 780 

fractured femora and 567 not fractured for two 
class problem.  Three-class problem (type A, B and 

not fractured): 327, 453 and 567 respectively.  
No explicit attempt to further balance of training 

dataset.    
 

Intentionally class balanced test sets:   
1) Binary classification task: not 

fractured/abnormal: 115/115 (images from three 
class problem plus additional 55 not fractured 

images) 
2) Discrimination task: Classes A, B and no 

fracture: 55; 60; 55.  

Kim and McKinnon, 
2018.   

UK 

Inception V3 network 
trained on ImageNet.    

.JPEG images at 'most 
appropriate' windowing 

as determined by 
radiologist.  Annotations 

removed.     

Transfer learning.  Lateral wrist 
radiographs: 695 fracture / 695 

no fracture.  Data amplified (non-
identical copies): 5560 #/5552 no 

#.  80:10:10 train:validation:test wit
h 100 kept for final test. 

Retrained top layer of Inception V3.  
Initial learning rate of 0.02, learning 

decay by a factor of 0.67 after 
every 1800 iterations.  

Not explicitly stated Final testing: 100, 
unseen. 

50 fracture/50 
no fracture.  Consecu

tive set until 
fracture/no fracture 

number is reached.   

Data amplified (non-identical copies): 5560 
fracture/5552 no fracture.  Incidental balanced 

datasets – no explicit attempts to artificially balance 
data.   

Balanced test dataset: 50 fracture 50 no fracture. 

Kitamura et al., 2019.  
 USA  

Five networks; Inception 
V3, Resnet 101 layer, 

Resnet 

Resized to 300 x 300 
pixels.  One greyscale 

channel.     

298 fracture/ 298 normal 
examinations (single or multiple 
views).  Trained on single views: 

 Not explicitly 
stated  

Test and 
validation:  40 normal 

/ 40 abnormal with 

Trained on single views: 689 abnormal views / 752 
normal views = 1441 total views from 298 fracture 

examinations / 298 normal examinations.  
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(drop/aux), Xception (dr
op/aux).  DE NOVO 

training.  All five used 
together for best 

performance.  De Novo 
programmed.   

689 abnormal views / 752 normal 
views = 1441 total views. 

Augmentation of images for 
generalisation (rotation, flipping, 
brightness, contrast variation).  

Models trained on GEForce 1080 
GTX GPU.  All five models 

converged after 2000 epochs. 
Learning rate 4e-6 and 6e-6. L2 
decay rate between 0.4 and 0.9.  

Dropout rate kept at 0.5.  
Convergence of training via 
Softmax cross entropy loss, 

determined as converged when 
loss values plateaued (2000 

epochs).  

three views each: 
240 total images.   

Test set intentionally balanced: 40 fracture 
examinations, 40 normal examinations with three 

views for each case. 

Krogue et al., 2020.   
USA 

DenseNet 169 for 
fracture classification 

with final Softmax layer 
for each class  

RetinaNet object 
detection (with ResNet 

architecture) for 
bounding box 

detection   

Resized to 224 x 224 
pixels replicated into 

three channels.  

1849 individual hip images.  Data 
augmentation on training set. 

Initialised with ImageNet pretrained 
weights. Trained with Adam.  

Learning rate 0.00001, batch size 
25, learning rate decay 0.9, training 

stopped after 10 epochs with no 
improvement.   

Mean patient age: 
74.6years  

62% female in 
initial dataset (2004 
full radiographs).  

Validation set: 739  
Test set: 446, 
including 
randomisation of 
classes for equal 
distribution of classes 
in each dataset. 

Fractured: 47.9% (including subclassifications of 
fracture type)  

Unfractured: 52.1%  
Proportion of classes kept the same for all datasets 

No attempts to artificially balance classes.  

Li et al., 2022. 
China 

YOLOv3 for detection 
and MobileNetV3 for 

classification  

Converted to .PNG 
format.  Detection CNN 

YOLOv3 
Images cropped to 

scaphoid region (around 
300x300 pixels). 
MobileNetV3 for 

fracture classification   

930 images (from 500 patients): 
411 fracture/511 no fracture. 

Adam optimiser.  Learning rate 
1x10-3, decay 1x10-1.  Training 

stopped when no improvement was 
noted after 30 epochs.   

5-fold cross validation, using 5 
MobileNetV3 models. Output 

decision of fracture obtained by 
agreement from at least 4 models 
(fracture = classification threshold 

greater than 0.5).   

500 patients: 170 
with fracture, 60 

with occult fracture 
and 270 without 

fracture.  

100 patients, 209 
images: 102 with 

fracture, 107 without 
fracture (38 patients 

with apparent 
fracture, 12 with 

occult fracture and 50 
without fracture) 

Not explicitly stated, although classes are naturally 
well balanced. 

Lindsay et al., 2018.   
USA  

DCNN: extension of U-
net architecture   

Rotation, cropping and 
aspect ratio: 1024 x 512 

pixel    

Pretraining - 100,855 other body 
parts.  90% of 31,490 wrists.  10% 
validation.  Training stopped after 

no improvement over five 
epochs.  Rotations, cropping, 
mirroring, lighting and contrast 
adjustments made to images to 

make model more robust.   
Two stage training: 

Not explicitly 
stated   

Set 1 - 3500 wrist 
radiographs from 

wrist dataset.  Set 2 - 
1400 PA/lateral wrist 
radiographs sampled 

over three-month 
period.   

Not stated – no indication of balance of classes in 
either train or test datasets. 
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1) bootstrapping on pre-training 
dataset (random initialisation of 

parameters) 
2) Adam used.   Training stopped 
when model performance had not 

improved after five epochs. 
Ma and Luo, 2021. 

China 
‘CrackNet’ for fracture 
identification – Schmid 
convolution layer and 

ResNet101 

Resolution: 3052x3052, 
1024x889 ‘and so on’ 
(p.6, meaning unclear) 

Full dataset: 2001 images of 
various anatomical regions (skull, 

lower trunk, upper trunk, lower limb 
and upper limb, including specific 
locations e.g. skull, radius, pelvis 
etc.).  classification. 5743 bone 

‘patches’ from segmentation step 
extracted.  723 demonstrate 

fracture (expanded to 4016 by 
rotation and changing the 

background). Model trained 5 
times, Stochastic Gradient Descent 
(SGD) optimiser, base learning rate 

0.001, batch size 50.   

Unclear – specific 
anatomic region 
noted in paper 

Hospital images: 940 
images: 470 fracture 

patches and 
remainder non-

fracture. 
Radiopaedia® 

images: 112 images, 
56 fracture 

Class balancing by data augmentation in training 
set (rotation and changing of background)  

Oka et al., 2021.  
Japan 

VGG-16 500x625 pixels, 
converted to 224x224 

for training 
Images of left wrist 

flipped 

729 fracture images and 254 
normal.  Randomly allocated to 3 

datasets: A, B and C.   
Training set: 569 fracture, 174 

normal.  Validation 80 fracture, 40 
normal.  Data augmentation 

(stretching, rotation, shearing, and 
parallel translation) resulted in 3245 

fracture images and 3210 normal 
for training and validation.  

3 learnings of 40 epochs with each 
dataset.   

Not explicitly stated 
– fracture 

prevalence as 
noted in other 

headings.  Images 
from 129 patients 

obtained from other 
hoapirals 

Test dataset: 80 
fracture, 40 normal 
(non-augmented 

images) 

Not explicitly stated. 

Olczak et al., 2017.   
Sweden 

Five networks chosen 
from Caffe library: 
BVLC Reference  

CaffeNet (8 layer), VGG 
CNN S Network (8 

layers), VGG CNN (16 
and 19 layers), 

Network-in-network (14 
layers).  VGG 16 layer 

exhibits best 
performance in fracture 
detection. Retrained for 

13 epochs.     

Images cropped and 
resized to 256 x 256 

pixels.   

Entire dataset:  256,458 images 
with 56% fracture: 70% train, 20% 

valid, 10% test. 
All networks pretrained on 

ImageNet and converted to Torch7. 
Final fully connected layer replaced 
with outcomes for the study.  Each 

outcome had its own fully 
connected layer in parallel, using 
ConcatTable.  Stochastic gradient 

descent – batch size, one.  
Learning rate adapted at the end of 

each epoch.  13 epochs in total. 
Best performing network used for 

testing. 

 Not explicitly 
stated – entire 

dataset 256,458, 
56% fracture, 43% 

no fracture, 1% 
‘missing’. 

Prediction compared 
with two radiologists 

(full view images, 
other views and 

radiologists' report) in 
400 images chosen 

from the test set.  It is 
unclear if the dataset 
used for testing the 
model is larger than 

this.  

No attempts to artificially balance classes in this 
very large dataset.  

Dataset contained 43% with no fracture, 56% with 
fracture and 1% missing this information (unclear 
meaning in the paper).  Information regarding any 

attempt to balance the test set is not apparent 
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Sato et al., 2021. 
Japan 

“efficientNet-B4 model” 
only mentioned in 

abstract – detail missing 

JPEG images, resized 
to 380x380 pixels. Non 
fracture side extracted 

from full images.  

Initial 10,484 images prepared for 
machine learning (5242 fracture 

and 5242 non-fracture) from 4851 
patients. 

Training set: non fracture =4242, 
fracture n= 4242. 

Validation set: non fracture n=500, 
fracture n=500. 

 

4851 patients: 
mean age at time 
of injury = 81.1, 
male, n=1193, 
female n=3658 

Test dataset: non-
fracture n=500, 
fracture n=500 

Classes balanced in training, validation and testing 
sets. 

Shahnavazi and 
Mohamadrahimi, 2023. 

Iran  
**reported according 
to CLAIM checklist ** 

Segmentation by U-net.  
Presence and location 

of fractures by Faster R-
CNN.  

All images saved as 
JPEG and resized to 

224x224 pixels. 
Contrast adjusted  

154 images for training, 18 for 
validation.  Samples increased by 

five times using random 
adjustment, including cropping, 

colour adjustment, rotation, flipping 
and noise adjustment. 

Not explicitly 
stated. 

18 images in test set 
(increased by five 
times as described 
for ‘Training set’). 
Additionally, 18 
images with no 
fractures were 

acquired ‘randomly’ 
for interpretation by 

five dentists.    

All images in training and validation sets had 
fractures present.   

Son et al., 2021. 
Korea 

YOLOv4 360 panoramic 
radiographs pre-

processed to 1080 
images for training. 
Pre-processing to 

enhance data – gamma 
modulation (darkens 

image to best visualise 
fracture), luminescence 

adaptation transform 
(contrast enhancement 

and desaturation 
correction) and 

extended multi anchor 
boxes (i.e., multiple 
bounding boxes to 

increase data).  
Diagnosis using each of 

these methods 
proposed but very 

unclear.   
Batch size 64, 

momentum 0.949, 
decay 0.0005, learning 

rate 0.0001, 12.000 
iterations over 711 

epochs.  

Multiple bounding boxes per 
fracture to increase data – further 

information not provided. No 
information on the fracture 

prevalence.   

Not stated 60 panoramic 
radiographs with 97 

fractures 

Unknown – data provided is very unclear. 
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 Tanzi et al., 2020.   
Italy, Sweden  

Three networks initially 
evaluated: ResNet, 

VGG16 and Inception 
for best performance:  
1) Fine-tuned Inception 

V3 with last layer 
replaced with 

a Softmax layer (for 
classification).  Pretrain

ed on ImageNet  
2) Multistage cascade 
CNNs (three Inception 
V3 plus binary network) 

for hierarchical 
classification 

discrimination.  

Each individual hip joint 
cropped to 299x299 

pixels  

Retrospective dataset: antero-
posterior cropped hip 

images:  1133 unbroken femurs, 
570 type A, 750 type C and 4 type 
C (excluded due to low numbers). 

80% for training and validation: 455 
type A, 600 type B and 

907 broken.  
Data augmentation of final dataset.  

Validation by 5-fold cross 
validation.   

Keras neural network library (in 
Python) on TensorFlow, Ubuntu 
16.04.5 LTS with GeForce GTX 

1080Ti.  
Initially, higher weights applied to 
classes with fewer images.  Batch 
size 32, Adam optimiser, learning 
rate 0.0001, beta values of 09 and 

0.999.  Sparse categorical 
crossentropy used to calculate loss. 
The model was run for 150 epochs 
with early stopping patience of 10 

epochs.   

Median age: 81  
67.5% female  

20% of images from 
each class: 115 type 

A, 150 type B, 
226 broken.  

Compensation for unbalanced classes by a function 
applied to assign higher weight to classes with 

fewer images.  
Test dataset: 20% of images for each class: 115 
type A, 150 type B and 226 unbroken, therefore 
retaining the prevalence from the initial dataset. 

Tanzi et al., 2022. 
Italy, France 

Vision Transformer 
(ViT) x 4 

Full pelvis or single hip 
radiographs cropped to 

224x224. 
Segmentation using 

YOLOv3. Right femur 
images flipped 

horizontally 

70% of initial dataset (n=4207) 
used for training. 

Five configurations tested initially: 
Base 16 and 32, large 16 and 32 

and compact convolution 
transformer (CCT).  Best used: 

Large-16. 
Gaussian Error Linear Unit 

activation, normalisation and 
dropout layer added.  Softmax layer 
for 7-class classification.  Learning 

rate 1e-4, reduced by a factor of 0.2 
after 4 epochs. Rectified Adam 

optimiser and categorical 
crossentropy loss function.   

Trained on 40 epochs.   

Total images 
n=4207  

(A1 n=631 
A2 n=329 
A3 n=174 
B1 n=625 
B2 n=339 
B3 n=106 

Unbroken n=2003) 
15% of all 

classifications kept 
for testing, 15% for 
validation and 70% 

training.   

(A1 n=91 
A2 n=94 
A3 n=25 
B1 n=90 
B2 n=49 
B3 n=16 

Unbroken n=282 

Different methods tested: Increased weights 
assigned to underrepresented classes.    

Oversampling of underrepresented classes by data 
augmentation.  

Urakawa et al., 2019.  
Japan 

VGG-16  Each individual proximal 
femur (femoral head + 

greater and lesser 
trochanters) cropped to 

300 x 300 pixels.   

Retrospective dataset: 3346 hip 
images (1773 fractured, 1573 not 
fractured).  Train:validation:test: 

2678:334:334.  
Data augmentation resulted in 
132500 images for training.  

TensorFlow VGG-16. 
ImageDataGenerator used to 

Of initial dataset 
(prior to exclusion 

criteria applied 
n=1773): 286 men, 

1487 women; 
mean age 85 

(range: 29-104)  

334 cropped 
radiographs  

Not specifically stated 
Training: 1408 with fracture, 1270 with no fracture.  

Individual hip images. 
Test set: 180 fracture, 154 no fracture images.   

No attempts to artificially balance classes.   
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augment 50 images per iteration.  
L2 regularisation (weight decay 

0.001).  Early stopping on validation 
set (not training set).  Adam 

optimiser.  Exponential learning 
rate scheduling: initial learning rate: 
0.0001, decay steps: 265 iterations, 
decay rate: 0.8.   Best performance 
at 1457 iterations.  These weights 

used for testing.  
Ureten et al., 2022. 

Turkey 
VGG-16, ResNet-50 

and GoogLeNet 
(transfer learning) 

JPG format, resized to 
224x224.  White 

padding to non-image 
areas.   

Raw dataset: 275 wrist fractures, 
257 phalanx fractures, 270 normal.  

Train:test 75:25. Training set 
increased by flipping and resultant 

set split train:validation 85:15 
resulting in wrist fracture, phalanx 

fracture and normal for training and 
validation  respectively: 
352:328:345; 62:58:61 

50% dropout, ReLu activation 
function, stochastic gradient 

descent with momentum (sgdm) 
optimiser, 1e-4 initial learn rate. 

Fracture split as 
described 

Test set: 68 wrist 
fracture, 64 phalanx 

fracture and 67 
normal. 

Not specifically stated 

Wang et al., 2021. 
China  

Backbone network 
(ResNet101) + CNN 
(attention block) + 

refined feature pyramid 
network  

Data augmentation – 
horizontal flip.   

 

3483 images 
ReLu activation function, learning 

rate of 0.005, momentum 0.9, 
weight decay 0.0001, 15 epochs. 

None  Test set: 358  All images contain fracture 

Yu et al., 2020. USA Inception V3 pretrained 
on ImageNet, with:  
1) top layer of the 

network (1000 nodes) 
replaced by fully 

connected layer (1024 
nodes), terminated with 
final Softmax layer with 

two classifiers – 
fracture/no fracture 
(each with ReLU 
activation) and,  

2) final Softmax layer 
with four nodes:  

Normal, and three 
fracture classes for 

localisation.   

Manual cropping to 
region of interest with 

proximal femur 
centred.  Pixel size of 
regions not stated.   

Retrospective dataset: 307 
fractured pelvis images: 610 normal 

and 451 fractured individual 
proximal femora.  

Train:validation:test: 3:1:1  
Training set: 367 normal image, 

111 group 1 localisation, 130 group 
2 localisation and 30 group 

3 localisation. 
20 fold cross validation.  Cross 

dash entropy loss function using 
stochastic gradient descent 

optimizer. Learning rate 0.001. 
Learning rate decay 0.5 . Batch 
size 8. Drop out rate 0.5. Model 

initialised using pre trained weights. 
Weights of final layer initialised 

using a gaussian distribution. Model 
trained for 200 epochs. Models 

Fracture group: 
151 men, 156 

women.  
Mean age = 69.4 
(range: 21-97)  

‘Normal’ group: 155 
men, 155 women.  

Mean age = 62 
(range: 18-95) 

155 right hip, 152 
left hip.  

20% of both fracture 
and no fracture 

groups.  
20-fold cross-

validation for binary 
classification task.    

Balanced classes (patient-wise) for training: 60% 
patients in the fracture group and 60% patients in 

the no fracture group.  
One additional previous radiograph, per patient, for 

included patients were added to augment the 
dataset.  Additional ‘normal’ included from the 

source (Electronic Medical Record) to up-sample 
‘normal’ group.  

Training on 60% of normal and 60% of fracture – 
intentionally balanced dataset in a 1:1 ratio 

fracture:no fracture. 
 

Test data set: 123 normal; 37 subcapital; 43 
intertrochanteric; 10 subtrochanteric .   

No data augmentation in validation and test sets  
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converged at approximately 80 
epochs.   

 

Table 2.5 – performance metrics, results and explainability of the AI decision  

Author / Country / Year   Performance metrics/results   Methods to explain ML 
decision    

Misclassification explanation   Code availability 

Alzaid et al., 2021. 
UK 

Binary classification: accuracy, precision, 
recall (sensitivity), specificity and F1 score for 
Inception, VGG, ResNet50 and DenseNet161 

is provided graphically with no numerical 
annotations.  Highest precision: DenseNet 
(95%, from graph), highest recall: Inception 
and ResNet (96% from graph), highest F1 

score DenseNet (approx. 94% from graph), 
highest specificity: DenseNet (approx. 96% 
from graph), Highest accuracy: DenseNet 

(approx. 95% from graph).   
Multi-class classification (AUC, due to 

imbalanced classes): for classes A, B, C and 
normal respectively: VGG: 0.89, 0.88, 0.95, 

0.95.  Inception: 0.94, 0.91, 0.96, 0.96.  
ResNet50: 0.95, 0.92, 0.94, 0.94. 

DenseNet121 0.90, 0.90, 0.95, 0.95. 
Best average AUC (all classes considered): 

ResNet and Inception.  Best average 
accuracy: ResNet (90%) 

Class Activation Maps (CAM) – 
agreement if intersection over 
union (IoU) is greater than or 

equal to 0.5 

Type B and C = slightly lower 
performance due to these 
“look(ing) similar” (p. 655).   

Lower performance of type A 
classification due to “smaller 

number of this type of image” (p. 
655) 

Faster R-CNN best for localistion 
(accuracy: 78%, precision: 80%, 

recall 98%) 

Not explicitly available  

Badgeley et al., 2019.  USA  Best model: 0.78.  Following removal of 
confounding factors Area Under Curve 

(AUC): 0.52.   

None   Not specific, however when only 
image data remained the 

diagnostic ability of the model 
decreased to no better than 

chance.   

Yes: https://github.com/mbadge/hipsMultimodal  

Bluthgen et al., 
2020.  Switzerland 

Best performing model AUC: 0.95, 0.94, 
0.96. Sensitivity: 86 (64-97), 90 (70-99), 90 
(70-99), specificity: 97 (82-100), 90 (73-98), 
97 (82-100), for AP vs lateral vs combined 

views respectively   
Region of Interest (ROI) plotted by 

radiologists and Machine Learning (ML); 
agreement if regions overlapped by 
70%.  Internal set (# cases n=21): 

radiologist/ML agreement: model 1: 100%, 
88%, and 94% and model 2: 94%, 87% and 

Heat maps from deep learning 
system- peak activation region 
only and consensus region of 

interest (ROI) confirmation from 
at least two radiologists and a 

radiology resident.  There does 
not seem to be any quantification 

of agreement between AI and 
radiologists and registrar, 
although it is stated that 

agreement is counted as ‘correct’ 

False negative results were 
‘uncommon in their extent’ (p.5) or 

markedly displaced. 

Not explicitly stated 

https://github.com/mbadge/hipsMultimodal
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89% (projections: antero-posterior, lateral, 
combined).  External set: # cases (n=50): 
radiologist/ML agreement: 91%, 92% and 
88% (model 1) and 100%, 89% and 93% 

(model 2).  AUC (combined views):  model 1, 
internal dataset: 0.95; model 2, internal 

dataset: 0.96.  Model 1 external dataset: 
0.87, model 2 external dataset: 0.89.  AUC 

0.8 on external dataset for single AP 
projection using model 1. 

if there in some overlap with the 
radiologist/ resident determined 

ROI containing fracture.   

Cheng et al., 2019.  Taiwan  MODEL:- AUC 0.98. accuracy: 91%, 
sensitivity: 98%, specificity: 84%, false 

negative: 2%, F1: 0.916.     
PRIMARY PHYSICIANS: sensitivity range 84 

- 100%, specificity range 46 - 94%.      
EXPERTS (2x radiologists, 4x orthopaedic 
surgeons: mean sensitivity: 99.35, mean 

specificity: 87.7%    

Heat maps (grad-CAM). 95.9% of 
the class discriminative regions 

contained the fracture, as 
determined by the authors.   

Heatmaps examined-two from the 
test set of 100 radiographs 
activated at wrong site but 

proposed rationale for this is 
unclear.     

Not explicitly stated 

Cheng et al, 2022.   
Taiwan   

Segmentation (Dice): 0.852 
Random forest precision: 99%, 74% and 

94%, normal, compression and burst 
fractures.  Merging compression and burst 

fractures: accuracy, precision, recall and F1 
for fractures:  92.0%, 93.2%, 95.7% and 

94.4%. 

None  Model was less accurate in cases 
where the patient had scoliosis or 

multi-level fracture  

Not explicitly stated 

Chou et al., 2022. 
Taiwan 

For older and younger adult populations: 
OVERALL: accuracy, sensitivity and 

specificity: 93.36%, 88.97% and 94.26% 
(older) and 93.75%, 65.00% and 98.49% 

(younger). 
THORACIC (T10-T12): accuracy, sensitivity 
and specificity: 89.41%,86.92% and 89.91% 

(older) and 96.23%, 72.22% and 97.67% 
(younger). 

LUMBAR (L1-L5): accuracy, sensitivity and 
specificity: 95.74%, 89.95% and 96.85% 
(older) and 92.26%, 63.73% and 99.07% 

(younger).   
Agreement with interpreter (kappa): surgeon 
and radiologist respectively 0.77, 0.77 (older) 

and 0.72, 0.71 (younger) 

None  False negatives in older population 
due to patient factors – lung 

markings, diaphragm and bowel 
gas and type I fractures (mildest). 

In younger population, normal 
variant and type I fracture.   

http://140.113.114.104/vght_demo/svf-model 
and  

http://140.113.114.104/vght_demo/svf-model2  
 

Chung et al., 2018.  South Korea  Top 1 accuracy (i.e. predicted the correct 1 
out of 5 possible options) of 96% (95% CI 94-

97%).  Model sensitivity 0.99 and spec 
0.97.  AUC 1.00 (CI 0.995-0.998) for 

discerning fracture from normal.    

None   None   Not explicitly stated 

Damien et al., 2019.  Lebanon  Accuracy: 92.9%.  Sensitivity 
80%.  Specificity 99%.  Support Vector 

None   None   Not explicitly stated 

http://140.113.114.104/vght_demo/svf-model
http://140.113.114.104/vght_demo/svf-model2
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Machine (SVM): Accuracy: 
91.3%.  Sensitivity: 94.2%.  Specificity: 

87.5%   
Fukuda et al., 2019.  Japan   ML ROI - taken as correct if 'sufficiently 

include the root of the tooth #'.  Recall: 0.75, 
precision (positive predictive value): 0.93, F 

measure (2 
(recall+precision)/(recall+precision)): 0.83, 

expressed as MEAN of the 5 models.    

Region of interest boxes around 
tooth with vertical root fracture   

Yes - potential explanation given - 
teeth without endodontic treatment 

were misclassified in 58.3% of 
misclassified cases. Recall rates 
were low for maxillary incisors.    

Not explicitly stated 

Gan et al., 2019.  China Identification of region of interest (distal 
radius) by Faster R-CNN: ‘Intersection of the 

union’ (area of overlap/area of union) 
average = 0.87.  

Accuracy for fracture identification: Inception 
V4 (IV4): 93%; Orthopaedists (O): 94%; 

Radiologists (R): 84%.  
Sensitivity for fracture identification: IV4: 

90%; O: 93%; R: 81%.  
Specificity for fracture identification: IV4: 

96%; O: 95%; R: 87%.  
Youden index: IV4: 0.86; O: 0.87; R: 0.68.  

None (except identification of the 
distal radius region of interest by 

the Faster R-CNN – 100% 
success rate)  

Yes, the 15 images which did not 
detect a confirmed fracture were 
reviewed.  Five lacked the usual 
fracture traits (fracture lines and 
fragments) and the fracture was 

only apparent on the 
corresponding lateral radiographs.  

Not explicitly stated 

Hendrix et al., 2021. 
The Netherlands 

11 radiologists (inc. 3 residents). 190 
radiographs from dataset 3.  Confidence 

score from 0 to 1 with fracture indicated by 
score over 0.5.  Average obtained and 

compared with CNN: AUC 0.83 (radiologist) 
and 0.87 (CNN) 

Detection CNN sensitivity 66%, specificity 
90%, positive predictive value 815, AUC 0.86 

Smooth GradCAM ++ heatmaps Misdiagnoses of radiologists and 
CNN investigated by calculating 

the difference in misclassifications 
by radiologist and CNN: 

radiologist: 18 false negative and 1 
false positive (missed 1 fracture 
and misclassified 6 non fractures 

as fractures identified by 
radiologists), CNN: 4 false 

negative and 14 false positives 
(missing 5 identified by the CNN).  

The reason is not discussed at 
length, however, images are 

provided. 

https://grand-challenge.org/algorithms/scaphoid-
fracture-detection/  

Jeong et al., 2023. 
Korea 

RetinaNet with ResNet 50, 101 and 152 
backbone: precision (and overage precision 
(AP)), recall, false positive and negative, true 
positive and negative, intersection over union 

(IOU). 
AP for IOU 0.1, 0.3 and 0.5: 0.7240, 0.6698 

and 0.3687 for best performing (ResNet 152), 
i.e., the performance in creased as the IOU 

decreased. 
True positive and negative 33.1% and 49.9%.  
False positive and negative 3.3% and 13.7%.  

Total true and false 82.9% and 17.1%.  

‘Heatmaps’ apparent from 
included images but description is 

lacking, compared to ROI 
indication from two 

neurosurgeons.  

False positive determined to be 
suture lines, vascular grooves.  
False negative cases included 
ROIs containing suture lines, 

vascular grooves and in the orbital 
region. 

None  

https://grand-challenge.org/algorithms/scaphoid-fracture-detection/
https://grand-challenge.org/algorithms/scaphoid-fracture-detection/
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Performance for ‘view’ (using IOU threshold 
0.1 and model ‘confidence’ in prediction 

threshold of 0.6) found that ‘true’ was highest 
on lateral views and false highest on Towne 

view.  
There was no statistically significant 

difference in true positive/negative between 
children and adults, although there was when 
considering the false positive/negative ratio 

with 15.5%/84.5% in adults and 50.0%/50.0% 
in children for false positive/negative 

respectively.  
 

Jiménez-Sanchez et al. 2019.  
Spain, Germany and France 

AlexNet – identification of region of interest 
100%.  

ResNet-50 performance: Accuracy; 
Precision; Recall and F1 score (in %) listed 

respectively:  
Full radiographs:  83%, 78%, 83%, 84%.  

Manual localisation (regions of interest 
provided by experts):  93%, 93%, 94%, 

94%.   
AUC for fracture detection 0.9807; 

for classification: 0.9475 on manual ROI.   
Automatic localisation (AlexNet):  93%, 94%, 

93%, 93%.   

Regions of interest for fracture 
prediction were examined for 

binary prediction and 
discrimination tasks, with 93.82 

and 88.35% agreement 
respectively.   

No specific explanation for 
misclassifications offered.  

Not explicitly stated 

Kim and McKinnon, 2018.   
UK 

AUC (ROC) 0.954. Sens: 0.954, spec: 
0.88.  ROC on ML vs. verified report   

None   None   Not explicitly stated 

Kitamura et al., 2019.   
USA 

Best (all 5 models developed used 
together):  accuracy: 0.81, sensitivity: 0.80, 
specificity: 0.830, positive predictive value 

(PPV): 0.82, negative predictive value (NPV): 
0.81.   

None   None   Yes – available on the corresponding author’s 
GitHub (for convenience: 

https://github.com/GeneKitamura)  

Krogue et al., 2020.   
USA 

Binary accuracy, sensitivity, specificity, AUC 
and Cohen’s kappa: 93.8%, 92.7%, 95.0%, 

0.973, 0.877  
Multiclass accuracy:  

90.4% over all classes.  Cohen’s kappa: 
0.862.  

Multiclass sensitivity, specificity and AUC:  
No fracture: 94.5%, 92.6%, 0.972  

Intertrochanteric fracture: 93.3%, 96.9%, 
0.984  

Femoral neck fracture (displaced): 87.5%, 
98.9%, 0.991  

Femoral neck (nondisplaced): 46.2%, 97.8%. 
0.868  

Arthroplasty: 96.9%, 100%, 1.00  

Heat maps: found to “indicate 
high importance to cortical 

outlines” p.8 (ARXIV document)  

Explanation of fracture type 
(multiclass) misclassifications-if 
misclassified the model usually 
predicted some other fracture 

type.  
Localisation errors in six 

radiographs where the hip was 
only partially contained in image.  

Not explicitly stated 

https://github.com/GeneKitamura
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Open reduction, internal fixation: 100%, 
100%, 1.00  

Hip region detection by RetinaNet in all 
images with intersection-over-union (ratio 

of overlap:combined area) of 0.92 with 
manually labelled regions.    

No statistical difference in binary and 
multiclass fracture detection was reported 

between manual and automatically generated 
bounding boxes.  

Human observers (model-quality images) v. 
model: model performed statistically 

significantly better.  
Human observers (full quality images) v. 
model: Model performed better, but only 

statistically significantly better in the ‘resident’ 
group.   

Li et al., 2022. 
China 

Comparison to four hand surgeons. Majority 
vote of hand surgeons v. AI, sensitivity, 

specificity: 76%, 82%; 96%, 94%. 
AUROC for AI 0.919. 

Substantial agreement between surgeons 
and AI (Cohen’s kappa 0.671). 

   

Heatmaps (GradCAM) Occult fracture performance 
calculated – 50% accuracy 

Not explicitly stated 

Lindsay et al., 2018.   
USA 

Set 1 - AUC 0.967.  Set 2 - AUC 0.975.     
Model used to determine effect of ML on non-
specialist clinicians (ED clinicians (MD)) and 
physician assistants (PA)).  A dataset of 266 
radiographs used: clinicians before and after 

model predictions respectively: MDs: 
sensitivity from 82.7% to 92.5%; specificity 
from 87.4% to 94.1%.  PAs: sensitivity from 

78% to 89.9%; specificity from 87.5% to 
93.6%.  Model average:  sensitivity 93.9%; 

specificity 94.5%.   
Qualitatively, the model was ‘generally able’ 
to locate fracture in the same location as the 

subspecialist orthopaedic surgeons.   

Heatmaps (dense conditional 
probability map)   

None   Not explicitly stated 

Ma and Luo, 2021. 
China 

For classification task: 
Hospital images (940 images): Accuracy 
0.9011, precision 0.8973, recall 0.9049, f-

measure 0.9014 
Radiopaedia® images (112 images): 

Accuracy 0.8839, precision 0.8909, recall 
0.8750, f-measure 0.8829 

Initial segmentation of anatomical 
regions using bounding boxes.  

Localisation of fracture not clear.  

None  Not explicitly stated 

Oka et al., 2021.  
Japan 

Accuracy, sensitivity and specificity using 
best number of epochs: 

Not stated None  Not explicitly stated 
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89.2%, 93.5% and 93.6% for datasets A B 
and C for distal radius fractures.  

All datasets (distal radius fractures): 95.7%, 
95.0% and 97.2% accuracy, sensitivity and 
specificity respectively for AP only.  With the 
addition of lateral images: 98.0%, 92.2% and 
90.4% accuracy, sensitivity and specificity.  

AUC for AP only: 0.990, n=540.  AUC AP and 
lateral: 0.991, n=540 

All datasets (ulnar styloid process): 91.1%, 
92.2% and 90.4% accuracy, sensitivity and 

specificity.   
AUC AP (only view mentioned): 0.956, 

n=450. 
Olczak et al., 2017.   

Sweden 
Fracture detection accuracy 83% (95% CI: 

80-87%) for best performing network, (VGG-
16 layer).   

None   Manual review of misclassification: 
fracture visible on another 

examination in the series (not on 
tested image).     

Not explicitly stated 

Sato et al., 2021. 
Japan 

Accuracy, sensitivity, specificity, f-value and 
AUC for fracture detection by CNN: 96.1%, 

95.2%, 96.9%, 0.961, 0.99. 
Model improved clinicians’ accuracy: 

84.7% before AI to 91.2% following AI; 
sensitivity: 83.4% to 90.6%; specificity: 

88.7% to 93.4%.   
 

GradCAM 39 of 1000 images misclassified 
by AI.  Inspection of 

misclassifications indicate that 24 
fractures were missed, mostly 
including minimally displaced 

fractures. 15 false positives were 
identified, although there was not 
a suitable explanation provided. 

GradCAM identified correct region 
on 20 fracture images 

Not explicitly stated 

Shahnavazi and 
Mohamadrahimi, 2023. 

Iran  
**reported according to CLAIM 

checklist ** 

For segmentation (intersection over union 
(IoU) 94.53% and dice coefficient 91.77%.   

Object detection, mean precision reported for 
IoU threshold of 0.5 and 0.75 pf 98.66% and 

57.90% respectively.   
Accuracy, sensitivity and specificity of 

classification model: 91.67%, 100% and 
83.33%. 

Comparison to human (dentist) performance: 
accuracy 91.67% and 87.22%; model and 

human respectively and sensitivity 100% and 
82.22% and specificity 83.33% and 92.22% 

AI:human respectively.  

Segmentation extracts area of 
focus.  

Classification task (fracture/no 
fracture) assumed to be binary 

outcome – positive and negative 
for fracture 

None Not explicitly stated 

Son et al., 2021. 
Korea 

Following Single-scale Luminescence 
Adaptation Transform (SLAT) and Multi-scale 

LAT for 2 classes (i.e., shape of fracture – 
shear or linear) or 6 classes (i.e., location of 

fracture – parasymphysis, body, angle, 
ramus, condyle, coronoid): precision, recall 

and F1 score respectively: 

Bounding boxes Vague – indication that the model 
did not discern fractures at the 

angle of the mandible well. 

Not explicitly stated 
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2 class task: 0.985, 0.691, 0.812 
6 class task: 0.975, 0.794, 0.875 

Tanzi et al., 2020.  
Italy, Sweden  

Using three Inception V3 
networks: Accuracy (over five-folds): 

Broken/unbroken: 0.91  
A/B: 0.87  

A1/2/3: 0.61  
Average accuracy (for three classes): 0.86  
Average accuracy (for five classes): 0.80  
Addition of further training for last two 

networks with A1,2 and 3 fracture training 
set + additional binary network (optimal 
performance) (precision, recall, F1 score, 

respectively):  
Unbroken:0.93, 0.90, 0.91  

B: 0.85, 0.83, 0.84  
A1: 0.49, 0.54, 0.51  
A2: 0.5, 0.55, 0.51  

A3:  0.73, 0.73, 0.73  

Grad-CAM heat maps: 
differentiation of focus for type A 
and type B fractures identified.  

Inspection of poor performing 
discriminations by specialists 

identified issues with 
discrimination of A1 and A2 

fracture – additional training and 
binary network to improve 

performance as described under 
‘performance metrics/ results’ 

heading.    

Not explicitly stated 

Tanzi et al., 2022. 
Italy, France 

ViT classified 83% of entire test set.  
Precision, recall and F1 respectively: 0.77, 

0.76 and 0.77. 
ViT accuracy on held-out test set (150 

images) used for comparison with clinicians 
(balanced set, therefor accuracy used as a 

metric): 0.91.  Clinicians’ accuracy improved 
with use of ViT: residents increase of 0.37, 

radiologists increase of 0.15. 
Precision, recall, F1 score, respectively:  

Unbroken:0.95, 0.94, 0.95  
A1: 0.66, 0.66, 0.66  
A2: 0.77, 0.66, 0.71  
A3:  0.92, 0.92, 0.92  
B1: 0.74, 0.93, 0.82  
B2: 0.79, 0.69, 0.74  
B3:  0.56, 0.56, 0.56  

Attention maps  Attention maps analysed by a 
team of clinicians to ensure the 

model is focussing on correct area 
– misclassifications not explicitly 

discussed.   

Not explicitly stated 

Urakawa et al., 2019. Japan VGG-16 was compared with five orthopaedic 
surgeons on 334 cropped images: Accuracy, 
sensitivity, specificity and AUC respectively:  

VGG-16: 95.5, 93.9, 97.4, 0.984  
Orthopaedic surgeons: 92.2, 88.3, 96.8, 

0.969  

None stated  None stated  Not explicitly stated 

Ureten et al., 2022. 
Turkey 

VGG-16, ResNet-50 and GoogLeNet 
(accuracy, sensitivity, specificity and 

precision respectively): 
Group 1 (wrist fracture and normal): 

VGG-16: 93.3, 96.8, 90.3, 89.7 
ResNet-50: 88.9, 94.9, 84.2, 82.4 
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GoogLeNet: 88.1, 90.6, 85.9, 85.3 
Group 2 (phalanx fracture and normal): 

VGG-16: 84.0, 84.1, 83.8, 82.8 
ResNet-50: 79.4, 78.5, 80.3, 79.7 
GoogLeNet: 81.7, 81.3, 82.1, 81.3 

Group 3 (overall accuracy for all three 
classifications): 

VGG-16 83.4, ResNet-50 78.4; GoogLeNet 
76.4 

Wang et al., 2021. 
China  

Average precision (AP) for best combination 
of lead and support backbone: 88.7% 

Regions of interest (ROI) None  Not explicitly stated 

Yu et al., 2020.  
USA  

Binary classification sensitivity, specificity, 
accuracy and AUC: 97.1%, 96.7%, 96.9%, 

0.9944  
Multiclass classification sensitivity, specificity 

and accuracy for:  
Normal: 95.8%, 94.3%, not stated  
Subcapital: 84.1%, 92.8%, 91.3%   

Intertrochanteric: 76.8%, 94.5%, 90.9%  
Subtrochanteric: 20%, 99.1%, 95.4%  

Binary classification (human readers: – MSK 
radiologists and radiology 

residents) sensitivity, specificity, accuracy:  
100%, 98.4%, 99.2%  

Multiclass classification (human readers: – 
MSK radiologists and radiology 

residents) sensitivity, specificity and accuracy 
for:   

Subcapital: 83.1%, 99%, 95.5%  
Intertrochanteric: 97%, 92.9%, 93.9%  
Subtrochanteric: 66.7%, 100%, 98.5%  

Activation maps (heat maps)  All heat maps agreed with ground 
truth with the exception of the 
subtrochanteric classification, 

suggested due to the training set 
not being large enough to cover all 

fracture morphologies.  

Not explicitly stated 
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2.7 Recommendations 

A larger-scale review should be conducted to establish the state-of-the-art of AI systems used 

for fracture identification in all relevant radiographic imaging modalities, for example, 

including, but not limited to, computed tomography, magnetic resonance imaging and nuclear 

medicine. A further review using the literature described here, with particular focus on 

programming specifics may of additional use to developers of AI systems for fracture 

detection purposes.  

Only one study (Olczak et al., 2017) investigated the ability of a range of networks to identify 

fracture on multiple anatomical areas.  The authors, however, do not report any findings 

suggesting a correlation between the performance of a particular network and anatomical 

area.  Future studies investigating this and identifying any networks which may perform 

better on specific anatomical areas/regions, would be useful in directing efficient 

development of anatomy-specific AI systems.  

Further studies should investigate if different AI models or specific modifications to existing 

AI models would detect different types or locations of fracture for example, the study by 

Tanzi et al. (2020) modified a cascade of three Inception V3 models by the addition of a 

binary network to better discriminate between two classes which the model was unable to 

discern.  

Many of the studies reviewed here used re-sized images.  Research should be undertaken to 

investigate the effect of using full scale images for AI interpretation as this would more 

accurately replicate the clinical situation (as per recommendations by Krogue et al., 2020).  

AI studies report findings in a way that may not be interpretable by all clinicians.  An 

assessment of the current knowledge and educational needs of clinicians should be carried 

out to allow for targeted educational provision to upskill the workforce in AI (conducted in 

Chapter three of this thesis). 

Only one study included in this review was tested on prospective clinical data.  Information 

on the use of AI in the clinical radiology setting would allow insight into the type of tools 

being used currently by medical imaging professionals and the systems which could be 

developed to meet clinical need.   
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Some forms of explainable AI have been utilised in the included studies, however the impact 

of the format of feedback has not been included.  Further study investigating user preference 

and impact on user performance should provide direction to clinical AI development for 

decision support tasks (conducted in Chapters four and five of this thesis). 

2.8 Conclusion 

As medical AI systems develop, the need to assess the impact in the clinical setting is of 

paramount importance due to the low level of error tolerance in this setting.  The need to 

further develop systems to integrate into the radiology workflow should be the focus of 

further studies.  This cannot begin until the ‘best’ systems to use and methods of testing are 

determined.  Analysis of the systems currently being produced will allow focussed research 

and development.  This is not possible without a standardised system of reporting, permitting 

assessment of the performance of models currently being developed.   Standardised reporting 

of all aspects of the study (based on, for example, the CLAIM checklist (Mongan et al., 

2020)) with transparent methodologies, code availability and understandable, appropriate and 

uniform reporting metrics will permit study replication, robust systematic reviews and meta-

analyses.  This may enhance the trust of the end users of these systems to and provide more 

focussed direction for development of clinically useful systems, however user input should be 

determined and considered at each stage of the development process.    
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Chapter 3 - Survey of UK radiographers 

The previous chapter presents findings from a scoping review into the use of AI tools for 

providing diagnostic support in the diagnosis of fractures on plain radiographic images.  The 

motivation for this review was to investigate the current and potential provision of the 

technology for AI assistance in detection of fractures in the trauma setting – a major part of 

the work of diagnostic radiographers. The literature available was presented in an 

inconsistent manner, making comparative analysis difficult.  This suggested that publications 

on AI may be difficult to interpret by clinicians and non-experts in computer science.  Many 

studies were retrospective and therefore an indication of the performance of the tools in the 

clinical setting were not investigated.  The scoping review indicated particular issue with the 

metrics used to report findings of AI performance studies.  These metrics may be unfamiliar 

to clinicians and therefore make it difficult to interpret the literature critically.  It is therefore 

important to investigate the perception of the knowledge, skills and confidence of the 

clinicians who will be using AI systems, in terms of both the current use, areas for future 

development and the impact on those using or who will be using AI-based clinical decision 

support tools.  Additionally, it is clear from the literature that there are many AI applications 

in development for use in radiography.  Determining diagnostic and therapeutic 

radiographers’ educational needs, perceptions of the current landscape of AI in the clinical 

setting and their perceptions of how AI will impact the profession in the future is timely as AI 

systems begin to be integrated into the clinical setting. This knowledge will allow for critical 

engagement with AI and to guide useful development and deployment of clinical AI tools. 

The final section of this survey (section 3.5) was open to reporting radiographers only who 

currently use or may be using AI based decision support tools in the future, such as the type 

described in the scoping review.  Therapeutic radiographers were also included in this study 

to give a broader perspective of the perceptions of AI amongst radiography professionals. 

Results from this study have been published in the form of three papers: 

(i) Rainey, C., O’Regan, T., Matthew, J., Skelton, E., Woznitza, N., Chu, K-Y, Goodman, S., 

McConnell, J., Hughes, C., Bond, R., McFadden, S., Malamateniou, C. (2021b) Beauty is in 

the AI of the beholder: are we ready for the clinical integration of artificial intelligence in 

Radiography? An exploratory analysis of perceived AI knowledge, skills, confidence and 
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education perspectives of UK radiographers. Frontiers in Digital Health. 3. 

https://doi.org/10.3389/fdgth.2021.739327 (Appendix 3.1) 

(ii) Rainey C., O’Regan, T., Matthew, J., Skelton, E., Woznitza, N., Chu, K-Y, Goodman, S., 

McConnell, J., Hughes, C., Bond, R. Malamateniou, C., McFadden, S. (2022a) An insight 

into the current perceptions of UK radiographers on the future impact of AI on the 

profession: A cross-sectional survey. Journal of Medical Imaging and Radiation Sciences. 53 

(3) https://doi.org/10.1016/j.jmir.2022.05.010 (Appendix 3.2) 

(iii) Rainey C., O’Regan, T., Matthew, J., Skelton, E., Woznitza, N., Chu, K-Y, Goodman, S., 

McConnell, J., Hughes, C., Bond, R. Malamateniou, C., McFadden, S (2022b) UK reporting 

radiographers’ perceptions of AI in radiographic image interpretation - Current perspectives 

and future developments. Radiography. Volume 28 https://doi.org/10.1016/j.radi.2022.06.006 

(Appendix 3.3) 

 

 3.1 Introduction 

Despite evidence to demonstrate technological advances in AI, implementation of these 

technologies into the clinical setting has been perceived differently across the health care and 

medical professions globally.  Waymel et al. (2019) surveyed 270 senior radiologists and 

radiology registrars in France and reported an optimistic view, where clinicians felt that 

implementation of AI will have a positive impact on clinical practice, improving reporting 

efficiency, reducing medical error and improving patient care.  A Korean survey of 669 

doctors support this, reporting that 62% of those surveyed felt that AI would have benefits in 

speeding up the collection of data.   

There is contradictory opinion in the literature on the impact of AI on the radiology 

profession.   A German study by Pinto dos Santos et al., (2019) found that 83% of 263 

medical students felt that AI will never replace the radiologist, however this is contradicted 

by other studies of doctors, nurses and ‘technologists’ reporting fear that their role would be 

replaced by AI in the future (Oh et al., 2019; Abdullah et al., 2020; Park et al., 2020).   

As mentioned in Chapter one, there is a lack of trust and acceptance of AI in the professional 

population, which may lead to barriers to adoption of the technology (Philpotts, 2009; 

https://doi.org/10.3389/fdgth.2021.739327
https://doi.org/10.1016/j.jmir.2022.05.010
https://doi.org/10.1016/j.radi.2022.06.006
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Kitamura and Marques 2021). Respondents to both the Korean study by Oh et al. (2019) and 

the German study by Pintos Dos Santos et al (2019) found that medical professionals are not 

confident in the output of an AI system for diagnosis, with 79% of respondents to the Korean 

study favouring the doctor’s opinion over that of the AI and 56% of the respondents to the 

German study expressing that AI will be unable to provide a definitive diagnosis.  

It has been predicted that AI will change the face of healthcare and that mechanistic roles will 

be replaced by AI (French and Chen, 2019; Oh et al., 2019; Mehrizi et al., 2020; Ryan et al., 

2021). To ensure the optimal integration of AI in healthcare, the end user should be central to 

development, procurement and deployment of these systems clinically.  The creation of new 

clinical roles such as AI ‘champions’ have been suggested to accomplish this (ISRRT and 

EFRS, 2020; Strohm et al., 2020; SoR, 2022). However, much of the literature highlights 

clinicians’ lack of understanding in AI technologies.  Studies by Oh et al., 2019; Pinto Dos 

Santos et al., 2019; Waymel et al., 2019 and Abdullah et al., 2020, report that clinicians feel 

that they have received insufficient information on AI and would attend additional training if 

it were available.  Medical students report that they have had no training in AI and that they 

feel it should be made a compulsory part of the preregistration curriculum (Pinto Dos Santos 

et al., 2019; Sit et al., 2020).  Recent research in the UK by the Royal College of Radiologists 

(RCR, 2021) has found that this lack of training my impact the number of medical students 

choosing to specialise in radiology after graduation.  This is supported by findings from 

another UK study by Sit et al. (2020), reporting that 48% of 484 medical students indicated 

that they would be less likely to consider a career in radiology due to the impact of AI on the 

profession.  Similarly, a survey of 156 medical students in the United Stated of America 

(USA) found that 44% were reluctant to specialise in radiology due to AI (Park et al., 2020).  

Due to current workforce shortages reported by both the Royal College of Radiologists 

(RCR) and the Society and College of Radiographers (SCoR), discussed in Chapter one, it is 

important to understand and mitigate against the potential negative impact of AI on the 

profession in terms of recruitment and retention.  The perception of radiographers to AI in the 

limited available literature is contradictory.  Some literature would suggest that radiographers 

are keen to engage with AI, some suggest that radiographers feel that AI may deplete or 

threaten their jobs in the future whilst others feel it may lead to more advanced role 

developments (Chen et al., 2021; Wong et al., 2020; American Society of Radiologic 

Technologists, 2019; Ryan et al., 2021). Abuzaid et al. (2020) surveyed the opinions of 34 
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radiologists and 119 radiographers in the United Arab Emirates (UAE) on their willingness to 

accept AI into practice. Respondents were excited and ready to embrace AI, however 17% of 

respondents stated they had no knowledge of AI, 40% were self-taught and 73% reported 

difficulty accessing training courses to fill the knowledge gap for staff. Further work by 

Botwe et al. (2021) surveyed 151 radiographers in Ghana and found that although 83% would 

embrace the implementation of AI into practice, 83% also expressed concerns about AI 

related errors and job displacement, citing education as a means to alleviate these fears. 

Similar fears and apprehensions regarding trust and knowledge gaps have been expressed by 

radiographers in Canada, America and Ireland (American Society of Radiologic 

Technologists, 2019; Ryan et al., 2021; Wong et al., 2021). The Irish survey of 318 

diagnostic and 77 therapeutic radiographers has identified resistance of AI use for patient 

facing roles (Ryan et al., 2021) indicating that radiographers would always have the primary 

role when caring for patients.    

As described in Chapter one, increased use of radiology services, coupled with current 

shortages in both the radiology and radiography workforces, has resulted in reporting 

backlogs, potentially impacting patient care (CQC, 2018; RCR, 2019; SoR 2021; NHS 

England 2022).  The increased use of radiographer reporting together with the integration of 

digital technologies has been proposed to help alleviate the problem (NHS, 2019b; NHS, 

2020b). However, indication of lack of confidence and a dearth of adequate training in digital 

technologies and AI discussed in the literature, mean that reporting radiographers as end 

users of this technology, may need further support and training.  Reporting radiographers, as 

end users of AI for image interpretation tasks, are well placed to advise developers on the 

design of such systems to support their role.   This information from this group of 

professionals is lacking in the literature currently. 

The Topol review (NHS, 2019b) reiterates the need for education in AI to be integrated into 

preregistration programmes, and the necessity to upskill the existing workforce in AI 

applications and technology. New Health and Care Professions Council (HCPC) guidelines 

have been created to include knowledge of the principles of AI and DL, including how to 

assess the performance of these algorithms (p.45) (HCPC, 2020).  Recent recommendations 

and standards jointly delivered by the International Society of Radiographers and 

Radiological Technologists (ISRRT) and European Federation of Radiographer Societies 

(EFRS) (2020), state that radiographers need to have functional and performance assessment 
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knowledge of AI systems. This is further supported by guidance from The Society and 

College of Radiographers’ AI Working Party which offers recommendations for education 

and training of radiographers on AI theory and applications (SoR., 2021), thus promoting and 

ensuring a level of AI literacy in both pre and post registration radiographers.    

 3.2 Aim and objectives 

 3.2.1 Aim 

The aim of this survey was to establish a baseline indication of UK radiographers’ 

knowledge, skills and confidence in AI, to seek their perception of the future of the 

profession with AI and to investigate reporting radiographers’ perspectives on the current and 

future developments of AI for image interpretation. 

 3.2.2 Objectives   

1. To investigate UK radiographers’ current perception of their knowledge, skills and 

confidence in AI as used in clinical radiography. 

 

2. To establish UK radiographers’ training needs and delivery preferences for any AI 

education provision.   

 

3. To investigate UK radiographers’ attitudes on the future of the profession with AI. 

 

4. To investigate the perspectives of reporting radiographers on the current and future 

developments of AI for clinical decision support when providing diagnosis on 

radiographic images. 

 3.3 Methods 

 3.3.1 Patient-public involvement 

A patient-public involvement group was set up, comprised of key stakeholders 

(radiographers, n=2, a retired reporting radiographer n=1 and patients n=2), who advised on 

this survey, and all studies included in this thesis.  The content of the questionnaire was 

discussed over one face-to-face meeting via Microsoft® Teams and further update and 
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feedback was sought via e-mail communication.  Feedback for this study was sought on 

appropriateness of the topics contained in the survey and the proposed dissemination strategy, 

as recommended by the Health Research Authority (HRA, ND) 

 3.3.2 Questionnaire design 

An electronic survey was developed using the Qualtrics® survey platform, and questions 

were based on suggestions from experts/radiographers interested in AI in radiography. Many 

of these experts are members of the ‘Society and College of Radiographers Artificial 

Intelligence Working Party’, who have a range of senior clinical and academic experience. 

The survey content drew upon current research evidence as outlined in Chapter one and 

section 3.2, as well as from the themes presented on the SCoR AI guidance document for 

radiography professionals (SoR, 2021).   

The questionnaire was developed in the Qualtrics® platform.  This allows for open 

dissemination via an internet link, hence optimising participant reach (Evans and Mathur, 

2018).  This survey was designed and reported to adhere to the Checklist for Reporting 

Results of Internet E-Surveys (CHERRIES) (Eysenbach, 2004) and approved by City, 

University of London, School of Health Sciences Research Ethics Committee (ETH1920-

1989) (Appendix 3.4).  No incentives were offered to complete this survey.   

This survey was available from the 12th of February 2021 to the 6th of April 2021 by 

accessing an internet link. It was set to collect fully anonymous responses, therefore neither 

IP addresses nor any other identifying information was collected from participants.  An 

opening slide gave participants information on the study rationale and aim, provided 

information on current literature on the subject, informed participants of the approximate 

time commitment to complete the survey and gained consent to proceed (Appendix 3.5). 

Participants were permitted to freely navigate back to previous questions, save responses and 

finish the survey later in order to maximise response completeness, therefore, time for 

completion of the survey was not analysed. All responses were included in data analysis, 

even if the survey was not complete.  

 3.3.2 E-survey instrument 

The questionnaire consisted of ninety-one questions in total, divided into five main sections 

or ‘blocks’ –  
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(i) participant demographics,  

(ii) AI knowledge,  

(iii) skills and confidence in AI (including questions on education provision),  

(iv) perceptions of the impact of AI on clinical practice  

(v) expectations for the future of radiography with AI and finally,  

(vi) the effect AI may have on image perception and reporting.   

Most questions were either multiple choice format, with some free text options to allow for 

more detailed responses or Likert scale questions, ranging from three to five possible 

responses.  The number of response options was chosen intentionally to give the option of a 

neutral response.  Only one question required a fully open response. 

The demographic section included seven questions to gather data on the age, number of 

years’ experience, highest academic qualification, region of the UK, clinical setting, and 

nature of current role.  This information was requested for correlation analysis. An eligibility 

filtering question placed at the beginning of the survey enquired if the respondent was a 

practicing or student radiographer, ensuring that anyone other than a radiographer did not 

complete the survey.  If the participant responded that they were not a radiographer, they 

were redirected to the end of the survey and no further data was collected.   

The survey is available in full in Appendix 3.5. 

 3.3.3 Pilot study 

The initial survey was shared with the co-authors of the resultant papers (Rainey et al., 

2021b, Rainey at al., 2022a; Rainey et al., 2022b) for approval. Options regarding the type of 

qualification, type of specialism and the provision of an option for 4th year student for the 

students in Scottish universities were added based on this feedback.  

The survey was then piloted on a group representing the target audience including two 

members of academic staff from Ulster University (experience > 15 years), three Ulster 

University students (years one, two and three of the undergraduate programme) and two 

qualified radiographers of different levels of experience (experience 15 years and >20 years).  
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Feedback was sought on content of the survey, usability of the survey platform and time 

taken to complete.   

Minor formatting issues involving difficulty in navigating to the next question were reported 

and fixed before final dissemination of the survey. No other changes were made and feedback 

from the pilot study participants was otherwise positive, on both the content of the survey and 

the functionality of the survey platform.  Participants indicated that it took between 10 and 15 

minutes to compete the survey, which is considered an appropriate time for an online survey 

to minimise attrition (Kantar, 2022) 

 3.3.4 Reliability and validity 

For each new survey face and content validity are vital measures of quality (Tavakol and 

Dennick, 2011).  Face validity is a subjective measure which concerns whether or not the 

instrument appears to be assessing what it intended to measure (Streiner et al., 2015).  This 

can be assessed in terms of ease of use of the survey platform, readability of questions posed 

(including clarity of the language used), consistency of formatting throughout the survey.  

This was determined through the piloting phase of the survey (Oluwatayo, 2012). Content 

validity refers to the applicability of the content of the survey to the research question and the 

population it will impact (Straub et al., 2004). This was ensured by the design and review of 

this work by the SCoR AI Advisory Board, the content being grounded on relevant research 

evidence, including the SCoR AI guidance document for radiographers and the choice of 

participants for the piloting phase who represented the target audience, including qualified 

professionals (SoR, 2021).  

Internal consistency of the survey was quantified by post-hoc calculation of Cronbach’s alpha 

(α) (Balatar and Brunet, 2012).  Acceptable internal reliability (i.e., greater than α = 0.70 for 

survey-based studies) was found for the scale questions for both professions (α = 0.736 and α 

= 0.777 for diagnostic and therapeutic radiography respectively) (Bland and Altman, 1997). 

 3.3.5 Participants 

All student, qualified and retired radiographers were invited to participate. The survey was 

disseminated via LinkedIn® and Twitter® employing non-probability snowball sampling, to 

encourage participation from a wide audience. In addition, the link was shared by the 
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members of the SCoR AI Advisory Group through their professional networks, including 

academic and clinical centres.   

 3.3.6 Data Analysis 

The IBM SPSS (version 23) was used for analysis of the data (IBM, 2019).  Descriptive 

statistics, in the form of frequencies have been reported for most of the responses.  One 

question required an open-ended response, which has been analysed by thematic content 

analysis, using NVivo (version 12) (NVivo, 2018). Descriptive and inferential statistics were 

calculated using SPSS and graphs produced using MS Excel® (Microsoft, 2018).  Data was 

presented in percentages and counts/frequency for single response questions and 

counts/frequency for questions where more than one response was permitted. There were no 

weightings applied to any questions for analysis.   

Combinations of some of the variables have been analysed to determine if any patterns 

emerged for hypotheses to be proposed for future studies (Table 3.1).  

Spearman’s rank (rs) and Kendall’s tau-b (v) correlations between ordinal data were run 

using IBM SPSS®.  Responses which did not fit with the ordinal classification of the data 

were recategorised as ‘missing’ before calculation, such as level of highest qualification 

option ‘other’ and years’ experience options ‘I do not work in the clinical setting’ and ‘I am 

in retirement’.  Missing data were excluded pairwise, meaning that data could be included 

even if the respondent did not enter a response to some other question.  Bootstrapping was 

activated for 1,000 samples at 95% confidence levels. Subgroup analysis was then carried out 

to better understand the reason for any statistically significant correlations between ordinal 

data. The magnitude of the relationship was determined using the suggestion by Cohen 

(1988, pp. 79-81): 

• Small .01 to .29 

• Medium .30 to .49 

• Large .50 to 1.0 

Chi-square test for independence was run for comparisons between nominal and ordinal 

data.  In many cases, assumptions necessary to allow accurate interpretation of the Pearson’s 

chi-square were found to be violated due to small response rate in some categories, so the 

‘likelihood ratio Chi-square’ statistic was used as an alternative.  The likelihood ratio 
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compares the likelihood of obtaining the observed data compared to the likelihood of 

obtaining the data if there is no significant difference in the variables, i.e., the data which 

would have been observed if there is no statistically significant relationship between variables 

(p less than or equal to 0.05) (Field, 2013).  Cramer’s V (V) was then performed to quantify 

the magnitude of any relationship. The magnitude of any relationship found was determined 

as follows: 

• Small = .07 

• Medium = .21 

• Large = .35 

Each crosstabulation was greater than 2 by 2, therefore Cramer’s V is the most appropriate 

value to report to determine the magnitude of the correlations (Pallant, 2007).  To determine 

the values associated with the description of magnitude (i.e., small, medium and large), ‘one’ 

was subtracted from the smallest number of variables, in this case the independent variables 

of gender, role and UK region (i.e., three categories).  The resultant number, i.e., ‘two’, was 

used to determine the value attributed to the strength of the relationship, as listed above 

(Gravetter and Wallnau, 2004 (p.605), cited in Pallant, 2007). 

The resultant cross tabulations were then interrogated to identify any major differences 

between observed and expected counts within subgroups for significant findings.   
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Table 3.1: Combinations of responses for correlation analysis 

Chi squared (nominal and nominal or nominal and 

ordinal data): 

Kendall’s and Spearman’s (ordinal and ordinal 

data): 

Independent variable:  Gender, role and UK region 

and… 

Independent variable: Age, years’ experience, level 

of highest academic qualification and… 

Diagnostic and therapeutic radiographers: Diagnostic and therapeutic radiographers: 

Understanding of AI (yes/no/unsure) Understanding of AI (Scale 0-10) 

Confidence using AI technologies (4-point Likert) Confidence using AI technologies (4-point Likert) 

Confidence in AI terminology (4-point Likert) Confidence in AI terminology (4-point Likert) 

Perception of adequacy of level of training (7-point 

Likert) 

Perception of adequacy of level of training (7-point 

Likert) 

Perception of having developed/learned some skill in 

AI (7-point Likert) 

Perception of having developed/learned some skill in 

AI (7-point Likert) 

Opinion on availability of training (7-point Likert) Opinion on availability of training (7-point Likert) 

AI will change daily clinical practice AI will change daily clinical practice 

AI will reduce the workload of the radiographer AI will reduce the workload of the radiographer 

AI will make my practice more patient centred AI will make my practice more patient centred 

AI will ensure consistent patient safety AI will ensure consistent patient safety 

AI will ensure consistent patient care pathways AI will ensure consistent patient care pathways 

AI will improve and standardise data acquisition  AI will improve and standardise data acquisition  

AI will improve and standardise pre and post 

processing 

AI will improve and standardise pre and post 

processing 

AI will make ‘radiography’ more attractive to me AI will make ‘radiography’ more attractive to me 

AI will reduce career opportunities in radiography AI will reduce career opportunities in radiography 

Reporting radiographers only: Reporting radiographers only: 

Understanding of how an AI makes decisions Understanding of how an AI makes decisions 

Confidence explaining AI to Health care practitioners Confidence explaining AI to Health care practitioners 

Confidence explaining AI to service users/patients Confidence explaining AI to service users/patients 

Feel more certain if AI agreed with interpretation Feel more certain if AI agreed with interpretation 

Feel less certain if AI disagree with interpretation Feel less certain if AI disagree with interpretation 

Likelihood to seek a second opinion if AI disagree with 

interpretation 

Likelihood to seek a second opinion if AI disagree with 

interpretation 

 

Thematic analysis using NVivo® was performed to analyse qualitative responses.  Responses 

to the open-ended question ‘Can you describe the term Artificial Intelligence in your own 

words?’ were read and coded.  Codes were reread and collated into key themes.   
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Data was presented using bar charts, where appropriate. The standard error of proportion was 

calculated for each of the graphs representing question responses using the formula: 

Equation 3.1: 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝐸𝐸𝑆𝑆𝑆𝑆𝐸𝐸𝑆𝑆 𝐸𝐸𝑜𝑜 𝑝𝑝𝑆𝑆𝐸𝐸𝑝𝑝𝐸𝐸𝑆𝑆𝑆𝑆𝑝𝑝𝐸𝐸𝑆𝑆 =  √((𝑝𝑝/100) ∗ (1 − (𝑝𝑝/100))/𝑆𝑆) ∗ 100 

Where p = proportion (% response), n = sample size 

 3.4 Results (main survey) 

 3.4.1 Demographics 

Cleaning of the data removed any blank responses from the initial participants. A total of 415 

radiographers responded to the survey.  Four participants selected the option of “no consent”, 

leaving 411 survey responses for analysis (99%). Full results are presented in Table 3.2. 

Of the total respondents, 66.4% stated that they were practicing diagnostic radiography 

(n=273), 14.4% were diagnostic radiography students (n=59), 16.1% stated they were 

practicing therapeutic radiography (n=66) and 2.7% were therapeutic radiography students 

(n=11).  This calculated to an approximate 1:4 ratio of therapeutic: diagnostic radiographers, 

which broadly represents the UK workforce ratio of 3,794 therapeutic to 20,231 diagnostic 

radiographers (HCPC, 2018).  The most recent data from the HCPC, stated above, is not 

broken down into diagnostic and therapeutic radiography (HCPC, 2021).  Two respondents 

indicated they were practicing both diagnostic and therapeutic radiography, resulting in a 

total of 411 respondents.     

There were responses from throughout the regions of the UK except for therapeutic 

radiographers in the Channel Islands. A range of years of experience was indicated in both 

diagnostic radiography and radiotherapy.  There was representation across all age groups 

except for the over 65 years old group in therapeutic radiography. 

Of the diagnostic radiography respondents (including students), 26% indicated they were 

male, 72.2% female, 0.6% non-binary/third gender and 1.2% preferred not to say.  This is 

similar to the radiotherapy respondents of whom 22.4% responded that they were male and 

77.6% female, which is broadly representative of the UK radiographer workforce, which has 

an approximate 1:3 ratio of male to female (HCPC, 2020). 
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For both diagnostic radiography and therapeutic radiography, most respondents indicated 

their highest level of academic qualification as a BSc (Hons.), with 24.2% (n=78) and 35.5% 

(n=27) respectively.  Those with A-level or equivalent are assumed to be student 

radiographers.  Those who selected ‘other’ were asked for further explanation, with most of 

the respondents across both professions stating they hold a Diploma of the College of 

Radiographers (DCR) (n = 7).  Other responses included conversion degrees such as MRad (n 

= 2), or other types of Master’s degrees such as MEd (n = 1) and MA (n = 2).  

The greatest proportion of participants from both professions indicated that they work in 

university teaching hospitals, closely followed by the district general hospital setting.  Full 

details of other responses are given in Table 3.2. For those who responded ‘other’ in 

therapeutic radiography, two stated they worked in a foundation trust, three in a specialist 

cancer centre, two were students and one stated they were a university lecturer.  Most free 

text responses from the diagnostic radiography participants indicated that they worked in the 

university setting as either an academic or researcher (n = 15), followed by responses from 

students (n = 10). Most of those in clinical practice from both professions indicated that they 

were practicing as a clinical radiographer (39.1%, n=126 and 38.2%, n=29 diagnostic 

radiography and radiotherapy respectively), followed by those choosing the ‘advanced 

practitioner’ option (15.8%, n=51 and 17.1%, n=13 diagnostic radiography and therapeutic 

radiography respectively). 

Respondents were given the option of selecting up to three options from a list to indicate their 

current role, along with a free-text option for further explanation.  Most diagnostic 

radiographers indicated that they were involved in general radiography (n=217) followed by 

CT (n=100).  The responses from respondents in the radiotherapy cohort indicated that the 

majority were involved in treatment delivery (n=54), followed by pre-treatment, simulation, 

contouring and immobilisation (n=35).  From those who selected ‘other’ in diagnostic 

radiography, most responses were ‘cardiac catheterisation’ (n=4) and ‘nuclear medicine’ 

(n=3).  Radiotherapy respondents indicated areas of sub-specialism in breast cancer (n=1), 

research (n=1), stereotactic radiosurgery (n=1) and information management and technology 

(n=1).  
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Table 3.2: Respondents’ demographic details  

  Diagnostic radiography/% Therapeutic radiography/% 
Region of UK where respondents currently work/% England 56.7 (n=183) 88.2 (n=67) 

Scotland 30 (n=97) 9.2 (n=7) 
Northern Ireland 11.1 (n=36) 1.3 (n=1) 
Wales 1.9 (n=6) 1.3 (n=1) 
Channel Islands 0.3 (n=1) 0 (n=0) 

  
Years practicing radiography/% 0-2 years 22.7 (n=75) 23.4 (n=18) 

3-5 years 10.6 (n=35) 16.9 (n=13) 
6-10 years 13.9 (n=46) 11.7 (n=9) 
11-20 years 23.0 (n=76) 23.4 (n=18) 
> 20 years 27.5 (n=91) 22.1 (n=17) 
Not practicing 1.2 (n=4) 1.3 (n=1) 
Retired  1.3 (n=4) 1.3 (n=1) 

 
Age range 18-25 years old 19.3 (n=63) 23.7 (n=18) 

26-35 years old 28.4 (n=93) 26.3 (n=20) 
36-45 years old 27.2 (n=89) 25.0 (n=19) 
46-55 years old 12.5 (n=41) 18.4 (n=14) 
56-65 years old 11.3 (n=37) 6.6 (n=5) 
> 65 years old 1.2 (n=4) 0 (n=0) 

 
Highest academic qualification A-level  14.9 (n=48) 11.8 (n=9) 

BSc 24.2 (n=78) 35.5 (n=27) 
PgCert 19.9 (n=64) 1.3 (n=1) 
PgDip 13.0 (n=42) 6.6 (n=5) 
MSc 19.6 (n=63) 36.8 (n=28) 
PhD/EdD/DProf or equivalent 1.9 (n=6) 3.9 (n=3) 
Other 6.5 (n=21) 3.9 (n=3) 

 
University teaching hospital n=195 n=50 
District general hospital n=103 n=19 
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Clinical setting/counts (respondents were permitted 
more than one selection) 

Private sector n=12 n=2 
Poly-trauma unit n=30 n=0 
Other n=14 n=5 
Mobile unit n=4 n=0 
I do not work in the clinical setting n=25 n=4 

 
Current role/% Clinical radiographer 39.1 (n=126) 38.2 (n=29) 

Undergraduate radiography student 19.6 (n=63) 13.2 (n=10) 
Advanced practitioner 15.8 (n=51) 17.1 (n=13) 
Radiology/ 
Radiographer/ radiotherapy manager 

6.2 (n=20) 6.6 (n=5) 

Consultant radiographer 4.3 (n=14) 13.2 (n=10) 
Academic in radiography: teaching and 
research 

3.7 (n=12) 0 (n=0)  

Other  3.1 (n=10) 6.6 (n=5) 
Clinical academic/ lecturer:practitioner 3.1 (n=10) 1.3 (n=1) 

Assistant practitioner radiographer 1.2 (n=4) 0 (n=0) 
Research radiographer 0.9 (n=3) 2.6 (n=2) 
Academic in radiography: teaching only 0.9 (n=3) 

 
1.3 (n=1) 

Retired radiographer 0.9 (n=3) 0 (n=0) 
PhD researcher radiographer 0.6 (n=2) 0 (n=0) 
Industry partner 0.3 (n=1) 1 (n=0) 

 
Diagnostic radiography  
Sub-specialism/counts (respondents were permitted 
more than one selection) 

General radiography inc. emergency, 
theatre and fluoroscopy 

n=207  

CT n=100  
Reporting n=63  
MRI n=56  
Education n=54  
Interventional n=44  
Mammography n=32  
Ultrasound  n=25  
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Other (diagnostic) n=22  
Radiology manager n=20  
Policy maker/professional advocate n=11  
PACS administrator n=9  
DEXA/DXA n=5  
PET/CT n=3  
PET/MRI n=1  

Therapeutic radiography  
Sub-specialism/counts (respondents were permitted 
more than one selection) 

Treatment delivery  n=54 
Pre-treatment, simulation, contouring, 
immobilisation 

 n=35 

Patient information/ support/ review  n=23 

Treatment planning  n=15 
Management   n=10 
Educator   n=7 
Research   n=7 
Quality assurance/ Quality 
improvement 

 n=7 

Other (therapeutic)  n=7 
DEXA/DXA clinical applications  n=0 
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 3.4.2 Perceived knowledge, skills and confidence in AI 

An understanding of perceived knowledge, skills and confidence in AI was sought through an 

open question asking respondents to describe the term ‘artificial intelligence’ in their own 

words followed by a number of Likert-scale questions and a question asking respondents to 

indicate their level of understanding of AI on a scale of 0 to 10. 

3.4.2.1 Knowledge 

Responses to the open-ended question asking participants to describe the term ‘AI’ were 

initially coded using thematic analysis for each of the professions, resulting in 21 codes 

(Table 3.3 and Figure 3.1a and b).  Most codes were common across both professions (Figure 

3.2).   

Four general themes emerged:  

(1) clinical applications of AI,  

(2) advantages of AI,  

(3) disadvantages of AI,  

(4) technical information of AI technology (Table 3.3). 

The three most frequently occurring codes in the responses from the diagnostic 

radiographers’ cohort included:  

(i) understanding of AI as used in the identification of pathology or abnormality (clinical 

applications), for example: 

“reporting, without a practitioner looking at the film. Used to detect cancers…” 

”…report diagnostic images” 

(ii) statements regarding the AI tasks which would normally require human input for 

example: 

“…automated use of computers to perform human tasks.” 

“…computer algorithms performing tasks that usually rely on human interaction.” 
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(iii) comments with evidence of deeper understanding of ‘modern’ AI systems, such as 

descriptions of systems which learn from example and ‘computer vision’ for example: 

“...machine learning.” 

“…can be programmed to develop themselves on their own writing their own code, developer 

might even cease to understand the code.” 

The three most frequently occurring codes from the therapeutic radiographers’ responses 

were similar, with most comments relating to:  

(i) changing radiography workflows (AI replacing or augmenting tasks which require human 

input) for example: 

“…the use of technology, reporting and verify systems, treatment planning systems to support 

patient pathway.” 

(ii) technical description of ‘modern’ AI systems, for example: 

“…use of computer algorithms to do mundane tasks e.g., outlining OAR (organs at risk).” 

“The use of complex interconnecting self-designing algorithms to achieve a specific 

outcome…” 

(iii) clinical applications of AI in radiotherapy, such as segmentation, planning and/or 

contouring, for example: 

“Automated RT planning to standardise planning” 

“Using software algorithms to calculate/determine outcomes previously determined 

manually, such as auto-contouring…” 

There were very few comments regarding the disadvantages of AI systems in both 

professions, with only two comments from DR and one from the TR cohort.  An example 

quote from a diagnostic and therapeutic radiography respondent is noted below: 

Diagnostic radiography respondent: “Its current role is very 'task dependent' and limited as it 

struggles to understand poor quality images, artifacts, or normal variants, or post-surgery 
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image appearances, often it is classed the 'next best thing' but most likely it is the new 

'emperors clothing' “ 

Therapeutic radiography respondent: “Human reliance on technology… create(s) more work 

to me at work for simple decision-making process.” 

Examples of terms associated with modern AI technology and development were provided in 

the question represented in Figure 3.3 – ‘algorithms, deep learning, neural networks, 

computer-aided detection diagnosis, data mining and over-fitting’.  Respondents were asked 

how confident they were in their understanding of these terms.  The results demonstrate that 

50% (n=123) of diagnostic radiography and 42.3% (n=35) of radiotherapy respondents were 

‘not confident at all’ using the terminology associated with modern AI. 

3.4.2.2 Skills 

The majority of both diagnostic radiography and radiotherapy respondents indicated that they 

do not feel they have developed any skill in AI used in radiography (n=164 and n=48 of 

diagnostic and therapeutic radiography respectively) (Figure 3.4).  Out of the other options 

presented, most respondents in both professions indicated that any skill has been developed 

from their own, self-directed learning (n=73 and n=11 diagnostic and therapeutic radiography 

respectively). The least chosen option for both professions was the ‘CPD in a higher 

education establishment’ option.  The ‘other’ option was selected by 40 respondents over the 

two professions.  The diagnostic radiography respondents indicated that they have undertaken 

assignments or dissertations in AI (n=8), have read around the subject/taken online courses 

(n=4), have had equipment training or in house training (n=4), contributed to a research 

project conducted by someone else (n=3), listened to presentations at conferences (n=3) or 

had some form of AI training integrated into a postgraduate qualification (n=3).  The 

radiotherapy comments included workplace/applications training or through current use 

(n=4), knowledge from a previous career (n=1) and one respondent stated that they work for 

an AI company. 

3.4.2.3 Understanding 

Regarding understanding of AI, more of the diagnostic radiography respondents indicated 

that they understood the term AI than the therapeutic radiography respondents (yes, no, 

unsure) (‘yes’ response: 78.7% n=229 diagnostic radiography; and 52.1% n=37 therapeutic 
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radiography) (Figure 3.5a and b). A slightly smaller percentage of diagnostic radiographers 

stated that they felt confident in using AI technologies in radiography, compared to the 

radiotherapy responses (28.2% n=82 and 33.8% n=24 confident enough or very confident, 

respectively) (Figure 3.6). Respondents from both professions indicated a moderate 

understanding of AI when asked to rate it using a 0 to 10 scale, with 0 representing no 

knowledge at all and 10 representing ‘expert’.  A median response of 6 and 4 (standard 

deviation 2.5 and 2.3) (0 – 10 scale) was reported for diagnostic and therapeutic radiography 

respectively.   

Table 3.3: Coding of qualitative data 

THEMES CODES 

 
Clinical applications of AI  

Anatomy, pathology, identification of pathology or diagnosis  
Tasks which normally require human input / human like qualities  
Decision making problem solving 
Segmentation, planning, contouring 
Speech recognition 
Education and simulation  
Image evaluation and quality – quality control, image acquisition  
Triage / workflow management 

 
Advantages of AI 

Benefits to clinician  
Speed efficiency  
Benefits to patient 
Accuracy 
Service improvements 
Reliable and trustworthy 
Improve outcomes 

Disadvantages of AI Disadvantages 
Displacing or replacing jobs 

Technical description of the 
technology with data science 
terms. 

Modern AI technology 
Old AI -pattern recognition  
‘Robots’ 
Computers thinking for themselves 
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Figure 3.1 a and b: Coding of qualitative responses by profession providing percentage 

response coverage 
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Figure 3.2: Thematic analysis of qualitative responses by profession
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Figure 3.3: Radiographers confidence in their understanding of the underlying 

terminology of AI (error bars represent standard error pf proportion) 

 

Figure 3.4: AI skills development  
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Figure 3.5 a and b: Understanding of the term ‘artificial intelligence’, Diagnostic (left 

pie chart) and therapeutic radiography (right pie chart) 

 

Figure 3.6: Radiographers confidence in AI as used in radiography. 
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 3.4.3 AI skills acquisition and training including future training needs 

Questions were posed to respondents regarding their perceived level of skill in AI, how they 

have developed this skill, the nature of any training they have received and how prepared 

they feel their skills or training has made them for the implementation of AI in the clinical 

setting. 

The majority of respondents indicated that they either disagree or strongly disagree with the 

statement, ‘there is enough training on AI currently available for radiographers’ with a 

‘disagreement’ aggregate (somewhat disagree, disagree and strongly disagree) of 77.4% 

n=220 and 73.9% n=48 and an agreement aggregate (somewhat agree, agree and strongly 

agree) of only 6.7% and 6.1% for diagnostic and therapeutic radiography respectively (Figure 

3.7). 

Both professions indicated they did not feel well trained to implement new technologies and 

AI, with over half (56.5% n=161) of diagnostic radiography respondents indicating they 

either disagreed or strongly disagreed with this statement.  This proportion was only slightly 

lower for radiotherapy (49.2% n=29) (Figure 3.8). 

An aggregate of responses in the disagree categories (somewhat disagree, disagree and 

strongly disagree) and agree categories (somewhat agree, agree and strongly agree) from 

respondents in both professions indicate that they did not feel they had developed skill in AI, 

with ‘disagree’ in diagnostic radiography being higher than ‘agree’ (54.2% n=154 vs. 30.3% 

n=86).  This is similar to the radiotherapy responses (50.8% n=33 vs. 27.7% n=18) (Figure 

3.9).  

To determine the type of training and education requirements needed in radiography, two 

questions were asked.  One question sought to gather information on the content of any 

training – what topic areas radiographers felt should be included in any training delivered, 

and another question on how or in what format this training might be best delivered in. 

Most respondents from both professions indicated that they were interested in learning about 

potential applications of AI and AI technology, techniques and terminology.  Programming 

and computer science and AI development and entrepreneurship were not popular choices 

(Figure 3.10).  The ‘other’ option was chosen by 16 respondents from the diagnostic 

radiography cohort and mostly included comments suggesting uncertainty around what 
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should be included.  Two comments suggested that it is too early to consider any education in 

AI.  

Most respondents indicated that training would be best delivered as part of a preregistration 

degree programme.  E-learning/webinars and study days also received a high proportion of 

the total responses.  All options were selected by some respondents (minimum respondent 

frequency n=92 counts) (Figure 3.11).  Eight diagnostic radiography respondents selected the 

‘other’ option.  Suggestions included, annual CPD days for qualified staff and summer 

schools for pre and post registration radiographers to allow time for this training to take place 

in an already busy academic year.  

 

Figure 3.7: Radiographers perception of the adequateness of training in AI currently 
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Figure 3.8: Radiographers perception of being well trained to implement new 

technologies and AI  
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Figure 3.10: Radiographers’ suggestions for the content of training programmes in AI 
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 3.4.4 Perceptions of AI in current clinical practice 

Questions were posed to explore awareness and applications of AI in the clinical setting.   

Many respondents were unsure if AI was used currently in their clinical setting (43.1% n=121 

and 44.6% n=29, diagnostic and therapeutic radiography respectively).  Of the remainder, a 

greater proportion of therapeutic radiographers indicated that AI was being used in their 

practice (using AI 33.8% n=22; not using AI 18.5% n=12), with the converse true for the 

diagnostic radiography respondents (using AI 20.6% n=58; not using AI 35.6% n=100).  

When asked where AI will have the greatest impact, diagnostic radiography respondents 

indicated reporting (n=145) with treatment planning suggested from the therapeutic 

radiography respondents (n=46) (Figure 3.12 a and b).  Free text answers in the diagnostic 

radiography responses included examples of the use of AI e.g., “screening AAA (abdominal 

aortic aneurysm)” and “stroke recognition”, “recognition and warnings that systems are 

about to fail”, “education” and “research”.  One therapeutic radiography respondent 

commented “treatment planning will become more complex with the influence of AI”.    

Participants were asked to identify which areas of radiography they thought had the greatest 

scope for the development of AI solutions in the future.  Participants could select from 

several options (Figure 3.13a and b) and rate them in order of preference, from 5 – 0 (where 5 

represents most preferred to 0 representing least preferred). A mean score was calculated 

from the number of responses for each score in the chosen option.  The response with the 

highest mean score in the diagnostic radiography responses was ‘CT’ followed by 

‘reporting’, ‘MRI’ and ‘mammography’.  The highest mean score in the therapeutic 

radiography responses was in the ‘treatment planning/optimisation/adaptive planning’ option, 

followed by ‘contouring’ and ‘image acquisition/matching’. Half of the diagnostic 

radiography respondents using the free text option indicated they can only comment on their 

own area of expertise (n=3, out of a total of six free text responses).  Others commented that 

AI will have scope for dose and image quality optimisation (n=1), requesting and vetting 

(n=1) and one respondent commented that AI has scope for development in all modalities 

(n=1).  There were no free text answers to this question in the therapeutic radiography 

responses.  
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Figure 3.12 a and b: Which part of daily work do you currently see being influenced by 

the development and implementation of AI in radiography (diagnostic and 

therapeutic)? (counts) 
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Figure 3.13 a and b: Which areas of radiography (diagnostic and therapeutic) do you 

think there is the greatest scope for the development of AI systems in the future? (mean 

score) 
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3.4.5 Impact of AI on the future of radiography practice, including impact on workload, 

care and safety 

Likert scale questions were used to gain insight into the respondents’ perceptions on how AI 

might impact radiography and professional practice in the future.  

3.4.5.1 Impact on the radiography profession 

The majority in both professions indicated they agreed that AI would change daily clinical 

practice, with an aggregate agreement (strongly agree, agree, somewhat agree) of 79.6% and 

88.9% for diagnostic and therapeutic radiography respectively (Figure 3.14).  A less 

definitive perception was noted in response to the question of AI reducing radiographers’ 

workload with an aggregate agreement of 43.5% n=117 and 54.0% n=34 and disagreement 

aggregates of 27.3% n=73 and 27.0% n=17 diagnostic and therapeutic radiography 

respectively (Figure 3.15).  An even smaller degree of difference in agreement and 

disagreement aggregates was noted in response to the statement ‘AI will make my practice 

more patient centred’, with agreement aggregates of 36.6% n=98 and 45.9% n=29 and 

disagreement aggregates of 22.4% n=60 and 27.0% n=13 for diagnostic and therapeutic 

radiography respectively (Figure 3.16).  The greatest proportion of responses to this statement 

were recorded in the ‘neither agree nor disagree’ choice.  

3.4.5.2 Impact on the patient 

Most respondents agreed that AI would provide more consistent patient safety standards in 

radiography (aggregate agreement 68.3% n=182, 73.0% n=46, aggregate disagreement 7.1% 

n=19 and 9.6% n=6 diagnostic and therapeutic radiography respectively) (Figure 3.17).  

Similar results were also noted in response to the statement ‘AI will allow for more consistent 

patient care pathways’, with an aggregate agreement of 62.5% n=167 and 58.6% n=37 and an 

aggregate disagreement of 6.0% n=16 and 9.6% n=6 diagnostic and therapeutic radiography 

respectively (Figure 3.18).  

3.4.5.3 Profession-specific impact 

Specific statements were presented to each individual profession regarding the impact of AI 

on profession-specific areas of practice. The diagnostic radiography respondents were asked 

to what extent they agreed that ‘AI will improve and standardise image quality during data 
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acquisition in diagnostic radiography’.  The majority (75.7% n=202) selected an ‘agree’ 

option, few respondents (6.4% n=17) selected any ‘disagree’ option (Figure 3.19a).  A greater 

difference between aggregate agreement and disagreement was noted in response to the 

statement ‘AI will improve and standardise pre and post processing in diagnostic 

radiography’, with 81.6% n=218 agreeing and only 2.2% n=6 indicating some level of 

disagreement with this statement (Figure 3.19b).    

In response to a statement regarding AI improving and standardising treatment planning in 

radiotherapy, most therapeutic radiography respondents (88.9% n=56) indicated some level 

of agreement, while very few respondents selected one of the disagreement options (3.2% 

n=2) (Figure 3.20a).   There were similar levels of agreement regarding AI improving 

treatment delivery, with agreement and disagreement aggregates of 81.0% n=51 and 6.4% 

n=4 respectively (Figure 3.20b).  

 

Figure 3.14: AI will change the daily clinical practice for radiographers (diagnostic and 

therapeutic). (%) 
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Figure 3.15: AI will reduce the workload of the radiographer (diagnostic and 

therapeutic). (%) 
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Figure 3.17: AI will ensure more consistent patient safety standards for radiography 

(diagnostic and therapeutic) (%) 

 

 

Figure 3.18: AI will ensure more consistent patient care pathways for radiography 

(diagnostic and therapeutic) (%) 

 

9.4

25.5

33.3

24.7

4.1 3.0
0.0

14.3

34.9

23.8

17.5

4.8 3.2 1.6
0.0
5.0

10.0
15.0
20.0
25.0
30.0
35.0
40.0
45.0

Strongly agree Agree Somewhat
agree

Neither agree
nor disagree

Somewhat
disagree

Disagree Strongly
disagree

%
AI will ensure more consistent patient safety standards for 

radiography/radiotherapy

Diagnostic Radiography Therapeutic Radiography

6.7

26.2
29.6

31.5

2.2 3.4
0.4

7.9

31.7

19.0

31.7

4.8
1.6 3.2

0.0

5.0

10.0

15.0

20.0

25.0

30.0

35.0

40.0

Strongly agree Agree Somewhat
agree

Neither agree
nor disagree

Somewhat
disagree

Disagree Strongly
disagree

%

AI will ensure more consistent patient care pathways for 
radiography/radiotherapy

Diagnostic Radiography Therapeutic Radiography



Page 125 of 516 

 

 

 

Figure 3.19 a and b: Diagnostic radiography: Impact of AI on resultant image quality 

(acquisition to processing) (%) 
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Figure 3.20 a and b: AI will improve radiotherapy treatment (planning and delivery) 

(%) 
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A series of statements regarding the potential specific impact on radiography as a profession 

were presented to the respondents.  The top three choices were the same for both diagnostic 

and therapeutic radiography, namely, ‘it will create different specialist roles’, ‘AI will 

support role development’ and ‘the type of work I am doing will change’ (Figure 3.22a, and 

b).  Except for the ‘other’ option, ‘it will deskill my profession’ was the least selected option 

across both professions (n=78, n=19, diagnostic and therapeutic radiography respectively). 

The ‘other’ option was chosen by 20 diagnostic radiography respondents and responses 

indicated that many were not sure about the impact AI would have on jobs (n=5), whilst 

others felt that AI would promote advanced practice and role development (n=5).  Other 

responses included indication that AI would ‘deskill the workforce’ (n=3) and two 

respondents stated that they felt there would be no change in the near future (n=2).  Of the 

therapeutic radiography responses, two felt that AI would deskill the workforce, two 

indicated that AI would allow the treatment of more patients and three were concerned about 

the impact that AI would have on patient contact. 

Most radiographers were unsure if AI would reduce career opportunities, with the ‘neutral’ 

response selected most frequently by respondents from both professions (29.6% n=79 and 

25.4% n=16, diagnostic and therapeutic radiography respectively), and similar agreement and 

disagreement aggregates (agreement aggregate: 36.7% and 31.7%, diagnostic and therapeutic 

radiography respectively, disagreement aggregate: 33.7% and 42.8% diagnostic and 

therapeutic radiography respectively), indicating uncertainty (Figure 3.23). 



Page 128 of 516 

 

 

Figure 3.21: Impact of the implementation of AI on attractiveness of profession 
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Figure 3.22 a and b: Influence of AI on diagnostic and therapeutic radiography jobs in 

the near future (counts) 
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Figure 3.23: The implementation of AI will reduce career opportunities in radiography 

(diagnostic and therapeutic) (%) 

 3.5 Results (Reporting Radiographers’ survey) 

 3.5.1 Image reporting and use of AI as part of respondents’ clinical role 
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3.5.2 Understanding of AI in the context of Clinical Decision Support for image 

interpretation 

Reporting radiographer respondents were asked to indicate the extent of their agreement with 

the statement ‘I understand how an AI system makes its decisions’.  61.6% (n=53) of 

respondents agreed by selecting any of the ‘agree’ options (‘agreement aggregate’), and 

29.1% (n=25) selecting any of the ‘disagree’ options (‘disagreement aggregate’).  The most 

selected response was the ‘somewhat agree’ option (n=34, 39.5%) (Figure 3.24).   

 

Figure 3.24: ‘I understand how an AI system reaches its decisions’ (n=86) 

3.5.3 Perceptions of confidence in and impact AI for clinical decision support in 

reporting radiography 

Most respondents disagreed that they would be confident in explaining the AI decision to 

other healthcare practitioners (59.3% n=51 disagreement aggregate; 27.9% n=24 agreement 
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decisions to patients and carers (n=25). No respondents indicated strong agreement with 

either statement (Figure 3.25). 
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Figure 3.25: ‘I would be confident in explaining AI decisions to ‘…other health 

professionals’ and ‘…service users and carers’ (n=86)  

Respondents indicated that an affirmation from AI would serve to increase their certainty in 

their diagnosis (n=49, 57%), while disagreement from an AI system would cause them to feel 

less certainty (n=29, 33.7%).  A large proportion of respondents stated they would seek a 

second opinion when AI disagrees with their diagnosis (n=60, 69.8%) (Figure 3.26).   
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Figure 3.26: Potential impact of AI feedback on reporting radiographers’ decision 

making (n=86) 

3.5.4 Factors impacting trust in AI for clinical decision support in reporting 

radiography 
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5 (Figure 3.27). 
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frequently chosen options. One respondent made an additional suggestion using the ‘other’ 

option:   

‘I would want to know that the system would be equally accurate in dismissing insignificant 

findings and not generating additional work’ 

The other two respondents who inputted text using the ‘other’ function did not add any 

suggestions: 

‘Do not understand’ 

‘Unsure’ 

 

Figure 3.27: On a scale of 0-10, how trustworthy do you consider AI systems for use in 

image interpretation decision support (0 = no trust, 10 = absolute trust) (n=86) 
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Figure 3.28: Which features might serve to enhance your trust in an AI system for 

diagnostic image interpretation? (multiple responses permitted per respondent) 

 3.6 Correlation analysis 
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3. Years’ experience and AI reducing the workload of the radiographer (negative correlation 

– years’ experience increases, agreement with statement increases) 

4. Years’ experience and AI reducing career opportunities (negative correlation – years’ 

experience increases, agreement with statement decreases) 

5. Highest academic qualification and understanding of AI (0-10) (positive correlation – 

highest level of academic qualification increases, understanding of AI increases) 

4. Highest level of academic qualification and AI reducing the workload of the radiographer 

(positive correlation - highest level of academic qualification increases, agreement with 

statement increases) 

5. Highest level of academic qualification and AI reducing career opportunities (negative 

correlation – highest level of academic qualification increases, agreement with statement 

decreases). 

Additionally, profession specific correlations were found in: 

Diagnostic radiography between: 

1. Age and AI will change daily clinical practice (positive correlation) 

2. Age and AI will improve and standardise data acquisition (positive correlation) 

3. Age and AI will improve and standardise pre and post processing (positive correlation) 

4. Age and AI will make ‘radiography’ more attractive to me (positive correlation) 

5. Years’ experience and AI will change daily clinical practice (positive correlation) 

6. Years’ experience and AI will improve and standardise data acquisition (positive 

correlation) 

7. Years’ experience and AI will improve and standardise pre and post processing (positive 

correlation) 

8. Years’ experience and AI will make ‘radiography’ more attractive to me (positive 

correlation) 
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9. Highest academic qualification and confidence in AI terminology (positive correlation) 

10. Highest academic qualification and AI will improve and standardise data acquisition 

(positive correlation) 

Therapeutic radiography between:  

1. Age and understanding of AI (positive correlation) 

2. Years’ experience and understanding of AI (0-10) (positive correlation) 

 

 3.6.2 Nominal data – Chi Square  

Combinations of nominal and ordinal data were investigated using Chi square tests. In the 

majority of cases, the assumptions for Pearson’s Chi Square were violated, so Likelihood 

ratio is reported instead.  The results are presented in full in Table 3.5 and Appendix 3.7   

There was only one statistically significant correlation found in common in both professions, 

namely: 

1. Gender and confidence in AI terminology  

Further subgroup analysis of actual versus expected counts indicate that male respondents 

had a higher-than-expected confidence in AI terminologies. 

Additionally, profession specific correlations were found in: 

Diagnostic radiography between:  

1. Gender and confidence in using AI technologies, where male respondents report greater 

perceived confidence than expected  

2. Role and their perceptions of the adequacy of training available, where perceptions of 

adequacy of training was lower than expected in the student radiographer responses 

3. UK region and confidence in AI terminology, with no apparent pattern 
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4. UK region and AI making the profession more attractive, with perception of attractiveness 

of the profession with AI higher in England and the converse found in the Northern Ireland 

responses.  There is no other pattern noted in the remainder of the UK regions.   

Therapeutic radiography between:  

1. Gender and understanding of AI, where male respondents report greater perceptions of 

understanding than expected with the converse in the female responses  

2. Gender and perception of the impact of AI on patient centeredness with a large association 

strength, where males agreed that AI would make their practice more patient centred  

3. Gender and perception of the positive impact of AI on patient safety, where male 

respondents agreed that AI would have a positive impact on patient safety  

4. Gender and agreement that AI will decrease career opportunities, with male respondents 

indicating greater disagreement than agreement with this statement  

5. Radiographers’ role and understanding of AI, where perceptions of understanding was 

lower in the student radiographer responses  

Reporting radiographers between: 

1. Gender and the likelihood to seek a second opinion if an AI disagreed with respondents’ 

diagnosis, with the responses from male participants indicating that they would not seek a 

second opinion and the converse for the responses from female participants 
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Table 3.4: Kendall’s Tau and Spearman’s rho correlation analysis with significant findings highlighted (grey representing single 

profession correlation, pink representing correlation in common in both professions) 

(Please see Appendix 3.6 for additional cross tabulation detail)  

INDEPENDENT variable: Age 
Effect size: 

Small .10 - .29, Medium .30 to .49, Large .50 to 1.0 (Cohen, 1988, pp. 79-81) 
 
 

DEPENDENT Diagnostic Radiography 
(Kendall’s tau and Spearman’s rank 
respectively) 

DEPENDENT Radiotherapy 
(Kendall’s tau and Spearman’s rank respectively) 
P=two tailed  

Understanding of AI (Scale 
0-10) 

Not significant 
p>0.05 

Understanding of AI (Scale 0-
10) 

0.313; 0.417, significant positive correlation at 0.01 level 
(p=0.01; p<0.00) 
Medium +ve correlation 

Confidence using AI 
technologies (4-point 
Likert) 

Not significant 
p>0.05 

Confidence using AI 
technologies (4-point Likert) 

Not significant 
p>0.05 

Confidence in AI 
terminology (4-point 
Likert) 

Not significant 
p>0.05 

Confidence in AI terminology 
(4-point Likert) 

Not significant 
p>0.05 

Perception of adequacy of 
level of training (7-point 
Likert) 

Not significant 
p>0.05 

Perception of adequacy of 
level of training (7-point 
Likert) 

Not significant 
p>0.05 

Perception of having 
developed/learned some 
skill in AI (7-point Likert) 

Not significant 
p>0.05 

Perception of having 
developed/learned some skill 
in AI (7-point Likert) 

Not significant 
p>0.05 

Opinion on availability of 
training (7-point Likert) 

Not significant 
p>0.05 

Opinion on availability of 
training (7-point Likert) 

Not significant 
p>0.05 

AI will change daily 
clinical practice 

0.154; 0.189, significant positive correlation at 
0.01 level (p=0.02; p=0.002) 

AI will change daily clinical 
practice 

Not significant 
p>0.05 
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Small +ve correlation 
AI will reduce the workload 
of the radiographer 

0.254; 0.314, significant positive correlation at 
0.01 level (p<0.01; p<0.001) 
Small +ve correlation 

AI will reduce the workload of 
the radiographer 

0.204, significant positive correlation at 0.05 level 
(p=0.046) KENDALL’s only 
Small +ve correlation 

AI will make my practice 
more patient centered 

Not significant 
p>0.05 

AI will make my practice more 
patient centered 

Not significant 
p>0.05 

AI will ensure consistent 
patient safety 

Not significant 
p>0.05 

AI will ensure consistent 
patient safety 

Not significant 
p>0.05 

AI will ensure consistent 
patient care pathways 

Not significant 
p>0.05 

AI will ensure consistent 
patient care pathways 

Not significant 
p>0.05 

AI will improve and 
standardise data 
acquisition  

0.116; 0.142, significant positive correlation at 
0.05 level (p=0.21; p=0.020) 
Small +ve correlation 

AI will improve and 
standardise data acquisition  

Not significant 
p>0.05 

AI will improve and 
standardise pre and post 
processing 

0.111; 0.134, significant positive correlation at 
0.05 level (p=0.029; p=0.028) 
Small +ve correlation 

AI will improve and 
standardise pre and post 
processing 

Not significant 
p>0.05 

AI will make ‘radiography’ 
more attractive to me 

0.126; 0.254, significant positive correlation at 
0.05 level (p=0.012; p=0.012) 
Small +ve correlation 

AI will make ‘radiography’ 
more attractive to me 

Not significant 
p>0.05 

AI will reduce career 
opportunities in 
radiography 

0.119; 0.152, significant positive correlation at 
0.05 level (p=0.015; p=0.013) 
Small +ve correlation 

AI will reduce career 
opportunities in radiography 

0.260; 0.335, significant positive correlation at 0.01 level 
(p=0.010; p=0.007) 
Small/medium +ve correlation 

Understanding of how an 
AI makes decisions 

Not significant 
p>0.05 

Understanding of how an AI 
makes decisions 

N/A – reporting radiographers (diagnostic only) 

Confidence explaining AI 
to Health care 
practitioners 

Not significant 
p>0.05 

Confidence explaining AI to 
Health care practitioners 

Confidence explaining AI 
to service users/patients 

Not significant 
p>0.05 

Confidence explaining AI to 
service users/patients 

Feel more certain if AI 
agreed with interpretation 

Not significant 
p>0.05 

Feel more certain if AI agreed 
with interpretation 

Feel less certain if AI 
disagree with 
interpretation 

Not significant 
p>0.05 

Feel less certain if AI disagree 
with interpretation 

Likelihood to seek a second 
opinion if AI disagree with 
interpretation  

Not significant 
p>0.05 

Likelihood to seek a second 
opinion if AI disagree with 
interpretation  
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INDEPENDENT variable: Years’ experience 
Effect size: 

Small .10 - .29, Medium .30 to .49, Large .50 to 1.0 (Cohen, 1988, pp. 79-81) 
 
Understanding of AI (Scale 
0-10) 

Not significant 
p>0.05 

Understanding of AI (Scale 0-
10) 

0.332; 0.437, significant at 0.01 level (p<0.00; p<0.00) 
Moderate +ve correlation  

Confidence using AI 
technologies (4-point 
Likert) 

Not significant 
p>0.05 

Confidence using AI 
technologies (4-point Likert) 

Not significant 
p>0.05 

Confidence in AI 
terminology (4-point 
Likert) 

Not significant 
p>0.05 

Confidence in AI terminology 
(4-point Likert) 

Not significant 
p>0.05 

Perception of adequacy of 
level of training (7-point 
Likert) 

Not significant 
p>0.05 

Perception of adequacy of 
level of training (7-point 
Likert) 

Not significant 
p>0.05 

Perception of having 
developed/learned some 
skill in AI (7-point Likert) 

Not significant 
p>0.05 

Perception of having 
developed/learned some skill 
in AI (7-point Likert) 

Not significant 
p>0.05 

Opinion on availability of 
training (7-point Likert) 

Not significant 
p>0.05 

Opinion on availability of 
training (7-point Likert) 

Not significant 
p>0.05 

AI will change daily 
clinical practice 

0.175; 0.214, significant at 0.01 level (p<0.00; 
p<0.00) 
Small +ve correlation 

AI will change daily clinical 
practice 

Not significant 
p>0.05 

AI will reduce the workload 
of the radiographer 

0.259; 0.322, significant at 0.01 level (p<0.00; 
p<0.00) 
Small/medium +ve correlation 

AI will reduce the workload of 
the radiographer 

0.243; 0.321, significant at 0.05 level (p=0.16; p=0.010) 
Small/medium +ve correlation 

AI will make my practice 
more patient centered 

Not significant 
p>0.05 

AI will make my practice more 
patient centered 

Not significant 
p>0.05 

AI will ensure consistent 
patient safety 

Not significant 
p>0.05 

AI will ensure consistent 
patient safety 

Not significant 
p>0.05 

AI will ensure consistent 
patient care pathways 

Not significant 
p>0.05 

AI will ensure consistent 
patient care pathways 

Not significant 
p>0.05 

AI will improve and 
standardise data 
acquisition  

0.168; 0.203, significant at 0.01 level (p=0.01; 
p=0.01) 
Small +ve correlation 

AI will improve and 
standardise data acquisition  

Not significant 
p>0.05 
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AI will improve and 
standardise pre and post 
processing 

0.159; 0.191, significant at 0.01 level (p=0.02; 
p=0.02) 
Small +ve correlation 

AI will improve and 
standardise pre and post 
processing 

Not significant 
p>0.05 

AI will make ‘radiography’ 
more attractive to me 

0.143; 0.173, significant at 0.01 level (p=0.04; 
p=0.05) 
Small +ve correlation 

AI will make ‘radiography’ 
more attractive to me 

Not significant 
p>0.05 

AI will reduce career 
opportunities in 
radiography 

-0.109; -0.138, significant at 0.05 level 
(p=0.026; p=0.025) 
Small -ve correlation 

AI will reduce career 
opportunities in radiography 

-0.203; -0.260, significant at 0.01 level (p=0.043; 
p=0.039) 
Small -ve correlation 

Understanding of how an 
AI makes decisions 

Not significant 
p>0.05 

Understanding of how an AI 
makes decisions 

N/A – reporting radiographers (diagnostic only) 

Confidence explaining AI 
to Health care 
practitioners 

Not significant 
p>0.05 

Confidence explaining AI to 
Health care practitioners 

Confidence explaining AI 
to service users/patients 

Not significant 
p>0.05 

Confidence explaining AI to 
service users/patients 

Feel more certain if AI 
agreed with interpretation 

Not significant 
p>0.05 

Feel more certain if AI agreed 
with interpretation 

Feel less certain if AI 
disagree with 
interpretation 

Not significant 
p>0.05 

Feel less certain if AI disagree 
with interpretation 

Likelihood to seek a second 
opinion if AI disagree with 
interpretation  

Not significant 
p>0.05 

Likelihood to seek a second 
opinion if AI disagree with 
interpretation  

INDEPENDENT variable: Level of highest academic qualification 
Effect size: 

Small .10 - .29, Medium .30 to .49, Large .50 to 1.0 (Cohen, 1988, pp. 79-81) 
 
Understanding of AI (Scale 
0-10) 

0.201; 0.258, significant at 0.01 level (p<0.00; 
p<0.00) 
Small +ve correlation  

Understanding of AI (Scale 0-
10) 

0.355; 0.429, significant at 0.01 level (p<0.00; p<0.00) 
Medium +ve correlation  

Confidence using AI 
technologies (4-point 
Likert) 

Not significant 
p>0.05 

Confidence using AI 
technologies (4-point Likert) 

Not significant 
p>0.05 

Confidence in AI 
terminology (4-point 
Likert) 

0.218; 0.151, significant at 0.05 level (p = 
0.05) 
Small +ve correlation  

Confidence in AI terminology 
(4-point Likert) 

Not significant 
p>0.05 
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Perception of adequacy of 
level of training (7-point 
Likert)  

Not significant 
p>0.05 

Perception of adequacy of 
level of training (7-point 
Likert)  

Not significant 
p>0.05 

Perception of having 
developed/learned some 
skill in AI (7-point Likert) 

Not significant 
p>0.05 

Perception of having 
developed/learned some skill 
in AI (7-point Likert) 

Not significant 
p>0.05 

Opinion on availability of 
training (7-point Likert) 

Not significant 
p>0.05 

Opinion on availability of 
training (7-point Likert) 

Not significant 
p>0.05 

AI will change daily 
clinical practice 

Not significant 
p>0.05 

AI will change daily clinical 
practice 

Not significant 
p>0.05 

AI will reduce the workload 
of the radiographer 

0.216; 0.263, significant at 0.01 level (p<0.00; 
p<0.00) 
Small +ve correlation 

AI will reduce the workload of 
the radiographer 

0.242; 0.312, significant at 0.01 level (p=0.020; 
p=0.013) 
Small/medium +ve correlation 

AI will make my practice 
more patient centered 

Not significant 
p>0.05 

AI will make my practice more 
patient centered 

Not significant 
p>0.05 

AI will ensure consistent 
patient safety 

Not significant 
p>0.05 

AI will ensure consistent 
patient safety 

Not significant 
p>0.05 

AI will ensure consistent 
patient care pathways 

Not significant 
p>0.05 

AI will ensure consistent 
patient care pathways 

Not significant 
p>0.05 

AI will improve and 
standardise data 
acquisition  

0.114; 0.139, significant at 0.01 level 
(p=0.021; p=0.023) 
Small +ve correlation 

AI will improve and 
standardise data acquisition  

Not significant 
p>0.05 

AI will improve and 
standardise pre and post 
processing 

Not significant 
p>0.05 

AI will improve and 
standardise pre and post 
processing 

Not significant 
p>0.05 

AI will make ‘radiography’ 
more attractive to me 

Not significant 
p>0.05 

AI will make ‘radiography’ 
more attractive to me 

Not significant 
p>0.05 

AI will reduce career 
opportunities in 
radiography 

-0.113; -0.144, significant at 0.01 level 
(p=0.019; p=0.019) 
Small -ve correlation 

AI will reduce career 
opportunities in radiography 

-0.215; -0.273, significant at 0.01 level (p=0.037; 
p=0.030) 
Small -ve correlation 

Understanding of how an 
AI makes decisions 

Not significant 
p>0.05 

Understanding of how an AI 
makes decisions 

N/A – reporting radiographers (diagnostic only) 

Confidence explaining AI 
to Health care 
practitioners 

Not significant 
p>0.05 

Confidence explaining AI to 
Health care practitioners 

Confidence explaining AI 
to service users/patients 

Not significant 
p>0.05 

Confidence explaining AI to 
service users/patients 
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Feel more certain if AI 
agreed with interpretation 

Not significant 
p>0.05 

Feel more certain if AI agreed 
with interpretation 

Feel less certain if AI 
disagree with 
interpretation 

Not significant 
p>0.05 

Feel less certain if AI disagree 
with interpretation 

Likelihood to seek a second 
opinion if AI disagree with 
interpretation  

Not significant 
p>0.05 

Likelihood to seek a second 
opinion if AI disagree with 
interpretation  
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Table 3.5: Chi-square correlation analysis with significant findings highlighted (grey representing single profession correlation, pink 

representing correlation in common in both professions) 

(Please see Appendix 3.7 for additional cross tabulation detail) 

INDEPENDENT variable: Gender 
Effect size Cramer’s V: Small = 0.07, Medium = 0.21, Large = 0.29 

DEPENDENT 
 
DIAGNOSTIC 
RADIOGRAPHY 
 

Likelihood ratio chi-square 
(p-value) sig/not sig 

Cramer’s V 
Magnitude, v= 

DEPENDENT 
 
THERAPEUTIC 
RADIOGRAPHY 

Likelihood ratio chi-square 
(p-value) sig/not sig 

Cramer’s V 
Magnitude; v= 

Understanding of AI 
(yes/no/unsure) 

Not sig 
p>0.05 

 Understanding of AI 
(yes/no/unsure)  

Significant p=0.020 
N=71 

0.318 (large) 

Confidence using AI 
technologies (4-point Likert) 
 

Significant p<0.001 
N=291 

0.191 (small) Confidence using AI 
technologies (4-point Likert) 

Not sig 
p>0.05 

 

Confidence in AI 
terminology (4-point Likert) 

Significant p<0.001 
n=291 

0.252 (medium)  Confidence in AI terminology 
(4-point Likert) 
 

Significant 
p=0.006 
n=70 

0.445 (large)  

Perception of adequacy of 
level of training (7-point 
Likert) 

Not sig 
p>0.05 

 Perception of adequacy of 
level of training (7-point 
Likert) 

Not sig 
p>0.05 

 

Perception of having 
developed/learned some 
skill in AI (7-point Likert) 

Not sig 
p>0.05 

 Perception of having 
developed/learned some skill 
in AI (7-point Likert) 

Not sig 
p>0.05 

 

Opinion on availability of 
training (7-point Likert) 

Not sig 
p>0.05 

 Opinion on availability of 
training (7-point Likert) 

Not sig 
p>0.05 

 

AI will change daily clinical 
practice 

Not sig 
p>0.05 

 AI will change daily clinical 
practice 

Not sig 
p>0.05 

 

AI will reduce the workload 
of the radiographer 

Not sig 
p>0.05 

 AI will reduce the workload of 
the radiographer 

Not sig 
p>0.05 

 

AI will make my practice 
more patient centered 

Not sig 
p>0.05 

 AI will make my practice 
more patient centered 

Significant 
P=0.26 
n=63 

0.488 (large) 
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AI will ensure consistent 
patient safety 

Not sig 
p>0.05 

 AI will ensure consistent 
patient safety 

Significant  
P=0.036 
n=63 

0.473 (large) 

AI will ensure consistent 
patient care pathways 

Not sig 
p>0.05 

 AI will ensure consistent 
patient care pathways 

Not sig 
p>0.05 

 

AI will improve and 
standardise data acquisition  

Not sig 
p>0.05 

 AI will improve and 
standardise data acquisition  

Not sig 
p>0.05 

 

AI will improve and 
standardise pre and post 
processing 

Not sig 
p>0.05 

 AI will improve and 
standardise pre and post 
processing 

Not sig 
p>0.05 

 

AI will make ‘radiography’ 
more attractive to me 

Not sig 
p>0.05 

 AI will make ‘radiography’ 
more attractive to me 

Not sig 
p>0.05 

 

AI will reduce career 
opportunities in 
radiography 

Not sig 
p>0.05 

 AI will reduce career 
opportunities in radiography 

Significant  
P=0.016 
n=63 

0.441 (large) 

Understanding of how an AI 
makes decisions 

Not sig 
p>0.05 

  
 
 
 
 
 
 
 

N/A – reporting radiographers (diagnostic only) 

Confidence explaining AI to 
Health care practitioners 

Not sig 
p>0.05 

 

Confidence explaining AI to 
service users/patients 

Not sig 
p>0.05 

 

Feel more certain if AI 
agreed with interpretation 

Not sig 
p>0.05 

 

Feel less certain if AI 
disagree with interpretation 

Not sig 
p>0.05 

 

Likelihood to seek a second 
opinion if AI disagree with 
interpretation  

Significant 
p=0.046 
n=60 

0.273 (medium) 

INDEPENDENT variable: Role 
Effect size Cramer’s V: Small = 0.07, Medium = 0.21, Large = 0.29 

Understanding of AI 
(yes/no/unsure) 

Not sig 
p>0.05 

 Understanding of AI 
(yes/no/unsure) 

Significant p=0.045, n=71 0.450 (large) 

Confidence using AI 
technologies (4-point Likert) 

Not sig 
p>0.05 

 Confidence using AI 
technologies (4-point Likert) 

Not sig 
p>0.05 

 

Confidence in AI 
terminology (4-point Likert) 

Not sig 
p>0.05 

 Confidence in AI terminology 
(4-point Likert) 

Not sig 
p>0.05 
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Perception of adequacy of 
level of training (feeling of 
being well trained to 
implement new AI) (7-point 
Likert)  

Significant 
p=0.040 
n=285 

0.268 (medium) Perception of adequacy of 
level of training (7-point 
Likert)  

Not sig 
p>0.05 

 

Perception of having 
developed/learned some 
skill in AI (7-point Likert) 

Not sig 
p>0.05 

 Perception of having 
developed/learned some skill 
in AI (7-point Likert) 

Not sig 
p>0.05 

 

Opinion on availability of 
training (7-point Likert) 

Not sig 
p>0.05 

 Opinion on availability of 
training (7-point Likert) 

Not sig 
p>0.05 

 

AI will change daily clinical 
practice 

Not sig 
p>0.05 

 AI will change daily clinical 
practice 

Not sig 
p>0.05 

 

AI will reduce the workload 
of the radiographer 

Not sig 
p>0.05 

 AI will reduce the workload of 
the radiographer 

Not sig 
p>0.05 

 

AI will make my practice 
more patient centered 

Not sig 
p>0.05 

 AI will make my practice 
more patient centered 

Not sig 
p>0.05 

 

AI will ensure consistent 
patient safety 

Not sig 
p>0.05 

 AI will ensure consistent 
patient safety 

Not sig 
p>0.05 

 

AI will ensure consistent 
patient care pathways 

Not sig 
p>0.05 

 AI will ensure consistent 
patient care pathways 

Not sig 
p>0.05 

 

AI will improve and 
standardise data acquisition  

Not sig 
p>0.05 

 AI will improve and 
standardise data acquisition  

Not sig 
p>0.05 

 

AI will improve and 
standardise pre and post 
processing 

Not sig 
p>0.05 

 AI will improve and 
standardise pre and post 
processing 

Not sig 
p>0.05 

 

AI will make ‘radiography’ 
more attractive to me 

Not sig 
p>0.05 

 AI will make ‘radiography’ 
more attractive to me 

Not sig 
p>0.05 

 

AI will reduce career 
opportunities in 
radiography 

Not sig 
p>0.05 

 AI will reduce career 
opportunities in radiography 

Not sig 
p>0.05 

 

Understanding of how an AI 
makes decisions 

Not sig 
p>0.05 

  
 
 
 
 
 
 
 

Confidence explaining AI to 
Health care practitioners 

Not sig 
p>0.05 

 

Confidence explaining AI to 
service users/patients 

Not sig 
p>0.05 

 

Feel more certain if AI 
agreed with interpretation 

Not sig 
p>0.05 

 



Page 148 of 516 

 

Feel less certain if AI 
disagree with interpretation 

Not sig 
p>0.05 

 N/A – reporting radiographers (diagnostic only) 

Likelihood to seek a second 
opinion if AI disagree with 
interpretation  

Not sig 
p>0.05 

 

 INDEPENDENT variable: UK region 
Effect size Cramer’s V: Small = 0.07, Medium = 0.21, Large = 0.29 

Understanding of AI 
(yes/no/unsure) 

Not sig 
p>0.05 

 Understanding of AI 
(yes/no/unsure) 

Not sig 
p>0.05 

 

Confidence using AI 
technologies (4-point Likert) 

Not sig 
p>0.05 

 Confidence using AI 
technologies (4-point Likert) 

Not sig 
p>0.05 

 

Confidence in AI 
terminology (4-point Likert) 

Significant 
P=0.017 
N=291 

V=0.158 (small) Confidence in AI terminology 
(4-point Likert) 

Not sig 
p>0.05 

 

Perception of adequacy of 
level of training (7-point 
Likert)  

Not sig 
p>0.05 

 Perception of adequacy of 
level of training (7-point 
Likert)  

Not sig 
p>0.05 

 

Perception of having 
developed/learned some 
skill in AI (7-point Likert) 

Not sig 
p>0.05 

 Perception of having 
developed/learned some skill 
in AI (7-point Likert) 

Not sig 
p>0.05 

 

Opinion on availability of 
training (7-point Likert) 

Not sig 
p>0.05 

 Opinion on availability of 
training (7-point Likert) 

Not sig 
p>0.05 

 

AI will change daily clinical 
practice 

Not sig 
p>0.05 

 AI will change daily clinical 
practice 

Not sig 
p>0.05 

 

AI will reduce the workload 
of the radiographer 

Not sig 
p>0.05 

 AI will reduce the workload of 
the radiographer 

Not sig 
p>0.05 
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AI will make my practice 
more patient centered 

Not sig 
p>0.05 

 AI will make my practice 
more patient centered 

Not sig 
p>0.05 

 

AI will ensure consistent 
patient safety 

Not sig 
p>0.05 

 AI will ensure consistent 
patient safety 

Not sig 
p>0.05 

 

AI will ensure consistent 
patient care pathways 

Not sig 
p>0.05 

 AI will ensure consistent 
patient care pathways 

Not sig 
p>0.05 

 

AI will improve and 
standardise data acquisition  

Not sig 
p>0.05 

 AI will improve and 
standardise data acquisition  

Not sig 
p>0.05 

 

AI will improve and 
standardise pre and post 
processing 

Not sig 
p>0.05 

 AI will improve and 
standardise pre and post 
processing 

Not sig 
p>0.05 

 

AI will make ‘radiography’ 
more attractive to me 

Significant p=0.012 
n=267 

V=0.183 (small) AI will make ‘radiography’ 
more attractive to me 

Not sig 
p>0.05 

 

AI will reduce career 
opportunities in 
radiography 

Not sig 
p>0.05 

 AI will reduce career 
opportunities in radiography 

Not sig 
p>0.05 

 

Understanding of how an AI 
makes decisions 

Not sig 
p>0.05 

  
 
 
 
 
 
 
 

N/A – reporting radiographers (diagnostic only) 

Confidence explaining AI to 
Health care practitioners 

Not sig 
p>0.05 

 

Confidence explaining AI to 
service users/patients 

Not sig 
p>0.05 

 

Feel more certain if AI 
agreed with interpretation 

Not sig 
p>0.05 
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Feel less certain if AI 
disagree with interpretation 

Not sig 
p>0.05 

 

Likelihood to seek a second 
opinion if AI disagree with 
interpretation  

Not sig 
p>0.05 
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 3.7 Discussion 

The focus of this survey was to establish a ‘snapshot’ of UK radiographers’ perceived 

knowledge, skills and confidence in AI and to establish the specific detail of the educational 

need and preferences of this workforce, in line with AI radiography guidance and priorities 

(Malamateniou et al., 2021). Furthermore, as an exploratory study, it was intended to help 

provide direction for future, targeted AI research projects in the under-researched field of AI 

in radiography.  It is hoped that this will allow some insight into the current landscape of AI 

in radiography, acknowledge concerns of the profession regarding the implementation of new 

technologies and establish the expectations for future developments which will ensure 

optimal integration of clinical AI.   

 3.7.1 Perceived knowledge, understanding and confidence  

Although a large proportion of both professions indicated that they understood AI in general, 

further specific responses from both professions made it clear that respondents were not very 

confident when using AI technologies. There was also a lack of understanding of the specific 

terminologies used in modern AI, such as ‘algorithms’, ‘deep learning’, ‘data mining’, ‘over-

fitting’ and ‘neural networks’ (Figure 3.3).  This may indicate that, perhaps, initial reported 

‘confidence’ was surrounding AI in general rather than AI in radiography and modern 

AI.  Abuzaid et al. (2020) surveyed radiographers and radiologists in the UAE and found that 

40% of respondents were not familiar with AI and a further 30% had merely a basic 

understanding. Other studies also report that there is a general lack of understanding of AI 

amongst radiologists (SIIM, 2017; Tejani, 2020). The knowledge and understanding of AI at 

this level of detail is essential when engaging with literature around modern AI (Lindqwister 

et al., 2020, Rainey et al., 2021a and Chapter 2 of this thesis).  Many applications of AI in 

medicine are currently in the development stage and therefore it is imperative for all 

clinicians to understand the literature to have a critical appreciation of the “potentials, pitfalls 

and risks” of proposed technology as we move into the implementation phase (Recht and 

Bryan, 2017). 

 3.7.2 Level of skill and importance of education and training 

A barrier to clinicians’ confidence and understanding may be the dearth of education on the 

subject, with many radiographers in both diagnostic and therapeutic radiography stating that 
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they do not consider themselves to have any skill in AI.  Botwe et al. (2021) conducted a 

survey of African radiographers on their perception of AI in diagnostic imaging and reported 

that 82.2% of 151 respondents felt that a lack of knowledge will be a significant barrier to the 

implementation of AI in the clinical setting.  This is supported by the findings from this 

survey indicating that very few respondents felt that they were well trained to implement AI 

and overwhelmingly agree that there is not enough education and training available in AI for 

radiographers (Figure 3.7). Abuzaid et al. (2020) further support this in their survey of 

radiographers and radiologists in the UAE, reporting that 74.5% of radiographers and 

radiologists responding to their survey had not studied AI as part of their degree, that 73.9% 

indicating that the availability of education and training will be a barrier to the 

implementation of AI. 

As radiography is an evidence-based, applied science, our day-to-day learning is supported 

through our clinical placement and clinical roles (Hasflund et al., 2008).  This is evidenced by 

the number of respondents, who indicated that they had some skill in AI, despite a lack of 

formalised training (Figure 3.9). The study from the UAE (Abuzaid et al., 2020) supports this 

by reporting that 39.9% of their 153 survey respondents were self-taught in 

AI.  Radiographers tend to learn to work with the tools which are introduced into the clinical 

setting, perhaps without the time or resources to fully understand the technology (Aarts et al., 

2017).  This may have implications when newer, more complex forms of AI are introduced, 

which need to be approached more critically due to complex systems architectures and whose 

method of decision making are not so human-interpretable (Kumar et al., 2018; Erickson, 

2019; Kitamura and Marques, 2021).  Being in position to know the theory behind the 

practice will enable radiographers to critically engage with new and emerging technologies at 

the point of implementation and in ongoing clinical practice, for the ultimate safety of the 

patient.   

 3.7.3 Suggestions for the type and format of AI learning 

The radiographers responding to the survey indicate they wish to have education on potential 

AI applications, technology (technique and terminology), patient centeredness with AI, AI 

ethics, AI standards (quality assurance and control) and workflow improvements.  These are 

areas which, perhaps, the workforce foresees or witnesses as being the most impacted by AI 

(SECTRA, 2021). The above list of topics is similar to those identified in the literature as 

important for inclusion in AI curricula, although it is also suggested that a more flexible 
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curriculum, tailored to the needs of the individual, should be offered to best suit the students’ 

interest and current developments in the field (Tejani et al., 2020).  A minority (2.5%) of 

respondents across both professions indicated that they had received training as part of a CPD 

programme in a higher education setting.  This could lead to some national or global disparity 

and variability in the type and standard of education being delivered in AI knowledge in the 

future (Abuzaid et al., 2020) and could impact speed and quality of AI adoption and 

implementation as well as job satisfaction.  The development of a standardised or 

recommended AI curriculum, as suggested for radiology trainees, may provide a solution for 

this (SIIM, 2017; Schuur et al., 2021; Tejani, 2021). 

The respondents indicate that the best place for any AI training was in the pre-registration 

setting.  This aligns with the incoming changes to the HCPC Standards of Proficiency 

(radiographers) which highlight the necessity for all radiographers to have an awareness of 

both the principles of AI, and of the methods of assessment of performance of any AI 

algorithm (HCPC, 2020).  These changes make it essential that all HCPC registrants and 

aspiring registrants have this knowledge at both pre- and post-registration stages.  The Topol 

review (NHS, 2019b) supports this by recommending that training in digital technologies and 

computer science should be integrated into undergraduate education for health care 

professionals.  A systematic review by Schuur et al. (2021) examines training opportunities in 

AI for radiologists and found that there was an overwhelming prevalence of short courses 

offered, rather than those integrated fully into curricula, with education providers only 

involved in a limited capacity.  Interestingly this is not fully supported in the results from our 

study which found that, although the respondents indicated they did not receive specific 

training in AI, there was a statistically significant relationship between the level of highest 

academic qualification and understanding of AI.  This suggests that the higher the level of 

academic qualification, the greater the perception of understanding in AI.  In the absence of 

specific AI training, this may be simply due to the way which postgraduate students are 

required to develop transferable skills as fully independent learners and the encouragement of 

those studying for higher academic qualifications to become agents of change, therefore 

actively investigating current and future developments (such as AI) for clinical practice 

themselves (Knowles, 1984).  
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 3.7.4 Current practice, impact and development of AI 

Artificial intelligence is already present in many areas of clinical radiography practice, 

including, but not limited to, dose optimisation, image processing, automated patient 

positioning, tumour detection and progression, organ segmentation and treatment planning 

(Batumalai et al., 2020; Malamateniou et al., 2021b; Mutasa et al., 2021; Wuni et al., 2021). 

The availably of AI systems for use in radiology is increasing, with 269 applications from 99 

companies available in August 2019, compared to 146 only 7 months previously (Mehrizi et 

al., 2020).  However, many respondents to this survey indicated that they were not aware of 

AI being used in the clinical setting, this may be to do with some confusion regarding what 

we define as ‘AI’.  Technology enabled assistance is present in many aspects of clinical 

practice for some years, for instance in the digitisation of images to computer assisted 

diagnosis, although many of these applications may not represent what we understand by 

‘modern AI’, such as deep and machine learning systems (Malamateniou et al., 2021).  

Supporting this, although respondents indicated that they were not sure if AI was being used 

in their daily practice, most respondents were able to identify areas where AI was currently 

being used, with ‘reporting’ and ‘treatment planning’ the most commonly chosen options 

identified by the diagnostic and therapeutic radiographers (Figures 3.12a and b), respectively.  

These are areas which are also identified in the available literature on the topic (Batumalai et 

al., 2020; Mehrizi et al., 2020 Malamateniou et al., 2021). 

Respondents from the diagnostic radiography cohort rated ‘CT’, ‘reporting’ ‘MRI’ and 

‘mammography’ as the areas of practice with greatest scope for the development of AI 

systems in the future (Figure 3.13a).  ‘Treatment planning/optimisation/adaptive planning’, 

‘contouring’ and ‘image acquisition/matching’ were the highest rated responses in the 

therapeutic radiography responses (Figure 3.13b).  AI currently pervades many avenues of 

radiography and, even though the options above represent the most frequently selected 

options, all options presented were selected by some of the respondents, indicating an 

awareness of many potential applications of the technology, although this may be due to the 

sub specialism of the respondent, as indicated by some of the respondents who selected the 

‘other’ option stating that they were only aware of developments in their field.  

A worldwide study by Mehrizi et al. (2020) identified the current state of development and 

availability of AI applications.  They found that many AI systems had narrow applicability, 

both per modality and anatomical region, with the majority of applications in MRI (29%), CT 
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(28%), followed by ’x-ray’ (17%).  There were few applications reported in ultrasound (9%) 

and mammography (8%), which contrasts with the opinions of the respondents to this survey 

(Figure 3.13a).  Most applications identified by Mehrizi et al., (2020), offer ‘perception and 

reasoning’ based assistance (70%), categorised by the authors under a number of headings, 

with the majority of these (42%) for “detecting and highlighting the suspicious areas”.  This 

supports the responses form this survey, where many respondents felt that ‘reporting’ would 

be an area with scope for development in the future.  

The responses from the therapeutic radiography cohort mirror responses from an Australian 

study (Batumalai et al., 2020), where respondents indicated plan optimisation (66%), 

contouring (64%) and plan checking and quality assurance (50%) as areas which show scope 

for the future (Figure 3.13b).   

 3.7.5 Perceptions of the impact of AI on radiography 

The greater majority of both professions indicated that daily clinical practice would change 

with the introduction of AI (Figure 3.14) (79.6%, 88.9% diagnostic and therapeutic 

radiography respectively), with more agreeing with the statement that AI would reduce 

radiographers’ workload than disagreeing (Figure 3.15) (agreement aggregate ; 43.5%, 54% 

diagnostic and therapeutic radiography respectively and disagreement aggregate; 27.25% and 

27% diagnostic and therapeutic radiography respectively).  In a similar international study of 

radiologists’ opinions of AI, 89% of 1041 respondents agreed that AI will improve diagnostic 

radiology generally, with 85% agreeing that AI will alter the role of the radiologist 

(Huismann et al., 2021b).  Furthermore, a survey of Ghanian radiographers reported that 

82.2% of respondents felt that AI would ‘ease’ the work of the radiographer (Botwe et al., 

2021).  Whilst it is predicted that AI may allow for individual patient time efficiencies, this 

may be counter balanced by increased patient throughput.  A study conducted in the 

Netherlands in 2017, used interviews to investigate radiographers’ opinions of technology in 

the clinical setting and states that technology has improved efficiency by increasing the 

number of patients seen, per unit time (Aarts et al, 2017).  It is hoped that AI may target the 

mundane, repetitive work of the radiographer and radiologist, allowing clinicians to perform 

the tasks which are not automatable, for instance patient contact and care (NHS (Topol), 

2019).  The study by Aarts et al 2017, found that radiographers did not feel that this reflected 

what was happening in the clinical setting, with the introduction of technology leaving some 

feeling that they are using less of their knowledge for their professional work. Furthermore, 
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Hardy and Harvey (2020) suggest that care should be taken to ensure radiographers do not 

experience ‘burn out’, decreased job satisfaction and loss of morale in response to an 

increased examination speed and patient throughput.  A recent survey of therapeutic 

radiographers in Australia found that 66% of 325 respondents felt that automation in 

radiotherapy planning would change the primary tasks of some aspects of professional 

practice and 51% felt that AI would allow staff to accomplish the rest of their work more 

effectively (Batumalai et al., 2020).  In contrast, a survey of radiographers and radiologists in 

the UAE found that only 16.3% of 153 participants felt that AI would disrupt radiology 

clinical practice.  Furthermore, responses indicate that 85.6% felt that AI would not play an 

important role in the future of radiology practice and 94.8% felt that AI would not be used in 

image production and other applications (Abuzaid et al., 2022), although the authors suggest 

this may be due to the respondents’ self-reported lack of in depth understanding on the 

subject.    

As mentioned, it has been proposed that one of the advantages of AI is time efficiency and 

that this time can be reallocated to care for patients (Hardy and Harvey, 2019; NHS, 2019).  

Respondents to this survey indicated that they were unsure of the impact of AI on the patient-

centeredness of radiography practice, with the greater proportion of respondents ‘neither 

agreeing nor disagreeing’ with the statement ‘AI will make my practice more patient centred’ 

(Figure 3.16) (41%; 27%, diagnostic and therapeutic radiography respectively).  There is the 

hope that the integration of AI will foster more streamlined, consistent practice (NHS, 2019b; 

Kabir, 2019).  The responses to this survey indicate that, although the respondents agree with 

this sentiment, they do not agree strongly with this, with many selecting the ‘neither agree 

nor disagree’ option when presented with the statement ‘AI will ensure more consistent 

patient care pathways for radiography/radiotherapy’ (Figure 3.18) (31.5%; 31.7%, diagnostic 

and therapeutic radiography respectively).  A number of papers have reinforced the 

importance of the impact that AI will have on the patient, and patient care (Hardy and 

Harvey, 2020; Malamateniou et al., 2021b). 

When asked about the impact of AI on the more technical aspects of the work of the 

radiographer, respondents to this survey agreed that AI will have a positive impact on 

standardising patient safety, image quality, image processing, contouring/planning and 

treatment delivery (Figures 3.17-20).  These are areas of practice where there is already some 

impact from AI and respondents may, therefore, be already feeling the benefits of the 
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technology.  In a study by Botwe et al. (2021) 68.8% of 151 radiographers surveyed feel that 

AI would allow dose reduction whilst maintaining image quality. However, perceptions of 

the impact of AI in clinical radiology appear to vary worldwide, with a contemporary study in 

the UAE reporting that 94.8% of respondents disagreed that AI will be used in image 

production and other applications, although this is at odds with many other published papers, 

and may be due to a lack of understanding of the respondents, where 40% reported they had 

no AI knowledge and 30% indicating they have only a basic understanding (Abuzaid et al., 

2020).  In the international survey of 1041 radiologists, Huismann et al., 2021, reported that 

78% of respondents  felt that AI will be used as a second reader in the longer term, 77% felt 

that AI would be used in workflow optimisation, whilst 47% felt that AI would partially 

replace the radiologist.  Only 10% of respondents indicated that AI would have no image-

based role. 

The prevalence of neutral responses to our survey (neither agree nor disagree) from both 

professions may indicate that radiographers are unsure of the impact that AI might have on 

radiography as a career, both in terms of the appeal of the profession to prospective 

professionals (Figure 3.21) and career opportunities (Figure 3.23).  Previous concern 

regarding the negative impact that AI might have on the future of radiology has been 

modified more recently with evidence from the literature, indicating that AI may present 

opportunities for career development and the generation of new clinical and research roles 

(French and Chen, 2019; Strohm et al., 2020; ISRRT and EFRS, 2020).  The importance of 

clinician involvement in all stages of the development, deployment and clinical use has been 

recognised along with the critical importance of the need to appropriately educate clinicians 

to allow migration into these roles (Strohm et al., 2020; Tejani, 2020).  Attitudes of 

opportunity for change will allow clinicians to champion and demystify AI in their setting, 

ensuring optimal adoption of the technology (French and Cheng, 2019; Strohm et al., 2020; 

Park et al., 2021).  Responses to this survey indicate that respondents are optimistic about the 

future of the profession using AI, with many in both professions indicating that they feel that 

AI will create different specialist roles (Figure 3.22) (n=166 and n=34 in diagnostic and 

therapeutic radiography respectively) and that AI will support role development (n=139 and 

n=28 in diagnostic and therapeutic radiography respectively).  This is supported by the 

survey reported by Abuzaid et al, 2022, regarding the impact of AI on radiology and 

radiography practice, where 66% of respondents indicated that they were ‘excited’ about a 

future with AI.   
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The prevalence of neutral responses (neither agree nor disagree) to the statements regarding 

AI reducing career opportunities and making the profession more appealing indicates that 

perhaps the UK radiography workforce is still unsure of what the future may hold, although, 

it should be noted that only a small minority of respondents to this survey indicated that AI 

would deskill their jobs (Figure 3.22).   

3.7.6 Reporting radiographers: Image reporting  

Many respondents (89.5% n=77) indicated that they were not utilising AI as part of their 

reporting role.  However, the international technography study by Mehrizi et al. (2020) found 

that 70% of AI applications were focused on ‘Perception and Reasoning’, including feature 

extraction, diagnosis and highlighting of specific features. With shortages of both radiologists 

and radiographers (RCR, 2020; SoR, 2021), the impact of the COVID-19 pandemic on 

imaging services and staffing levels (Greenspan et al., 2020; Shi et al., 2021) and the 

aspirations of the NHS Long Term plan (NHS, 2019b), there may be more scope for the 

integration of these systems to assist with image interpretation. International consensus 

among radiologists is that AI will aid diagnostic accuracy, with systems acting as a second 

reader (Huismann et al., 2021; Waymel et al., 2019; Coppola et al., 2021).  

3.7.7 Reporting radiographers: Confidence in explaining AI decisions 

The level of clinicians’ understanding of AI warrants further investigation. Studies report that 

radiographers perceive they have little confidence, knowledge, skill and comprehension of 

modern AI terminology and clinical applications (Abdullah et al., 2020; Abuzaid et al., 

2020). It should be noted, however, that ‘confidence’ is a subjective feeling rather than 

objective fact (Kahneman, 2011) i.e., confidence may not be an indicator of competence 

(Dunning, 2011; Liberatore, 2020). Many of the reporting radiographer respondents to this 

study indicate understanding in how AI makes its decisions (61.6% n=53), although less than 

30.0% indicate that they are not confident in explaining AI decisions to other healthcare 

professionals nor patients/carers 

3.7.8 Reporting radiographers: Impact of AI on diagnosis/professional opinion 

It is imperative to understand how AI will impact human decision making in order to assure 

users of the safe deployment of systems.  Automation Bias (AB) is a potential risk which 

occurs when over-reliance on a decision support tool causes the user to change their mind 
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from a correct to an incorrect diagnosis.  Bond et al. (2018) and Goddard et al. (2014) report 

the impact of AB in relation to the experience level of clinicians using AI in ECG reading 

and prescribing amongst physicians, respectively and found that more experienced clinicians 

are less likely to change their mind from their initial decision, but are equally susceptible to 

AB. In this study, respondents indicated that an agreement from an AI system would increase 

their certainty in their interpretation (57.0% n=49), while disagreement from an AI would 

cause them to seek a second opinion (69.8% n=60) (Figures 3.25 and 26).  

We might expect that these are conservative findings as the evidence in the literature 

indicates that reporting radiographers, as experienced clinicians, are less likely to change 

their mind than clinicians with less experience. 

3.7.9 Reporting radiographers: Factors influencing trustworthiness of AI in image 

interpretation decision support 

Lack of trust has been cited as a potential barrier to the implementation of AI in the clinical 

setting (Quinn et al., 2021; Kitamura and Marques, 2021; Jungmann et al., 2020), although 

excessive trust may also lead to an increased likelihood of the clinician changing their mind 

from their initial decision (Goddard et al., 2014).  Adequate trust levels are needed to ensure 

beneficial use and management of expectations of end-users.  The respondents to this survey 

reported a mean trust of five out of ten, indicating neither a lack of, nor excessive trust.  This 

is in contrast to a study examining attitudes of radiologists, IT specialists and industry to AI, 

where only a quarter of respondents felt that they could trust results from an AI system 

(Jungmann et al., 2021) but this might relate to interpretation of more complex images, like 

those from cross-sectional imaging (MRI and CT).   

Respondents to this survey were asked which features of an AI system may increase trust.  

The most popular choices were ‘indication of the overall performance of the system’ (n=76), 

and ‘visual explanation’ (n=67) (Figure 3.28).  Two main methods to increase trust in AI 

have been proposed in the literature – (i) model explainability and (ii) interpretability. 

Explainability refers to ‘human-comprehensible’ methods to reveal how the decision was 

reached while interpretability is the knowledge of the user into how the system works (Yang 

et al. 2020).  Interpretability of modern AI systems can be difficult, due to system complexity 

(Erickson, 2019; Kumar et al., 2018).  As mentioned in Chapters one and two, visual 

explanations, e.g., colour-coded overlays, have been proposed as means to explain the focus 
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of the system in making its decision (Kumar et al., 2018; Reyes et al., 2020), the desire for 

which has been somewhat supported by the responses to this survey.  However, caution is 

recommended with the use of explainable AI – if the prediction can be incorrect, the 

explanation can be incorrect, leading to overinflated trust in the system (Ghassemi et al., 

2021). Explainability sceptics argue that the performance of the system may be sufficient to 

gain end-users’ trust (Kitamura and Marques, 2021; Miller, 2021).  Respondents to this 

survey agree with this sentiment, indicating that they would have greatest desire for the 

overall performance data to be supplied. However, performance indicators may be biased too, 

as human errors might occur within these indicators depending on the reference level for 

these measurements, as discussed in full in Chapter two. 

3.7.10 Interpretation of correlation analysis 

There were correlations found between different UK regions and confidence in AI 

terminology plus UK region and whether AI made radiography a more attractive profession.  

The rationale for this is unclear, however, subgroup analysis indicates that there is a greater 

confidence in AI in England and that the respondents in England felt that AI would make 

radiography a more attractive profession to them.  This may be due to most respondents being 

from this region (Table 3.2), however, it should also be noted that there is provision of a 

targeted AI postgraduate course in London for radiographers which may evidence the impact 

of formal education on the professional perceptions of AI 

(https://www.city.ac.uk/prospective-students/courses/professional-development/introduction-

to-artificial-intelligence-for-radiographers).   

There was a relationship found between gender and confidence in using AI terminology 

across both professions.  Further exploration into the reason for this relationship were 

investigated from the cross tabulations of the likelihood ratios.  This found that, overall, the 

observed values (responses) from the male respondents were higher than the expected values 

for ‘confident’ and ‘very confident’ and the female respondents were generally the 

reverse.  Other correlations with gender across both professions indicate that there is a higher 

level of confidence and self-reported understanding with the male respondents.  Female 

respondents were also significantly more likely to seek a second opinion following dissent 

from an AI diagnosis.  Male respondents did not agree that AI would reduce their career 

opportunities, perhaps indicating an acknowledgement of the potential professional 

development opportunities available with implementation of clinical AI. 

https://www.city.ac.uk/prospective-students/courses/professional-development/introduction-to-artificial-intelligence-for-radiographers
https://www.city.ac.uk/prospective-students/courses/professional-development/introduction-to-artificial-intelligence-for-radiographers
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Although the reason for this is unclear, studies indicate that AI and computer science are 

male dominated fields (West et al. 2019), with only 18% of authors at AI conferences 

identifying as female and that in general, females are less confident in using technology than 

males (Yau and Cheng, 2012).  This may be an issue for the radiography workforce, where 

there is a much greater proportion of females than males (HCPC, 2018).  This contrasts with 

the radiology workforce demographics, where 60% of the workforce are male (RCR, 

2020).  As mentioned, according to the Dunner-Kruger effect (Dunning, 2011), self-reported 

confidence is no measure of competence.  A possible explanation for the lower confidence 

scores for women in our study may be due to the gender confidence gap and the tendency for 

women to think less favourably about their scientific reasoning ability and underestimate 

their performance (Ehrlinger and Dunning, 2003). This may also explain why the female 

respondents are not indicating recognition of the career development potential that may come 

with the implementation of AI.  Other studies suggest that while there remains a gap in 

female perceived self-confidence in AI technology related terminology and tasks, there is no 

difference in performance or accuracy between genders (Liberatore and Wagner, 2020).  Kim 

Nilsson writes in ‘Forbes’, that, to mitigate service inequalities, it is essential that those 

professionals working in AI are representative of the population for which the AI will be used 

(Nilsson, 2019).  Therefore, there may need to be more targeted investigation into the causes 

for this disparity to allow timely intervention in education, training, mentorship and 

representation before further integration of AI into this female-dominated clinical setting.  

The Digital Natives Report (Advanced, 2019), a multi-generational survey of over 1000 UK 

business decision makers reported that AI is integrated into the daily lives of those born after 

mid-1995, so-called ‘Generation Z’, the youngest participants in the survey.  The report also 

found that those in this age category have a hunger for new technology and are comfortable 

using it. The findings from our survey support this by the relationship found between the 

diagnostic radiography respondents’ role and the perception of adequacy of training available 

in AI.  The greatest discrepancy between actual and expected responses, as determined by the 

likelihood ratio, noted was in the student radiography cohort, with three times as many 

responses than predicted disagreeing with the statement ‘There is enough training on AI 

currently available for radiographers’ (Appendix 3.7).  The young professionals, and 

radiography students of today are ready to embrace technology and education providers and 

employers should be in a position to maximise this potential.  This is further confirmed by the 

positive correlation found between age and reduction of career opportunities in both 



Page 162 of 516 

 

professions, indicating that the older, more experienced radiographers perhaps do not view AI 

with the same potential as younger radiographers, or perhaps, they have seen the ebb and 

flow of new technology over their career span, reflecting reticence to succumb to ‘inflated 

expectations’ (Gartner, 2018). Interestingly, this correlation was not found when 

investigating a relationship of these variables with levels of highest academic achievement 

and therefore is likely to be more related to age than experience.  However, conversely, a 

positive correlation between respondents’ age and perceived confidence in AI,  and years 

practicing and perceived confidence in AI was found in the therapeutic radiography 

responses, indicating that those in the younger age categories and those with fewer years’ 

experience felt less confident in AI, which to some extent contradicts the literature referenced 

above.  This may be due to progressively greater exposure to new technologies in the clinical 

setting over time (Hafslund et al., 2008), or may be due to the exposure of younger 

generations with many forms of AI generating a critical engagement with the technology, i.e., 

being more aware of the intricacies of these systems and, therefore being aware of ‘knowing 

what they don’t know’ (Advanced, 2019).   

 3.8 Limitations  

This exploratory study gathered responses from UK diagnostic and therapeutic radiographers, 

and therefore may not be applicable globally. The survey employs snowball convenience 

sampling. This might indicate a degree of selection bias in relation to Information 

Technology (IT) literacy and interest and knowledge of AI, as the participants were invited 

from the professional networks of the co-authors, many of which are established academics 

and researchers in the AI field. The results of this work, therefore, may possibly overestimate 

the knowledge, skills and confidence in AI as the respondents may come from settings of 

more established AI cultures and environments. However, convenience sampling remains an 

inexpensive sampling method for hard-to-reach populations (Fricker, 2017). The sample size 

and sampling method is also comparable with similar studies in the field of radiography in 

other countries (Abuzaid et al., 2020; Ryan et al., 2021). 

Limited free response information was obtained as many of the questions required Likert-

scale or closed type responses.  Focus groups with purposive sampling should be undertaken 

to gain deeper understanding of the educational needs and challenges faced with the 

upcoming integration of clinical AI.   
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Finally, the survey instrument used did not employ a validated knowledge, skills, confidence 

scale as the team wished to contextualise and customise the survey to the priorities and needs 

of the workforce and validated questionnaires do not offer that flexibility; instead, survey 

questions were developed by professional experts to get the information required to inform 

practice change in educational provisions in the near future. 

There are currently 70 Society of Radiographers (SoR) members enrolled to use an online 

networking space for reporting radiographers, although estimates bring the number of 

reporting radiographers to be much higher, with 86 reporting radiographers responding to this 

section of the survey.  The results may therefore not be representative of the target population 

as a whole, however with the lack of definitive data on the number of practicing reporting 

radiographers in the UK this is difficult to determine.   

Further investigation is required to quantify automation bias and trust in radiographers of all 

experience levels to provide targeted intervention suggestions. Focus groups or interviews 

may allow for richer perception data to be obtained with this specific specialism, which, as 

this survey discovers, radiographers themselves foresee as an area of most impacted by AI in 

the future.  This is very timely as service demand dictates the need to increase the numbers of 

reporting radiographers with immediate effect and AI being prioritised in image 

interpretation and diagnostic decision support.  

 3.9 Recommendations 

Targeted provision of education should be planned to upskill the radiography workforce to 

ensure the profession is ready to critically engage with technology and foster a healthy digital 

healthcare ecosystem, using AI appropriately to leverage the benefits of the technology. 

Developers should engage with clinical end users to gain insight into their perceptions of trust 

in the systems on offer.  Clinical insight should be gained at all stages of the development 

process, to devise user interfaces which will foster trust.  Chapter four will focus on 

determining the impact of AI feedback on student and qualified radiographers’ decision 

making and trust.  Chapter five will quantify the impact of different forms of AI feedback on 

reporting radiographers trust in AI for clinical decision support in image interpretation. As 

the use of AI becomes more prevalent, consideration should be given to the expectations of 

patients and service users in the role of AI in radiographic image interpretation. 
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 3.10 Conclusion 

The results from this survey demonstrate that the UK radiography workforce is not yet 

knowledgeable, appropriately skilled, confident or sufficiently educated for full integration of 

modern AI into the clinical setting. Some members of the workforce are resorting to 

educating themselves on AI using short courses online but there is a need to prioritise 

formalised education and mentoring at all levels of the profession.  This should not 

discriminate against those who do not have or do not wish to have postgraduate qualifications 

but should allow flexibility by availability of postgraduate and CPD provisions for those who 

wish to keep abreast of technological developments after graduation and provide opportunity 

for specialism in this field should the need and desire arise.    

Respondents were unsure of both the use of AI in current clinical practice and the impact on 

radiography as a career, although a large majority agree that AI will have an impact on the 

daily clinical practice of the radiographer.  This is supported by much of the available 

literature on the topic.  There is an awareness of the way in which technology is used 

currently and could be used in the future.  ‘Reporting’ in diagnostic radiography and 

‘treatment planning’ in therapeutic radiography are areas which respondents see being 

influenced currently by AI. These are also areas where the respondents to this survey feel will 

be further developed in the future, supported by other evidence in the literature (Mehrizi et 

al., 2020; Adams et al., 2021; Huismann et al., 2021).  The respondents to this survey were 

unsure of the impact of AI on their future career, an area within which there is much 

speculation.  It is unclear whether this will herald in a new type of radiographer with different 

roles, or whether certain areas of the profession will disappear.   

Although education in AI is required by all healthcare professionals (NHS, 2019b; HCPC, 

2020; Lindqwister et al., 2020; Wiggins et al., 2020; SoR, 2021; Wuni et al, 2021), including 

students and those in clinical practice, this study illustrates that some professional subgroups, 

such as female and younger radiographers may need targeted intervention to develop 

confidence in AI.  However, confidence does not equate to competence and therefore 

education should allow all students of AI to engage with the technology critically for career-

long learning and awareness of their gaps in knowledge.   

AI is currently present in healthcare and with pressures on healthcare staff and preferences 

from the public, this technology will become more prevalent.  Now is the time for 
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radiographers, as the bridge between the patient and technology, to become involved in the 

shaping of our future with AI.  This can be made possible by members of the profession 

realising that a time of change can allow for a reimagining of clinical practice in the future 

and securing the position of radiography as a technologically adept profession with future-

ready professional roles. 
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Chapter 4 - Automation bias 

The survey of UK radiographers, reported in Chapter three, highlighted a number of issues 

which may arise when using modern forms of AI (Rainey et al., 2021b, 2022a; 2022b).  

Radiographers surveyed did not fully understand AI terminology, did not feel adequately 

trained, lacked confidence in the use of the technology and felt that they would not be able to 

explain the ‘decision making’, or the process by which the AI arrived at its diagnosis, to 

service users and other healthcare practitioners.  There was some correlation noted in the age 

and experience variables, where younger and less experienced practitioners and students felt 

less confident and competent in AI.  There was some variability in reporting radiographers’ 

perception of the impact of AI on their specific area of practice, with many indicating that AI 

would cause them to change their mind following feedback from a diagnostic decision 

support system used for image interpretation.  Respondents felt that agreement from the AI 

would further affirm their initial diagnosis indicating that AI may promote confirmation bias. 

Most agreed that if the AI disagreed with their interpretation they would seek affirmation 

from another source, i.e., seeking a ‘second opinion’.  Confirmation bias is not a problem in a 

perfect system, where the confirmatory information sought is always correct and therefore 

will always improve the accuracy of the initial decision.  This is not the case with even the 

most accurate AI system in use or development today.  Consideration should also be given to 

how this feedback is presented to the human user, where, if the information is presented to 

the user in an unintelligible or suboptimal way for that individual, or task, may result in 

unintended consequences, such as lack of trust or overreliance in the system (automation 

bias). 

Reporting radiographers also indicated several pieces of information they might need to 

assure their trust in AI for image interpretation, including an indication of the overall 

performance of the system and some forms of visual feedback.  The impact of AI feedback 

has been reported in other studies in medicine (Goddard et al., 2024; Bond et al., 2018, 

Bernstein et al., 2023), however, this is lacking in radiography and limited in radiology.  

Further investigation is needed into the impact of the type of AI feedback on the user.   

Previous studies have supported the findings from chapter three, indicating that younger, less 

experienced users may be more influenced and confused by the AI decision, resulting in 

excessive decision switching, or ‘changing of mind’.  As the technology moves from the 
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laboratory to the clinic, it is important to understand how these aspects of user interface 

design influence user decisions for the best outcome for the patient.   

 4.1 Introduction 

As mentioned in Chapter one, the use of AI has been targeted as an area of focus for 

modernising and future-proofing the NHS in the UK (NHS, 2019a).  The current backlog and 

delay in the reporting of radiographs has driven investigations into the adoption of new 

technologies that could increase efficiency and “free up clinicians” to spend more time with 

patients (NHS, 2019 b and c). 

Promising accuracies of DL using CNNs for detection of pathology from plain radiographs 

have been reported for chest imaging (Qin et al, 2018; Tang et al., 2020) and mammography 

(Lamb et al., 2022). However, possibilities for determining diagnosis from skeletal 

radiographs have been less extensively investigated (Chapter 2; Rainey et al., 2021a). The 

first publication of promising experimental results for detecting fractures on skeletal 

extremity radiographs was in 2017 (Olczak et al., 2017).  Since then, other findings have 

been published evidencing the impressive performance of CNNs for pathology detection in 

comparison to, and in conjunction with, human experts (Chapter two; Mawatari et al., 2020; 

Sim et al., 2020; Rainey et al., 2021a; Liu et al., 2022).   

Despite reported accuracies and benefits, clinicians’ trust in AI remains a barrier to AI 

implementation in the health care setting (Fazal et al, 2018; Sutton et al., 2020).  This is 

particularly the case with the use of DL systems, due to the complexity of the technologies 

and some of the processing taking place within ‘hidden layers’ as described in Chapter one 

and two.  This raises ethical and legal issues as well as having implications for the users’ trust 

in the system – if the user doesn’t fully understand how the AI has reached its decision, can 

the clinician be expected to assume ultimate responsibly for the outcome (Geis et al., 2019)?  

Users’ lack of training and lack of confidence may exacerbate this, as found from the survey 

of UK radiographers reported in Chapter three (Rainey et al., 2021b; Rainey et al., 2022a and 

b). Additional information provided by the AI system, such as percentage confidence in 

diagnosis, triage recommendation and suggestion for further imaging have been proposed as 

other useful AI outputs (Chapter three; Rainey et al., 2021b). 
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Attempts are currently being made to make the DL decision-making process more transparent 

using visual representations to highlight the areas on the image that the AI is attending to, for 

example, attention/saliency heatmaps and regions of interest superimposed onto the 

radiograph (Chapter 2; Kumar et al., 2018; Blüthgen et al., 2020; Rainey et al., 2021a).  It is 

proposed that a user may be able to calibrate their trust in the AI if the user can see the area/s 

on the image that the AI focussed on when making its decision.  

Decision switching occurs when a decision-maker changes their initial image interpretation 

or diagnosis based on new information, or by assessing the same information from a different 

perspective. This is described in further detail in Chapter one. 

The latest census from both the Royal College of Radiologists (RCR) (2020) and the SCoR 

(2021) identifies shortages of imaging professionals of up to 17% across the UK.  With 

increased numbers of newly qualified and student imaging professionals in the NHS to fill 

this gap, it is important to understand how they, as well as currently practicing radiographers, 

will interact with new technologies being integrated into the imaging department. This study 

focuses on diagnostic radiographers, but these findings may be useful in benchmarking the 

impact of different forms of AI feedback on accuracy, decision switching and trust in all 

clinicians who use radiographic images for diagnosis. 

To the authors’ knowledge, no study has investigated the impact of the type of AI feedback 

on the diagnostic accuracy of radiographers and the impact that level of experience has on the 

acceptability of the AI decision.    

 4.2 Aim and objectives 

 4.2.1 Aim  

This experimental study aimed to discover how a binary diagnosis and visual feedback from 

an AI algorithm affects the diagnostic accuracy of radiographers with differing levels of 

expertise when interpreting radiographic images of the upper extremities. 

The principal aim was to quantify the impact of performance, decision switching and trust in 

an AI algorithm following exposure to two different forms of AI feedback. Two forms of AI 

feedback were assessed for their respective impacts: 
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1) a heatmap that shows where on the image the AI is attending to when making its 

decision (see section 4.3.6) and 

2) a simple binary diagnosis, i.e., the model suggests that there is either a pathology or 

no pathology (with a percentage confidence in its decision).   

 4.2.2 Objectives 

This study had the following objectives: 

1.  To determine the baseline diagnostic accuracy of radiographers of differing levels of 

expertise when interpreting a selection of radiographic images of the upper 

appendicular skeleton. 

2.  To investigate the impact of binary and visual AI feedback on diagnostic accuracy. 

3.  To investigate the effect of this AI feedback on decision switching. 

4.  To investigate the perceptions of trust of participants on the AI system. 

 4.3 Methods 

4.3.1 Ethical approval 

Ethical permission for this study was granted by Ulster University Nursing and Health 

Research Ethics Filter Committee FCNUR-20-035.  Ethical permission for the use of the 

clinical dataset images was previously granted to use the images for research purposes 

(Monash University, Clayton, Australia, 2011) and formed part of another PhD study 

(McConnell et al., 2013) (Appendix 4.1 and 4.2)  

4.3.2 Model development 

The model used in the experimental studies included in this thesis (Chapter four and five) 

was built by Dr D. Kumar (while in University of Waterloo and Stanford School of 

Medicine).  A precis of the key details regarding the development of the model are given 

below: 

The MURA dataset of upper appendicular skeleton radiographs (as mentioned in Chapter 

two) was used for training and testing of the AI model (Rajpurkar et al., 2019). MURA 
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consists of 40,561 images taken by conducting 14,863 examinations of the upper extremity. 

Each study has been labelled by a radiologist as either abnormal or normal. For this binary 

classification task, musculoskeletal radiographs from seven upper extremities including 

shoulder, humerus, elbow, forearm, wrist, hand and finger were used. The dataset was 

divided into training and validation sets with 9045 normal and 5818 abnormal radiographic 

studies divided between the two sets. In the training set, there were 11,184 patients with 

13,457 studies and 36,808 images. The images in all the sets varied in resolution and aspect 

ratio with no overlap of patients between training and validation set. 

As there was no explicit test set for the MURA data, half of the validation set was used (783 

patients, 1,199 studies and 3197 images) as the test set and the rest as the validation set. 

There was no overlap between any of the sets. The test set was chosen to contain 

approximately half of each of the upper extremities included in the MURA dataset (shoulder, 

humerus, elbow, forearm, wrist, hand and finger) for adequate and balanced representation of 

each class.  

A convolutional neural network (CNN) specifically ResNet-152 pretrained on ImageNet was 

used in this image interpretation task. During training, the images were presented to the CNN 

and the arithmetic mean of the output was taken to determine whether the image contains any 

abnormality, similar to the original MURA study (Rajpurkar et al., 2018). Any probability 

greater than 0.5 is deemed as abnormal. Using these criteria, the model was trained using the 

training set till the network stopped improving and training was stopped. For optimisation, 

Adam optimizer was used with initial learning rate of 1x10^-4 (for description of the function 

of optimisers see Chapter two). 

To understand the model output prediction and for use in this study, a binary saliency map for 

each image output was created alongside its abnormality score. Each salience map was 

created using the binary map creation technique as described by Kumar et al., 2018. In the 

binary saliency map, a heat map overlay was produced in which the white area indicated the 

strongest regions of attention by the AI and black indicated null values. Spatial location of the 

binary saliency map (and the associated heat map) indicated the spatial area on the input 

image which was used by the model to produce the given output.  
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 4.3.3 Clinical test set 

The test dataset also consisted of radiographic images of the upper appendicular skeleton.  

They were obtained on real patients presenting to a hospital in Australia.  The radiographic 

examinations in the dataset were all anonymised. All patients’ identifiable information such 

as the patient’s name, date of birth and health and care number were removed from each 

image.  Images did not contain any rare abnormalities or pathologies which could readily 

identify an individual.  

There was a total of 268 examinations in the full dataset with approximately a 3:7 split of 

pathology: no pathology.  21 examinations were chosen at random, again by random number 

allocation (Random.org), for inclusion in the study (All images are available in Appendix 4.2, 

with diagnoses in Appendix 4.4 and Table 4.1).  

The participants were blinded to the ground truth at all stages of the study, to avoid bias 

(Brealy et al., 2002). 

The radiographic examinations were originally used to determine diagnosis.  There were 

three to five radiological reports from radiologists and reporting radiographers available for 

each.  For this study the researcher determined consensus (binary) diagnosis by inspection of 

radiology reports (fracture/no fracture), and this consensus was used as ‘ground truth’. 

Agreement of the participants with ‘ground truth’ was termed ‘accuracy’.  

The AI model described above was used to obtain diagnosis for each examination.  

Predictions were produced as a binary diagnosis (i.e., pathology (abnormality)/no pathology 

(abnormality)) and percentage confidence of the AI in its decision (prediction score). A 

heatmap overlay (GradCAM) was also provided on each image, as described above 

(Appendix 4.3 and Figures 4.1 - 4.4) 

In the clinical test dataset, there was pathology present on nine out of the 21 examinations 

(42.9%).   The AI made the correct prediction on 12 out of the 21 examinations (57.1% 

accuracy) (Table 4.1). Examples of examinations where the AI was correct and incorrect, for 

pathological and non-pathological examinations are given in Figures 4.1 to 4.4.   The full 

dataset of images is available in Appendix 4.3. 
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 Figure 4.1: Patient 11 – Pathological examination: AI correct (83.6% confidence) 
 



Page 173 of 516 

 

        

   

Figure 4.2: Patient 2 – pathological examination: AI incorrect (99.3% confidence in 
incorrect diagnosis) 
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Figure 4.3: Patient 16 – Non-pathological examination: AI correct (96.98% confidence 
in diagnosis) 
 



Page 175 of 516 

 

     

   

Figure 4.4: Patient 12 – Non- pathological examination: AI incorrect (65.24% 
confidence in incorrect diagnosis) 
 

This study aims to clarify how radiographers and student radiographers are affected by 

feedback from this poorly functioning AI system (accuracy 57.1%).  This is particularly 

important as the literature is brimming with potentially promising results of AI performance.  

This study uses an AI which achieved acceptable performance in the laboratory (test set) 
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(personal communication Dr. D. Kumar, 2019; Appendix 4.5), but poorly with more 

clinically relevant images (clinical dataset) (Table 4.1 and Appendix 4.4).   
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Table 4.1– Characteristics of the AI performance 
AREA Patient 

number (in 

qualtrics®) 

Case no AI 

prediction / 

diagnosis 

AI 

probability 

(% 

confidence) 

Human 

expert 

ground 

truth 

Human:AI 

agreement 

elbow  1 141 0 99.83% 0 y 

elbow  2 184 0 99.32% 1 n 

elbow  3 329 0 99.54% 0 y 

finger 4 252 0 98.69% 1 n 

finger 5 290 0 97.35% 1 n 

finger 6 367 0 92.92% 0 y 

forearm 7 225 1 52.60% 0 n 

forearm 8 339 1 72.49% 1 n 

forearm 9 340 1 94.66% 1 y 

hand 10 1 1 56.85% 0 n 

hand 11 101 1 83.60% 1 y 

hand 12 103 1 65.24% 0 n 

humerus 13 120 0 53.51% 0 y 

humerus 14 199 1 55.80% 1 y 

humerus 15 321 0 59.11% 1 n 

thumb 16 66 0 96.98% 0 y 

thumb 17 128 0 91.79% 0 y 

thumb 18 370 0 97.79% 0 y 

wrist 19 98 0 79.94% 0 y 

wrist 20 124 0 56.13% 1 n 

wrist 21 221 0 88.81% 0 y 

AI accuracy (agreement with ground truth (established from concensus diagnosis with agreement from at 

a least three out of five reporting radiographers and radiologists): 12 cases where the AI agreed with 

ground truth /21 total cases: AI accuracy: 57.1%) 
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 4.3.4 Patient-public involvement 

As previously described the PPI group (described in Chapter three) was consulted on the 

relevance of this study, the methodology and dissemination strategy, in line with HRA 

recommendations (HRA, ND). 

4.3.5 Pilot study 

Purposive sampling was used to allocate participants to the pilot study who represented the 

target respondents to ensure all potential participants would understand expectation of their 

input.  Representation from each year of a UK diagnostic radiography programme (Ulster 

University) was obtained (n=3), along with two qualified radiographers, one with six to 11 

years’ experience and one with greater than 20 years of clinical experience (n=2).  Six images 

were selected by random number allocation (random.org), one from each anatomical region 

in the test dataset (shoulder, fingers, hand, wrist, forearm, elbow and humerus).  These 

examinations were not included in the final study.  Participants were asked to comment on 

the acceptability of the study design, the quality of the images in the survey and the time 

taken to complete the survey, ensuring face and content validity, as described in Chapter 

three.  They were also asked to indicate the time taken to complete the survey and comment 

on the acceptance of the time sacrifice required to complete the study.  This information was 

used to build the full study. 

 4.3.6 Creation of the study platform 

The number of images in the survey was chosen based on an acceptable estimated time for 

completion (approximately 15 minutes) (Revilla and Ochoa, 2017; Kantar, 2022).  Feedback 

from the pilot study indicated that each participant took approximately five minutes per 

examination and therefore three examinations were chosen for each individual participant.  A 

study duration which is acceptable to participants will encourage participation and thoughtful 

responses, therefore avoiding random responses and premature cessation of the survey 

(Revilla and Ochoa, 2017). The randomiser function in Qualtrics® was used to allocate three 

radiographic examinations to each participant from the test dataset (n=21 examinations). 

Each examination contained two or more radiographic images.  Each image in the 

examination was presented, and the participant was asked to determine if there was a 

pathology present on the image.  The participant was then presented with the heatmap 



Page 179 of 516 

 

overlay and asked again if they felt there was a pathology present, and whether the AI 

heatmap has caused them to change their mind from their initial decision.  This was repeated 

for each image in the examination (one full example question is presented in Appendix 4.6).  

When all images, heatmaps and binary diagnoses were presented, the participants were 

presented with all images from the examination again asked to determine if they felt there 

was a pathology present following all information given up to this point.  This question was 

included to represent the clinical scenario, where clinicians would have the opportunity to 

view all images to determine a final diagnosis.  They were then provided with the AI binary 

decision and asked if they now believed there was a pathology present on the image.  They 

were asked if the binary feedback caused them to change their mind from their initial 

decision and to give indication in their trust in the AI following exposure to all images and AI 

feedback for this examination (Figure 4.5). Full details of the study flow, questions and 

images used are provided in Appendices 4.3 and 4.6. 

  



Page 180 of 516 

 

 

Figure 4.5: Graphical representation of study pathway 
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 4.3.7 Participants 

The study was open to all diagnostic radiographers, internationally, who are currently in 

clinical practice, including students. The landing page of the Qualtrics® survey provided 

participants with information on the study rationale and aim.  A brief precis of the relevant 

literature on the subject was also provided. Informed consent was obtained by participants 

indicating their desire to proceed via a yes/no response on Qualtrics® platform (Appendix 

4.2).  If the participant indicated that they did not give their consent the ‘skip logic’ function 

exited them from the study.  A final page notified respondents of submission of responses, 

although a full review of responses was not given, and participants were not permitted to 

revisit responses and change their mind.  Backtracking was not permitted.  

The study was promoted via the European Federation of Radiographer Societies (EFRS) 

Research Hub (open from 2nd March to the 12th of April 2021) and following this, by social 

media (Twitter® and LinkedIn®). The last response included in analysis was collected on the 

2nd of November 2021. Due to the novelty of this study and lack of research in the area, a 

power calculation was not possible and this method of convenience, snowball sampling was 

felt to be appropriate to gain insight upon which to base future studies. ‘Rule-of-thumb’ 

estimates indicate that there should be 10-15 participants in each group for quantitative 

studies (Obuchowski, 2004; Allyn and Bacon, 2008). 

Participants were grouped according to broader experience groups to ensure adequate sample 

size in each group (student radiographers/qualified radiographers) to allow for more 

meaningful outcomes from statistical analyses.   

 4.3.8 Data analysis  

Tests of normality (Kolmogorov-Smirnov and Shapiro-Wilk) were conducted.  Skewness and 

kurtosis were visually determined by inspection of histograms and distribution curves.  

Comparison was made of the mean and median for each condition in both the student and 

radiographer groups.  Data was found to be normally distributed and parametric tests were 

used for inferential statistics (Table 4.2). Percentage accuracy in each of the two experience 

levels – student radiographer (‘students’) and qualified radiographers (‘radiographers’) is 

reported.  Descriptive statistics are reported for each experience level.   
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Table 4.2: Test of normality 
 

ALL (i.e. students and 
radiographers) 

Students Radiographers 

Kolmogorov-Smirnov 0.200 (non-significant, 
therefore indicating normal 
distribution) 

0.200 0.200 

Shapiro-Wilk 0.489 (non-significant, 
therefore indicating normal 
distribution) 

0.158 0.564 

Skewness  0.517 (std error 0.501) 0.917 (std error 0.501) -0.920 (std error 0.501) 
Kurtosis  0.342 (std error 0.972) 0.550 (std error 0.972) -0.181 (std error 0.972) 

 

4.3.8.1 Impact of different forms of AI feedback on participants’ accuracy 

Descriptive statistics were used to describe the impact of the AI feedback on participants’ 

accuracy. These variables were further sub-divided into experience categories (i.e., student 

and radiographer) and condition (i.e., instance where the i) AI was correct, ii) incorrect, iii) 

pathological cases and iv) non-pathological cases).  Data is presented per examination as each 

examination had differing numbers of images contained within.  Participants were allocated 

three examinations at random, therefore data was analysed as % accuracy and total number of 

decision points. 

Participant accuracy was not considered as related to the individual participant, but rather as a 

group: student or radiographer.  Diagnostic accuracy (i.e., agreement of the participant 

diagnosis with established diagnosis) was determined at three points; before any AI feedback, 

following exposure to the AI generated heatmap and following the AI binary diagnosis.  T-

tests (two-tailed) (α=0.05) investigated the significance of any differences between the 

accuracy of the student and radiographer groups under each of the four investigated 

conditions: i) AI correct, ii) AI incorrect, iii) pathological cases and iv) non-pathological 

cases.  Cohen’s d was used to estimate effect size of any statistically significant result: small 

0.2, moderate 0.5, large 0.8 effect (Cohen, cited in Pallant, 2007). 

The responses were all analysed using the same scale, therefore ‘repeated measures ANOVA’ 

was used to investigate the impact of the type of AI feedback provided on diagnostic 

accuracy (Pallant, 2007; Field, 2013).  Post-hoc pairwise comparisons were conducted to 

determine the specific factors responsible for the differences. Effect size of any statistically 

significant finding was estimated using partial eta squared ( = SSeffect / (SSeffect + SSerror).  

Effect sizes are reported using an established ‘rule of thumb’: 
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ηp2 = 0.01 indicates a small effect 

ηp2 = 0.06 indicates a medium effect 

ηp2 = 0.14 indicates a large effect (Field 2013) 

4.4.8.2 Impact of different forms of AI feedback on participants’ decision switching 

behaviour  

The impact of the different forms of AI feedback on the propensity of the participants to 

change their mind (decision switch) from their initial diagnosis were investigated.  All 

participants were asked if the AI feedback caused them to change their mind from their initial 

diagnosis.  This question was posed at two time points: following the AI feedback in the form 

of the heatmap and again following provision of the AI binary diagnosis.   As this data was 

self-reported by the participants, further analysis was conducted on the respondents’ 

diagnosis to determine the rate and direction of the decision switch i.e., whether their change 

of mind was positive (switching from an incorrect decision to a correct one) or negative 

(switching from a correct to an incorrect decision). The direction of the switch was noted as 

positive, i.e., more correct, and negative, i.e., less correct, and no change, where the group of 

participants did not change their minds.  Data were, again, analysed collectively for the two 

groups (students and radiographers) as the number of decision points varied across the 

participants.  The propensity of the participant to change their mind from their initial decision 

was determined for three comparisons:  

(i) pre and post heatmap (i.e., impact of heatmap only),  

(ii) pre heatmap and post binary feedback (the effect of all AI feedback) and  

(iii) post heat map and post binary (effect of binary feedback only).   

The Mann-Whitney U test was conducted to investigate any statistical significance of these 

findings between student and radiographer groups. The data gathered was based on 

participants’ perception of whether the AI caused them to change their mind, therefore 

requiring the use of a non-parametric test (Field, 2013).  Additionally, test of normality 

(Kolmogorov-Smirnov and Shapiro-Wilk) indicated that some of the data was not normally 

distributed, confirming the need for a non-parametric test for the perception if decision 

switching responses only.   
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The rate of decision switching has been presented using descriptive statistics for the 

collective group for each of these scenarios: where the (i) AI was correct, (ii) AI was 

incorrect, and (iii) where the image was pathological or (iv) non-pathological.  This was 

repeated for each group (students and radiographers).  The direction of the switch for each of 

the groups in each of the conditions (as before: (i)-(iv)) was determined as positive (change 

of decision to agree with ground truth) or negative (change of decision to disagree with 

ground truth).   

Data was tabulated and graphically represented, where appropriate. 

 4.4 Results 

All data analysis was conducted on SPSS® v 27 (IBM, 2019) and Microsoft® Excel® 

(Microsoft® Corporation, 2018).   

The Bonferroni correction was used to mitigate the effects of inflated error when conducting 

multiple post-hoc tests on a single dataset.   

 4.4.1 Demographics 

Full demographic details of the participants are given in Table 4.3.  Following cleaning of the 

original data (n=129) by removal of entirely blank responses and responses stating that they 

are ‘not practicing radiography’, there were 94 participants included in the final analyses.  

Responses were included if at least part of the study was completed. Of the 94 participants, 

57.5% (n=54) were students and 42.6% (n=40) were radiographers with representation of a 

range of experience levels from year one of an undergraduate degree programme to greater 

than 20 years clinical experience.  Most of the respondents were from the UK (England, 

Scotland, Northern Ireland) or Ireland (85%, n=80).   
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Table 4.3: Demographic details of participants  

Demographic information 
Currently practicing 
plain radiography in 
your role (student or 
radiographer)? 

Yes 
No 

100% (n=94) 
0% (n=0) 

Gender Male  
Female  
 

30.9% (n=29) 
69.1% (n=65) 

Age range 18-25 years old 
26-35 years old 
36-45 years old 
46-55 years old 
55-65 years old 

53.2% (n=50) 
23.4% (n=22) 
16% (n=15) 
5.3% (n=5) 
2.1% (n=2) 

In which country do 
you currently 
work/study? 

England 
Ireland 
Italy 
Jordan (JO) 
Malta 
Northern Ireland (NI) 
Philippines 
Portugal 
Scotland 
Sri Lanka 
United Arab Emirates (UAE) 
United Kingdom (UK) 
United States of America (USA) 

8.5% (n=8) 
3.2% (n=3) 
1.1% (n=1) 
1.1% (n=1) 
5.3% (n=5) 
52.1% (n=49) 
1.1% (n=1) 
3.2% (n=3) 
2.1% (n=2) 
1.1% (n=1) 
1.1% (n=1) 
19.1% (n=18) 
1.1% (n=1) 

Please select from the 
options below to 
indicate your level of 
experience in 
Diagnostic 
Radiography 

Undergraduate student - year 1 
Undergraduate student - year 2 
Undergraduate student - year 3 
Undergraduate student - year 4 (Scotland only) 
TOTAL students 
******************************************************* 
Less than or equal to 1 year experience 
Greater than or equal to 1 to less than 6 years' experience 
Greater than or equal to 6 to less than 11 years' experience 
Greater than or equal to 11 to less than 20 years' experience 

24.5%(n=23) 
13.8%(n=13) 
18.1%(n=17) 
1.1%(n=1) 
57.5% (n=54) 
******************* 
3.2%(n=3) 
4.3%(n=4) 
13.8%(n=13) 
11.7%(n=11) 
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Greater than or equal to 20 years' experience 
TOTAL radiographers 

9.6% (n=9) 
42.6% (n=40) 

How proficient would 
you consider yourself to 
be in the use of 
information technology 
(I.T.) in general 

Very proficient: I choose to use IT and computer systems in all aspects of my personal and work life and 
feel comfortable with the introduction of newer systems. 
Proficient: I choose to use IT and computer systems in many aspects of my personal and work life, and I 
am somewhat comfortable with the introduction of newer systems. 
Somewhat proficient: I use IT and computer systems when I need to in my personal and work life, but I 
feel overwhelmed and confused by newer systems. 

37.2% (n=35) 
 
 
53.2% (n=50) 
 
 
9.6% (n=9) 

How are you accessing 
this survey?  

Home personal computer (PC) 
Diagnostic display workstation 
Mobile phone 
Tablet 
Other 

42.6% (n=40)  
3.2% (n=3)  
42.6% (n=40)  
5.3% (n=5)  
6.4% (n=6)  
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 4.4.2 Agreement of participants with ground truth - ‘accuracy’  

Full results are presented in Table 4.4, Figures 4.6 (a, b (i and ii) and c (i and ii)), 4.7 (a, b (i 

and ii) and c (i and ii)) and 4.8 (a, b (i and ii) and c (i and ii)) and Tables 4.5 and 4.6. 

The qualified radiographers had a greater accuracy across all examinations, under all 

conditions, however, this difference was not statistically significant.  However, further 

interrogation of the data revealed that although there was a small to moderate effect size 

under all conditions – when the AI feedback was correct, when the AI was incorrect, in 

pathological cases and in non-pathological cases.  This disparity between statistical 

significance and effect size may be due to small sample size in some cases (n=16 – 26).  The 

findings are presented in full in Tables 4.4 and 4.5. 

Table 4.4: Impact of AI feedback on student and qualified diagnostic radiographers’ 
diagnostic accuracy 

 Condition AI feedback Total 
participant 
decisions* 

Total correct 
participant 
decisions* 

% Accuracy Standard 
deviation 

ALL Overall 
impact of 
AI feedback 

No AI feedback 746 393 52.2 19.24 

AI heatmap 742 383 52.8 19.33 

AI binary feedback 245 149 60.6 25.06 

AI correct No AI feedback 491 245 49.2 17.38 

AI heatmap 489 245 49.2 18.57 

AI binary feedback 153 97 62.6 21.69 

AI incorrect No AI feedback 225 148 62.3 20.45 

AI heatmap 253 138 58.8 20.28 

AI binary feedback 92 52 57.5 31.13 

Pathological 
cases 

No AI feedback 342 198 62.7 21.66 

AI heatmap 339 186 58.5 21.97 

AI binary feedback 104 73 70.3 27.73 

Non-
pathological 
cases 

No AI feedback 404 195 47.8 15.1 

AI heatmap 403 197 48.6 16.8 

AI binary feedback 141 76  53.4 21.61 

Student 
radiographers 

Overall 
impact of 
AI feedback 

No AI feedback 417 207 49.9 23.08 

AI heatmap 432 193 45.6 22.92 

AI binary feedback 143 78 54.3 31.29 
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AI correct No AI feedback 271 126 44.3 22.79 

AI heatmap 287 119 40.8 21.51 

AI binary feedback 90 52 57.3 28.24 

AI incorrect No AI feedback 146 81 59.0 21.9 

AI heatmap 145 74 53.3 24.44 

AI binary feedback 53 26 49.4 37.24 

Pathological 
cases 

No AI feedback 192 116 63.3 22.77 

AI heatmap 208 98 50.7 30.66 

AI binary feedback 64 38 59.9 37.97 

Non-
pathological 
cases 

No AI feedback 225 91 39.9 18.31 

AI heatmap 224 95 41.7 15.32 

AI binary feedback 79 40 50.0 26.2 

Qualified 
radiographers 

Overall 
impact of 
AI feedback 

No AI feedback 312 170 57.4 23.07 

AI heatmap 310 169 57.5 25.85 

AI binary feedback 102 66 64.9 34.33 

AI correct No AI feedback 203 104 50.5 16.21 

AI heatmap 202 109 52.6 25.23 

AI binary feedback 63 44 65.2 28.32 

AI incorrect No AI feedback 109 66 68.6 28.98 

AI heatmap 108 60 65.5 26.46 

AI binary feedback 39 22 64.3 44.63 

Pathological 
cases 

No AI feedback 133 82 68.4 28.05 

AI heatmap 131 74 64.5 30.07 

AI binary feedback 40 34 84.8 22.8 

Non-
pathological 
cases 

No AI feedback 179 88 49.2 14.89 

AI heatmap 169 95 52.2 22.05 

AI binary feedback 62 32 49.9 34.58 

* N.B. % agreement is calculated based on the % accuracy of each decision and therefore 

there is a slight discrepancy between this and the calculation based on columns two and 

three above. 
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Figure 4.6: Impact of AI feedback on ALL participants’ accuracy (under the 4 
conditions: AI correct/incorrect; pathological and non-pathological cases) 
(dotted line represents line of best fit/trendline on all graphs) 
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Figure 4.7: Overall impact of all forms of AI feedback on students’ diagnostic accuracy 
(under the 4 conditions: AI correct/incorrect; pathological and non-pathological cases) 
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Figure 4.8: Impact of AI feedback on the diagnostic accuracy of qualified radiographers 
(under the 4 conditions: AI correct/incorrect; pathological and non-pathological cases) 
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Table 4.5: t-tests comparing students and radiographers’ accuracy in determining diagnosis from radiographic images, following AI 
decision support, across four conditions: AI correct/incorrect and pathological/non-pathological cases. 

 



Page 196 of 516 

 

 4.4.3 Impact of AI feedback 

Using repeated measures ANOVA, there is a statistically significant difference in participant 

accuracy following AI feedback (i.e., pre-AI feedback, post-heatmap and post-binary 

feedback from the AI) when the AI is correct (p=.002) and when the examination has been 

determined as demonstrating pathology (p=.013) (Table 4.6). 

Pairwise comparisons indicate that when the AI is correct there is a significant improvement 

in the participants’ performance before presentation with any AI feedback and following 

presentation of the binary AI feedback (p=.007) (i.e., between the ‘plain’ image and 

following textual AI feedback: ‘The AI system determined that this examination/imaging 

series DID/DID NOT contain evidence of pathology with x % certainty’).  In the case of 

pathological examinations, there was a statistically significant difference between both the 

pre-AI feedback and post-heatmap stages (p= .015) and post heatmap and post binary 

feedback (p= .013).  Further inspection of the descriptive statistics (Figures 4.6 – 4.8) 

indicate that for all participants there was a decrease in performance following presentation 

of the heatmap, followed by an increase, exceeding the performance with the un-aided 

interpretation, indicating that the heatmap was detrimental to performance in pathological 

cases.   
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Table 4.6: ANOVA with post-hoc pairwise comparisons 
Condition  Within subject 

effect 
(repeated 
measure), 
Combined 
(measure+exp) 

n= (stud, 
rad) 

Mean (stud, 
rad) 

Std. dev. Box's test of 
equality of 
co-variance 
matrices 

Levene's 
test 
(univariate) 

Mauchly's 
test of 
sphericity 

F-ratio Degrees of 
freedom 
(dfM, dfR) 

Significance 
p=… 

Effect size 
(partial eta 
squared) 

Pairwise 
comparison
s 

ALL Within subjects 
(repeated 
measures) i.e. 
preHM, 
postHM, post 
bin 

21, 21 PreHM 
49.9121, 
57.4027. 
PostHM 
45.5789, 
57.5161. 
PostBin 
54.2593, 
64.8753 

PreHM 
23.07891, 
23.06881.  
PostHM 
22.92437, 
25.84600.  
PostBin 
31.29149, 
34.33021 

p=0.863 
Equality of 
variance 
assumed 

PreHM 
p=0.834, 
PostHM 
p=0.828, 
PostBin 
p=0.828 

<0.001 Sig 
(sphericity 
violated) 

(G-G 
correction) 
F=2.649 

1.452, 
58.085 

0.095  
Significant 
at α = .10 

0.062 
(medium 
effect size) 

Visual 
inspection – 
no pattern 

Combined 
effect 

G-G 
correction 
F= 0.649 

1.452, 
58.085 

0.748      

AI correct Within subjects 
(repeated 
measures) 

13, 13 PreHM 
44.3341, 
50.5196.  
PostHM 
40.8124, 
52.6175.  
PostBin 
57.2558, 
65.2381 

PreHM 
22.79231, 
16.20699.  
PostHM 
21.51564, 
25.23205.  
PostBin 
28.24029, 
28.31949 

p=0.540 
Equality of 
variance 
assumed 

Pre HM 
p=0.133, 
Post HM 
p=0.515, 
Post Bin 
p=0.600 

p=0.017 sig  Huyhn-Feldt 
used 
(GG=0.771) 
F=7.823 

1.696, 
40.709 

0.002 0.246 (large 
effect) 

PreHM and 
PostBin 
p=0.007 ( CI 
-24.220 - -
3.410, mean 
difference -
13.815) 

Combined 
effect 

  F=0.239 1.696, 
40.709 

0.752      

AI incorrect Within subjects 
(repeated 
measures) 

8, 8 PreHM 
58.9762, 
68.5714.  
PostHM 
53.3244, 
65.4762.  
PostBin 
49.3899, 
64.2857 

PreHM 
21.89948, 
28.89119.  
PostHM 
24.43698, 
26.46180.  
PostBin 
37.23777, 
44.63000 

p=0.417 
Equality of 
variance 
assumed 

PreHM 
p=0.816, 
PostHM 
p=0.611, 
PostBin 
p=0.275 

p=0.004 sig GG 
correction 
F=0.631 

1.268, 
17.750 

0.474      

Combined 
effect 

  F=0.090 1.268, 
17.750 

0.825      

Pathological Within subjects 
(repeated 
measures) 

9, 9 PreHM 
63.2860, 
68.4061.  
PostHM 
50.6911, 
64.5437.  
PostBin 

PreHM 
22.77461, 
28.05400.  
PostHM 
30.65670, 
30.06630.  
PostBin 

p=0.417 
Equality of 
variance 
assumed 

PreHM 
p=9.553, 
PostHM 
p=0.849, 
PostBin 
p=0.072 

p=0.012 sig GG 
correction 
F=6.252 

1.381, 
22.097 

.013  0.281  (large 
effect) 

PreHM and 
PostHM 
p=0.015 (CI 
1.457 – 
15.001, 
mean diff 
8.229) AND 
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59.8942, 
84.8148 

37.96613, 
22.79809 

PostHM 
and PostBin 
p=0.013 (CI 
2.984 – 
26.580, 
mean diff 
14.737) 

Combined 
effect 

  F=2.882 1.381, 
22.097 

.097  
Significant 
at α = .10  

 0.150 (large 
effect) 

Visual 
inspection – 
no pattern  

Non-
pathological 

Within subjects 
(repeated 
measures) 

12, 12 PreHM 
39.8816, 
49.1501.  
PostHM 
41.7447, 
52.2454.  
PostBin 
50.0331, 
49.9206 

PreHM 
18.30592, 
14.89435.  
PostHM 
15.31557, 
22.05492.  
PostBin 
26.20137, 
34.57704 

p=0.417 
Equality of 
variance 
assumed 

PreHM 
p=0.480, 
PostHM 
p=0.382, 
PostBin 
p=0.125 

p=0.003 sig GG 
correction 
F=0.532 

1.405, 
30.906 

.531 not sig     

Combined 
effect 

  F=0.599 1.405, 
30.906 

.499      
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 4.4.4 Decision switching 

Students stated that they would change their mind following heatmap feedback more often 

than radiographers (23.5% students, 14.3% radiographers – difference 9.2%) (Figure 4.9a and 

b).  The student group were also more likely to change their mind following binary feedback, 

with an even greater difference between the two experience groups than heatmap provision 

only (32.7% students, 19.3% radiographers – difference 13.4%). There was also a difference 

found in the instances where participants felt they would reconsider their initial opinion 

following both heatmap and binary diagnosis (19.8% students, 11.0% radiographer – 

difference 8.8%; 27.0% students, 12.9% radiographers – difference 14.1%, for heatmap and 

binary AI feedback respectively) (Figure 4.9a and b).  This indicates that the AI feedback is 

more likely to cause students to change their mind from, and feel uncertainty in, their initial 

decision.  

The perception of likelihood of decision switching of student radiographers differed 

significantly from radiographers following presentation of the heatmap, for yes (p=.023), no 

(p=.002) and reconsider responses (p=.008), with the student group responding that they 

changed their mind or reconsidered their initial diagnosis more often that the radiographer 

group. The radiographer group responded that they did not change their mind following their 

initial decision more often than students following both heatmap and binary AI feedback.  A 

medium effect size was found in all cases.  Full results are presented in Table 4.7.   
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Figure 4.9: Impact of AI heatmap/binary feedback on participants’ propensity to 
change their mind. 
 

  

23.5

56.7

19.8
14.3

74.7

11.0

-20.0

0.0

20.0

40.0

60.0

80.0

100.0

Yes No Reconsider

Fig 4.9a Impact of heatmap feedback on 
perception of liklihood to decision switch -

students and radiographers

Students Rads

32.7
40.4

27.0
19.3

67.8

12.9

-20.0

0.0

20.0

40.0

60.0

80.0

100.0

Yes No Reconsider

FIg 4.9b Impact of binary AI feedback 
exposure on perception of liklihood to 

decision switch - students and radiographers

Students Rads



Page 201 of 516 

 

Table 4.7: Mann Whitney U test applied to differences in perception of liklihood to 
decision switch  
(instances of yes, no and reconsider expressed as a proportion of the total reponses) of 
students and radiographers.  Mean ranks are reported and effect size has been reported 
using Pearson’s r with effect sizes: small 0.1-0.3, medium 0.3-0.5 and large 0.5 and over 
(Cohen, 1988). 

 Has being given the AI feedback 

(heatmap or binary AI decision) 

caused you to change your mind 

from your initial diagnosis? 

Student n=21/ 

Radiographer 

n=20 

Total n = 41 

Mean 

rank 

Mann-

Whitney 

U 

z=… Exact 

significance 

(p=…) 

Effect 

size: 

r = 𝐳𝐳
√𝒏𝒏

 

Following 

heatmap 

Yes Student  25.10 124.00 -2.257 .023 0.35 

(medium) Radiographer 16.70 

No Student 15.43 93.00 -3.055 .002 0.48 

(medium) Radiographer 26.85 

No, but it did make me reconsider 

my initial decision 

Student 25.74 110.50 -2.604 .008 0.41 

(medium) Radiographer 16.02 

Following 

binary AI 

diagnosis 

Yes Student 24.62 134.00 -2.017 .044 0.32  

(medium) Radiographer 17.20 

No Student 15.67 98.00 -2.934 .003 0.46 

(medium) Radiographer 26.60 

No, but it did make me reconsider 

my initial decision 

Student 25.55 114.50 -2.571 .009 0.40 

(medium) Radiographer 16.23 

 

Table 4.8: Decision switching, calculated as difference in accuracy, before any AI 
feedback and after all AI feedback  

 

 Condition Difference (Before AI – after all AI feedback) 

ALL AI correct +13.4 

AI incorrect -4.8 

Pathological examinations +7.6 

Non-pathological examinations +5.6 

Students All AI feedback +4.4 

AI correct +13.0 

AI incorrect -9.6 

Pathological examinations -3.4 

Non-pathological examinations +10.1 

Radiographers All AI feedback +7.5 

AI correct +14.7 

AI incorrect -4.3 

Pathological examinations +16.4 

Non-pathological images +0.7 
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 4.5.5 Automation bias 

The change in accuracy is reported as % difference in diagnostic accuracy of participants 

before AI feedback and after all AI feedback. Full detail given in Table 4.8. Automation bias 

was investigated by determining the negative impact of this feedback.  Grey highlighted cells 

represent instances where the AI feedback had net negative impact on diagnostic accuracy for 

the examination. The change in accuracy was calculated by subtracting the initial and final 

diagnostic accuracy of the participants. The AI feedback (i.e., heatmap and binary AI 

decision) proved beneficial to participants except for situations where the AI was incorrect 

(students and radiographers) and pathological examinations in the student group only 

(decrease in accuracy of 3.4%).  The negative effect of AI feedback when the AI was 

incorrect was greater in the student group than the radiographer group (9.6% decrease and 

4.3% decrease respectively). See also Figures 4.6 – 4.8  

 4.4.6 Trust analysis 

Trust perception (0 representing no trust and 5 representing absolute trust) has been gathered 

at several points during the study: 

• At the beginning of the study, when participants had no access to any of the images nor 

AI feedback provided as part of this study. 

• Following exposure to all images, heatmap and binary feedback in each complete 

examination, i.e., three per participant  

• Finally, at the end of the study, when the participant had engaged with the full study, 

consisting of three complete examinations including all images and AI feedback 

contained therein.  

(Table 4.9, Figure 4.10) 

Trust is reported as the mean and median of each examination for each of the two groups.  

Initial mean trust is lower for the radiographer group than the student group (mean=4.1, 

n=54, SD 0.9; mean=3.9, n=40, SD 1.1, for students and radiographers respectively).  No 

difference is noted in the median trust perception.  Trust at the end of the study, compared to 

the beginning, decreased in both groups (mean=3.4, n=44, SD 1.3, median=3; mean=3.2, 

n=34, SD 1.1, median=3, a decrease of 0.7 (mean) and 1 (median) for both students and 

radiographers respectively). Overall, mean trust is higher in the student group than the 
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radiographer group during the image assessments, i.e., when asked after each heatmap and 

each AI binary feedback (3.5, n=142, SD=0.6; 3.0, n=101, SD=0.7 for students and 

radiographers respectively). This is also noted in the median values of 3.5 and 3 for students 

and radiographers respectively. 

Table 4.9: Trust perception before, during and after AI feedback 
 Student  Radiographer  

n= Mean SD Median n= Mean SD Median 

Trust 
perception - 
START 

54 4.1 0.9 4 40 3.9 1.1 4 

Trust 
perception - 
DURING 

142  
(total 
perception 
ratings – three 
examinations 
per participant) 

3.5 0.6 3.5 101 
(total perception 
ratings – three 
examinations 
per participant) 

3.0 0.7 3 

Trust 
perception 
– END 

44 3.4 1.3 3 34 3.2 1.1 3 

 

 

Figure 4.10: Students and radiographers’ trust perception before, during and after AI 
feedback.  
  

4.5 Discussion 

The level of diagnostic accuracy was lower than expected overall and does not compare with 

performance reported in recent literature (Verrier et al., 2022; Woznitza et al., 2022).  
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Participants were accessing the study on personal devices which would not permit the 

optimal viewing conditions available in the clinical setting.  The images were presented ‘one 

at a time’, which although reflects how images are acquired in the clinical setting, did not 

permit the participant to revisit a previous image until the end of the examination. This is 

unlike the clinical scenario, where the radiographer would refer to all images when making a 

decision.  This was intentional to attempt to glean insight into the impact of the different 

forms of feedback offered.  The images were presented again to the participants, but this was 

after AI heatmaps had been viewed and diagnosis made.   

There was no statistically significant difference in the diagnostic accuracy between students 

and radiographers in this study, although radiographers were more accurate in their diagnosis 

across all conditions (AI correct/incorrect, pathology/no pathology).  Each examination was 

different, and the difficulty of diagnosis may have had an impact of the relatively low level of 

accuracy in places as well as the means of access of the study meaning that there may be a 

variation in viewing conditions across participants.  In this study radiographers and students 

were grouped together in these two broad categories, irrespective of the amount of clinical 

experience they had.  This may in part explain these findings as newly qualified 

radiographers may have diagnostic accuracy of a similar level to final year students. 

Supporting this, amongst the participants in this study there is greatest representation in the 

‘greater than or equal to six, but less than 11 years’ experience group’ (Table 4.3).  A study 

by Goddard et al., (2014) investigated the impact of computer feedback on user performance 

but further categorised experience level of the participants and found that automated decision 

support improved the accuracy of all participants, independent of experience.   

The necessity for the use of visual forms of AI explainability have been mooted by clinical 

professionals (Saporta et al., 2022; Zhang et al., 2022).  Opinion is changing from 

explainability being central to the successful adoption of AI, to some questioning its value 

(Kitamura and Marques, 2021).  A recent study (Saporta et al., 2022) investigated the 

agreement of area of pathology and the area identified by a number of different types of AI 

heatmap.  The study found some forms of heatmap (GradCAM) were broadly similar to the 

area identified by human experts but noted that all heatmaps tested used were ‘coarse’ and 

lacking in detailed representation of the pathological area.  They concluded that the heatmaps 

tested were not yet precise enough to be relied upon for diagnostic assistance or 

explainability.  This may explain why the heatmap caused some degree of confusion in this 
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study, even in instances where the binary diagnosis from the AI was correct.  This study 

supports the recognition that any form of explainability should be treated carefully and the 

impact of using differing forms of AI explainability should be carefully researched before 

clinical adoption.  This study only investigated the heatmap form of visual explainability and 

therefore further study should investigate if different visual representations of the focus of the 

AI might be of better use in this technologically proficient profession.  Previous work by 

Rainey et al., 2021b, 2022a and 2022, (Chapters two and three of this thesis), have reported 

that the preference of this population (radiographers) may be for the AI to provide data 

relating to the accuracy of the system being used and a degree of confidence of the system in 

making its diagnosis.   This is supported here experimentally by the increase in accuracy 

across all conditions when provided with the binary diagnosis, including % confidence of the 

system in its decision.  The exception of this benefit is noted when the AI is incorrect, for all 

participants (both students and radiographers), and in pathological cases within the student 

group only, however this decrease in accuracy was small (-3.4%).  

The reason for the increased accuracy following binary diagnosis is not immediately clear, 

although may be related to the timing of the AI feedback, with the provision of the binary 

diagnosis, by necessity, at the end of the examination when the participant will have viewed 

all images.  This may be the case in the clinical situation. A study by Gaube et al. (2021) 

found that there was no difference in participants’ (radiologists and non-expert physicians) 

tendency to follow advice whether from a human or AI source, despite indicating preference 

for the human-derived decision support, although this study used textual feedback only.  This 

was found to encourage confirmation and anchoring biases (Chapter one) and indicate this 

may be due to the discursive nature of true human to human interactions which exist 

organically in the clinical setting.  The user should, therefore, be encouraged to seek the 

advice of a decision support tool rather than its automatic presentation, therefore potentially 

reducing cognitive and automation biases. 

In general, exposure to the heatmap caused the diagnostic accuracy of the participants to fall 

and increase again when presented with the AI binary diagnosis and % confidence of the 

system.  This indicated that the participants made a negative decision switch when presented 

with the heatmap.  Automation bias has been defined by Goddard et al. (2014) and Bond et 

al. (2018) as the ‘changing of mind’ to a less correct response because of computer 

intervention.  As mentioned, this will not be a problem in a perfect system, where the AI is 
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always correct. A change of decision will always be positive, however, even the best systems 

in use today are less than 100% accurate or may have some inherent biases which the user 

should be mindful of.   

As expected, there is a greater propensity of the study participants to change their mind in a 

positive direction following AI feedback when the model is correct.  However, this is not a 

finding which is fully supported in other studies, where the degree of accuracy of the AI 

feedback provided was not related to the propensity of the user to follow the advice given 

(Gaube et al., 2021). Goddard et al. (2014) found that experienced users were less likely to 

change their mind from their initial decision.  This may mean that they are less likely to gain 

advantage from the use of the system, however it was not possible to elicit this detail in this 

study due to the broader experience ranges classifying the experience groups in this study. 

The radiographers were, however, less likely to change their mind following the presentation 

of either type of AI feedback across all conditions and the students were more likely to 

‘reconsider’ their initial decision (Table 4.7, Figures 4.9a and b).  Interestingly, the 

radiographers in this study benefitted more than the students from the AI feedback, with the 

greatest net change in accuracy in the ‘AI correct’ and ‘pathological’ conditions (Table 4.8).  

This may be useful in radiography where, although radiographer reporting results in high 

diagnostic accuracies, (Culpan et al., 2019; Verrier et al., 2022; Woznitza et al., 2022) there 

may be a greater propensity to underdiagnose pathology (‘false negatives’) (Verrier et al., 

2022). 

In most conditions there was a positive impact from the AI feedback despite the poor 

performance of the model.  The heatmaps were more likely to cause the user to be unsure of 

their diagnosis but, overall, the net effect of the AI feedback on diagnostic accuracy was 

positive in both student and radiographer groups.   The exception was in the case where the 

AI was incorrect, where the AI had a negative impact on the participants’ accuracy.  A 

greater impact was seen in the student group where accuracy fell by 9.6% compared with 

4.3% amongst radiographers, suggesting in this study that the student group is more 

susceptible to automation bias (Table 4.8).   This has been found in other studies where the 

prevalence and likelihood of automation bias and decision switching is greater in less 

experienced clinicians (Goddard et al., 2014; Bond et al., 2018).  

The qualified radiographers had a lower level of trust in AI than students.  This may cause 

them to become anchored to their initial decision (Bond et al., 2018; Gaube et al., 2021).  It 
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could be assumed that those who were in the radiographer group were, on average, older than 

those in the student group.  Generation Z (born mid 1990s – mid 2010s) are more likely to 

trust technology but also are more likely to be able to recognise the potentials and pitfalls of 

the technology that they are using (Rainey et al., 2021b and Chapter three of this thesis).  

This age group are also more likely to expect computer assistance in many avenues of their 

life with work being no exceptions (Advanced, 2019).  Both groups’ trust perception in AI 

systems fell following participation in the study.  This may indicate that they were able to 

detect that the AI (or some aspects of the AI) were inaccurate.  However, this is at odds with 

the increased accuracy reported above and with other studies indicating that even experienced 

clinicians are unable to detect inaccuracies in decision support systems (Gaube et al., 2022).   

 4.6 Limitations  

There were a relatively small number of participants interpreting each examination, however 

this was intentional to encourage participation in an acceptable time frame, reducing the 

within-study attrition rate.  There were 21 examinations included in this study.  This number 

was chosen to provide exposure across a range of examinations, without having to 

specifically select examinations, which may introduce bias. 

There was a lack of granular analysis of the levels of experience of the participants.  This was 

to allow for a greater number of decision points for each interpretation. 

Examinations were not presented on high quality ‘reporting monitors’ as would have been the 

case in the clinical environment.  This may explain why the participants’ diagnostic 

accuracies are lower than reported in the literature.  

Further study should consider determining the impact of the difficulty of the examination and 

the timing of AI feedback on participants from different experience levels and clinical 

backgrounds.  

 4.7 Recommendations 

The development of other forms of explainability should be considered by manufacturers.  

These should be thoroughly tested with the target user before deployment to allow for the 

nuances of the interaction to be determined.  Developers may wish to consider a range of 
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formats of AI feedback to allow the user to better interrogate the diagnostic decision from the 

AI.   

Further investigation should take place in a controlled environment to allow for variables, 

such as the viewing conditions, to be better managed.  This will allow for the true impact of 

the feedback to be determined.  Consideration should be given to the timing of feedback 

provision.   

Targeted education and awareness of this should be included in training by exposing users to 

instances where the AI was incorrect and therefore allow users to calibrate trust.  Developers 

should consider sharing cases of instances where the AI was incorrect, or the findings were 

inappropriate for the clinical situation. For example, when the AI arrived at the correct 

diagnosis but based this on additional image data or other confounding factors, such as 

position of lead marker, intravascular cannulae or other artefacts. The common benchmark of 

30/70 split of correct/incorrect cases has been shown to allow users of technology to 

determine appropriate trust, and to neither over nor under-rely on the system (Goddard et al., 

2014; Moray et al., 2000).  This split should be considered when training new users of AI 

systems for clinical decision support.   

The impact of the usefulness of AI dependent on the difficulty of the diagnosis should be 

further investigated, as the use of AI may be targeted to the cases where the clinician needs 

additional support, thus potentially reducing the instances of confirmation bias.    

This study did not focus on experts in image interpretation, who will be the end users of these 

technologies in the first instance, and who are providing an official report on the image.  

Studies should therefore focus on the perceptions of this population to elicit the impact of AI 

feedback on their perceptions of the usefulness of the AI and trust.  Results from a study 

conducted on this expert population will be presented in Chapter five of this thesis.  

Interrogation of experts in the appropriateness of forms of explainable AI should be 

undertaken to guide developers and calibrate appropriate trust (Chapter five).  Trust was 

found to be lower in the radiographer population in this study and suggestion for strategies to 

increase trust have been reported in Chapter two of this thesis.  These suggestions should be 

developed in concept and the impact tested on end users to ensure the desired outcome of 

appropriate trust, with neither over-, nor under-reliance on the system. 
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 4.8 Conclusion 

Radiographers’ and student radiographers’ accuracy in diagnosis can be improved with the 

use of AI, even a poorly functioning system, which performed well in training but did not 

generalise well, resulting in poor performance on real clinical images. Participants in this 

study tended to follow the diagnosis from the system, resulting in decreased accuracy in the 

diagnostic task in some cases.  This indicated that more education should be provided to 

undergraduate radiographers and other clinicians undertaking radiographic image 

interpretation.  The heatmap feedback caused a decreased accuracy in both student and 

radiographer groups before the binary feedback was presented.  This increased accuracy in 

many cases, with the exception of the instances when the AI was incorrect.  

Appropriate trust should be reached through exposure to imperfect AI. Trust in this imperfect 

AI decreased following exposure to feedback from the system, indicating that the user was 

aware of its fallibility.  Biases inherent in both the model and the user will exist and 

maximum benefit can be derived from acknowledgement of both.   

AI will be beneficial in diagnostic accuracy and workflow efficiencies when used 

appropriately in synchronicity with the clinician.  This will be possible when the user can 

appreciate cases where the AI is incorrect or not useful.  Knowledge of the strengths and 

weaknesses of the system will allow the clinician to determine its appropriateness for use in 

each task.
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Chapter 5 - Reporting radiographers’ trust in AI for radiographic 

image interpretation 

The findings from the study reported in Chapter four indicate that further research is needed 

into the factors impacting trust in AI for radiographic image interpretation with those who 

will be the end users of this technology.  As mentioned, the ‘Richard’s Report’ (Diagnostics 

Recovery and Renewal, NHS, 2020b) recommends that the number of reporting 

radiographers will need to increase over the coming years and therefore this group may be 

significantly impacted by these technologies. 

This study therefore focusses on reporting radiographers to investigate the impact of different 

forms of AI feedback on their levels of trust and how these forms of feedback will influence 

their decision making.   

 5.1 Introduction 

Despite reported accuracies of AI for a number of applications in radiology (Badgeley et al., 

2018; Qin et al., 2018; Guan et al., 2020), clinicians’ trust in AI remains a barrier to 

implementation in the health care setting (Fazal et al., 2018).  This is particularly the case 

with the use of DL.  As mentioned, DL algorithms make use of multiple neural layers to 

analyse and process image data but there are a number of these layers which are hidden to the 

user.  It is not apparent, therefore, how the algorithm reaches its ultimate decision.  This not 

only has implications for users’ trust in these systems but should be central when considering 

the ethical issues surrounding the clinical use of AI in radiology (Geis et al., 2019).  Attempts 

are being made to make this process more transparent using visual representations of the 

areas of attention of the AI, for example, heat, salience or attention maps (Kumar et al., 2018; 

Cheng et al., 2019; Bluthgen et al., 2020).   

As mentioned in Chapter two, plain radiography examinations of the appendicular skeleton 

are commonly performed, with 23.2 million plain radiographic examinations requested in the 

NHS England per annum (NHS, 2020a).  Despite plain radiography being commonly used in 

clinical practice, the use of AI in identification of fractures on appendicular skeletal 

radiographs remains a relatively under-explored area, with only thirty studies meeting the 

criteria for inclusion in the scoping review included in this thesis (Chapter two). 
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Radiographer reporting is established practice in the UK, however the NHS Diagnostics: 

Recovery and Renewal report (NHS, 2020b) calls for this role to be further expanded to allow 

50% of all plain radiographic images to be reported by a radiographer.  Whilst this is a 

welcome recommendation, the current dearth of radiographers and radiologists in the UK 

may mean that, not only must the number of radiology professionals (radiographers and 

radiologists) being trained increase, but efficiencies must be found, for example, the 

integration of AI to assist with faster reporting turnaround times (CoR, 2020; NHS, 2020b; 

SoR, 2020; RCR, 2021) as suggested by NHS England draft document of February 2023 

titled ‘Diagnostic Imaging Reporting Turnaround Times’. 

The rationale for this study was to explore the factors impacting reporting radiographers’ 

trust in AI during and after exposure to AI binary diagnoses and heat maps on plain 

radiographs of the appendicular skeleton, insight which is missing in the current literature.  

 5.2 Aim and Objectives 

This principal aim of the study was to investigate the factors impacting reporting 

radiographers’ trust in AI used to detect fractures on plain radiographic images of the upper 

extremity from the MURA dataset (Rajpurkar et al., 2019)  

The objectives of this study were to: 

1. investigate reporting radiographers’ trust in an AI system used to provide clinical decision 

support on radiographic images of the upper appendicular skeleton. 

2. investigate the factors impacting trust in these systems, including agreement with heatmaps 

used as means of explainable AI, and binary diagnosis from the AI. 

3. determine the propensity of the users to decision switch following provision of the AI 

feedback 
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 5.3 Materials and methods 

 5.3.1 Ethical permission  

Ethical permission was granted from Ulster University Nursing and Health Research Filter 

Committee (FCNUR-20-026) (Appendix 5.1, 5.2 (participant information sheet) and 5.3 

(participant instruction sheet)). 

 5.3.2 Model training 

As mentioned in Chapters two and four, the MURA dataset is a publicly available dataset 

used for training AI models for computer vision tasks in pathology detection on plain 

radiographs of the adult upper appendicular skeleton. This ran as a ‘competition’ where 

competitors submitted their programming code to a central repository (https://codalab.org/ ) 

for testing on an unseen test set.  The dataset consists of 40,561 radiographic images (14,863 

examinations, training dataset n=36,808 images) which have ground truth established 

(pathological/non-pathological).  The dataset is split into training and validation datasets.  

The training set was used for initial training of the AI model and the validation set was used 

to fine-tune the parameters until an acceptable accuracy was reached.   

The images in the dataset vary in quality, resolution, aspect ratio.  The images are exclusive 

to each dataset, with no overlap. 

 5.3.3 Test dataset 

The test set of the MURA competition is not publicly available.  For this specific study half 

of the validation set was used as a test set, consisting of 783 patients, 1,199 studies and 3197 

images.  The remainder was used as a 'validation set’.  The MURA competition has now 

closed and, therefore, there were no established diagnoses available for the testing and 

validation sets, however, as the participants were practicing reporting radiographers, their 

consensus diagnosis was taken as ‘ground truth’. 

No overlap between any of the sets was permitted. The test set was chosen to contain 

approximately half of each of the seven upper extremities (shoulder, humerus, elbow, 

forearm, wrist, hand and finger) for adequate and balanced representation of each class.  

https://codalab.org/
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 5.3.4 AI model 

A pretrained (ImageNet) ResNet-152 CNN was used in this study.  For each examination, the 

arithmetic mean of the output is used to determine pathology, with any probability over 0.5 

deemed pathological/abnormal.  The model was trained on the training set until no further 

improvement was observed.  Adam optimiser was used with initial learning rate to 10^-4, as 

described in Chapter two and four. 

5.3.5 Salience map  

As before in Chapter four, a saliency map was produced for each image to ‘explain’ the AI 

prediction.  This was, again, created employing a technique used by one of the authors in a 

previous study (Kumar et al., 2018).  The whitest area of the colour map indicated the 

strongest areas of spatial location used by the model to determine the probability i.e., the area 

the model found most important in determining its prediction.  Null values are represented as 

black. 

5.3.6 Patient-public involvement 

As before, the patient-public involvement group, described in Chapter three, was advised on 

the relevance of this study for key stakeholders.  Feedback was also sought on the 

methodology of the study and plans for dissemination, including the appropriateness of 

presentation at conferences and publishing the work in international, peer reviewed journals 

(HRA, ND).  

5.3.7 Pilot study 

The study was piloted amongst three experienced radiographers, two from a clinical reporting 

background and one from an academic institution, with extensive experience in plain 

radiography.  Each of the participants in the pilot study had in excess of 20 years clinical 

and/or academic experience.   

A random sample of radiographs not included in the main study were selected and embedded 

into the Qualtrics® platform.  Participants were asked to provide feedback on the suitability 

of the questions asked, the accessibility of the survey platform itself, time taken for 

completion and the quality of the radiographic images, thus ensuring both face and content 

validity (Streiner at al., 2015).  As a result of this, the number of images which would be 
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included in the main study was decided and based on an approximation of the number of 

images that could be interpreted in a maximum of 90 minutes, as this was deemed to be an 

acceptable time from participants in the pilot study.  Participants found the study easy to 

follow and comprehend.  No changes were made to the study flow in Qualtrics® as a result of 

the pilot study, however, image quality was noted as an important issue. Participants reported 

that some of the images in the dataset were of low diagnostic quality to the human eye.  A 

question relating to the participants’ perception of the image quality of each presented image 

was then included in the final version of the study to ensure all examinations included in the 

datasets were acceptable for interpretation by the participants.   

 5.3.8 Recruitment / Participant selection 

A request for reporting radiographers to participate in this study was made through the 

professional networks of the supervisors of this PhD including a request for participation 

made through reporting and advanced practice special interest groups (The Society of 

Radiographers (SoR) Consultant Radiographers Advisory Group and The SoR Reporting 

Radiographers Special Interest group). Interested participants were directed how to contact 

the researcher by email.  The first three interested participants in each region of the UK 

(England, Scotland, Wales and Northern Ireland) were recruited to the study.  A £25 gift 

voucher was offered following expression of interest to take part in the study to encourage 

completion of the study, therefore minimising the risk of attrition.  This was funded from the 

College of Radiographers Industry Partnerships Scheme Research Grant (CoRIPS), detailed 

in Chapter one. All participants completed the entire study.    

Each participant was emailed a unique link to the survey on the 18th July 2022 and a reminder 

email sent on the 2nd August 2022. A unique link was provided to ensure individuality of 

responses to ensure the resultant data met the requirements to allow for analysis of interrater 

agreement using Fleiss’ kappa for multiple readers (Fleiss et al., 2003). 

A power calculation was not carried out as this is a novel study with lack of comparable 

quantitative research in the area.  The literature indicates that in these cases a sample size of 

10-15 participants is adequate for this type of study (Obuchowski, 2004; Allyn and Bacon, 

2008).   
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 5.3.9 Construction of the dataset for Qualtrics® 

Each imaging series in each case of the MURA test set were initially analysed by the 

researcher and were excluded from this study if the image contained surgical hardware, for 

example, following internal surgical fixation of trauma or any artefact felt to be significantly 

obscuring anatomy as demonstrated in Figure 5.1 a and b.  The overall diagnostic quality of 

the images included in the main study were then reviewed by two supervisors of this thesis 

with experience in radiographic image interpretation (SMF and JMcC) and rejected as 

necessary (Figure 5.1, Figure 5.2).  Following exclusions, 299 imaging series were included 

in this study.  Each imaging series contains one or more projections of the anatomical areas.  

Each imaging series was allocated a number from 1 - 299.  A random number generator 

(Random.org) was used to select 110 examinations.  Each examination was then closely 

inspected by the researcher for diagnostic acceptability and verified by the two supervisors 

used above for initial screening of images (SMF and JMcC).   

           

Figure 5.1 a and b: Example of rejected image due to presence of internal fixation (left) 
example of rejected image due to poor image quality (right) 
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Figure 5.2: Dataset building: Dataset (DS) a, b and c 
 

The remaining 30 full examinations (minimum two images in each examination) were 

divided into two datasets of 12, and one dataset of six examinations.  Each participant was 

randomly allocated one of the datasets of 12 examinations and all participants were presented 

with the dataset of six examinations, to allow the author to compute the interrater reliability 

across all participants (Figure 5.2, Appendix 5.4). 

MURA test set examinations: 

n = 425 

Examinations remaining following ‘first 

screen’ for individual assessment for quality. 

n = 299 

Excluded examinations (n= 126) 

Inverted images: 30 

Surgical hardware: 71 

Artefact: 18 

Poor quality on ‘first screen’: 4 

Surgical hardware and inverted: 2 

Artefact and inverted: 1 

Examinations remaining for screening for 

image quality n = 292 

Pilot study examinations n = 7 

Undiagnostic images due to image quality 

issues: 

n = 262 

Examinations remaining for study n = 30  

DS a 

n = 12 

examinations 

DS b 

n = 12 

examinations 

DS c 

n = 6 

examinations 

Random allocation  All participants  
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Each image was adjusted to optimise viewing by modifying light, clarity and colour in 

Microsoft Photos and saved as a .png image.  This is a lossless compression format and has 

been used in a similar study (Bluthgen et al., 2020).  These images were quality assured again 

by the researcher and the supervisors involved in the initial screening (SMF and JMcC) (all 

images used in this study are available in Appendix 5.5). 

The radiographic images were randomly assigned to each dataset and embedded in the 

Qualtrics® survey platform.  Each dataset (DS) was assigned a letter (a, b or c) and each 

examination a number (1 – 12 for DS a and b or 1 – 6 for DS c), for example, DS a: 

examination 1, DS a, examination 2, and so on.  Each participant was randomly allocated one 

of dataset (DS) a or b using the randomiser function in Qualtrics®.  All participants were 

allocated DS c.  In total, each participant was asked to interpret 18 radiographic examinations 

(established from pilot study as optimal for completion in approximately 90 minutes).   

Each of the participants taking part in the study received their own individual link to the 

study.   Internet Protocol (I.P.) addresses were not gathered to ensure full anonymity.     

Participants were asked to indicate their binary diagnosis and localisation of any pathology 

on each image, before and after provision of a Gradient-weighted Class Activation Map 

(GradCAM) ‘heatmap’ overlay.  They were then asked to indicate the extent of the heatmap 

agreement with their localisation of pathology (if applicable).  They were asked to indicate 

their trust in the system following provision of the heatmap. All the images in the 

examination were presented again to the participant, along with the binary diagnosis 

(pathology/no pathology) from the AI.  Participants were asked to indicate their level of trust 

in the AI system following both heatmap and binary feedback.  They were then asked if the 

AI feedback would have caused them to change their mind from their initial decision.  

Finally, they were asked to rate the diagnostic quality of the images included on a scale of 0 

to 5 (see Appendix 5.4 for study transcript). 

 5.3.10 Data analysis 

Interrater agreement across all readers on all datasets was established using Fleiss’ kappa as 

agreement was being determined across two or more raters (Fleiss et al., 2003). Cohen’s 

kappa was used to determine agreement between participants for pathological and non-

pathological images and examinations.     
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Descriptive statistics describe the agreement of the AI and the user, using consensus 

diagnosis of the participants as ground truth.  Consensus was determined as the most popular 

decision of the participants (Table 5.1 and Appendix 5.6).  Percentage agreement with the AI 

diagnosis was established.   

Ordinal and ordinal perception data were obtained to gain an insight into the users’ trust, 

therefore non-parametric tests were used for correlation.  Spearman’s rho (rs) and Kendall’s 

kau (τb) were used to investigate any correlation between: 

1. Trust (0-5) and level of agreement with the heatmap feedback from the AI (perfect 

agreement (coded 1), partial agreement (2) and disagreement (3)) 

2. Trust (0-5) and level of agreement with the binary feedback from the AI (perfect 

agreement (1), partial agreement (2) and disagreement (3)) 

3. Trust (0-5) and propensity of the user to change their mind from their initial decision (yes 

(1), maybe (2), no (3)) 

4. Image quality (0-5) and agreement with binary AI feedback (perfect agreement (1), partial 

agreement (2) and disagreement (3)) 

5. Image quality (0-5) and trust (0-5) 

6. Image quality (0 representing no trust – 5 representing absolute trust) and propensity of the 

user to change their mind from their initial decision (Yes (1), maybe (2), no (3)) 

Level of agreement with the AI heatmap was possible only on images where pathology was 

detected.  Data entries indicating that there was no pathology, as determined by the consensus 

diagnosis of the participants, were coded as ‘missing data’ before analysis.   

The strength of any relationship was determined using the suggestion by Cohen (1988), cited 

in Pallant, 2007, i.e., 

Small .01 to .29 

Medium .30 to .49 

Large .50 to 1.0  
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 5.4 Results 

5.4.1 Participants  

There were 12 participants in this study, three from each region of the UK, namely, England, 

Scotland, Wales and Northern Ireland.  Every participant was a practicing reporting 

radiographer. 

5.4.2 Interrater agreement 

Interrater agreement was established on all examinations within each of the datasets.  Fleiss’ 

kappa (k) was calculated and indicated: 

• moderate agreement between participants allocated dataset (DS) a (n=5, k= .581, 95% 

C.I. .475 - .688, p < .05),  

• moderate agreement between participants allocated DS b (n=7, k=.410, 95% C.I. .338 

- .482, p < .05), and fair agreement between participants allocated DS c (n=12, 

k=.228, 95% C.I. .172 - .283, p < .05).   

Agreement was calculated for individual categories (pathological and non-pathological).  

The magnitude of agreement was determined by levels determined for the Cohen’s kappa 

coefficient, as suggested by Landis and Koch, 1977, i.e., 

o Poor < .02 

o Fair .21 to .40  

o Moderate .41 to .60 

o Good .61 to .80 

o Very good .81 to 1.00 

 No statistically significant difference in responses was found for any dataset, concluding that 

participants responded in a similar way, therefore descriptive statistics below are reported per 

image and per examination, rather than per participant. 
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5.4.3 Agreement of participants with AI heatmap 

Following presentation of the heatmap for each of the images in each examination the 

participant was asked to indicate their level of agreement with the heatmap localisation.  This 

was only relevant when the participant deemed there was pathology present on the image.  

Level of agreement was measured by asking the participant to choose from one of the 

following options: 

• Yes, in all areas I have previously identified 

• Yes, in more than half of the areas I have previously identified 

• Yes, in less than half of the areas I have previously identified 

• No, there are no areas of agreement with areas I have previously identified 

• No pathology 

These findings were coded into four categories for analysis: 

• Perfect agreement (yes, in all areas I have previously identified, coded ‘1’) 

• Partial agreement (yes, in more than half and less than half, coded ‘2’) 

• Disagreement (no, there are no areas of agreement, coded ‘3’) and 

• No pathology. 

The responses indicating there was no pathology were coded as missing data and excluded 

from the analysis. 

Following removal of the ‘no pathology’ responses, there were 144 decision points 

remaining.  There was perfect agreement with the heatmap noted in 22.2% of images (n=32), 

partial agreement in 31.9% of images (n=46) and disagreement in 45.8% of images (n=66). 

Data is presented in full in Figure 5.3. 
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Figure 5.3: Participant agreement with heatmap feedback 

5.4.4 Agreement of participants with binary AI diagnosis 

Initially, agreement of the participants with the AI was established by consensus diagnosis for 

each examination (Table 5.1).  The participants agreed with the binary AI feedback on 86.7% 

of the examinations (n=26 out of 30 examinations).  Of those where the consensus diagnosis 

of the participants differed from the AI binary feedback, three were false positive, where the 

AI determined pathology in examinations where the radiographer did not and one false 

negative, where the AI failed to detect a pathology identified by the participant (images of 

these examinations are presented in Appendix 5.7).  Image quality was rated below the mean 

image quality (3.1) of the study for all these examinations (i.e., 2.6, 3.0, 2.1 and 2.0 for 

patients 3a, 5a, 3b and 5b respectively). 

Further analysis per participant for each examination indicated that there was some level of 

agreement with the AI, either perfect or partially, for all examinations except for examination 

3b, where all participants disagreed with the AI decision (100%, n=7 participants) and 

examination 5b, where there was disagreement with the AI indicated by most of the 

participants (86%, n=6 participants) (grey rectangles presented on Figure 5.4a). 

Overall, there was agreement with the AI binary diagnoses in 66.9% of instances (i.e., n=147 

out of a total of 216 decision points (12 participants’ decisions over 30 examinations)), partial 

4.9% (n=32)
7.1% (n=46)

10.2% 
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77.8% 
(n=506

Extent of participants' agreement with AI 
heatmap feedback / %
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agreement 22.5% (n=46) and no agreement in 11.2% of examinations (n=23) (Figure 5.4). 

Full detail is presented in Figures 5.4 a and b, including indication of the instances of 

disagreement with the AI decision.  

 

 

Figure 5.4 a and b: Participant agreement with binary AI diagnosis per examination (a) 

and for all datasets (b) 
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Table 5.1: Per-participant diagnosis/examination and agreement with AI diagnosis 

  Image  n= Pathology Y Pathology N TOTAL EXPERT DIAGNOSIS - 
consensus 

AI DIAGNOSIS Expert/AI 
AGREE 

EXPLAINATION 

1a_1  5 5 0 
10Y 1 1 Y  1a_2  5 5 0 

2a_1  5 1 4 

6Y, 9N 0 0 Y   
2a_2  5 3 2 
2a_3  5 2 3 
3a_1  5 4 1 

7Y, 3N 1 0 N AI false neg 3a_2  5 3 2 
4a_1  5 0 5 

1Y, 14N 0 0 Y   
4a_2  5 1 4 
4a_3  5 0 5 
5a_1  5 1 4 

3Y, 12N 0 1 N AI false pos 
5a_2  5 0 5 
5a_3  5 2 3 
6a_1  5 5 0 

15Y 1 1 Y   
6a_2  5 5 0 
6a_3  5 5 0 
7a_1  5 0 5 

1Y, 14N 0 0 Y   
7a_2  5 1 4 
7a_3  5 0 5 
8a_1  5 5 0 

15Y 1 1 Y   
8a_2  5 5 0 
8a_3  5 5 0 
9a_1  5 0 5 

2Y, 13N 0 0 Y   
9a_2  5 2 3 
9a_3  5 0 5 
10a_1  5 2 3 

5Y, 10N 0 0 Y   
10a_2  5 0 5 
10a_3  5 3 2 
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11a_1  5 0 5 

2Y, 13N 0 0 Y   
11a_2  5 2 3 
11a_3  5 0 5 
12a_1  5 0 5 

15N 0 0 Y   

12a_2  5 0 5 

12a_3  5 0 5 

1b_1  7 2 5 

6y, 15n 0 0 Y   
1b_2  7 1 6 
1b_3  7 3 4 
2b_1  7 0 7 

0Y, 21N 0 0 Y   
2b_2  7 0 7 
2b_3  7 0 7 
3b_1  7 1 6 

1Y, 20N 0 1 N AI false pos 
3b_2  7 0 7 
3b_3  7 0 7 
4b_1  7 1 6 

2Y, 19N 0 0 Y   
4b_2  7 1 6 
4b_3  7 0 7 
5b_1  7 1 6 

1Y, 20N 0 1 N AI false pos 
5b_2  7 0 7 
5b_3  7 0 7 
6b_1  7 0 7 

0Y, 27N 0 0 Y   

6b_2  7 0 7 
6b_3  7 0 7 
6b_4  7 1 6 
7b_1  7 0 7 

0Y, 14N 0 0 Y   7b_2  7 0 7 
8b_1  7 2 6 

18Y, 11N 1 1 Y   

8b_2  7 4 3 
8b_3  7 6 1 
8b_4  7 6 1 
9b_1  7 2 5 3Y, 18N 0 0 Y   
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9b_2  7 0 7 
9b_3  7 1 6 
10b_1  7 7 0 

16Y, 5N 1 1 Y   
10b_2  7 7 0 
10b_3  7 2 5 
11b_1  7 1 6 

1Y, 13N 0 0 Y   11b_2  7 0 7 
12b_1  7 0 7 

2Y, 19N 0 0 Y   

12b_2  7 1 6 

12b_3  7 1 6 

1c_1  12 0 12 

3Y, 45N 0 0 Y   

1c_2  12 0 12 
1c_3  12 2 10 
1c_4  12 1 11 
2c_1  12 3 9 

5Y, 31N 0 0 Y   
2c_2  12 1 11 
2c_3  12 1 11 
3c_1  12 2 10 

4Y, 32N 0 0 Y   
3c_2  12 0 12 
3c_3  12 2 10 
4c_1  12 0 12 

0Y, 48N 0 0 Y   

4c_2  12 0 12 
4c_3  12 0 12 
4c_4  12 0 12 
5c_1  12 1 11 

2Y, 33N 0 0 Y   
5c_2  12 1 11 
5c_3  12 1 11 
6c_1  12 9 3 

14Y, 10N 1 1 Y   6c_2  12 5 7 



 

 

Page 226 of 516 

 

5.4.5 Decision switching 

Decision switching is the self-reported likelihood of the participants to change their mind 

from their initial diagnosis. Detailed findings, per dataset, are presented in Figures 5.5a and b.  

There were 60 decision points in response to this question for each dataset (n=5 participants 

for DSa (12 examinations), 7 for DSb (12 examinations) and 12 for DSc (6 examinations), 

resulting in a total of 216 decision points overall.  Of the total 216 responses to this question 

across all datasets there were only two instances (examinations 11b and 1c) where 

participants indicated that they would change their mind in response to the AI feedback 

(1.1%).  These were both non-pathological examinations where the users’ diagnosis agreed 

with that of the AI. A further 35 (15.7%) indicated that they might change their mind from 

their initial diagnosis and the remainder (n=179, 83.5%) indicated that they would retain their 

initial decision.   
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Figure 5.5 a and b: Decision Switching:  Participants’ perception of their likelihood to 

change their mind from their initial diagnosis following heatmap and binary feedback 

from the AI model, per examination (a) and for all datasets (b) 

5.4.6 Image quality 

In response to the feedback to the pilot study regarding poor diagnostic quality of some of the 

images, participants were asked to rate the quality of the images in each examination with 0 
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indicating an undiagnostic image and 5, perfect image quality (range: 2 – 3.9).  The mean 

score across all images in this study was 3.1.  

5.4.7 Correlation analysis  

Users’ trust perception in AI was obtained after the heatmap presentation for each 

radiographic image and after the presentation of all images (including heatmaps and binary 

feedback) in each examination (Appendix 5.4) 

There was a statistically significant large negative correlation between users’ trust, per image 

(0-5) and the level of agreement with the heatmap for each image (perfect, partial and no 

agreement) (n=645, τb = - .515, rs = - .584, p = < .01) 

There was also a statistically significant moderate negative correlation between trust, 

obtained at the end of the examination (following all images, heatmaps and binary AI 

feedback) and level of agreement with the binary feedback from the AI (perfect agreement, 

partial agreement and disagreement) (n=216, τb = - .309, rs = - .369, p = < .01) 

A statistically significant small negative correlation was also found between the users’ 

perception of image quality and agreement with binary AI feedback at the end of the 

examination (n=126, τb = - .238, rs = - .268, p = < .01). Finally, a statistically significant small 

positive correlation was found between image quality and trust (n=216, τb = .219, rs = .256, p 

= < .01)  

There were no statistically significant correlations between trust and propensity of 

participants to change their mind from the initial decision, or between the quality of images 

and propensity to change their mind.  Full detail is provided in Table 5.2. 

In summary, as agreement with the heatmap and binary AI feedback increased, trust 

increased. With this group of participants, the decision switching rate does not seem to be 

correlated with trust in the AI.  As the quality of image increased, the users’ agreement with 

AI feedback and trust perception increased. There is no correlation found between image 

quality and decision switching rate with this participant cohort. 
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Table 5.2: Correlation analysis  

 

  

 
 
 

INDEPENDENT DEPENDENT Correlation  
(Kendall’s tau and 
Spearman’s rank 
respectively) 
Effect size: small .01, 
medium .30, and large .5 
(Cohen, 1988) 

Correlation between 
agreement with image 
heatmap and trust 
n = 645 decision points 

Agreement with HM 
(perfect (1), partial (2), 
disagreement (3)) n=645 
(decision points) 

Trust perception (0-5, 0 
representing no trust and 
5 absolute trust) n=645 
(decision points) 

- .515; - .584, 
significant large 
negative correlation at 
0.01 level (p = < .01) 
 
 

Correlation between 
agreement with binary 
AI feedback (HM and 
binary) and trust 
n = 216 decision points 

Agreement with binary 
feedback (yes (1), partly 
(2), no (3)) 

Trust perception (0-5, 0 
representing no trust and 
5 absolute trust) 
following all AI 
feedback (HM and 
binary diagnosis) 

- .309; - .369, 
significant medium 
negative correlation at 
.01 level (p = < .01)  

Correlation between 
propensity to decision 
switch and trust  
n = 216 decision points 

Decision switching 
perception (yes (1), 
maybe (2), no (3)) 

Trust perception (0-5, 0 
representing no trust and 
5 absolute trust) 
following all AI 
feedback (HM and 
binary diagnosis) 

- .007, - .009, not 
significant at .05 level (p 
= .902, .899) 

Correlation between 
image quality and 
agreement with binary 
AI feedback.  
n = 216 decision points 

Image quality (0 – 
undiagnostic, 5 – 
excellent diagnostic 
quality) 

Agreement with binary 
feedback (yes (1), partly 
(2), no (3)) 

- .238; - .268, 
significant small 
negative correlation at 
.01 level (p = < .01) 

Correlation between 
image quality and trust 
n = 216 decision points 

Image quality (0 – 
undiagnostic, 5 – 
excellent diagnostic 
quality) 

Trust perception (0-5, 0 
representing no trust and 
5 absolute trust) 
following all AI 
feedback (HM and 
binary diagnosis 

.219; .256, significant 
small positive 
correlation at .01 level 
(p = < .01) 

Correlation between 
image quality and 
propensity to decision 
switch  
n = 216 decision points 

Image quality (0 – 
undiagnostic, 5 – 
excellent diagnostic 
quality) 

Decision switching 
perception (yes (1), 
maybe (2), no (3)) 

.086, .094, not 
significant at .05 level (p 
= .161, .167) 
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 5.5 Discussion 

5.5.1 Participants and interrater agreement 

There was fair to moderate agreement across all participants in this study, in all included 

examinations (n=30).  There was a slightly greater variability noted in DS c, which was 

allocated to all participants.  The reason for this is not clear.  

5.5.2 Agreement of participants with AI heatmap 

Methods of explainability have been suggested to calibrate trust and ensure responsible use of 

AI systems, i.e., allowing the user to interrogate the system to decide what their trust level 

should be on a case-by-case basis.  Studies have suggested that heatmaps may increase trust 

and contribute to the ethical use of AI (Geis et al., 2019).  This may be of particular 

importance when AI systems are being integrated into the clinical setting to be used in 

clinical decision support, where there is much discussion regarding the ethical implications of 

the use of AI for these tasks (Murphy et al., 2021; Richardson et al., 2021).  As discussed in 

this thesis there have been a number of methods of AI explainability proposed, with heatmaps 

indicating the area of focus of the AI when making its decision being a popular choice as they 

are intuitive to follow (e.g., Kumar et al., 2018; Viton et al., 2020).  

As expert interpreters of radiographs, the participants in this study disagreed with the 

heatmaps almost half the time (45.8%, n= 66).  They indicated perfect agreement with the 

heatmap on 22.2% of occasions.  Previous research has found that the visual feedback form 

of AI systems, using heatmaps, is coarse, at best (Saporta et al., 2022).  The participants in 

this study also indicate that the heatmap feedback is imperfect on 31.9% of cases, supporting 

Saporta et al. (2022) in that, while they agree with the general localisation, it is not precise. 

Other studies have found that heatmap feedback may not be as useful as hoped to clinical 

end-users, including radiographers, who prefer the provision of the performance of the 

system to improve trust (Rainey et al., 2022).   

Whilst the user may prefer a different form of AI feedback, this study found that there was a 

large, significant (τb = - .515, rs = - .584, p <.01) negative correlation between trust and extent 

of agreement with the heatmap, i.e., when agreement decreased (from 1 representing perfect 

agreement and 3 representing total disagreement), trust perception (0 representing no trust 
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and 5 representing absolute trust) also decreased.  This is important to consider in user 

feedback/interface design.   

5.5.3 Agreement of participants with binary AI diagnosis 

The participants in this study reported agreement with the AI diagnosis on 86.7% of 

examinations (n=26 out of 30 examinations).  The study reported in Chapter four in this 

thesis found that users may find heatmaps confusing, leading to excessive decision switching 

Binary feedback was reported to be more useful, leading to increased accuracy.  The use of 

expert clinicians as participants in this study allowed for the responses to be determined as 

reliable, and the consensus diagnosis as ‘ground truth’. Interestingly, in cases where there 

was disagreement with the AI, the participants noted below-average image quality.  The 

established diagnosis on the images included in this study are not available (Personal 

communication Rajpurkar, 2019) and therefore we cannot exclude the possibility that the 

participants may not agree with the established diagnosis. Further study into failure analysis 

should be conducted.   

As expected, and supporting the findings on heatmap and trust correlation, the extent of 

agreement of the user with the binary feedback from the AI was also correlated with trust (τb 

= - .309, rs = - .369 (moderate), p = < .01) i.e., the greater the extent of agreement, the greater 

the perception of trust.  

The binary diagnosis was presented to the participants following provision of all images and 

heatmaps in an examination, as would be the case in the clinical setting.  Studies have found 

that the timing of the AI feedback may impact on the propensity of the user to follow advice 

from the system, resulting in confirmation and anchoring biases (see Chapter one) and 

potentially resulting in diagnostic error (Gaube et al., 2021).  It has been suggested that the 

provision of any form of AI feedback should be optional, much in the same way as human-to-

human feedback, however users should be aware of other biases with this method, such as 

confirmation bias (Gaube et al., 2021).  Further research should be conducted into the timing 

of provision of differing forms of AI feedback on user trust. 

5.5.4 Decision switching 

Decision switching can be both positive, i.e., can cause the user to become more ‘correct’ or 

negative, causing the user to reach an incorrect conclusion.  This has been highlighted as a 
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potential issue when using technology to help make decisions, for example reliance on a 

spellcheck function, or in medicine, on clinical decision support systems (Goddard et al., 

2014; Bond et al., 2018).  Studies in medicine, including cardiology and radiography have 

found that the level of experience of the user may impact their likelihood to follow the advice 

of the decision support system over their own decision, with inexperienced users more likely 

to follow the automated advice over their own (Goddard et al., 2014; Bond et al., 2018; 

Chapter four).  The participants in this study were all ‘experts’ in reporting radiography, 

having both clinical and academic training, and were all currently practicing in the field. No 

statistically significant correlation was found between rates of decision switching and trust in 

this study.  This may be due to the expert users having less propensity to change their mind 

from their initial decision, which is supported by the aforementioned studies in the area.  The 

overall perception of the likelihood of decision switching because of the feedback from the 

AI was low, with only two instances across all datasets where participants indicated that they 

would change their mind in response to the AI feedback (1.1%).  In most cases (n=179, 

83.5%) participants stated that they would not wish to change their initial diagnosis.   

5.5.5 Image quality 

Users’ perception of the diagnostic quality of each image was obtained initially as a means of 

quality assurance, although this also permitted analysis of the impact of image quality on 

likelihood to change their mind in response to the AI feedback and trust in the AI.  There was 

no correlation found between image quality perception and decision switching, although there 

was a statistically significant mild positive correlation between image quality and trust in AI, 

indicating that as image quality increased, the trust in the AI also increased.  This may have 

importance in the clinical adoption of AI tools, where the user may be negatively impacted by 

poor image quality from a diagnostic perspective, as reported by Mabotuwana et al. (2018).  

5.5.6 Implications for practice and recommendations 

Participants in this study agreed more often with the binary AI feedback than the GradCAM 

heatmaps provided.  This is supported by the correlation analyses suggesting that the users 

trust was impacted by their level of agreement with the AI feedback.  There was a stronger 

negative correlation found with trust levels and agreement with the heatmap feedback than 

the binary diagnosis.  Developers should be aware of this when creating forms of explainable 

AI and further study should be undertaken to investigate the impact of different forms of AI 
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feedback on users’ trust, other than the binary and heatmap feedback investigated here and in 

the study reported in Chapter four.   

Decision switching was not prevalent in this study, indicating that reporting radiographers 

were not likely to change their mind from their initial decision based on the AI feedback 

offered.  This may indicate that AI may have a greater usefulness with non-expert clinicians.  

Supporting this, the rate of decision switching was not correlated with trust, indicating that 

users in this study remain anchored to their initial decision, regardless of their levels of trust 

in the system, which is supported by very low levels of decision switching.  Education in the 

functionality of AI systems and further robust reporting of the performance of these systems, 

as suggested in Chapter two, may allow expert users to leverage the benefits of the system to 

further increase diagnostic accuracy.  Again, developers should consider the optimal means 

of communicating the feedback from the system to the end users.  This may mean provision 

of a range of formats which the clinician can use to calibrate their trust in the system for each 

individual task, therefore allowing flexibility in its use on a case-by-case basis.  

This study should be repeated with a larger sample of clinical staff of varying expertise levels 

and students at different points in their educational careers, to assess the effect of AI feedback 

on decision switching and trust.  This would allow a more comprehensive assessment of the 

training and awareness issues, based on clinical experience and provide evidence for 

development of useful interface design and explainability methods to develop appropriate 

trust amongst end users. 

 5.6 Conclusion 

Clinicians have proposed that a lack of trust may be a significant barrier to the successful 

implementation of AI systems in the clinical setting (Fazal et al., 2018). This study aimed to 

clarify some of the factors impacting expert users’ trust in AI systems for diagnosis of 

pathology from radiographic images.  The extent of user agreement with the AI heatmap and 

binary feedback has a positive impact on trust.  Participants in this study did not agree with 

the localisation of GradCAM feedback, although on most occasions they agreed with the 

binary feedback from the same AI system on the same images.  This may indicate that users 

prefer binary feedback over this type of visual feedback and that disagreement with any form 

of AI feedback has a negative impact on trust perception.  This will be important when 

designing the optimal user interfaces and forms of feedback for clinical use, where 
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appropriate trust will ensure neither over- nor under-reliance.   
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Chapter 6 - Summary and Conclusions 

 

This final chapter presents the key findings from this thesis in relation to the aim and 

objectives set out in Chapter one.  It provides a precis of each chapter and how the contents 

of the chapter(s) meet each objective.  The studies included in this thesis contribute to the 

field of AI in radiology by presenting new information regarding the impact of different 

forms of AI feedback on radiographers.  This is novel research, whose findings will be 

applicable internationally, where AI is being developed and used.  This new information will 

be valuable to developers, users (clinicians), researchers and educators.  The findings of the 

studies included in this thesis have been disseminated in the form of publications in 

professional journals and presentations (oral and poster) at international conferences, 

therefore ensuring maximum reach.  An overview of the publications and presentations 

resulting from this research is presented in Chapter one and Appendix 6.1. 

Whilst every attempt has been made to ensure the most robust methodologies possible, there 

are limitations to the studies reported in this thesis, some due, in part, to the COVID-19 

pandemic.  Recommendations are made for the future of AI in radiography for both 

practitioners and developers. Suggestion of areas for future research have been proposed, 

based on the findings of research included here and the limitations of these studies.  It is 

hoped that this will ensure optimal, responsible use of AI in the clinical setting.    

 

 6.1 Introduction  

 6.1.1 Aim 

The overall aim of this thesis was to investigate how radiographers perceive and interact with 

artificial intelligence (AI) for clinical decision support for interpretation of plain radiographic 

images.   

 6.1.2 Objectives  

1. To provide an overview of developments in AI for use in diagnosis of acute pathology 

(fractures) on plain radiographic images (Chapter two) 
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2. To investigate UK radiographers’ perception of their knowledge, skills, confidence and 

the future of the profession with AI as used in clinical radiography (Chapter three) 

 

3. To investigate the perspectives of reporting radiographers on the current and future 

developments of AI for clinical decision support when providing diagnosis on 

radiographic images (Chapter three) 

 

4. To investigate the impact of different forms of AI feedback on diagnostic accuracy, 

automation bias and trust on student and qualified radiographers (Chapter four) 

 

5. To investigate the factors impacting reporting radiographers’ trust in AI for clinical 

decision support for use in providing diagnosis from plain radiographs of the 

appendicular skeleton (Chapter five) 

6.1.3 Rationale, links between studies and overview of the thesis 

It was important to first understand the potential of AI for use in clinical decision support for 

fracture detection from plain radiographic images.  A literature review was carried out to 

investigate the current state-of-the-art of development in this area (Chapter two).  Fracture 

detection was chosen as a focus as this is an area of practice which is relevant for all 

radiographers from the earliest stages of clinical practice.  Based on the findings of this 

review of contemporary literature, a UK wide survey was carried out to investigate how 

radiographers currently perceive AI as used in clinical practice, including reflection on their 

own levels of confidence, knowledge of the technology, fears and aspirations for the future 

and the impact on the profession in the future (Chapter three).  A section of the survey was 

dedicated to reporting radiographers as many of the systems in use or development are based 

on clinical decision support.  Current pressures on the NHS, resulting in delays in reporting, 

has meant that this area of radiographer advanced practice may be the most impacted in the 

near future and the relationship between the human and computer in this situation, might be 

one of the most complex to understand.  

Following this, a deeper investigation into the relationship between the radiographer and AI 

was designed and executed.  With all radiographers providing preliminary clinical evaluation 

on trauma images, AI assistance may result in increased accuracy and confidence in provision 

of a written comment.  Studies have shown, however, that less experienced clinicians may 
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have excessive trust in AI, potentially resulting in errors (Goddard et al., 2014; Bond et al., 

2018).  Conversely, experienced clinicians may exhibit anchoring bias, or retention of their 

initial decision, which is suggested to be due, in part to lack of trust in the system (Bond et 

al., 2018; Fazal et al., 2018).  Reporting radiographers, in response to the survey (Chapter 

three) indicated that feedback from an AI would cause them to rethink their decision and 

suggested that forms of AI feedback such as an indication of the system performance 

provided would assist in appropriating their trust. 

Appropriate trust, i.e., neither excessive nor limited, has been proposed to ensure responsible 

use of AI.  Education provision has been proposed as a means to ensure this (NHS, 2019b; 

HCPC, 2020; Malamateniou et al., 2021a), and is desired by the radiographers in response to 

the survey (Chapter three).  This will mean that clinicians will be in a better position to be 

able to interact critically with the literature concerning modern AI, where the terminology 

may be new and the reporting metrics, unfamiliar (Chapter two).  Forms of explainable AI 

have been proposed to clarify how the AI reached its decision.  One popular mechanism 

identified in the literature and clinical use is the provision of ‘heatmaps’, which highlight the 

areas of the image that the AI ‘focussed’ on when making its decision, however the 

interaction of the clinician with this form of feedback has not been extensively investigated in 

radiology or radiography.  Chapter four presents the findings from a study to incorporate 

some of the issues raised by the survey, namely, (i) the impact of AI feedback on users with 

differing levels of experience on accuracy of diagnosis and (ii) the impact that different forms 

of AI feedback have on accuracy.  This study found that heatmaps as a form of feedback 

caused confusion, evidenced by high rates of decision switching, particularly in the student 

population. However, binary diagnosis had a positive impact on diagnostic accuracy.  The 

impact of incorrect AI feedback impacted the accuracy of both students and qualified 

radiographers and therefore indicated that both groups trusted the AI when they should not 

have, i.e., they did not detect that the AI was incorrect.  This led to the development of the 

final study (Chapter five) to gain an understanding of the factors impacting trust in an AI for 

clinical decision support. 

The final study focussed on ‘expert’ clinicians (reporting radiographers).  This group was 

chosen to allow the accuracy variable to be removed – the application of strict 

inclusion/exclusion criteria of participants allowed the diagnosis provided by them to be 

taken as ‘ground truth’.  This study sought to better understand the factors influencing the 



 

 

Page 238 of 516 

 

users’ decision to trust the AI feedback.  The provision of heatmaps was found, again, 

undesirable and did not localise the pathology as the user anticipated.  The users agreed with 

the AI binary decision in most cases, indicating that current visual forms of explainable AI 

may not be the preference of the clinical end user and, indeed, as found in this study, 

potentially cause a negative impact on trust.  Supporting this, a statistically significant 

correlation was found between agreement with the form of AI feedback provided and the 

users’ trust in the system with a large effect size found for the correlation between heatmap 

agreement and trust.     

In the following sections I will provide a precis of each chapter and describe how each 

objective is addressed through the presented research.  This body of research was based on 

the BEAR framework, as described in Chapter one.  I will identify which of the six domains 

(knowledge, skills, ability and competence (perception of); role and identity (including 

professional identity and organisational commitment); beliefs about capabilities; memory, 

attention and decision processes (including cognitive process of choice) and emotions 

(including uncertainty/trust) (Camacho et al., 2020). 

 

6.2 The literature on modern forms of AI for fracture detection in skeletal 

radiography (Chapter two) 

Objective 1:  

‘To provide an overview of developments in AI for use in diagnosis of acute pathology 

(fractures) on plain radiographic images’. 

BEAR domain:  

Knowledge, skills, ability and competence 

6.2.1 Main findings 

It was initially planned to conduct a systematic review and meta-analysis of the performance 

of the AI tools in development for fracture detection in order to provide direction for 

expedited innovation in this area.  Initial plans to compare the performances of AI tools for 

use in fracture detection were altered following a systematic literature search.  The initial 

searches indicated that there was disparity in how results from AI studies in healthcare were 

reported, therefore making a full meta-analysis and/or systematic review impossible.  This 
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was also found by Kelly et al., 2022, where a narrative synthesis was reported due to the high 

level of heterogeneity of the obtained data. A scoping review using a systematic search 

strategy was conducted to give a broader view of the state of the art of AI systems in 

development from fracture detection. 

Impressive performances were reported in the literature, although, as mentioned in 6.2, the 

findings were reported in an inconsistent manner. The studies included in this review 

indicated a range of reporting matrices, some familiar to clinicians, such as sensitivity, 

specificity and accuracy, although these may not provide the best indication of the 

performance of the system when the classes are unbalanced, i.e., when there is unequal 

prevalence of a particular class, for instance the pathology class.    

There was a lack of prospective studies in the clinical setting.  This was also found in a 

review of methods of AI development reported by Kelly et al., 2022, where only 2% (n=15) 

of studies included prospective testing.  The literature review conducted as part of this thesis 

found only one study (out of a total of 30 included studies) which used a prospective clinical 

sample for testing, although this was taken from the same centre as the training and validation 

sets, which may over-inflate the performance of the model.  To investigate the impact of 

other factors, such as DICOM header information, Badgeley et al., 2019, conducted a study 

to determine the performance of an AI model before and after the removal of ‘confounding 

factors’ (patient trait details, scanner type and ‘other factors’) and found that when the image 

provided to the AI was ‘cleaned’ the performance of the model dropped to AUC 0.52 (no 

better than chance).   

There was a variation in the establishment of ‘ground truth’ across the included studies.  This 

is also acknowledged in the review by Kelly et al., 2022.  The methods of establishing ground 

truth were described in all studies with most studies using a consensus diagnosis from expert 

clinicians or by confirmation from another source, such as operative notes and/or additional 

imaging.  In three studies a single radiologist’s report was used as reference standard 

(Badgeley et al., 2018; Cheng et al., 2019; Ma and Luo, 2021). While a single report is 

representative of the real-world scenario, this single opinion may be influenced by other 

huma biases.  This may therefore impact the performance and generalisability of the model as 

the model will learn to emulate the data used to train it.   
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All included studies used unseen datasets for testing, although in many cases, testing images 

were obtained from the same clinical centre as the training and validation sets.  This means 

that there is no data to indicate how the model will perform on images from a different 

clinical setting and therefore mean that the model may not be generalisable.  In support of 

this, the study by Blüthgen et al., 2020, tested their model on images from both the internal 

dataset and images from a publicly available dataset (MURA) and found that the model 

performance fell from AUC 0.93 to 0.80. This issue with generalisability of AI models for 

pathology detection was also found in the AI used for the study reported in this thesis 

(Chapter four). 

The papers included in this review all described details of the methodology of training and 

details on the systems architectures used, however programming code was only made 

available in two studies. Sharing of code availability is recommended by Nagendran et al. 

(2020) to ensure reproducibility of AI studies and may help expedite the development of high 

performing AI systems. 

There were some attempts to explain the decision of the AI in 18 cases, all of which were in 

visual form from either heatmap (n=12) or region of interest identification (n=6).  As 

mentioned in other chapters in this thesis, explainable AI has been debated in the literature. 

Findings from the studies described in Chapters three, four and five indicate that visual 

representations of the area of focus of the AI may not be helpful to or desired by the clinical 

end user.   

 6.2.2 Implications and recommendations 

There is variation in the reporting metrics used in the included studies to communicate the 

performance of the model to the reader.  An understanding of the less familiar metrics and 

why they are used is imperative.  Clinical procurement decisions are made by clinicians and 

an understanding of how to assess the performance of the systems is needed to be able to 

critically assess each model.  Education is required to ensure that all clinicians are familiar 

with reporting metrics which best describe the performance of the system, such as those 

described in Chapter two.  The Health and Care Professions Council (HCPC) revised 

Standard of Proficiency (SoP) for radiographers (2020) states that registrants should have 

knowledge of the methods of assessing performance of AI algorithms.  
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Standardised reporting systems such as those suggested by Mongan et al. (2020) or Vasey et 

al. (2022), should be used in all cases to ensure that maximum information is available for the 

reader and to ensure robust conduct of AI research in healthcare.  The use of such checklists 

will promote familiarity with the information required when articulating the findings from AI 

studies over time. Clinicians will become familiar with the information required to fully 

critique AI studies by exposure to the same information from each study and will be able to 

make comparisons between studies more easily.  

Further robust literature reviews should be made on a regular basis to ensure the profession is 

kept informed of the state of the art in this fast-moving field.  The standardisation of 

reporting methodologies should permit focussed meta-analysis to be carried out on specific 

areas, such as for fracture detection.  This will permit clinicians to readily access targeted 

information quickly and easily.     

6.3 UK radiographers’ perceptions of their skills, confidence and 

educational needs when considering a future using modern forms of AI 

(Chapter three) 

Objective 2(a):  

To investigate UK radiographers’ perception of their knowledge, skills, confidence 

and the future of the profession with AI as used in clinical radiography. 

BEAR domain: 

Knowledge, skills ability and competence; role and identity; beliefs about capabilities 

The findings of the scoping review indicated that there is a need for clinicians to understand 

how AI studies are reported, including new reporting methodologies and metrics, which may 

be different to general clinical studies which clinicians are used to.  The extent to which 

clinicians already understood clinical AI was unclear from the literature.  A large survey was 

designed to investigate radiographers’ perceptions of their knowledge, skills and confidence 

in AI currently and to gain insight into their educational needs to best support the workforce 

for a future with AI.    
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6.3.1 Main findings 

Radiographers responding to the survey did not feel confident regarding their knowledge of 

the specific terminology of modern AI.  This is similar to findings reported in other studies 

on clinicians’ confidence and understanding of AI in the clinical setting (SIIM, 2017; 

Abuzaid et al., 2020; Tejani et al., 2020; Ryan et al., 2021).  Moreover, respondents felt that 

there were insufficient formal education options available and those who had developed some 

skill in AI had done so by their own research, which may be an issue with modern forms of 

AI and reporting metrics, for reasons outlined in Chapter two and section 6.2.  Other studies 

have suggested that clinicians feel that the lack of education in AI may be a barrier to 

successful clinical implementation of these technologies (Abuzaid et al., 2020; Botwe et al., 

2021).  Respondents to the survey reported here also indicated that they felt that they had not 

received sufficient training to implement AI.  This may impact trust in any AI system 

introduced in the clinical setting.  Strohm et al., 2020, found that the provision of well-trained 

clinical experts in AI (‘AI champions’) ensured successful adoption of a bone age tool in use 

in multiple centres in The Netherlands.  

The respondents to the survey indicated that AI training should be delivered as part of 

preregistration education, indicating that respondents felt that information about AI should be 

delivered at the early stages of their career. This is supported by the Topol Review (NHS, 

2019b) and the new HCPC Standards of Proficiency for Radiographers (HCPC, 2020), 

recommending that training in AI should be provided to all clinicians and that radiographers 

should have a sound knowledge of AI for registration.  The respondents indicated that they 

would have a desire for information on AI applications and techniques, as well as AI ethics 

and how to ensure quality while using AI.  Schuur et al., 2021, provide a systematic review of 

the training opportunities available for radiologists and find that while there are opportunities 

available, much training is delivered by short courses, which, based on the responses to this 

survey, was not the most preferred choice of UK radiographers.  

Correlation analysis was conducted on the responses to the survey.  There were some 

correlations found when using gender, age, level of experience, highest academic 

achievement, role and UK region as independent variables. 
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The male respondents to the survey indicated a greater perception of confidence in AI, while 

females indicated a greater propensity to report a lack of confidence.  This may be a problem 

in the female dominated field of radiography (HCPC, 2018).   

There was a significant correlation noted between age and role (independent variables) and 

perception of adequacy of training available for radiographers, with the greatest correlation 

noted in the student group. This indicated that the younger respondents may have the greatest 

desire and need for training, or perhaps recognise the need to be trained in these technologies 

before using them.  There was also a correlation between number of years’ experience and 

understanding of AI.  Generation Z (those born after 1995) have grown up with advanced 

forms of technology and may be best placed to realise the issues associated with misuse, 

whilst being comfortable using it (Advanced, 2019).  Other correlations in both professions 

using age and/or highest academic qualification and/or years’ experience indicated that the 

older, more experienced and more qualified radiographers felt that they understood and had 

confidence in the use of the terminology surrounding AI.  They perceived that AI would 

make the job more attractive to them, reduce workload, and would not impact career 

opportunities. This indicated a general positive outlook with the future with AI in the more 

experienced clinicians.  This may be due to being exposed to, and learning to work with, a 

range of new technologies in their working lives and careers (Hasflund et al., 2008). 

6.3.2 Implications and recommendations 

Standardisation of curriculum, based on clinician preference and taking inspiration from 

training delivered in other countries, would ensure an appropriately educated internationally 

mobile professional workforce with a critical awareness of AI technologies.  A multi-

disciplinary approach to training and education will be optimal, as clinicians and computer 

scientists can become more aware of the potential and challenges of clinical AI and work 

symbiotically to solve clinical problems.  This may also provide opportunity for better 

understanding of the type of task which may be possible and assist in learning.  

The introduction of AI training in the undergraduate curriculum would ensure that the 

profession and the health service will benefit from the expertise and desire for technology in 

the younger professionals.  This may also ensure that the younger members of the workforce 

feel confident in using AI and optimistic about the future of the profession with advanced 

technologies. This is particularly important as the radiography workforce remains depleted 
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(SoR, 2021) and role progression to alleviate reporting backlogs will mean that extra 

recruitment will be needed in the near future (Halliday, 2020).   

Targeted education may be required to narrow the gender confidence gap reported in this 

study.  Confidence is not an indication of competence (Dunning, 2011; Kahnemann, 2011; 

Liberatore and Wagner, 2020) and studies indicate that females may undervalue their 

scientific reasoning ability, despite this not being translated into a difference in performance 

(Liberatore and Wagner, 2020).  Education, therefore, should balance professional and 

personal expectations, ensuring that confidence in the technology being used in the clinical 

setting is valid and based on competence and not self-perception of one’s own abilities. 

6.4 UK radiographers’ perceptions of the future of the profession with AI 

(Chapter three) 

Objective 2(b):  

To investigate UK radiographers’ perception of their knowledge, skills, confidence 

and the future of the profession with AI as used in clinical radiography. 

BEAR domain: 

Knowledge, skills ability and competence; role and identity; beliefs about 

capabilities; emotions 

 

Radiographer perceptions were sought on the future of the profession with AI.  Chapter two 

and section 6.2 discuss impressive performances of AI models in development for use in 

radiology. Current government priorities in the UK promote implementation of AI systems in 

the near future.  Opinion on the future of radiography should be gained to understand the 

concerns and perceptions of the potential of AI in clinical practice to ensure that development 

is being clinically directed.  

6.4.1 Main findings 

Respondents (n=411) were not aware of AI being used in the clinical setting.  Findings to the 

first part of the survey, discussed in Chapter three, indicated that many respondents 

understood modern forms of AI (‘yes’ response: 78.7% n=229 diagnostic radiographers; and 

52.1% n=37 therapeutic radiographers), supported by responses to an open-ended question 
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which included descriptions of neural networks and self-learning systems.  This may mean 

that they were not defining other forms of technology used in the clinical setting as ‘AI’.  

Supporting this, most of the respondents in the diagnostic radiography cohort indicated that, 

when used, ‘reporting’ was an area currently being influenced by AI (n=145). Other areas of 

practice such as MRI and CT were also mentioned as area with scope for development in the 

future (Figure 3.13, Chapter 3).  These areas are also identified in a technography study by 

Mehrizi et al. (2020) as areas of current use and/or development of AI, indicating that the 

respondents had an awareness of potential applications of AI both now and in the future. 

The respondents to this survey felt that daily practice would change, and that workload would 

decrease.  This is in common with other studies (Botwe et al., 2021; Huisman et al., 2021b), 

however, whilst AI might ease a particular task, the time efficiencies could result in increased 

volume of work completed, as found in a study in The Netherlands (Aarts et al., 2017).   

Respondents were unsure of the impact of AI on patient centeredness but felt that AI would 

have a positive impact on safety standards and quality.  This is supported in other studies 

where respondents indicated AI may allow for dose reduction (Botwe et al., 2021) and allow 

radiotherapy staff to accomplish their work more effectively (Batumali et al., 2020). 

Respondents are unclear of the impact of AI on jobs and the appeal of the profession to 

potential applicants, although job security was not reported as a concern.  As mentioned in 

Chapter one, the now famous quote by Geoff Hinton regarding AI replacing radiologists 

entirely has been largely debunked, with many practicing clinicians, including the 

respondents to this survey having an optimistic view of the future of the profession with AI 

(Abuzaid et al., 2020; Batumalai et al., 2020; Botwe et al., 2021).   

However, there may still be a problem enticing students with clinical integration of AI which 

is clearly on the horizon.  Surveys of medical students have found that there remains some 

hesitancy to choose radiology as a specialism due to fears of role replacement by technology 

(Park et al., 2020; Sit et al., 2020; Reeder and Lee, 2021), although this was not extensively 

investigated in this survey.    

6.4.2 Implications and recommendations 

Respondents had a positive view of AI in clinical practice; however, many are unsure of the 

implications for patient centeredness.  Caution should be exercised by workflow managers to 
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not overburden clinicians with additional patient throughput as a result of some automatable 

tasks being accomplished by AI.  Focus should rather be on using the opportunity of time 

saving to positively impact the patient experience, as predicted in the Topol review (NHS, 

2019b). 

Respondents are unsure of the impact of AI on the attractiveness of the profession, despite the 

literature indicating that the development of specialist roles to be integral to the safe and 

effective implementation of AI into clinical workflows (NHS, 2019b; Strohm et al., 2020).  

Planning for these roles should begin now, with clear education pathways provided by 

educational establishments.  

Respondents indicated that AI would have a positive impact on patient safety and 

standardisation of care.  This confidence should be tempered by a critical awareness of the 

potential issues which may arise with the use of AI.  The potential of overreliance on AI 

should be thoroughly investigated and clinicians should be made aware of the need for 

stringent quality assurance to ensure the minimisation of adverse effects from the use of these 

technologies. 

6.5 UK reporting radiographers’ perceptions of AI for use in clinical 

decision support (Chapter three) 

Objective 3:  

‘To investigate the perspectives of reporting radiographers on the current and future 

developments of AI for clinical decision support when providing diagnosis on 

radiographic images’ 

BEAR domain: 

Knowledge, skills ability and competence; role and identity; beliefs about 

capabilities; attention and decision processes; emotions 

6.5.1 Main findings 

The majority of reporting radiographers responding to this section of the survey stated they 

were not using AI as part of their reporting role (n=77, 89.5% of a total of 86 reporting 

radiographers), despite findings reported in section 6.4 indicating that this is an area which 

clinicians see likely to be most impacted by AI. This is supported in the literature where it is 
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reported that AI will be useful in increasing diagnostic accuracy by providing an additional 

diagnostic opinion (Waymel et al., 2019; Coppola et al., 2021; Huisman et al., 2021b).   

Many respondents (n=53, 61.6%) state that they understand how AI makes decisions but 

indicate that they are not confident in communicating this information to service users (and 

carers) (57% n=49) or other healthcare professionals (59.3% n=51).  There will be a need to 

communicate this information to the key stakeholders and as the bridge between the patient 

and technology, the radiographer is in a prime position to do so.  This may be assisted with 

forms of explainable AI (XAI). 

The feedback from AI may cause users to change their mind or reconsider their initial 

decision.  This can be positive, increasing diagnostic accuracy, or negative, where the user 

may choose an incorrect or inappropriate diagnosis from the AI over their own initial 

decision.  Many respondents (69.8% n=60) indicated that they would seek a second opinion if 

an AI disagreed with their diagnosis.  This may prove to be a positive outcome, where the 

more difficult diagnoses can be flagged by AI input for further clinical discussion.  This is a 

potential pathway suggested by Farzaneh et al. (2023) for chest radiograph triaging, where an 

initial interpretation by an AI is conducted followed by human intervention when the AI 

exhibits uncertainty.   

For the successful implementation and use of AI in this setting the user should be able to 

calibrate their trust, neither over nor under relying on the system.  The mean trust of the 

respondents was 5, on a scale of 0 to 10, with 0 representing no trust and 10 representing 

complete trust, indicating that the respondents to this survey had neither excessive nor limited 

trust in AI for use in image interpretation decision support.  This is higher than reported in a 

survey of radiologists, information technology specialists and those working in industry, 

where only one quarter of 123 respondents indicated that they could trust an AI system for 

use in radiology (Jungmann et al., 2021), however, this was not specific to plain radiographic 

image interpretation which the respondents in this study were referring to. 

As mentioned in section 6.5.1, XAI is a way by which the user receives some feedback to 

help them understand the reasoning behind the AI decision.  This may take the form of 

heatmaps or regions of interest on the image.  The localisation methodologies indicate where 

the AI attributed its attention during the penultimate layer of processing, i.e., the last layer 

before the output layer, thus indicating which pixels contributed to the final decision.  For 
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example, in the images in Figure 6.1 (taken from the MURA dataset (Rajpurkar et al., 2019) 

and used in the study described in Chapter five) the area of transverse fracture of the distal 

radius contains the pixels which the AI attributes the most ‘attention’ when making its final 

binary classification (i.e., fracture/no fracture).  Additional description is available in 

Chapters two, three and four.   

   

Figure 6.1: Original image and GradCAM heatmap overlay as means of explainable AI 
 

Despite these forms of visual explainability being present in much of the literature (Kumar et 

al., 2018; Erickson, 2019; Saporta et al., 2022), the respondents to this survey did not rate this 

as highly as being provided with an indication of the overall performance of the system used.  

This is supported by explainability sceptics who argue that adequate knowledge of the 

performance of the system may be a more appropriate means of gaining users’ trust in the 

system (Kitamura and Marques, 2021; Miller 2023).  They argue that forms of explainability, 

such as heatmaps, may not always be correct or precise enough to provide an accurate means 

of assessment of the AI performance on the task (Saporta et al., 2022).   

6.5.2 Implications and recommendations 

Radiographers should be able to explain the functionality of any technology they are using.  

Reporting radiographers will therefore have to be able to explain the output from an AI used 
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in diagnostic decision support if they are using it as part of their role.  The confidence in 

doing this is lacking presently.   

The impact of different forms of AI feedback on all users should be further investigated.  

This was conducted as part of this thesis in Chapters four and five, however, these studies 

were conducted on radiographers only. 

6.6 The impact of different forms of AI feedback on students and qualified 

radiographers’ decision making (Chapter four) 

Objective 4: 

‘To investigate the impact of different forms of AI feedback on diagnostic accuracy, 

automation bias and trust on student and qualified radiographers.’ 

BEAR domain: 

Knowledge, skills ability and competence; attention and decision processes; emotions 

6.6.1 Main findings 

The overall impact of both forms of AI considered together was positive, however further 

scrutiny clarifies that the heatmap feedback was detrimental to accuracy in both the student 

and radiographer groups for pathological cases, in cases where the AI was incorrect and had 

no impact on accuracy when the AI was correct. There was an increase in accuracy, for all 

participants considered together, following the heatmap feedback in non-pathological cases 

only (Table 4.4, Chapter four).  Negative impact of heatmap feedback was noted 

predominately in the student group where the impact of heatmap feedback on diagnostic 

accuracy was negative in all cases except for non-pathological cases. Small gains in accuracy 

following heatmap feedback were noted in the radiographer group when the AI was correct 

and in non-pathological cases. The study by Saporta et al. (2022), mentioned in section 6.5.1 

indicates that heatmap feedback does not localise the area of focus well.  This may lead to 

increased confusion and uncertainty.   

The binary AI feedback, with % confidence of the system in its decision, had a larger positive 

impact on diagnostic accuracy in all cases, except when the AI was incorrect, indicating that 

a high performing AI will result in increased diagnostic accuracy across student and qualified 

radiographers (Table 4.4, Chapter four).  This is supported by findings from the survey 
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reported in Chapter three which indicates that radiographers have greatest preference for an 

indication of the performance of the system.  The binary feedback was provided after the 

participant viewed all images and all heatmap feedback and therefore the timing of the 

feedback may also have some impact.  This is supported by findings from a study by Gaube 

et al. (2021) reporting that cognitive and confirmation biases may be reduced if the user is 

presented with AI feedback following initial interpretation, much the same way as seeking a 

second human opinion.   

The % confidence provided by the AI may allow the user to determine their trust in the AI for 

an individual case, where a higher confidence of the AI in its predication may elicit a higher 

confidence in the system.  Provision of this form of feedback may allow users to have some 

flexibility in their trust on a case-by-case basis, appropriating trust on the case rather than the 

system as a whole.  This may lead to more responsible use of AI where the user can 

interrogate the system, much like human-to-human reasoning (Gaube et al., 2021).   

The student cohort were more likely to change their mind in response to either form of AI 

feedback.  This is supported by other studies (Goddard et al., 2014; Bond et al., 2018) where 

less experienced clinicians are more likely to follow AI feedback than their more experienced 

colleagues.  This study found that the student group has a lower baseline accuracy than the 

radiographers and therefore AI may be well placed to have a positive impact on diagnostic 

accuracy in this group.  Conversely, the radiographers were less likely to change their mind 

following AI feedback, concurring with the aforementioned studies by Goddard et al. (2014) 

and Bond et al. (2018), indicating that the more experienced clinicians may be more anchored 

to their initial decision and therefore less likely to benefit from AI feedback.   

6.6.2 Implications and recommendations 

Forms of explainability of AI feedback should be carefully considered before deployment in 

clinical practice.  This study found that heatmap feedback may decrease the accuracy of the 

participants and therefore scrutiny should be applied to any form of feedback provided to 

ensure a positive outcome for the patient.  

End users should be aware of the potential negative issues which may arise from the use of 

AI for diagnostic decision support, such as the potential for overreliance, lack of trust and the 

lack of sufficient localisation data provided by forms of explainable AI.  This may be most 
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impactful by provision of clinical use cases where the AI has made an incorrect prediction or 

poor localisation.   

Developers should consider provision of several forms of AI feedback to allow the user to 

interrogate the AI decision, therefore allowing for appropriate trust on a case-by-case basis.   

Further investigation of clinicians who provide diagnosis on plain radiographs as part of their 

job role, such as ‘reporting radiographers’ would provide further focus on the impact of AI 

feedback on trust, eliminating the impact of level of experience on the findings.  This has 

been conducted as part of this thesis and is reported in Chapter five and discussed further in 

section 6.7. 

6.7 The impact of AI feedback on experienced users’ perceptions of trust in 

AI for use in diagnostic decision making (Chapter five) 

Objective 5: 

‘To investigate the factors impacting reporting radiographers’ trust in AI for clinical 

decision support for use in providing diagnosis from plain radiographs of the 

appendicular skeleton.’ 

BEAR domain: 

Knowledge, skills ability and competence; memory; attention and decision processes; 

emotions 

6.7.1 Main findings 

Despite heatmaps being promoted to ensure the ethical use of AI (Geis et al., 2019; Viton et 

al., 2020), the studies forming this thesis find that the user may not desire, nor interact 

optimally with them.  ‘Reporting’ is an area which is identified in the literature as a current 

area of focus for the development of AI systems (Mehrizi et al., 2020).  This is supported by 

responses of participants to the survey reported in Chapter three (Rainey et al., 2021b), 

discussed in section 6.3 in this chapter.  The Getting it Right First Time (GIRFT) (Halliday et 

al., 2020) and Diagnostics Recovery and Renewal reports (NHS, 2020) recommend increased 

use of role development in radiography to alleviate reporting backlogs.  This will require both 

the increase of recruitment to the profession to allow upskilling of the workforce and may 

require the use of technologies, such as AI to help meet demand (NHS, 2019b).  The study 
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reported in Chapter five was conducted to investigate the impact of the use of AI on reporting 

radiographers in the UK and determine the factors which may impact their trust in the use of 

these technologies for plain radiographic image interpretation.  

The performance of the system was not available for this study and therefore the consensus 

diagnosis from this group of reporting radiographers was taken as ground truth. This study 

found that the participants disagreed with the AI heatmap feedback for localisation of 

pathology in pathological cases on almost half of the included images (n=66 45.8%), 

however, agreed with the binary feedback on 26 out of the 30 full examinations from the 

entire dataset of pathological and non-pathological examinations (86.7%).    

There was a statistically significant correlation found between trust and user agreement with 

the AI feedback for both heatmap (p<0.001) and binary feedback (p<0.001), demonstrating 

that trust increased as agreement with the form of feedback also increased.  The correlation 

between heatmap agreement and trust was greater in magnitude than for that of binary 

feedback agreement and trust, indicating that the disagreement of the user with the heatmap 

may have a more detrimental impact on trust and therefore should be used with caution, as 

described in section 6.6, Chapter four and in the study by Saporta et al. (2022) which finds 

that the heatmap feedback is coarse at best.   

Interestingly, there was no correlation found between trust and decision switching in this 

cohort.  An explanation for this may be that the participants in this study were all experienced 

clinicians and previous studies have indicated that this group are less likely to change their 

mind following AI feedback (Goddard et al., 2014; Bond et al., 2018 and Chapter four of this 

thesis), indeed, there were only two instances in this study where the participant(s) indicated 

that they would change their mind in response to the AI feedback. Both were non-

pathological cases where the users’ eventual diagnosis agreed with the AI diagnosis, perhaps 

indicating a positive impact from the AI.  

There was a statistically significant correlation found between the participants perception of 

image quality and trust in the AI, indicating the user may have less trust in AI used to 

determine diagnosis on poor quality images.  This was not further investigated in this study 

but may be an important area of research in the future.  Interestingly, the four examinations in 

this study where the user disagreed with the AI diagnosis were in cases where the user 

perception of image quality was low, however it should be noted that the quality of the image 
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was determined by the participant and may be subject to variability in perception of 

acceptability (Kjelle and Chilanga, 2022).  As mentioned, an established reference standard is 

not available for these examinations and therefore it is possible that the poor image quality 

meant that the human user was incorrect, rather than the AI, indicating that the AI may be 

able to discern features which the human eye cannot in poor quality images, such as 

discussed in relation to the ability of the AI to detect certain pathologies on down sized 

images (Chapter two). 

6.7.2 Implications and recommendations 

Caution should be exercised in the use of suboptimal forms of explainability.  While some 

form of explainability should be provided to allow for responsible use of AI and interrogation 

of the AI decision for an individual examination by the user, suboptimal forms of 

explainability may have a detrimental impact on users’ trust in both the system being used 

and in AI for use in image interpretation as a whole.  Further investigation should be carried 

out to determine the impact of different forms of AI feedback, which may induce more trust 

in the system.  The user should be able to interrogate the AI for a rationale for its decision 

using the format they find most suitable.  This may be best provided by multiple forms of 

XAI.   

Further study should focus on the use of AI in the diagnosis of pathology from intentionally 

degraded images to determine if an AI model could assist clinicians in diagnosis when a 

better-quality image is not available or not possible, potentially resulting in a decreased 

radiation dose to the patient from repeat examinations.   

6.8 Strengths, limitations and recommendations for future research  

Apart from the literature review, this research was conducted during the COVID-19 

pandemic, therefore there are some aspects of the methodology which were not ideal, such as 

the study participants accessing images on their own monitors and lack of standardisation of 

test conditions.  These were factors which were beyond the control of the researcher at this 

time.  Given the rapid progression of the technology in the field, it is felt that this research 

was timely and could not wait until restrictions were lifted.  Certain controls, such as 

indications of image quality (Chapter five), detailed instructions and recommendations for the 



 

 

Page 254 of 516 

 

type of monitor used to access the study were put in place to mitigate against any potential 

variability (Appendix 4.2, 5.2 and 5.3 – participant information and instruction sheets).   

6.8.1 Strengths of the studies included in this thesis. 

The literature review described in Chapter two was intended to provide a detailed ‘snapshot’ 

of the ‘state of the art’ of AI for fracture detection in appendicular skeletal radiology.  This 

level of narrow focus was intentional, as it was hoped to provide useful information 

applicable to radiographers, including reporting radiographers and those providing 

preliminary clinical evaluation on trauma radiographs in the clinical setting.  The review was 

conducted with assistance from a subject specialist librarian who was involved in each stage 

of the searching, from inception of the search terms to finalising the literature included in the 

review.  The first paper published on the use of ‘modern AI’ found for use in fracture 

detection was published in 2017 (Olczak et al., 2017).  This was confirmed by another study 

which also stated that this was the first publication of this type in this area (Chung et al., 

2018).  The included dates of 2016 to 2020, when the paper reporting the results from this 

review was sent for publication (Rainey et al., 2021a), therefore ensuring that all publications 

meeting the criteria were captured. This was subsequently updated for this thesis to include 

up to the date the final searches took place (19th April 2023). 

Due to the heterogeneity of reporting methodologies found in the published studies, it was 

not possible to devise a suitable quality assessment tool at this time or modify one already in 

use.  The information was therefore reported as a scoping review, as mentioned earlier, 

however, a systematic research methodology was retained, ensuring that all relevant 

information was included.  Since publication of the publication resulting from this review in 

2021, some journals have made recommendations for the standardisation of the reporting of 

finings for AI research in healthcare, e.g., the CLAIM checklist (Mongan et al., 2020 in 

Radiology: Artificial Intelligence) STARD-AI (Sounderajah et al., 2021 in The British 

Medical Journal) and DECIDE-AI, which incorporates elements of the early clinical use with 

the system (Vasey et al., 2022 in Nature Medicine). Therefore a full systematic review and 

meta-analysis may be possible in the future, as recommended in the publication associated 

with this chapter in this thesis (Rainey et al., 2021a and Chapter two).  These guidelines were 

not available at the time of publication of many of the studies included in the review.   
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There were 411 respondents to the survey described in Chapter three.  The demographic 

information indicated that the respondents were largely representative of the UK radiographer 

population.  The study was conducted in collaboration with the Society and College of 

Radiographers AI Advisory Board.  There is representation from the clinical and academic 

settings in the group, as well as representation from the Association of Technology Providers 

(AXREM) (https://www.sor.org/about/get-involved/advisory-groups/artificial-intelligence-

advisory-group).  The group were integral in the design of the study, suggesting questions 

and providing feedback on the format of the survey.  The study was then piloted with 

participants gathered from their wide professional networks, ensuring face and content 

validity, as described more fully in Chapter three. The internal consistency was determined 

by post-hoc Cronbach’s alpha, indicating the consistency of responses from the participants 

themselves, rather than from a pilot study only.   

Real clinical images were used for the study reported in Chapter four, representing the 

clinical scenario.  This study was able to continue during the COVID-19 pandemic due to the 

use of an online platform (Qualtrics®) for distribution, ensuring timeliness of the results.  

There was a balance of pathological and non-pathological images, to represent the real 

clinical scenario and instances where the AI was correct and incorrect, as recommended by 

other studies in a similar field (Goddard et al., 2014).  This ensures that the participant does 

not become anchored to a diagnostic outcome impacted by their bias for pathology or 

correctness of the AI based on previous exposure to feedback from the AI used in this study, 

i.e., these measures should ensure that the participant was responding to the presented images 

and the feedback from the AI based on the individual examination/image they are viewing.  

Response rate mas maximised by allocating the participants only three studies from the full 

dataset of 21 complete examinations. Piloting of the study indicated that the study would take 

participants 15 minutes to complete, an acceptable time for an e-survey as indicated by 

Revilla and Ochoa (2017).  Randomisation of examinations to each participant was set up in 

Qualtrics® to best represent the unpredictability of the clinical situation and minimise bias 

resulting from researcher input.  This ensured that there was no bias in the allocation of 

examinations to any participant or experience level, based on anatomical region or perceived 

difficulty of interpretation.   

The final study reported in this thesis (Chapter five) was designed to focus on reporting 

radiographers only, therefore somewhat controlling the variables of levels of experience and 

https://www.sor.org/about/get-involved/advisory-groups/artificial-intelligence-advisory-group
https://www.sor.org/about/get-involved/advisory-groups/artificial-intelligence-advisory-group
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role/specialism.  This allowed for a more focussed study on the impact of AI on this 

professional population for whom AI may have great impact in the near future.  An equal 

number of participants were recruited to the study from each UK region to ensure 

representation from the whole of the UK, regardless of the reporting radiographer population 

in each region.  This is important as some regions of the UK may have flourishing role 

development opportunities while others less so.  This study was piloted on a group of 

experienced radiographers and reporting radiographers ensuring the content was appropriate 

for the target participants.  Each participant was allocated a unique link and were from 

different clinical centres, ensuring that no conferring on responses could take place.  Image 

quality was flagged as an issue in the pilot study.  Thorough scrutiny of each included image 

in each included examination was conducted by experienced radiographers, including the 

researcher and two supervisors of this thesis (CR, SMF and JMcC). 

Image quality assessment was also included in the questions to participants to provide a 

means of quality control and allowing for the determination of the impact of the perception of 

image quality on users’ trust when using AI for image interpretation.  There were no images 

in any included examination that the participants felt were undiagnostic, therefore all data 

could be considered in the analysis.   

The images were obtained from the dataset used to train the AI model used in this thesis, 

which are obtained from real patients and form part of a publicly available dataset (MURA, 

Rajpurkar et al., 2019), however the diagnoses were no longer available at the time of 

writing, as the ‘competition’ for best performing model had closed (see 

https://stanfordmlgroup.github.io/competitions/mura/) .  The focus of this study was the 

impact of the AI, rather than the agreement of the participants with the reference standard 

determined by the dataset builders. The diagnosis obtained in this study may be more reliable 

than that which may have been provided by the dataset builders as this was determined by at 

least five practicing reporting radiographers for each examination. This was supported by the 

acceptable levels of agreement found between participants in this study.  The information was 

gathered electronically after each exposure to the AI feedback, allowing the user to engage 

with the AI as it appeared on the screen, minimising the possibility of forgetting their 

perception of the interaction with the AI, or allowing another image or examination to alter 

their judgement.  A detailed grid overlay (25 region) was used to allow the participant to 

assess their level of agreement with the AI localisation with more precision.  

https://stanfordmlgroup.github.io/competitions/mura/
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6.8.2 Limitations of the studies included in this thesis. 

As mentioned, a full systematic review including quality assessment of the included papers 

was not conducted for the reasons described in section 6.8.1. As this field evolves at such a 

rapid rate, it is difficult to ensure all relevant papers are included between the writing of the 

review and publication.  Chapter two was updated for this thesis to provide an indication of 

the ‘state-of-the-art’ of the field of AI for appendicular skeleton fracture detection, from the 

date of publication of the associated paper (Rainey et al., 2021a) to the writing of this thesis.  

This resulted in an additional 14 papers found, therefore indicating that the original 

publication does not reflect the most current developments in the field. 

The survey described in chapter three was conducted on UK radiographers only.  Although 

there were a large number of respondents to this survey (n=411) the responses may not be 

internationally generalisable.  

The survey was comprised of mostly close ended questions and Likert scales.  While this 

allowed for speed of completion and quantitative analysis, the data obtained may lack in 

richness.  Qualitative studies, such as focus groups, on the topic areas raised in this survey 

would gain greater insight into the perceptions of the radiographer population to better 

establish their concerns and needs before full implementation of clinical AI.  

The reporting radiographer section of the survey may not be impactful on an international 

stage as this is a specialist role common in the UK and some parts of Europe.  Further 

understanding of the issues faced by professionals using or who will be using AI for 

radiographic image interpretation, for instance Emergency Department doctors and nurses, 

radiologists and radiographers, may be of greater impact internationally.   

Furthermore, there were many variables analysed using statistical tests.  This may lead to an 

increased chance of a type 1 error, i.e., that the analyses may result in a statistically 

significant finding that is not present, particularity when alpha is set at .05.  because of this, 

variables were analysed individually, e.g., age as independent and confidence in AI 

terminology as dependent (section 3.6).  This was rather time inefficient.  A correction for 

this, such as ‘Bonferroni’ would have streamlined the analysis process, as conducted in the 

Automation Bias study when conducting multiple post hoc tests on a single dataset, as 

described in section 4.4. 
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The study described in Chapter four used real clinical images which were used as part of 

another PhD study (McConnell et al., 2013).  Three full examinations were allocated to each 

participant to encourage completion and participation as described in section 6.8.1.  This may 

have not given the user enough time to become accustomed to the use of the feedback from 

the AI.  It may be useful to provide a ‘practice’ examination for the participant to become 

aware of the type of feedback they were going to be presented with.  There was full, blinded 

randomisation adopted to allocate examinations to the participants, i.e., it was carried out by 

the Qualtrics® platform and had no input from the researcher.  Therefore, the participant may 

not have had the optimal balance of pathological examinations and correctness of the AI as 

described in section 6.8.1.  There was under representation from some experience levels as 

described in Table 4.3, Chapter four.  This meant that the analysis was conducted on the 

broader experience groups of student and qualified radiographer.  This may mean that the 

more subtle nuances of the level of experience of the clinicians’ interaction with the AI, as 

described in other studies could be underestimated (Goddard et al., 2014; Bond et al., 2018).   

Participants accessed the study on their own devices, in their own time using an openly 

accessible link.  This was intentional to encourage participation during the pandemic but will 

result in different viewing conditions for each participant.  This may not be an issue as it is 

presumed that the same monitor/viewing conditions were maintained per participant, i.e., 

each individual participant completed the study under the same conditions using the same 

device, but should still be considered a potential improvement point for further research and a 

limitation of this study.  Similarly, due to the sampling methods and means of access of the 

study meant that there was no way to ensure that participants did not confer when making 

their responses.  This was also the case with the final study reported in Chapter five, although 

in this case each participant was allocated an individual link which could only be used by the 

recipient.  This study was still conducted remotely, however, and therefore the researcher was 

not present for the study taking place.   

The diagnoses were not available for the images included in the test set of the MURA dataset, 

used for the final study.  This study did not focus on diagnostic accuracy of the participants, 

however in the cases where the AI and human(s) did not agree an additional diagnosis may 

have proven helpful in error interrogation.   
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6.8.3 Recommendations for further research 

Full systematic reviews and meta-analyses should be considered on an ongoing basis in this 

rapidly evolving field to monitor the state of the art in AI in radiology.  Narrow studies, like 

those described in this thesis, may prove most useful to clinicians and those involved in 

procurement of clinical AI devices.  

The survey should be repeated with inclusion of participants internationally.  Targeted 

distribution via clinical and academic centres may minimise any potential bias resulting from 

snowball sampling employed in this study.   

The study described in Chapter four used a methodology designed to maximise participation 

and allow the study to run during the COVID-19 pandemic, however there are a number of 

limitations to this approach, as described in section 6.8.2.  Further studies investigating the 

impact of forms of AI feedback from systems used in detecting pathology from radiographic 

images are needed.  These should take place in a more controlled setting which may best 

replicate the clinical setting.  Variables such as viewing conditions and hardware used should 

be controlled by conducting in-person studies.   

Targeted participation including representation from different experience levels should be 

ensured.  The level of difficulty of the interpretation was not considered in this study.  Further 

studies may consider the impact of the AI assistance in examinations with differing levels of 

perceived ‘difficulty’, as investigated by Goddard et al., 2014 for medicines prescribing.  

This is important as contradictory information is emerging in the literature regarding the best 

use of AI systems in radiology.  A recent study by Farzaneh et al., 2023, finds that AI support 

is best placed for initial triage, followed only with human input when the AI in uncertain. 

However, Gaube et al., 2022, suggest that AI should be used only when the human is 

uncertain of their initial diagnosis. They propose that the human should be in a position to 

only seek AI advice when they are uncertain of their diagnosis, minimising the potential of 

automation and confirmation bias.  Further clarity on the usefulness of AI input and the 

timing of AI interpretation in cases where (i) the AI has a lower % confidence in its diagnosis 

and (ii) when the human has decreased confidence in diagnosis would test these suggestions 

in this professional population. 



 

 

Page 260 of 516 

 

The participants in the final study gave an indication of their level of agreement with the 

heatmap localisation.  Granular analysis of the area of focus of the participant and the AI by 

the researcher may allow for further detail on the level of pathology localisation, however, 

this was not the focus of this study and may form the basis of further study in the future.   

Further research should focus on determining the appropriate type of AI provision made to 

clinicians, as it may be the case that experienced clinicians have a different preference to less 

experienced clinicians.  A provision of a ‘bank’ or range of forms of explainability would 

allow the user to seek specific information allowing a more useful interaction on the users’ 

own terms, for example if the system tells the user that it is 98% accurate in identifying 

fractures and the clinician disagrees they should then be in a position to enter into some kind 

of discourse with the AI – i.e., seeking of assistance and explanation of the decision.  The 

provision of poor forms of AI feedback, such as the heatmap found in this study may erode 

trust in the system over time due to their ‘coarse’ representation of the area of focus in 

making its decision, despite the user agreeing with the ultimate diagnosis, as found in Chapter 

five.   

Various forms of explainability should be offered to explain the decision of the AI but this 

study suggests that some forms of explainability may cause confusion (Chapter two).  Further 

investigation into the timing and format of user interfaces should be layered so that the user 

can interact with the information needed.  A flow diagram of the suggested interface pathway 

and recommendations for optimal feedback ‘layering’ are suggested in Figures 6.2 and 6.3. 
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Figure 6.2: Schematic of suggested user engagement pathway with AI for clinical 
decision support in radiography 

Human user confirms initial decision 

using AI assistance – binary output (AI 

communicates normal/abnormal findings)  

 

Final diagnosis made – report 

written and communicated.  

Disagreement from AI – the AI 

returns a binary decision which is 

different to that of the user.  

User seeks 

second opinion 

from…(a) or 

(b) 

User elects to distrust the AI opinion and 

remains grounded to initial decision – 

anchoring bias (Minimised with education 

in AI).  

Stage 1: Human user makes 

initial decision based on image 

and clinical information only.  

 

(a) Another 

clinician or AI 

‘champion’  

(b) AI in the form of a 

suitable form of 

explainability (individual to 

the user) 

User reinspects 

image to gain 
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Human user confident in diagnosis – 
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Agreement from AI – user assured 

(awareness of confirmation bias 
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Figure 6.3: Feedback ‘layering’ suggestion for responsible use of AI in image 
interpretation 
 

6.9 Contribution to the field / Impact of research  

The studies contained within this thesis are the first to investigate the impact of different 

forms of AI feedback on radiographers’ decision making. While studies have investigated the 

impact of AI feedback on diagnostic accuracy in radiology this has not been investigated in 

the radiographer population.  This is very timely with recommendations to increase the 

number of reporting radiographers to support the radiology workforce and reduce reporting 

turnaround times (NHS, 2019b; Halliday et al., 2020).  The impact of AI feedback on 

radiographers of different levels of experience has not been considered before.  Furthermore, 

automation bias, decision switching and the impact of trust has not been investigated in this 

population.  As mentioned throughout this thesis, AI for use in diagnostic decision making in 

radiology is predicted to be one of the most impacted areas of development of AI 

technologies in the near future (Mehrizi et al., 2020).  It is therefore important to be able to 

quantitatively describe the impact of various aspects of these technologies, such as the form 

of feedback offered, in order to understand the optimal forms of feedback provided for the 

desired outcome, for instance increased accuracy in diagnosis.  However, it is also important 

to understand factors which may be detrimental, i.e., automation bias or inappropriate trust 

and be in a position to understand the impact that the form of AI feedback has on these 

factors.  

The findings from the studies included in this thesis are applicable internationally, where AI 

is being integrated into health systems globally.    

 

1. Initial decision by clinician

2. Binary AI feedback

3. AI explainability - multiple format - clinician preference
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6.10 Conclusions and ‘take home messages’  

The studies forming this thesis found that many AI studies do not fully conform to reporting 

guidelines recommended for AI studies in radiology and as such, detailed meta-analyses and 

systematic reviews including all studies published in the area are not possible.  

Radiographers in the UK are not yet confident in the use of clinical AI.  They do not feel well 

enough trained in its use and although there is some understanding of ‘modern AI’ indicated, 

are not confident in their ability to explain this to other healthcare practitioners and service 

users. UK radiographers are optimistic about the future with AI and foresee the provision of 

new specialist roles in the future, however, are unsure of the impact of these technologies on 

the appeal of the profession to prospective students.  They prefer the provision of the overall 

performance of the system to be provided to increase their trust in its use.  They indicate a 

desire for a visual form of AI feedback to be provided also, although further study suggests 

that this confuses users, in particular younger (student) radiographers.   

The trust in any form of feedback is correlated with the extent to which the user agrees with 

the feedback.  This correlation is particularly strong when interacting with heatmaps.  The 

heatmap form of feedback provided to participants caused automation bias while binary AI 

feedback improved diagnostic performance in both student and qualified radiographers, 

except when the AI was incorrect.  Reporting radiographers showed a tendency to agree with 

binary feedback, whilst tending to disagree with heatmap feedback.   

Studies reporting the performance of clinical AI should be reported using standardised 

reporting guidelines such as those discussed in section 6.8.1 of this chapter.  Systematic 

reviews and meta-analyses should be carried out regularly to reflect the changes in this 

rapidly evolving field.  Education of radiographers should take place in the pre-registration 

setting for students and via short courses which follow an agreed curriculum for qualified 

radiographers.  Role opportunities should be developed in AI for radiographers allowing for 

optimal procurement, quality assurance and interaction with AI tools in the clinical 

department.  Further study may focus on investigating the impact of different forms of AI 

explainability on trust, decision switching, automation, anchoring and confirmation biases on 

radiographers of a range levels of experience with additional granular analysis of the impact 

of years of experience on the interaction with AI feedback.  Further research in this area 
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should be conducted in a controlled environment with the provision of reporting monitors and 

standardised conditions to eliminate variability between responses.   

• There remains variability on the way that AI studies are reported.  Authors, editors 

and reviewers of scientific papers reporting the results of such studies conform to 

recommendations for presentation of findings, including reporting metrics to allow for 

ongoing systematic reviews and meta-analyses. 

• UK radiographers do not feel confident with modern forms of AI and are keen for 

further educational opportunities to fill this gap.  Higher education providers should 

provide education in undergraduate courses (as indicated in the HCPC Standards of 

Proficiency for Radiographers, implemented from the 1st September 2023) and 

postgraduate study or short courses based on preferences from clinical colleagues. 

• Current forms of AI explainability, such as ‘heatmaps’ may have detrimental impact 

on end users due to lack of precision.  Developers should ensure robust testing of the 

impact of any form of feedback on human decision making and bias.   
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Appendix A – Chapter 2 (Scoping review) 
 

 Appendix 2.1 – Artificial intelligence for diagnosis of fractures on plain radiographs: A 

scoping review of current literature (Rainey et al 2021a) 

 

Artificial intelligence for diagnosis of fractures on plain radiographs: A scoping 

review of current literature 

Clare Raineya,*, Jonathan McConnellb, Ciara Hughesa, Raymond Bondc, Sonyia McFaddena 
a School of Health Sciences, Ulster University, Jordanstown, United Kingdom b NHS 

Scotland, Greater Glasgow and Clyde, United Kingdom c School of Computing, 

Ulster University, Jordanstown, United Kingdom 
 

A R T I C L E I N F O A B S T R A C T 
Keywords: 

Artificial intelligence 

Fracture identification 

Radiology 

X-ray 

Radiographic image interpretation 

Plain radiography 

Aim: To complete a scoping review of the literature investigating the performance of artificial intelligence (AI) 

systems currently in development for their ability to detect fractures on plain radiographic images. 

Methods: A systematic approach was adopted to identify papers for inclusion in this scoping review and utilised 

the Preferred Reporting Items for Systematic Reviews and Meta-Analysis Statement (PRISMA). Following 

application of inclusion and exclusion criteria, sixteen studies were included in the final review. 

Results: With the exception of one study, all studies report that AI models demonstrated an ability to perform 

fracture identification tasks on plain skeletal radiographs. Metrics used to report performance are variable 

throughout all reviewed studies and include area under the receiver operating characteristic curve (AUC), 

sensitivity and specificity, positive predictive value, negative predictive value, precision, recall, F1 score and 

accuracy. Reported performances for studies indicated AUC values range from AUC 0.78 (weakest) to the best 

performing system reporting AUC 0.99. 

Conclusion: The review found a great variation in the AI model architectures, training and testing methodology as 

well as the metrics used to report the performance of the networks. A standardisation of the reporting metrics 

and methods would permit comparison of proposed models and training methods which may accelerate the 

testing of AI systems in the clinical setting. Prevalence agnostic metrics should be used to reflect the true 

performance of such systems. Many studies lacked any explainability for the algorithmic decision making of the AI 

models, and there was a lack of interrogation into the potential reasons for misclassification errors. This type of 

‘failure analysis’ would have provided insight into the biases and the aetiology of AI misclassifications. 
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Background 

Introduction 

The use of radiology services in England has 

increased by 16% in the 5 years preceding the 

2016/17 Diagnostic Imaging Dataset Annual 

Statistical Release [1]. Imaging activity counts for the 

year March 2019–March 2020 demonstrate that plain 

radiographic examinations make up the majority 

(52%) of imaging procedures undertaken [2]. Serious 

concerns have been uncovered in a number of 

hospital trusts in England, where the reporting 

backlog and adoption of the auto reporting system of 

working has led to incidents where pathologies went 

unreported, resulting in patient harm [1]. The most 

recent Care Quality Commission’s Radiology Review 

(2018) [1] reported significant pressures on NHS 

trusts in England with 97% of trusts reporting an 

inability to meet increasing demands on radiology 

departments with the majority of backlogs in the 

reporting of plain radiographs. Artificial intelligence 

(AI) systems have been proposed to positively impact 

time efficiency within healthcare and, as such, the 

implementation of these systems has been prioritised 

in the NHS long term plan [3]. 

There are several significant drivers to the 

development of AI as a tool in the health care setting; 

namely, time constraints/efficiency, error avoidance 

or minimisation and workflow augmentation [4–6]. It 

is estimated that the implementation of an effective 

AI system for automated image reporting could 

reduce the time that radiologists spend reviewing 

images by 20% [7], and thus liberate 890,000 hours 

of radiologist time per annum in the UK [7]. This 

time can be spent doing non automatable tasks such 

as providing personalised patient care and more 

complex tasks where human input is essential [5]. 

Artificial intelligence in radiology 

AI as a human adjunct in diagnosing pathology from 

radiographic images began in the 1960s [8]. A system 

was developed to convert images to numerical data, 

which was then stored on a computer that carried out 

statistical analysis. 

In the 1980s, traditional computer aided detection 

(CAD) systems were beginning to be integrated into 

clinical radiology to detect human programmed 

patterns in images to guide the clinician to areas 

requiring further attention [9,10]. Advances in 

computational power have permitted the development 

of increasingly more sophisticated applications of AI 

and CAD systems. 

As computer processing power has increased, so 

follows the ability of the machine to accomplish 

increasingly more complicated and humanlike tasks, 

such as the ability to learn from experience. This 

contrasts with older methods of CAD where systems 

are specifically programmed by human developers for 

feature detection. These are often referred to as 

symbolic reasoning, knowledge engineering or expert 

systems. Newer AI systems report higher accuracies 

[5,11] and more efficient training processes, as the AI 

learns from exposure to examples rather than human 

feature extraction and programming [12,13], although 

the success of these data driven algorithms rely on the 
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availability of large volumes of data for training 

[12,14]. 

Many algorithms currently in development for image 

interpretation are based on Artificial Neural Network 

architectures (ANNs) [15,16]. These systems are 

inspired by the function of the human brain by using 

interconnected neurons or nodes which differentiate 

and make sense of different parts of the image. This 

form of AI can make predictions by either supervised 

or unsupervised learning [4,11]. In unsupervised 

learning, the system will identify similarities of 

features in images and allow for sorting of images 

into groups, for instance, grouping of patients with 

similar bone density [11]. Supervised learning is used 

when the AI is required to make diagnostic 

predictions based on human knowledge. In this case, 

the system or model is exposed to a large volume of 

examples, where the correct outcome or ‘ground truth’ 

label is known. The model then makes a series of 

decisions or predictions and receives feedback. ANNs 

are refined based on iterative feedback by assigning 

greater or lesser importance to particular nodes or 

artificial neurons by adjusting the ‘weights’ assigned 

to the neurons, using backpropagation [17]. This 

modulation will be tested again and adjusted to bring 

the AI prediction nearer to the ground truth label, 

usually the presence or absence of pathology or 

severity of a condition By determining the importance 

of various decisions based on a known outcome, the 

model can then learn the attributes of the input which 

were most significant in determining a particular 

outcome [9,18]. The ANN retains these weights and 

patterns of activation of the nodes if a correct 

prediction is made [18]. For example, an ANN might 

be exposed to a dataset of radiographic images where 

the outcome is known, for instance whether a fracture 

is present or not, and the algorithm learns based on 

the known diagnosis until an acceptable accuracy for 

fracture detection has been reached. This process is 

known as Supervised Machine Learning (ML), and 

encompasses, although is not limited to, ANNs. The 

exact reasoning by which the machine does this, 

however, is not clear due to a latent intermediate 

stage of processing. This stage takes place deep 

within the many layers of the system, hence the term 

‘deep learning’ (DL). One type of ANN, which has 

been gaining attention recently in the field of 

computer vision and medical image interpretation, is 

the convolutional neural network (CNN). A CNN is a 

more sophisticated type of ANN which contains at 

least one convolutional layer, where weightings are 

shared between adjacent nodes. Although similar in 

structure to an ANN, these networks are proving to be 

particularly useful for image recognition tasks and are 

therefore able to be optimised and efficient for this 

purpose (see Table 1). 

Trust and ethical issues exist due to the way ANNs 

and other DL models reach their decisions. These 

issues have been raised in a number of professional 

publications [19,20], and notably, in a joint statement 

by a worldwide radiology stakeholders’ group [21]. 

These publications 
Table 1 
Introduction to concepts. 

Artificial Intelligence (AI) The ability of a computer to accomplish 

human-like tasks. 
Machine Learning (ML) ML is an AI system which is able to learn 

independently of human input by making a 

series of predictions or ‘guesses’ about an 

input and adjusts itself based on feedback from 

an established ‘ground truth’. 
Deep learning (DL) DL is a subset of ML (and therefore AI) 

containing more processing layers – hence the 

term ‘deep’. Multiple layers allow for the 

accomplishment of more sophisticated tasks, 

e.g. the 2016 Alpha Go programme, natural 

language programming and image recognition. 
Artificial Neural Networks 

(ANN) 
An AI system inspired by the function of the 

human brain by the use of layers of 

interconnected nodes 
(artificial neurones) 
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Convolutional Neural 
Networks (CNN) 

An advanced ANN, where neurones, and layers 

of neurones, can share information relating to 

the importance of detected features to other 

groups of neurones. This ability makes CNNs 

particularly good for complex for computer 

vison and image recognition tasks. 
Support vector machines 

(SVM) 
SVM are an older type of ML usually used in 

twocategory classification tasks. 
Training dataset ML models are trained by exposure to multiple 

labelled examples, ‘the training set’ e.g. many 

images of a ‘cat’, ‘dog’, ‘flower’. 
Validation dataset The validation set allows an initial impression 

of the performance of the model for fine-

tuning of the model. 
Test dataset The test set is usually an unseen set of data, 

held-out from training and validation and used 

to provide final performance metrics of the 

model. 
K-fold cross validation Used for training and validation/testing using 

limited datasets by splitting the dataset into 

random number (k-) of groups (folds). Each 

fold will be used k times for training the model 

as well as validation/ testing, therefore 

maximising the learning potential of the model. 
Class balancing Balanced classes have an equal number of 

desired outputs in each category. For example, 

in binary fracture classification (fracture/no 

fracture) an optimal training set would have a 

1:1 split of fracture/no fracture for training, 

therefore maximising the ability of the ML to 

recognise both classes, although this does not 

usually replicate the real-world scenario. 
Precision Precision, or positive predictive value (PPV) is 

an indication of how many positive 

predications were actually positive. It is 

calculated using ‘true’ and ‘false’ positive (TP, 

FP) predictions: Precision ¼ TP/ 
Recall TP þ FP 

Recall (or sensitivity) describes the ability of 

the model to correctly predict the presence of 

pathology and is calculated using ‘true’ positive 

(TP) and ‘false’ negative (FN) by the following 

equation: 
  

Dice similarity coefficient 
(DSE) or F1-score 

Recall ¼ TP/TP þ FN 
DSE or F1-score is metric used to describe the 

similarity between two response or outputs, in 

this case, AI predictions and ground truth. It is 

particularly useful in studies such as those 

described in this review as it takes both recall 

and precision into account and therefore is a 

suitable single metric which can accurately and 

efficiently report the performance of an ML on 

an imbalanced dataset. 
Cohen’s kappa A prevalence agnostic metric used to quantify 

interrater agreement. The calculation takes 

into account the chance of any agreement 

occurring by chance. 
recognise the obvious benefits and necessity to 

incorporate AI into radiology but cautions that 

significant research should still be conducted into how 

AI should be utilised. They also emphasise the need 

for the clinicians and professionals involved in use 

and development of these systems to have an in-depth 

knowledge of their functionality. 

Plain radiography in fracture identification 

Fractures are a common reason for attendance at 

emergency departments around the world [22], 

although the use of AI to identify fractures on 

appendicular skeletal radiographs remains a relatively 

unexplored area. There were 2,489,052 hospital 

admissions for fractures in the ten-year period from 

2004/2005 to 2013/2014 in England alone [22], which 

represents 47.84 per 10,000 of the population. This 

figure can be assumed to be much greater when 

patients who are not admitted to hospital and patients 

who are found not to have fractures are considered in 

the figures. This figure only considers patients who 

have been diagnosed as having a fracture and who 

have been admitted to hospital as a result of this 

fracture. The number of patients who have had 

radiographic imaging and have been found to have no 

fracture and those who have been diagnosed with a 

fracture but not admitted to hospital are not reflected 

in these statistics, therefore, the number of patients 

presenting for imaging for fractures can be assumed 

to be much greater than this. 
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Although there are no figures available for the 

number of radiographs taken to identify fractures, an 

indication can be gleaned from the number of patients 

presenting to minor injuries units in the UK where 

attendances have increased from 28% of total 

Emergency Department attendances in 2008/9 to 33% 

in 2017/18 in England [23]. Therefore, radiographic 

imaging for fracture identification contributes 

significantly to the workload of both radiologists and 

radiographers. 

Reporting of artificial intelligence in medical 

imaging studies 

As the field of AI in medical imaging grows, so 

follows the need for effective dissemination of results 

of studies which include details of the construction 

and performance of various models. The publication 

of detailed explanation and code availability, will 

allow for replication and validation of the proposed 

AI, permitting more efficient development into 

clinically useful tools and may improve clinicians’ 

trust. However, as AI in medical imaging in its 

current format is still relatively new, a standardised 

system for the reporting of such studies has been 

lacking until very recently. To address this emerging 

issue, a Checklist for Artificial Intelligence in 

Medical Imaging (CLAIM) [24] has been produced, 

based on a modification of the Standards for 

Reporting of Diagnostic Accuracy Studies (STARD) 

[25] and is available at: https://pubs.rsna.or 

g/doi/pdf/10.1148/ryai.2020200029. The use of this, 

or similar checklists should guide both AI in medical 

imaging researchers in the design and publication of 

findings and allow for robust review and comparison 

of the AI models proposed. 

A robust review of the most recent developments and 

performances of AI systems is needed to provide a 

baseline of the state-of-the-art in AI to educate and 

inform those using and developing these systems for 

useful integration into the clinical workflow. This 

review aims to provide an insight into one area of 

development by providing a synthesis of the available 

literature on the performance of AI models to predict 

fractures on plain radiographic images. 

Methods 

Database search strategy 

The search strategy for this review was designed in 

conjunction with a subject specialist librarian. 

A search was conducted using broad search terms 

‘artificial intelligence’ and ‘computer aided diagnosis’ 

was conducted on: Cochrane Library, PROSPERO, 

Ethos, ProQuest Dissertations, Google Scholar, JBI 

Database of Systematic Reviews and Implementation 

Reports. Results from this search were screened and 

none were found to match the search criteria and 

objectives of this paper. 

A literature search was conducted in September 2019 

and rerun in March and December 2020 to check for 

updates on the electronic academic databases 

Medline, Embase, CINAHL, Inspec and PubMed 

using the following key terms: 

(artificial intelligence OR deep learn* OR machine 

learn*) AND (computer aided diagnosis OR clinical 

decision mak* OR automated diagnosis) AND 

(radiology OR radiography) with limits English 

language and human. A date range of 2016-present 

was applied to give an insight into the state-of-the-art 

of this rapidly evolving field and to attempt to ensure 

that the model architectures described in the literature 

were comparable. The first study in this field using 

‘modern’ machine learning (ML) techniques was, to 

the best of the authors’ knowledge, a study by Olczak 

et al., in 2017 [26], as cited in Chung et al., 2018 [27]. 

2016 was then chosen as an assurance that any 

additional literature was identified. 

To minimise the risk of introducing bias to this 

review, grey literature was sought from the following 

resources: Google Scholar, specialised databases 

https://pubs.rsna.org/doi/pdf/10.1148/ryai.2020200029
https://pubs.rsna.org/doi/pdf/10.1148/ryai.2020200029
https://pubs.rsna.org/doi/pdf/10.1148/ryai.2020200029
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(National Rehabilitation Information Centre, and the 

National Institute for Health Research Journals 

Library), and the International Clinical Trials Registry 

Platform. Hand searching of reference lists of articles 

and previous reviews was also performed to identify 

additional trials that were potentially eligible. 

RefWorks Legacy® version was used to manage 

papers identified as a result of these searches. 

Duplicates were removed and all papers were 

screened for eligibility by reading titles and abstracts 

when the title did not adequately describe the study. 

The inclusion and exclusion criteria detailed in Table 

2 were applied. Each remaining paper was read in 

full, and inclusion and exclusion criteria were applied 

again. This process is clarified in Fig. 1. 

Data analysis 

Each paper was read thoroughly, and data was 

extracted under the following headings: Anatomical 

area, pathology focus, determination of 

truth/reference standard, ML description/techniques, 

feature engineering detail, training set/method, test 

set/method, class balancing, performance 

metrics/results, methods to explain ML decision and 

misclassification explanation. Investigation into code 

availability was conducted by search of both the 

paper and any supplementary data provided. 

Findings 

Search results 

Following searching of academic databases listed, 

2786 papers were identified. An additional two papers 

were identified from grey literature and reference lists 

of included articles. 225 duplicate papers were 

removed. Following application of inclusion and 

exclusion criteria, by means of manual title and 

abstract screening of the remaining 2563 papers, 23 

papers remained. All papers were read in full by the 

authors, and 13 papers were excluded for the reasons 

outlined in Fig. 1. At this stage, ten studies remained 

for full data analysis. A final inspection of grey 

literature and full search on all databases was 

conducted in December 2020 to identify any recent 

updates. A further seven papers were identified and 

included in this paper; however, two papers were 

unavailable due to institutional access issues. One of 

these papers has been located through a search on 

ARXIV and is included in this review. The one 

remaining paper is discussed in the recommendations 

section and details are in the reference list of this 

paper. There are, therefore, sixteen papers included in 

this review. 

Extracted data is presented in full in Tables 3–5. 

Table 2 
Inclusion and exclusion criteria applied to search results. 

Inclusion Exclusion 

Diagnostic imaging – conventional 

radiography 
All bone fracture diagnostic studies 
Recent publications – 2016present 
Experimental study (with 

performance results) 

Specialised imaging – CT, NM, MRI, mammography 
Non-diagnostic procedures – therapies and 

segmentation 
Artificial intelligence used for any other reason 

other than obtaining/assisting with diagnosis of 

fractures 
Studies published before 2016 
Information only papers – no experimental results 
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Anatomical area (Table 3) 

All studies included were determining either the 

presence of a fracture or classification of fracture 

severity. Anatomical area varied across the studies. 

Four studies focused on the wrist and distal radius 

[29,33,35, 38], eight on hip or pelvis fractures 

[28,30,31,34,37,39–41], one on proximal humerus 

[27], one on dental fractures [32], one paper focused 

on ankle fractures [36] and one study investigated a 

range of anatomical areas [26], as listed in Table 3, 

with fracture detection as the pathological focus. 

Pathology focus (Table 3) 

Featured models used both binary detection and 

multi-class classification as outcomes, i.e. presence of 

fracture, expressed as a binary prediction (fracture/no 

fracture) and classification of fracture severity and 

location of fracture as multi-class problems. Binary 

classes used to predict hip, wrist, ankle and hand were 

reported in the studies, while fracture location and 

multi-class discrimination was determined for hip and 

shoulder radiographs. One study used only a region of 

interest box to identify the area of abnormality on 

orthopantomographic images, rather than textual 

diagnoses [32]. 

Prediction classes – description/number (Table 3) 

Twelve of the sixteen studies reported the ability of a 

convolutional neural network to predict the presence 

 

Fig. 1. Prisma flow chart. 
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or absence of a fracture [28–31, 33–38,40,41]. Five 

studies included some discrimination of the location 

or severity of any identified fractures 

[27,34,37,39,41]. One of these studies classified 

fractures according to a well-known scale for 

proximal humerus fractures [27]. 

All others focussed on proximal femur/hip fractures. 

Two studies required the model to decide between 

three classes, one relating to the presence of a fracture 

and two choices of classification according to a well 

know classification system [34,39]. One of these 

studies further subclassified one of the categories 

[39]. A further study which also required the model to 

make a choice of three outputs required the AI to 

determine presence or absence of a fracture with the 

additional option of ‘missing’ [26], although the 

meaning of this is unclear. The study with the largest 

number of output options investigated an AI model’s 

ability to classify the type of proximal femur 

abnormality by presence and location of any 
Table 3 
Anatomical and pathological focus of AI model. 

Author/Country/ 
Year 

Anatomical area Pathology focus Prediction classes – description/number Determination of truth/reference standard 

Badgeley et al, 2019. 

USA [28] 
Pelvis/hip Hip fracture Two - Fracture/no fracture Inferred from patient’s clinical notes: radiologist 

comment: ‘acute fracture’ or ‘no acute fracture’. 
Bluthgen et al, 2020. 

Switzerland 
[29] 

Wrist (distal radius) 

single and multi-view 

comparison 

Distal radius fracture/no 

fracture 
Two - defect (0 - fracture); intact (1 - no fracture). TRAINING SET - radiology reports þ confirmation by two 

radiology residents (3rd and 5th year) using electronic 

healthcare record, CT scans and images. EXTERNAL SET 

(MURA) - interpreted by radiology residents as above for 

fracture/no fracture. AREA AGREEMENT – Region of 

interest drawn by radiologists (agreement with each other 

if Dice Similarity Coefficient (DCE) ¼ 0.7) and deep learning 

system agree if overlap (does not state by how much). 
Cheng et al, 2019. 

Taiwan [30] 
Pelvis Hip fracture Two – fracture/no fracture Diagnosis from trauma registry. Computed Tomography 

(CT), clinical course and other imaging used to determine 

equivocal cases. 
Chung et al, 2018. 

South Korea 
[27] 

Proximal humerus 
(shoulder) single view 

Fracture - detection and 

classification. 
Five - Neer’s classification of proximal humerus 

fractures - four types of fracture þ normal ¼five 

classifications 

Two shoulder orthopaedists and one radiologist 

(musculoskeletal specialist). When no agreement from 

independent reports, CT and other imaging is checked. If 

still no agreement, image excluded. 
Damien et al, 

2019. Lebanon 
[31] 

Pelvis fracture 

iliopectineal line only 
Iliopectineal line 

disruption 
Two - Positive/negative for fracture. Feature 

extraction, size of connected components, 

number of connected components (or ’parts’ of 

pelvis) 

Unclear - Radiopaedia diagnoses assumed 

Fukuda et al, 
2019. Japan 
[32] 

Dental OPG Vertical root fractures Region of interest indication by ML Two oral and maxillofacial radiologist and one endodontist 

set regions of interest containing fractures. 

Gan et al, 2019. 
China [33] 

Distal radius Fractures – distal radius 

(wrist) 
Initial region of interest – localisation of distal 

radius only. 
Two – fracture/no fracture on final regions of 

interest. 

Radiology report plus verification from two senior 

orthopaedists (in cases of no agreement, consensus was 

obtained from a third senior orthopaedist and 

corresponding CT scans) 

Jimenez-Sanchez et 

al (2019) [34] 
Proximal femur Fractures – localisation 

and classification 
1) Binary classification – Fracture/no fracture 
2) Discrimination – classes A, B and no fracture 

Three clinical experts provided class labels and localisation 

of the head of femur using region of interest boxes: one 

trauma surgeon, one senior radiologist and one trauma 

surgery resident (5th year) evaluated a split of the dataset 

each. 
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Kim and 
McKinnon, 
2018. UK [35] 

Wrist (lateral) Fractures - distal radius 

or ulna 
Two - Fracture/no fracture Radiology report and registrar verification 

Kitamura et al, 2019. 

USA [36] 
Single and multi-view 

ankle. 
Fractures Two - Fracture/no fracture Radiology reports reviewed by radiologist and 4th year 

radiology resident. 
Krogue et al, 2020. 

USA [37] 
Hip Fractures Binary task: fractured/not fractured Classification 

task: 
Fractured (undisplaced femoral neck, displaced 

femoral neck fractures, intertrochanteric 

fractures) 
Unfractured 
Containing hardware (previous internal fixation, 

arthroplasty) 
Localisation by bounding box 

Review by two orthopaedic residents. In cases of 

uncertainty, computed tomography, magnetic resonance 

imaging and post-surgical imaging was used as 

confirmation. 

Lindsay et al, 2018. 

USA [38] 
Wrist Fractures Two - fracture/no fracture One or more senior sub-specialist orthopaedic surgeons 

using a bounding box to locate pathology. 
Olczak et al, 2017. 

Sweden [26] 
Hand, scaphoid, wrist 

and ankle. 
Fractures, body part, 

laterality and exam view 
Three for pathology- yes/no/missing fracture. 
Side: Left/Right. 
View: distal, Antero-posterior, oblique, 

proximal, radial, lateral, ulnar, missing. Body 

part: finger, thumb, scaphoid, hand, wrist, 

ankle, missing. 

Automated language extraction from radiologists’ reports, 

along with ‘multiple visits’. Other information (laterality, 

body part, view) from DICOM headings. 

Tanzi et al, 2020. 
Italy, Sweden 
[39] 

Proximal femur Classification of 

fractures 
1) Three-class discrimination 

(unfractured, type A fracture, type B fracture) 
2) Sub-classification of the type A 

fracture – A1, A2 and A3. 

Senior trauma surgeon and specialist orthopaedist 

reviewed all images in initial dataset. 

Urakawa et al, 
2019. Japan 
[40] 

Inter trochanteric hip 

fractures 
Detection of fracture Two: fracture/no fracture Single orthopaedic surgeon using antero-posterior hip 

radiographs (in 91.7% of cases), lateral hip radiographs (50 

patients), computed tomography (seven patients) and 

magnetic resonance scan results (90 patients) and surgical 

intervention. 
Yu et al, 2020. 

USA [41] 
Proximal femoral 

fractures 
Detection of fracture Two: fracture/no fracture þ localisation: 

transcervical, intertrochanteric, subtrochanteric. 
Musculoskeletal radiologist from antero-posterior 

radiographs and confirmed by either computed 

tomography or operative report. 
Localisation by classifying the fracture in one of three pre-

specified areas 
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AI development, training and testing methods. 

 
Badgeley et al, 

2019. USA 
[28] 

Inception V3 pretrained 

on ImageNet 
299  299 pixels 23,602 hip radiographs Train:test 

3:1. 
Optimised parameters from 

the ImageNet challenge. 

Penultimate layer is removed, 

leaving 2048 image feature 

scores which are used in 

subsequent unsupervised 

models. Dimension reduction 

techniques were used to 
‘visualise the distribution of image 

variation’ (p31). tDistributed 

Stochastic 
Neighbor Embedding (t-SNE) 

projected the image feature 

vector into a 2 d plane with the 

R package. (50 dimensions, 

perplexity 30, theta 0.5, initial 

momentum 0.5, final 

momentum 0.8, learning rate 

200) 

Female 66% 
Mean age 61 

Mean body mass 

index 28 Number 

of scanners 11 

Train:test 3:1 of 23,602 

hip radiographs. 

Confounding factors 

removed for testing 

patient trait, scanner type 

and ‘other information’ 

Full dataset: 3% fracture 

n ¼ 779. 
Test set: 3% fracture No 

attempts to 
artificially balance 

classes. 

Bluthgen et al, 2020. 
Switzerland 
[29] 

Manufacturing CNN. 

Retrained for fracture 

detection. ViDi image 

analysis software (deep 

learning). 

MURA dataset has a 

maximum pixel height of 

512 pixels. Internal 

dataset resized to match 

this. Aspect ratio 

maintained.PNG format. 

Single images used for 

training. Images (AP and 

lateral) together on same 

image for test. 

524 radiographs. 
Grid search plug-in used to test 

hyperparameter combinations. 

Two best combinations used for 

training: 
Hyperparameters selected and 

best 2 chosen to train: Model 

1–85 pixels Model 2–60 pixels. 

Both: 150 epochs, contrast 

50%, aspect ratio 10%, rotation 

10%, shear 20%, scale 1-%, 

sampling density 5, luminance 

40%. 
‘Data augmentation’ had a 

positive effect on model 

performance in the validation 

stage. 

Not explicitly stated INTERNAL and 
EXTERNAL (MURA) 
sets. Internal set: 100 

radiographs, 42% 

fracture. External set: 200 

radiographs (AP and 

lateral) - 100 cases. 50% 

fracture (50 cases/ 
50 cases) 

Total training set: 524 

radiographs, 166 fracture 

(31.7% fracture). 
Test set: external test set 

balanced: 50 fracture 50 

no fracture. 
Internal test set: 42% 

fracture. 
No attempts to 
artificially balance classes 

in training data set. 

External data set 

intentionally balanced. 

Cheng et al, 2019. 
Taiwan [30] 

DenseNet 121 Whole images. Resized 

to 512  512 pixels with 8-

bit greyscale colour. 

Pretrained on limb 

radiographs - 25,505 (90% 

train, 10% valid). Retrained on 

pelvic radiographs - 3605 (80% 

train, 20% valid). Batch size 8. 

Adam optimiser used. Initial 

learning rate of 10 ¡3 Final 

model trained on 60 epochs. 
Data augmentation in training: 

zoom 10%, 
horizontal flip, vertical flip, 

rotation 10 

Mean age with 

fracture: 72.34 
Mean age without hip 

fracture: 
44.88 
Gender with hip 

fracture: 42% male 
Gender without hip 

fracture: 68.2 male 

100 pelvis radiographs: 

25 femoral neck fracture, 

25 intertrochanteric 

fracture, 50 no fracture. 

PELVIS training model: 
1975 fracture/1630 no 

fracture. 
Test set: balanced test 

set: 50 no fracture; 50 

fracture. 
No attempts to 
artificially balance classes 

in training set. 
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Author/ 
Country/Year 

ML description/ 
techniques 

Feature engineering 
detail 

Training set/method Training set 
demographics 

Test set/method 
( Sample size/cases ) 

Class balancing 

Chung et al, 
2018. South Korea 

[27] 

Pretrained Microsoft 

ResNet-152, finetuned 

on images from dataset. 

Cropped images to 

include humeral head 

making up approximately 

50% of image size. 256  

256 pixel (downsized) 

Full dataset - 1891 AP 

shoulder radiographs from 7 

different hospitals. Training on 

9/10 of dataset þ remnants. 

Repeated three times. Caffe 9 

used on Ubuntu 16.04 with 

NVIDIA GTX 1070. ResNet fine-

tuned final layers: ‘base lr: 

0.0001; max: 3 epochs; step: 2 

epochs; gamma: 0.1; weight 

decay: 0.00001; train batch 

size: 24; 1 epoch.’ 
(suppl. data) 
Classification training: Non 

fracture radiographs removed 

to reduce overfitting. 

Total dataset: 
1891 patients (591 

men, mean age: 65 

1/10 of total dataset. CNN 

v human study: 3 groups 

of readers: 28 GPs; 11 

general orthopaedists; 19 

shoulder orthopaedists. 14 

images for testing 

Full dataset: 1376 

fracture cases, 515 

normal from dataset of 

1891 images. 346, 514, 
269, 247 and 515 for 
greater tuberosity, 

surgical neck, three-part 

fractures, four-part 

fractures and no fracture 

classes respectively. No 

attempts to 
artificially balance classes 

apparent in either 

training or test data sets. 

(continued on next page) 
 

Damien et al, 2019. 
Lebanon 
[31] 

Support Vector Machines 

(SVM). 
Neural network 
(limited information): 

2 hidden layer, six 

neurons per layer. 

Radiologist or surgeon 

selects Region of interest 

(ROI) demarcating 

iliopectineal line. Image 

denoising and edge 

detection performed, 

then smoothed. 

Dataset from Radiopaedia 

®radiographs. Neural network: 

75 images for training þ11 for 

validation. 
100 for SVM 
SVM - radial basis function used 

as kernel. 
NN – two hidden layers, six 

neurones in each layer, 

hyperbolic tangent as activation 

function. 

Not explicitly stated  % of training and testing 

images in each class is 

unclear. 
No attempts to 
artificially balance classes 

apparent. 

Fukuda et al, 
2019. Japan 
[32] 

Digits v 5.0 training system 

- customised 
DetectNet 

.JPEG images downsized 

to 900  900 for ML 
300 Orthopantomographic images 
Total number of teeth not stated. 
Trained on Ubuntu 16.04 

operating system, GEForce 

1080Ti GPU (Nvidia) over 1000 

epochs using Adam 
solver with an initial learning 

rate of 0.0001. Five models 

created and tested with test 

set for each (five-fold cross 

validation). 

50% male/female 
Mean age 66.05 

Five-fold cross validation. 

Four parts of dataset 

train and validation. 

Repeated five times, 

changing 
TEST dataset each time. 

300 OPG - 330 fractured 

teeth in total. Total teeth 

not stated. 
At least one vertical root 

fracture per OPG. Test 

set: demographics of test 

data set not explicitly 

stated No attempts to 
artificially balance classes 

in training or test data 

sets. 
Gan et al, 

2019. China 
Inception V4: authors 

reported that this ML 

has achieved ‘state of 

Whole radiograph.JPEG 

images, resized to 600  

800 pixels. Resultant 

Training dataset: 2040 antero-

posterior wrist radiographs: 

1341 with fracture, 699 no 

Entire dataset: 300 antero-posterior wrist 

radiographs: 150 with 

fracture, 150 no 

1341 fracture/699 no 

fracture in initial dataset. 

Following augmentation: 
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Author/ 
Country/Year 

ML description/ 
techniques 

Feature engineering 
detail 

Training set/method Training set 
demographics 

Test set/method 
( Sample size/cases ) 

Class balancing 

[33] the art results in 

recent image 

classification contests’ 

(p. 396) 

region of interest 

containing distal radius 

resized to 200  200 

fracture for region of interest 

identification. 
Resultant region of interest 

radiographs þ augmentation: 

6120 images: 4023 with 

fracture, 2097 no fracture for 

final testing and validation 

(15% for validation) For 

diagnostic CNN: 
Google open source 
TensorFlow 1.11.0 on Ubuntu 

16.04. NVIDIA Titan X. 
‘Optimiser, stochastic gradient 

descent; batch size, 100; 

dropout, 0.5; 20,000 iterations; 

initial learning rate, 0.001; 

learning rate decay type, fixed.’ 

(Suppl data) 

1366 men, 974 

females. With 

fracture: 
56% men, 44% female. 
Without fracture: 
63% men, 37% female. 
Mean age 48 (mean 

age with 
fracture: 48, without: 

48) 

fracture 4023 fracture/2097 no 

fracture in final (region of 

interest) dataset used for 

training. 
Augmentation was not 

intended to balance 

classes 
Balanced test dataset 

(150 #/150 no #). 

Jimenez- 
Sanchez et al 

(2019), Spain, 
Germany and 

France 
[34] 

For classification task: 

ResNet, pretrained on 

ImageNet. 
For localisation: 
AlexNet. 

ResNet; radiographs 

downsized to 224  224 
pixels 
AlexNet: radiographs 

downsized to 227  227 

Initial dataset: 780 subsequently 

sampled pelvis radiographs of 

patients with proximal femur 

fractures. 4% of patients had 

anteroposterior projections. The 

remainder had anteroposterior 

and lateral projections. Most 

cases had one non-fractured 

proximal femur. 
Train:validate:test 
70:10:20% 
Training on a Linux based 

workstation (16 GB RAM, Intel 

Xenon CPU at 3.5 GHz, 64 GB 

GeForce GTX 1080). 
Stochastic gradient descent for 

optimisation. Models trained 

until convergence 

(Classification and localisation: 

80 and 200 epochs 

respectively). Batch size 64. 

Momentum 0.9 for all models. 

Learning rate initialised 1  102 

for classification and 1  108 

69% female. Mean 

age 75.7  
13.2 

1) Binary classification 

task: not fractured/ 

abnormal: 115/115 2) 

Discrimination task: 

Classes A, B and no 

fracture: 55; 60; 55. 

Data augmentation: 
translation, scaling and 

rotation 
Training set of pelvises 

with at least one 

fractured hip. Pelvis 

radiographs (two femora) 

were parted in two (one 

femur each image) 

resulting in 780 fractured 

femora and 567 not 

fractured for two class 

problem. Three-class 

problem (type A, B and 

not fractured): 327, 453 

and 567 respectively. No 

explicit attempt to 

further balance of 

training dataset. 

Intentionally class 

balanced test sets: 
1) Binary classification 

task: not fractured/ 

abnormal: 115/115 

(images from three class 

problem plus additional 
 

   for localisation. Decay varied.   55 not fractured images) 

2) Discrimination task: 

Classes A, B and no 

fracture: 55; 60; 55. 
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Author/ 
Country/Year 

ML description/ 
techniques 

Feature engineering 
detail 

Training set/method Training set 
demographics 

Test set/method 
( Sample size/cases ) 

Class balancing 

Kim and 
McKinnon, 
2018. UK 
[35] 

Inception V3 network 

trained on ImageNet. 
.JPEG images at ‘most 

appropriate’ windowing 

as determined by 

radiologist. Annotations 

removed. 

Transfer learning. Lateral wrist 

radiographs: 695 fracture/695 

no fracture. Data amplified 

(non-identical copies): 5560 

#/5552 no #. 
80:10:10 train:validation:test 

with 100 kept for final test. 
Retrained top layer of 

Inception V3. Initial learning 

rate of 0.02, learning decay by 

a factor of 0.67 after every 

1800 iterations. 

Not explicitly stated Final testing: 100, 

unseen. 50 fracture/50 

no fracture. Consecutive 

set until fracture/no 

fracture number is 

reached. 

Data amplified 

(nonidentical copies): 

5560 fracture/5552 no 

fracture. Incidental 

balanced datasets – no 

explicit attempts to 

artificially balance data. 

Balanced test dataset: 50 

fracture 50 no fracture. 

Kitamura et al, 

2019. USA 

[36] 

Five networks; 
Inception V3, Resnet 
101 layer, Resnet 
(drop/aux), Xception 

(drop/aux). DE NOVO 

training. All five used 

together for best 

performance. De 
Novo programmed. 

Resized to 300  300 pixels. 

One greyscale 
298 fracture/298 normal 

examinations (single or multiple 

views). Trained on single views: 

689 abnormal views/752 normal 

views ¼ 1441 total views. 
Augmentation of images for 

generalisation (rotation, flipping, 

brightness, contrast variation). 
Models trained on GEForce 

1080 GTX GPU. All five models 

converged after 2000 epochs. 

Learning rate 4e-6 and 6e-6. L2 

decay rate between 0.4 and 

0.9. Dropout rate kept at 0.5. 
Convergence of training via 

Softmax cross entropy loss, 

determined as converged when 

loss values plateaued (2000 

epochs). 

Not explicitly stated Test and validation: 40 

normal/40 abnormal with 

three views each: 
240 total images. 

Trained on single views: 
689 abnormal views/ 752 

normal views ¼ 
1441 total views from 
298 fracture 

examinations/298 normal 

examinations. Test set 

intentionally balanced: 40 

fracture examinations, 40 

normal examinations 

with three views for each 

case. 

channel. 

Krogue et al, 
2020. USA 
[37] 

DenseNet 169 for 
fracture classification 

with final Softmax layer 

for each class 

RetinaNet object 

detection (with ResNet 

architecture) for 

bounding box 
detection 

Resized to 224  224 
pixels replicated into three 

channels. 

1849 individual hip images. 

Data augmentation on training 

set. 
Initialised with ImageNet 

pretrained weights. Trained 

with Adam. Learning rate 

0.00001, batch size 25, 

learning rate decay 0.9, 

training stopped after 10 

epochs with no improvement. 

Mean patient age: 
74.6years 
62% female in 
initial dataset (2004 

full radiographs). 

Validation set: 739 Test 

set: 446, including 

randomisation of classes 

for equal distribution of 

classes in each dataset. 

Fractured: 47.9% 

(including 

subclassifications of 

fracture type) 

Unfractured: 52.1% 

Proportion of classes kept 

the same for all datasets 
No attempts to 
artificially balance 

classes. 
Lindsay et al, 

2018. USA 
[38] 

DCNN: extension of 
U-net architecture 

Rotation, cropping and 

aspect ratio: 1024  
512 pixel 

Pretraining - 100,855 other 

body parts. 90% of 31,490 

wrists. 10% validation. Training 

stopped after no improvement 

over five epochs. Rotations, 

cropping, mirroring, lighting 

and contrast adjustments made 

to images to make model more 

robust. 
Two stage training: 1) 

bootstrapping on pretraining 

dataset (random initialisation 

of parameters) 2) Adam 

used. Training stopped when 

Not explicitly stated Set 1–3500 wrist 

radiographs from wrist 

dataset. Set 2–1400 PA/ 

lateral wrist radiographs 

sampled over three-

month period. 

Not stated – no indication 

of balance of classes in 

either train or test 

datasets. 
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Author/ 
Country/Year 

ML description/ 
techniques 

Feature engineering 
detail 

Training set/method Training set 
demographics 

Test set/method 
( Sample size/cases ) 

Class balancing 

model performance had not 

improved after five epochs. 

Olczak et al, 2017. 
Sweden [26] 

Five networks chosen 

from Caffe library: BVLC 

Reference 
CaffeNet (8 layer), 
VGG CNN S Network 
(8 layers), VGG CNN 
(16 and 19 layers), 

Images cropped and resized 

to 256  256 pixels. 
Entire dataset: 256,458 images 

with 56% fracture: 70% train, 

20% valid, 10% test. 
All networks pretrained on 

ImageNet and converted to 

Torch7. 

Not explicitly stated 

– entire dataset 

256,458, 56% 

fracture, 
43% no fracture, 1% 

‘missing’. 

Prediction compared with 

two radiologists (full view 

images, other views and 

radiologists’ report) in 400 

images chosen from the 

test set. 
It is unclear if the 

No attempts to 
artificially balance classes 

in this very large dataset. 
Dataset contained 43% 

with no fracture, 56% 

with fracture and 1% 

 

 Network-in-network (14 

layers). VGG 16 layer 

exhibits best 

performance in fracture 

detection. Retrained for 

13 epochs. 

 Final fully connected layer 

replaced with outcomes for the 

study. Each outcome had its 

own fully connected layer in 

parallel, using ConcatTable. 

Stochastic gradient descent – 

batch size, one. Learning rate 

adapted at the end of each 

epoch. 13 epochs in total. 
Best performing network used 

for testing. 

 dataset used for testing the 

model is larger than this. 
missing this information 

(unclear meaning in the 

paper). Information 

regarding any attempt to 

balance the test set is not 

apparent 

Tanzi et al, 
2020. Italy, 
Sweden [39] 

Three networks 
initially evaluated: 
ResNet, VGG16 and 
Inception for best 

performance: 1) Fine-

tuned Inception V3 

with last layer 

replaced with a 

Softmax layer (for 

classification). 
Pretrained on 
ImageNet 
2) Multistage cascade 
CNNs (three Inception 

V3 plus binary 

network) for 

hierarchical 

classification 

discrimination. 

Each individual hip joint 

cropped to 299  
299 pixels 

Retrospective dataset: antero-

posterior cropped hip images: 

1133 unbroken femurs, 570 

type A, 750 type C and 4 type C 

(excluded due to low numbers). 

80% for training and validation: 

455 type A, 600 type B and 907 

broken. 
Data augmentation of final 

dataset. 
Validation by 5-fold cross 

validation. 
Keras neural network library 
(in Python) on TensorFlow, Ubuntu 

16.04.5 LTS with GeForce GTX 

1080Ti. 
Initially, higher weights 

applied to classes with fewer 

images. Batch size 32, Adam 

optimiser, learning rate 

0.0001, beta values of 09 and 

0.999. Sparse categorical 

Median age: 81 
67.5% female 

20% of images from each 

class: 115 type A, 
150 type B, 226 broken. 

Compensation for 

unbalanced classes by a 

function applied to assign 

higher weight to classes 

with fewer images. 
Test dataset: 20% of 

images for each class: 115 

type A, 150 type B and 

226 unbroken, therefore 

retaining the prevalence 

from the initial dataset. 
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Author/ 
Country/Year 

ML description/ 
techniques 

Feature engineering 
detail 

Training set/method Training set 
demographics 

Test set/method 
( Sample size/cases ) 

Class balancing 

crossentropy used to calculate 

loss. 
The model was run for 150 epochs 

with early stopping patience of 10 

epochs. 

Urakawa et al, 
2019. Japan 
[40] 

VGG-16 Each individual proximal 

femur (femoral head þ 

greater and lesser 

trochanters) cropped to 

300  300 pixels. 

Retrospective dataset: 3346 hip 

images (1773 fractured, 1573 

not fractured). 
Train:validation:test: 
2678:334:334. 
Data augmentation resulted in 

132500 images for training. 
TensorFlow VGG-16. 

ImageDataGenerator used to 

augment 50 images per 
iteration. L2 regularisation 

(weight decay 0.001). Early 

stopping on validation set (not 

training set). Adam optimiser. 

Exponential learning rate 

scheduling: initial learning 

rate: 0.0001, decay steps: 265 

iterations, decay rate: 0.8. Best 

performance at 1457 

iterations. These weights used 

for testing. 

Of initial dataset 
(prior to exclusion 

criteria 
applied n ¼ 
1773): 286 men, 

1487 women; mean 

age 85 
(range: 29–104) 

334 cropped radiographs Not specifically stated 

Training: 1408 with 

fracture, 1270 with no 

fracture. Individual hip 

images. 
Test set: 180 fracture, 

154 no fracture images. 

No attempts to 
artificially balance 

classes. 

Yu et al, 2020. 
USA [41] 

Inception V3 

pretrained on 

ImageNet, with: 1) top 

layer of the network 

(1000 nodes) replaced 

by fully connected 

layer (1024 nodes), 

terminated with final 

Softmax layer with two 

classifiers – 

fracture/no fracture 

Manual cropping to 

region of interest with 

proximal femur centred. 

Pixel size of regions not 

stated. 

Retrospective dataset: 307 

fractured pelvis images: 610 

normal and 451 fractured 

individual proximal femora. 

Train:validation:test: 3:1:1 

Training set: 367 normal image, 

111 group 1 localisation, 130 

group 2 localisation and 30 group 

3 localisation. 
20 fold cross validation. 
Cross dash entropy loss 

Fracture group: 
151 men, 156 women. 
Mean age –¼ 69.4 
(range: 21 97) 

‘Normal’ group: 

155 men, 155 

women. 
Mean age –¼ 62 
(range: 18 95) 155 

right hip, 152 left 

hip. 

20% of both fracture and 

no fracture groups. 20-

fold cross-validation for 

binary classification task. 

Balanced classes (patient-

wise) for training: 60% 

patients in the fracture 

group and 60% patients 

in the no fracture group. 
One additional previous 

radiograph, per patient, 

for included patients 

were added to augment 

the dataset. Additional 

‘normal’ included from 
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fracture, hardware from previous surgery or 

arthroplasty [37]. The output from one study used a 

region of interest (ROI) box only to predict dental 

root fractures [32]. 

Reference standard (Table 3) 

Two studies determined truth from radiologist reports 

already available in the clinical notes or trauma 

registry only [28,30]. The means of verification of 

truth is unclear in one study [26], where the authors 

state that automated language extraction applied to 

radiologists’ reports, along with ‘multiple visits’ 

(p.582). Ten studies obtained ground truth references 

from either consensus diagnosis from several experts 

in the field or verified the report accompanying the 

images [27,29,30,32–38]. Two studies used the 

opinion of one expert as ground truth; in one study by 

inspection of single projection radiographs and 

computed tomography or operative report [41], and 

the other by inspection of all patient images and scans 

[40]. One study used images from Radiopaedia®, and 

reference standard determination is not explicitly 

stated, but assumed to be diagnoses from the 

webpage. 

Six studies also required the experts to provide ROI 

indication for the pathological area on the image 

[29,32–34,37,38]. 

ML description/techniques (Table 4) 

All studies included used convolutional neural 

networks (CNNs) to achieve desired output of either 

fracture detection or classification with the exception 

of one study which reported the use of a Support 

Vector Machine (SVM) in addition to a CNN to 

delineate the iliopectineal line on pelvic radiographs 

[31]. SVMs are a different type of machine learning 

and are used usually in classification tasks [17,31] 

(Table 1). There was little commonality in the types 

of networks chosen for training on the specific tasks. 

Networks reported in the papers include the 

InceptionV3 network, which is 43 layers deep, 

DenseNet (121 layers), ResNet (152 layers), 

DetectNet and another used a U-Net model. A further 

three studies used a combination of CNNs to 

determine the best performing networks [26,36,39]. 

These included one study using a combination of 

VGG networks (with differing numbers of layers 

from 8 to 19 layers), Network-in-Network (14 layers) 

and CaffeNet (8 layer) [26] and another using 

Inception V3, ResNet 101 (drop/aux) and Xception 

models, individually and together for best 

performance [36]. One study used an Inception V3 

network in a cascade for hierarchical multi-class 

discrimination [39]. 

Feature engineering (Table 4) 

Author/ 
Country/Year 

ML description/ 

techniques 
Feature engineering detail Training set/method Training set 

demographics 
Test set/method 
(Sample size/cases) 

Class balancing 

 (each with ReLU 

activation) and, 2) final 

Softmax layer with 

four nodes: Normal, 

and three fracture 

classes for localisation. 

 function using stochastic 

gradient descent optimiser. 
Learning rate 0.001. 
Learning rate decay 0.5. 
Batch size 8. Drop out rate 0.5. 

Model initialised using pre 

trained weights. Weights of 

final layer initialised using a 

gaussian distribution. Model 

trained for 200 epochs. Models 

converged at approximately 80 

epochs. 

  the source (Electronic 

Medical Record) to 

upsample ‘normal’ group. 

Training on 60% of 

normal and 60% of 
fracture – intentionally 

balanced dataset in a 1:1 

ratio fracture:no fracture. 
Test data set: 123 

normal; 37 subcapital; 43 

intertrochanteric; 10 

subtrochanteric. 
No data augmentation in 

validation and test sets 
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Most studies state that the images used to train and 

test the systems have been downsized to the 

dimensions required by the AI model. These ranged 

from 224  224 pixels for proximal femur [34,37] to 

900  900 

pixels for segmented regions on orthopantomographic 

images [32]. One study used images resized to 1024  

512 [38]. 

Training set/method (Table 4) 

The dataset used to educate the AI system is usually 

referred to as the ‘training set’. The size of the training 

set varied considerably between studies depending on 

whether the AI model was trained from scratch or by 

transfer learning. Transfer learning is the process by 

which an AI system is trained on a dataset of images 

general dataset to the final task, for example the 

ImageNet database of common objects [28,34,35,41]. 

The parameters and initial weights are set for image 

recognition tasks in general and then more efficiently 

refined for the eventual task by exposure to a further 

dataset of images specific to the desired task, for 

example wrist radiographs. The largest dataset used 

for training was a CNN study that pretrained the 

system with 100,855 body part radiographs (foot, 

elbow, shoulder, knee, spine, femur, ankle, humerus, 

pelvis, hip, and tibia) [38]. This system was with fine-

tuned and validated using 31,940 wrist radiographs, 

which was the focus of the study. 

The study with the smallest training set determined 

the angulation of the iliopectineal line as a 

determinant of fracture [31]. A total of 75 radiographs 

obtained from an online radiology reference resource 

(Radiop aedia.org) were used to train the neural 

network, although it should be noted that this study 

was mainly investigating the use of an SVM and, 

therefore, not directly comparable to the other studies. 

Ten studies provided demographic information on the 

composition of the datasets used for training in the 

form of patient sex and mean age, therefore allowing 

assessment of any potential bias present in training 

[27,28,30,32–34,37,39–41]. 

Test set/method (Table 4) 

The size of the datasets used for testing were highly 

variable. The study by Olczak et al. [26], which 

included four anatomical regions, tested the AI model 

on 25,645 images, the highest number of test images 

from the included studies. The SVM study by Damien 

et al. [31] tested its algorithm on only 14 images. The 

remaining studies have test sets ranging from 100 to 

3900 images. All studies used unseen test sets, except 

for three studies where the full dataset was used for 

training and testing with k-fold cross-validation, with 

two using five iterations of training and testing (k ¼ 5) 

[32,39] and one where k ¼ 20 [41] (for description of 

k-fold cross validation see Table 1). 

Class balancing techniques (Table 4) 

Class balancing describes the correction of the 

prevalence of any class in the dataset. Imbalanced 

classes can occur in many real-life scenarios, such as 

detection of fraud and disease state. This means that 

for any 

Table 5 Performance metrics, results and explainability of the AI decision. 

 
Badgeley et al, 2019. 

USA [28] 
Best model: 0.78. Following removal of 

confounding factors Area Under Curve (AUC): 

0.52. 

None Not specific, however when only image data 

remained the diagnostic ability of the model 

decreased to no better than chance. 

Yes: https://github 

.com/mbadge/hipsMult 

imodal 

 
 

      

http://radiopaedia.org/
http://radiopaedia.org/
http://radiopaedia.org/
https://github.com/mbadge/hipsMultimodal
https://github.com/mbadge/hipsMultimodal
https://github.com/mbadge/hipsMultimodal
https://github.com/mbadge/hipsMultimodal
https://github.com/mbadge/hipsMultimodal
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Bluthgen et al, 2020. 
Switzerland [29] 

Best performing model AUC: 0.95, 0.94, 
0.96. Sensitivity: 86 (64–97), 90 
(70–99), 90 (70–99), specificity: 97 
(82–100), 90 (73–98), 97 (82–100), for AP vs 

lateral vs combined views respectively 
Region of Interest (ROI) plotted by 

radiologists and Machine Learning (ML); 

agreement if regions overlapped by 70%. 

Internal set (# cases n ¼ 21): radiologist/ 

ML agreement: model 1: 100%, 88%, and 

94% and model 2: 94%, 87% and 
89% (projections: antero-posterior, lateral, 

combined). External set: # cases (n ¼ 50): 

radiologist/ML agreement: 
91%, 92% and 88% (model 1) and 100%, 
89% and 93% (model 2). AUC 
(combined views): model 1, internal dataset: 

0.95; model 2, internal dataset: 0.96. Model 

1 external dataset: 0.87, model 2 external 

dataset: 0.89. AUC 0.8 on external dataset 

for single AP projection using model 1. 

Heat maps from deep learning system- 

peak activation region only and 

consensus region of interest (ROI) 

confirmation from at least two 

radiologists and a radiology resident. 

There does not seem to be any 

quantification of agreement between 

AI and radiologists and registrar, 

although it is stated that agreement is 

counted as ‘correct’ if there in some 

overlap with the radiologist/resident 

determined ROI containing fracture. 

False negative results were ‘uncommon in 

their extent’ (p.5) or markedly displaced. 
Not explicitly stated 

Cheng et al, 2019. 
Taiwan [30] 

MODEL: AUC 0.98. accuracy: 91%, 
sensitivity: 98%, specificity: 84%, false 

negative: 2%, F1: 0.916. 
PRIMARY PHYSICIANS: sensitivity range 

84–100%, specificity range 46–94%. 
EXPERTS (2x radiologists, 4x orthopaedic 

surgeons: mean sensitivity: 
99.35, mean specificity: 87.7% 

Heat maps (grad-CAM). 95.9% of the 

class discriminative regions contained 

the fracture, as determined by the 

authors. 

Heatmaps examined-two from the test set 

of 100 radiographs activated at wrong site 

but proposed rationale for this is unclear. 

Not explicitly stated 

Chung et al, 2018. South 

Korea [27] 
Top 1 accuracy (i.e. predicted the correct 1 

out of 5 possible options) of 96% (95% CI 

94–97%). Model sensitivity 0.99 and spec 

0.97. AUC 1.00 (CI 0.995–0.998) for 

discerning fracture from normal. 

None None Not explicitly stated 

Damienet al, 2019. 
Lebanon [31] 

Accuracy: 92.9%. Sensitivity 80%. 

Specificity 99%. Support Vector Machine 

(SVM): Accuracy: 91.3%. Sensitivity: 
94.2%. Specificity: 87.5% 

None None Not explicitly stated 

Fukuda et al, 2019. 
Japan [32] 

ML ROI - taken as correct if ‘sufficiently 

include the root of the tooth #’. Recall: 

0.75, precision (positive predictive value): 

0.93, F measure (2 (recall þ 

precision)/(recall þ precision)): 0.83, 

expressed as MEAN of the 5 models. 

Region of interest boxes around tooth with 

vertical root fracture 
Yes - potential explanation given - teeth 

without endodontic treatment were 

misclassified in 58.3% of misclassified 

cases. Recall rates were low for maxillary 

incisors. 

Not explicitly stated 
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Gan et al, 2019. 
China [33] 

Identification of region of interest (distal 

radius) by Faster R–CNN: ‘Intersection of 

the union’ (area of overlap/area of union) 

average ¼ 0.87. 
Accuracy for fracture identification: Inception 

V4 (IV4): 93%; Orthopaedists (O): 94%; 

Radiologists (R): 84%. 
Sensitivity for fracture identification: 
IV4: 90%; O: 93%; R: 81%. 
Specificity for fracture identification: 
IV4: 96%; O: 95%; R: 87%. 
Youden index: IV4: 0.86; O: 0.87; R: 
0.68. 

None (except identification of the distal 

radius region of interest by the Faster R–

CNN – 100% success rate) 

Yes, the 15 images which did not detect a 

confirmed fracture were reviewed. Five 

lacked the usual fracture traits (fracture 

lines and fragments) and the fracture was 

only apparent on the corresponding lateral 

radiographs. 

Not explicitly stated 

Jimenez-Sanchez et 

al (2019), Spain, 

Germany and 

France [34] 

AlexNet – identification of region of interest 

100%. 
ResNet-50 performance: Accuracy; 

Precision; Recall and F1 score (in %) listed 

respectively: 
Full radiographs: 83%, 78%, 83%, 84%. Manual 

localisation (regions of interest provided by 

experts): 93%, 93%, 94%, 94%. 

Regions of interest for fracture prediction 

were examined for binary prediction and 

discrimination tasks, with 93.82 and 

88.35% agreement respectively. 

No specific explanation for misclassifications 

offered. 
Not explicitly stated 

(continued on next page) 
(continued) 

 

 AUC for fracture detection 0.9807; for 

classification: 0.9475 on manual ROI. 

Automatic localisation (AlexNet): 93%, 94%, 

93%, 93%. 

   

Kim and 
McKinnon, 2018. 
UK [35] 

AUC (ROC) 0.954. Sens: 0.954, spec: 
0.88. ROC on ML vs. verified report 

None None Not explicitly stated 

Kitamura et al, 2019. USA 

[36] 
Best (all 5 models developed used 

together): accuracy: 0.81, sensitivity: 0.80, 

specificity: 0.830, positive predictive value 

(PPV): 0.82, negative predictive value (NPV): 

0.81. 

None None Yes – available on the 

corresponding author’s 

GitHub (for convenience: 

https://github.com/Gen 

eKitamura) 
Krogue et al, 2020. 

USA [37] 
Binary accuracy, sensitivity, specificity, 
AUC and Cohen’s kappa: 93.8%, 92.7%, 

95.0%, 0.973, 0.877 Multiclass accuracy: 
90.4% over all classes. Cohen’s kappa: 

Heat maps: found to “indicate high 

importance to cortical outlines” p.8 
(ARXIV document) 

Explanation of fracture type (multiclass) 

misclassifications-if misclassified the 

model usually predicted some other 

fracture type. 
Localisation errors in six radiographs where 

the hip was only partially 

Not explicitly stated 

 
 

      

https://github.com/GeneKitamura
https://github.com/GeneKitamura
https://github.com/GeneKitamura
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0.862. 
Multiclass sensitivity, specificity and AUC: 
No fracture: 94.5%, 92.6%, 0.972 
Intertrochanteric fracture: 93.3%, 
96.9%, 0.984 
Femoral neck fracture (displaced): 
87.5%, 98.9%, 0.991 
Femoral neck (nondisplaced): 46.2%, 
97.8%. 0.868 
Arthroplasty: 96.9%, 100%, 1.00 
Open reduction, internal fixation: 100%, 
100%, 1.00 
Hip region detection by RetinaNet in all 

images with intersection-over-union (ratio 

of overlap:combined area) of 0.92 with 

manually labelled regions. No statistical 

difference in binary and multiclass 

fracture detection was reported between 

manual and automatically generated 

bounding boxes. 
Human observers (model-quality images) 

v. model: model performed statistically 

significantly better. 
Human observers (full quality images) v. 

model: Model performed better, but only 

statistically significantly better in the 

‘resident’ group. 

contained in image. 

Lindsayetal, 2018. 
USA [38] 

Set 1 - AUC 0.967. Set 2 - AUC 0.975. 

Model used to determine effect of ML on 

non-specialist clinicians (ED clinicians 

(MD)) and physician assistants (PA)). A 

dataset of 266 radiographs used: clinicians 

before and after model predictions 

respectively: MDs: sensitivity from 82.7% 

to 92.5%; specificity from 87.4% to 94.1%. 

PAs: sensitivity from 
78% to 89.9%; specificity from 87.5% to 93.6%. 

Model average: sensitivity 
93.9%; specificity 94.5%. 
Qualitatively, the model was ‘generally able’ 

to locate fracture in the same location as the 

subspecialist orthopaedic surgeons. 

Heatmaps (dense conditional probability 

map) 
None Not explicitly stated 

Olczak et al, 2017. 
Sweden [26] 

Fracture detection accuracy 83% (95% CI: 

80–87%) for best performing network, 

(VGG-16 layer). 

None Manual review of misclassification: 
fracture visible on another examination in 

the series (not on tested image). 

Not explicitly stated 

Tanzi et al, 2020. 
Italy, Sweden 
[39] 

Using three Inception V3 networks: 

Accuracy (over five-folds): Broken/ 

unbroken: 0.91 A/B: 0.87 
A1/2/3: 0.61 
Average accuracy (for three classes): 
0.86 
Average accuracy (for five classes): 0.80 

Addition of further training for last two 

networks with A1,2 and 3 

Grad-CAM heat maps: differentiation of 

focus for type A and type B fractures 

identified. 

Inspection of poor performing 

discriminations by specialists identified 

issues with discrimination of A1 and A2 

fracture – additional training and binary 

network to improve performance as 

described under ‘performance metrics/ 

results’ heading. 

Not explicitly stated 
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(continued) 
Author/Country/ 
Year 

Performance metrics/results Methods to explain ML decision Misclassification explanation Code availability 

 fracture training set þ additional 

binary network (optimal 

performance) (precision, recall, F1 

score, respectively): Unbroken:0.93, 

0.90, 0.91 
B: 0.85, 0.83, 0.84 
A1: 0.49, 0.54, 0.51 A2: 

0.5, 0.55, 0.51 
A3: 0.73, 0.73, 0.73 

   

Urakawa et al, 2019. 

Japan [40] 
VGG-16 was compared with five 

orthopaedic surgeons on 334 cropped 

images: Accuracy, sensitivity, specificity 

and AUC respectively: 
VGG-16: 95.5, 93.9, 97.4, 0.984 
Orthopaedic surgeons: 92.2, 88.3, 96.8, 
0.969 

None stated None stated Not explicitly stated 

Yu et al, 2020. USA 
[41] 

Binary classification sensitivity, specificity, 

accuracy and AUC: 97.1%, 
96.7%, 96.9%, 0.9944 
Multiclass classification sensitivity, 

specificity and accuracy for: 
Normal: 95.8%, 94.3%, not stated 
Subcapital: 84.1%, 92.8%, 91.3% 
Intertrochanteric: 76.8%, 94.5%, 90.9% 

Subtrochanteric: 20%, 99.1%, 95.4% 

Binary classification (human readers: MSK 

radiologists and radiology residents) 

sensitivity, specificity, accuracy: 
100%, 98.4%, 99.2% 
Multiclass classification (human readers: 

MSK radiologists and radiology residents) 

sensitivity, specificity and accuracy for: 

Subcapital: 83.1%, 99%, 95.5% 
Intertrochanteric: 97%, 92.9%, 93.9% 
Subtrochanteric: 66.7%, 100%, 98.5% 

Activation maps (heat maps) All heat maps agreed with ground truth 

with the exception of the subtrochanteric 

classification, suggested due to the 

training set not being large enough to 

cover all fracture morphologies. 

Not explicitly stated 

dataset gathered in these cases, there is likely to be a 

majority and minority class. This is true in fracture 

identification and many other medical imaging cases. 

Training an ML on imbalanced datasets will result in 

the model being biased to the majority class. This is 

obviously highly undesirable in medical imaging, 

where misclassification of a positive case will have 

significant consequences. 

Class balancing techniques can be adopted to ensure 

there are equal numbers of images in each prediction 

class for training. This is important when training the 

algorithm so that the AI system can equally learn the 

patterns in each class equally and learn to 

discriminate. There are a number of methods to 

correct class imbalance. Data scientists can often 

intentionally under sample the majority class, apply 

weights to the algorithm to penalise the majority class 

or artificially up-sample the underrepresented class by 

creating synthetic cases using techniques such as 

Synthetic Minority Oversampling Technique 

(SMOTE). 

There were limited attempts to artificially balance 

classes. 
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Of the papers included in this review, only one study 

reported the used of perfectly balanced classes, 

examination-wise, for training, i.e., the number of 

images in each class for training were not perfectly 

balanced (689 fracture, 752 no fracture apparent) 

[36]. Classes were balanced intentionally by perusal 

of radiology reports to achieve balance. 

The greatest discrepancy between classes was 

reported in a study where the proposed model was 

trained using a dataset with only 3% images in the 

fracture class [28], although the identification of 

fracture was only one focus of this large study. 

Interestingly, this study tested the model on both 

balanced and imbalanced datasets and reported a 

significantly higher area under the precision-recall 

curve for the balanced dataset, therefore indicating 

that the model is able to correctly detect the fracture 

class better in the balanced dataset. The remainder of 

the studies had more equally balanced classes, 

ranging from 31.7% fracture [29] of a small training 

set, n ¼ 166, to one study with equally balanced 

classes for training [36]. 

In five studies the fracture class was greater than the 

no fracture class [28,29,32,33,40], although there 

were five classification classes in one of these studies 

[27]. Cases across the five classification categories in 

this study were balanced: 346, 514, 269, 247 and 515 

for greater tuberosity, surgical neck, three-part 

fractures, four-part fractures, and no fracture classes 

respectively. Non-fracture classes were removed for 

specific training in classification of fracture severity 

in this study [27]. One study used a compensation 

mechanism for training a dataset with unbalanced 

classes by assigning greater weight to the lesser-

represented group [39]. One study balanced classes 

by patient pathology in a hip fracture study, but as 

individual hips were isolated for compilation of the 

final dataset, this actually resulted in imbalanced 

classes [41]. The study describes how further ‘normal’ 

cases were then intentionally identified from the 

Electronic Medical Record to increase the minority 

class, which in this study was the ‘normal’ class. 

Class balancing the test set is also harmless, as 

metrics such as sensitivity and specificity are 

‘prevalence agnostic’, however metrics such as 

accuracy are biased to disease prevalence (the 

dominant class referred to as the ‘accuracy paradox’). 

It could be argued, however, that it would be helpful 

for the ML to be tested on a dataset replicating the 

clinical scenario, where there are likely to be 

imbalanced classes to gain true understanding of the 

model performance. Reporting metrics should be 

chosen carefully to give an accurate measure of the 

performance of the ML on imbalanced datasets. This 

is further discussed in section 5. 

Of the studies included in this review, five studies 

used intentionally balanced datasets for testing 

[29,30,33,34,36]. Only one study had very 

imbalanced test dataset [28]. One study used a 

balanced, external dataset (MURA) to test the 

generalisability of the model [29]. Another study used 

a prospective sample from the clinical environment, 

although these examinations were obtained from the 

same hospital as the training images and there is no 

information on the balance of classes in either the 

testing or training datasets [38]. 

Performance metrics/results (Table 5) 

The oldest study [26] compared the performance of 5 

networks and found a VGG-16-layer network to have 

the highest accuracy of 83% (95% CI 80–87%). Three 

studies were published in 2018 [27,35,38] and each 

used different CNNs for different anatomical areas. 

One study reported top-1 accuracy, which represents 

the ability of the AI to select the correct classification 

from a number of available options. In this case, five 

classification options for proximal humeral fracture 

were presented and the AI was able to correctly 

classify in 96% of cases [27]. The remaining two 
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studies published in 2018 focussed on detection of 

wrist fractures using different network architectures 

[35,38]. Both studies reported performance by area 

under the receiver operating characteristic curve 

(AUC), sensitivity and specificity. Both reported 

AUC exceeding 0.95, sensitivities of 0.939 [38] and 

0.954 [35] and specificities of 0.945 [38] and 0.88 

[35]. 

Five studies published in 2019 focused on 

determining hip or pelvis fractures from pelvic 

radiographs [28,30,31,34,40]. One study used a 

DenseNet 121-layer network to determine and 

characterise proximal femur fractures with three 

prediction classes, including normal and reported 

AUC of 0.98, accuracy of 91%, sensitivity and 

specificity of 98% and 84% respectively and F1 score 

of 0.916 [30]. Some of the same metrics were used to 

report the results from a study using a VGG16 model 

to predict hip fractures with AUC, accuracy, 

sensitivity and specificity reported as 0.984, 95.5%, 

93.9% and 97.4% respectively, although F1 score was 

not used as a reporting metric study [40]. Another 

2019 study described a ResNet50 model which was 

trained to detect hip fractures on cropped images, 

with regions delineated both manually by an expert, 

and automatically by an AlexNet model. Results 

reported indicated that the model performed equally 

well on both sets of cropped images with accuracy, 

precision, recall and F1 score for the manually 

cropped images of 93%, 93%, 94%, 94% and 

automatically localised images of 93%, 94%, 93% 

and 93% [34]. In the same year, another study 

reported less positive results. In this study an 

Inception V3 network was used to determine 

proximal femoral fracture in a two-class problem 

(fracture/no fracture) and found that AUC dropped 

from 0.78 to 0.52 when all ‘confounding variables’ 

were removed from the images [28]. This was despite 

the study using a pretrained network which was 

retrained on a dataset of over 20,000 pelvis 

radiographs. However, more promising results were 

reported using an Inception V4 network on a different 

anatomical area for binary classification of fractures 

on cropped radiographs of the distal radius. 

Sensitivity, specificity and accuracy were reported as 

90%, 96% and 93% respectively [33]. 

A further study published in 2019 adopted a different 

methodology to quantify iliopectineal line disruption 

to determine fracture using an SVM and CNN as a 

classifier to determine fracture with reported 

accuracy, sensitivity and specificity of 92.9%, 80% 

and 99% respectively [31]. However, detail of the 

neural network used in this study is not stated. 

The most recent studies have reported promising 

results using a range of models: a ViDi v.2 

manufacturing CNN [29], DenseNet 169 [37], and 

two studies reported results using an Inception V3 

model [39,41], although one study maximised the 

results by using the model in cascade with an 

additional binary network for further discrimination 

between classes [39]. Three of the four studies 

reported area under the receiver operating curve as a 

performance metric with results for binary 

classification [29,37,41] ranging from 0.80, on an 

external dataset of wrist radiographs [29] to 0.994 in a 

study using an Inception V3 to predict hip fractures 

using regions of interest cropped by experts [41]. The 

remaining study reported accuracy, precision, recall 

and F1 scores for comparable binary tasks [39], 

detailed in full in Table 5. 

Methods to explain ML decision (Table 5) 

Eight studies reported some method of AI 

explanation: six studies by heatmap [29,30,37–39,41] 

and two studies by a region of interest (ROI) 

bounding box [32,34] with high agreement in all 

cases. 

Misclassification explanation (Table 5) 

Eight studies make some attempt to offer explanation 

for misclassifications [26,29,30,32,33,37,39,41]. Full 
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detail is presented in Table 5. One study investigated 

the effect of the removal of ‘confounding variables’, 

such as those variables relating to the patient and 

‘hospital process’, for example, patient age, sex and 

body mass and scanner type, scanner model, scan 

priority and time of day of the scan, from hip 

radiographs. They found that when these confounding 

factors are removed, the performance of the AI 

dropped from AUC 0.78 AI performed no better than 

chance (AUC 0.52) [28]. A study using an AI model 

to identify teeth with vertical root fractures reported 

that the model misclassified more often in teeth which 

have no endodontic treatment and that recall rates 

were low for maxillary incisors, although an 

explanation for this is not offered [32]. In another 

study, the misclassified images were examined, along 

with other images in the imaging series, and it was 

discovered that when the AI found an image to 

incorrectly contain fracture, the fracture may have 

been evident in another image in the series [26]. One 

study reported that the AI misclassified on two 

images from the test set of 100 images by inspection 

of heatmaps produced but an explanation for this is 

not proffered [30]. Studies also reported a lack of 

ability of the AI to discriminate between fracture 

subclasses [37,39], and misclassification due to the 

usual fracture traits not being visible on the particular 

projection presented to the AI [33]. 

Code availability 

Only two studies made their code available to the 

reader [28,36]. The availability of code, along with 

transparent experimental methodology is essential to 

be able to replicate the study and to test model 

generalisability on other datasets. 

Clinical integration and prospective sampling 

No studies have been integrated into the clinical 

workflow for testing. Three studies used a k-fold 

cross validation method, as described previously, for 

training and testing [32,39,41]. All studies, except for 

those already mentioned using k-fold cross validation, 

used entirely unseen test sets, taken from the entire 

dataset before training. One study compared the 

model performance on an unseen internal and external 

dataset in testing [29] and only one study obtained a 

prospective sample over a three-month period in 

testing [38]. In this study, images were acquired from 

a set date onward, rather in retrospect from the 

hospital database. This study found that there was 

little difference in the model’s ability to detect 

fracture on a test set retrained from the training set 

and a prospective sample with AUC of 0.97 and 0.98, 

respectively. 

It is clear from these findings that many variations 

exist in both the systems being used, the training and 

validation methods and the process by which data 

from these studies are articulated. 

Discussion 

Reported results demonstrate that machine learning 

based on artificial neural networks can detect 

fractures from radiographic images with impressive 

accuracies. Studies included in this review indicate 

that this is achieved using a variety of AI model types 

and training/testing methods. Studies included also 

varied in the methods to determine a reference 

standard for the images used for both training and 

testing. 

Each study reported the model performance using 

some combination of AUC, accuracy, sensitivity, 

specificity, precision, recall, Cohen’s kappa and F1 

score (see Table 1). The most commonly described 

metric was AUC, with only four studies not reporting 

some AUC results [26,31,32, 39]. AUC and Receiver 

Operating Characteristics (ROC) are metrics 

commonly used to assess the performance of ML 

systems and other classification tasks. 

It is imperative that reporting metrics used to report 

ML performance should be explainable, understood 
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by the end-user and should be appropriate to the task 

to accurately reflect the performance of the model. 

When the classes in the training dataset and the 

prevalence of the outcomes in the eventual population 

dataset is balanced, reporting metrics which may 

already be familiar to clinicians can be used to 

evidence model performance, for example, 

sensitivity, specificity, and accuracy. This is not 

usually the case in pathology identification and in 

many medical applications. The disease class is 

usually the minority class. Misclassification of this 

class would obviously be very undesirable and the 

choice of a model which was unable to detect 

pathology would be useless. If standard reporting 

metrics were used it would be possible to report a 

high accuracy for a model which had a propensity to 

predict all ‘no pathology’ (majority class) outcomes, 

which would therefore be highly specific but 

essentially not fit for purpose. 

As discussed, some studies trained and tested the 

algorithm on balanced, or almost balanced datasets. 

This is an ideal situation in training, as the model will 

‘learn’ to identify both classes equally, however, when 

the model is eventually applied to the clinical setting 

it will have to perform well on a naturally imbalanced 

dataset. The reported accuracy, sensitivity and 

specificity metrics used to report the model 

performance are an indication of how well the model 

performs in the laboratory only. One study tested their 

algorithm on a prospective clinical dataset, reporting 

accuracy, sensitivity, and specificity but there was no 

indication of the balance of classes in this test dataset, 

therefore these metrics may not permit full 

assessment of the model performance. 

In clinical ML tasks, where there is likely to be a 

majority and minority class, it is imperative to report 

findings using metrics which incorporate allowances 

for the imbalanced prevalence of the target population 

to give an accurate representation of the ML 

performance and for comparison between different 

models for the same task. For this purpose, precision, 

recall, Fβ and AUC have been recommended in the 

literature [42,43]. 

Precision, recall and Fβ incorporate true positive 

predictions, where the ML predicted pathology in 

agreement with the reference standard; true negative 

predictions, where the ML predicted that there was no 

pathology in agreement with the reference standard; 

false positive predictions where the ML predicted 

pathology where the reference standard did not, and 

false negative, where the ML predicted no pathology, 

where the reference standard indicated that there was 

pathology. 

Recall (or sensitivity) describes the ability of the 

model to correctly predict the presence of pathology 

and is calculated by the following equation [32]: 

Recall ¼ TP / TP þ FN 

Precision, or positive predictive value (PPV) can be 

used to report the ability of the model to identify 

pathology as a proportion of all positives i.e., it is an 

indication of how many positive predications were 

actually positive, therefore giving an indication of the 

number of disease cases which were misinterpreted. 

Precision ¼ TP / TP þ FP 

From these metrics, Fβ can be calculated as a single 

measure to represent the model performance. Fβ is 

simply the harmonic mean of precision and recall 

[30,43]. The value of β will determine the weighting 

of recall in the calculation. For tasks such as those 

used in pathology identification, where it is important 

for the model to be able to identify both the presence 

and absence of pathology correctly, a score of one is 

used. 

F1 ¼ 2 (precision x recall / precision þ recall) 

These metrics provide an interpretable overview of 

the overall performance of the model and are useable 
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in all scenarios as these metrics are prevalence 

agnostic, however they are based on the use of 

prediction classes, rather than the more usual 

prediction score output provided by ML systems. A 

suitable threshold value to provide a positive 

prediction class needs to be decided to provide this. 

Additional information may therefore be gained by 

the use of a metric capable of analysing full 

prediction scores. These scores can be plotted in a 

Receiver Operating Characteristic curve (ROC). 

Inspection of this graph will allow the best choice of 

threshold value for determining prediction class to be 

chosen by determining acceptable balance between 

sensitivity and specificity for the specific task. The 

area under the ROC curve (AUC) allows for direct 

comparison of different models (or choice of 

parameters) in a single metric, which is suitable for 

use in moderately imbalanced datasets. Reporting of 

F1 and AUC as a minimum will provide simple, 

comparable single metrics which will be interpretable 

by clinicians and data analysts alike, providing 

accurate reporting of the performance of the model 

with both balanced and imbalanced datasets and 

therefore improve confidence in critique of proposed 

models as they are presented in the clinical setting. 

Three recent studies, two published in 2019 [32,34], 

and one in 2020 [39], reported the performance of 

their model using precision, recall and F1 [32,34]. One 

study reported F1 only, along with sensitivity, 

specificity, accuracy, and AUC [30]. 

Cohen’s kappa (see Table 1) has also been proposed 

in some studies to provide a measure of inter-rater 

agreement and will give an indication of the 

agreement of the model prediction and the reference 

standard, although has not been extensively used in 

the included studies. 

As mentioned, most studies reported the model 

performance using AUC. The best performing model 

which reported performance using AUC was in a 

study using AI to predict hip fractures. The authors 

(Yu et al., 2020) quoted performances of 0.99 for a 

binary classification task using an Inception V3 model 

trained, validated and tested by 20-fold cross 

validation [41]. The training set used in this study was 

balanced, patient wise, for fracture/no fracture by 

intentional oversampling of the minority class. The 

test set was not augmented. The determination of the 

reference standard in this study was by computed 

tomography and/or an operative report, therefore 

providing additional information than given by a 

report on the plain radiographic images alone. 

Regions of interest (individual hips) were manually 

cropped by experts prior to interpretation by the AI. It 

should be noted, however, that part of this study 

involved a multi-class discrimination task with less 

promising results reported (Table 5). Heatmaps 

provided confirmation of the area of the image the AI 

deemed most important in determining its prediction, 

therefore adding to the reliability of these diagnoses. 

Lindsay et al. [38] tested their model on both a 

proportion of the initial dataset, and a prospective 

sample of all wrist radiographs acquired from the 

same clinical setting from which the training set was 

acquired, although no information is given on the 

balance of classes in this dataset or its similarity to 

the training dataset. The authors reported performance 

using sensitivity, specificity and AUC which give an 

indication of the overall model performance, although 

may not give an overall impression if the test dataset 

was heavily imbalanced. 

One study reported results which were in contrast 

with other included studies. Badgeley et al. [28] also 

used an Inception V3 model to predict fracture on 

pelvic radiographs before and after removal of 

‘confounding factors’, described in section 3.13. The 

model performed well (AUC 0.78) on a dataset of 

23,602 whole pelvis radiographs with a 3:1 

training:test split, yet, following removal of patient 

trait details, scanner type and “other factors” the 

diagnostic accuracy dropped dramatically, and the 
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system performed no better than chance (AUC 0.52). 

It should be noted, however, that despite this study 

using a large training dataset, there were no class 

balancing attempts. The incidence of fracture in the 

entire dataset was 3% (n ¼ 779) and labels were 

inferred from the patient’s clinical notes, which the 

authors acknowledge as a limitation of the study. 

The quality of labels, or reference standards, used for 

training are of paramount importance (Table 4). A 

system will only ever perform to the standard of the 

ground truth label that it is trained with [35,38]. In ten 

studies the reference standard was obtained from 

more than one clinician with experience in their field 

or by expert verification of an established diagnosis 

[27,29,32–39]. For example, in the study by Chung et 

al. [27], two subspecialised shoulder orthopaedists 

and one specialist musculoskeletal radiologist labelled 

the images. Additional information from other 

modalities was applied when the reports did not 

concur to achieve a match. In the dental study by 

Fukuda et al. [32], oral and maxillofacial radiologists 

provided a region of interest around any fractured 

teeth on orthopantomographic images. However, 

there are some studies where the diagnosis is taken 

from single radiologist report made at the time of the 

examination [26,28,30]. This offers no indication of 

the reliability of the report provided, particularly as 

reports are usually generated in response to a clinical 

question and additional information from the image 

may be missed, although in one of these studies, other 

imaging and clinical course were investigated in 

equivocal cases [30]. A system trained on images 

labelled by multiple experts and determining 

diagnosis from differing sources and eventual patient 

outcome should, in theory, perform best on unseen 

images, although this can only be assessed when the 

training methodologies are comparable. It is proposed 

that there are limitations in even the best human 

generated reference standard as the model may be 

able to detect more subtle indicators from the images 

which are imperceptible to the human eye [35]. The 

model with best performance reported from these 

studies used diagnosis from initial imaging, verified 

by a musculo-skeletal radiologist, following review of 

additional imaging or operative report, therefore 

confirming the initial diagnosis [41]. 

In order for an AI model to be useful in the clinical 

setting, the model must have been exposed to 

sufficient inputs from different x-ray equipment, 

clinical setting, devices and acquisition techniques. 

All reported models were tested on unseen datasets or 

by k-fold cross-validation, but in many of the studies 

reviewed, the training and testing images were 

obtained from the same hospital, which calls into 

question the capabilities of the model to be 

generalisable to any clinical setting. To investigate 

this, one study used an external dataset (MURA) to 

test its model and found that it did not perform as 

well on this dataset as on the internal dataset, where 

images from the same hospital as the training set was 

used, as noted in Table 3 [29]. 

Despite studies reporting impressive performances 

and transparent methodologies, AI systems using 

neural networks are approached with caution [44,45]. 

This is due, in part, to a lack of clarity in how the 

system determines its diagnosis and any failures 

being incomprehensible to clinician end-users and 

ML experts alike, due to the complexity and size of 

the parameters in the algorithm [47]. Most studies did 

not make any attempt to offer explanation for any 

misclassifications of the AI models used, although a 

number of studies used heatmaps, as described in 

section 3.12 and 3.13, to visually represent the region 

the model used to form its prediction (Table 5) 

[29,30,37–39,41]. Of these studies, all stated that the 

heatmaps demonstrated the model’s agreement with 

the fracture region determined as ‘ground truth’. These 

system augmentations can affect how the human 

engages with and trusts the machine. This can be 

called ‘human-computer interaction’. The end-users of 
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such systems, clinicians, need to be comfortable with 

their interaction and with the functionality of these 

machines. This is particularly important when using 

the most modern types of ML, as described in this 

review. The need for ‘interpretable’ and explainable 

AI (XAI) has driven the development of means to 

provide the user with interfaces which provide 

information on how the system has determined its 

predictions [47]. Visual representations in the form of 

‘saliency maps’, ‘heat maps’ and other novel 

visualisation methods [45,48] are one way of gaining 

insight into the rationale for the decision, by 

highlighting the pixels which the algorithm found 

most important. Through the use of heat maps and 

other forms of explainable AI feedback, our 

interaction with these systems will hopefully become 

more natural and acceptable, even to the non-expert 

[49]. 

From this review it is clear that without 

standardisation of both reporting metrics, benchmark 

datasets and high-quality labels, an assessment of the 

best performing variables, such as training methods, 

ground truth determinations and AI model types and 

architectures cannot take place. One study tested their 

model on an open access dataset [29], however, no 

studies used any open access datasets for the training 

of their models. There remains a dearth of large, 

publicly available datasets for use on training AI, in 

large part due patient privacy and permission 

concerns. The use of high-quality datasets, with 

reliable reference standards will eliminate bias 

introduced by the acquisition of data from one clinical 

centre and allow for accurate comparison of the 

models [50,51]. To the authors knowledge, there is 

only one publicly available dataset for plain 

musculoskeletal radiographs (MURA) [14]. 

Clarity regarding the predicted performance of the 

models in situations mimicking the ‘real world’ 

scenario using simple, reliable reporting metrics along 

with end-user acceptable feedback and explanation 

will assist in allocation of appropriate trust and 

implementation of these systems into useful clinical 

application. 

The availability of code and transparent reporting of 

methodologies used to train, validate and test the 

datasets, including specifics of hardware, system and 

network requirements are essential to replicate the 

studies in different settings and therefore permit the 

testing of the validity and generalisability of the 

models [50,51]. 

Limitations and strengths of this review 

Due to the wide variability of methodologies and 

performance metrics reported, a full systematic 

review and meta-analysis could not be carried out, as 

the authors had initially intended. Many papers made 

it through the initial search, leaving 2563 papers for 

inspection by the authors. This demonstrates that the 

search criteria may have been too broad and there is 

the potential that human fatigue would result in 

important papers being missed, although this is not 

thought to be the case. However, automation of the 

process of extraction of relevant studies could be 

useful when large numbers of studies are identified 

for review and, in particular, in studies not limited to 

one area of practice, such as this one. 

One study [52] was not available for inclusion in this 

study, due to institutional restrictions and limited 

access to the British Library resources during the 

Covid-19 pandemic. 

The team working on this review collectively bring 

many years of research experience from differing 

backgrounds in both clinical and academic research in 

medical imaging and radiography, health science and 

healthcare informatics. 

This review is conducted through the lens of clinical 

applicability of AI systems with insight into the 

computer science principles behind AI systems 

development. 

Recommendations 
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A larger-scale review should be conducted to 

establish the state-ofthe-art of AI systems used for 

fracture identification in all relevant radiographic 

imaging modalities, for example, including, but not 

limited to computed tomography, magnetic resonance 

imaging and nuclear medicine. 

A further review using the literature described here, 

with particular focus on programming specifics may 

of additional use to developers of AI systems for 

fracture detection purposes, with the inclusion of the 

omitted study described above [52]. 

Only one study [26] investigated the ability of a range 

of networks to identify fracture on multiple 

anatomical areas. The authors, however, do not report 

any findings suggesting a correlation between the 

performance of a particular network and anatomical 

area. Future studies investigating this and identifying 

any networks which may perform better on specific 

anatomical areas/regions, would be useful in directing 

efficient development of anatomy-specific AI 

systems. 

Further studies should investigate if different AI 

models or specific modifications to existing AI 

models would detect different types or locations of 

fracture for example, the study by Tanzi et al. (2020) 

[39] modified a cascade of three Inception V3 models 

by the addition of a binary network to better 

discriminate between two classes which the model 

was unable to discern. 

Many of the studies reviewed here used re-sized 

images. Research should be undertaken to investigate 

the effect of using full scale images for AI 

interpretation as this would more accurately replicate 

the clinical situation (as per recommendations by 

Krogue et al. [37]). 

Conclusion 

As medical AI systems develop, the need to assess the 

impact in the clinical setting is of paramount 

importance due to the low level of error tolerance in 

this setting. The need to further develop systems to 

integrate into the radiology workflow should be the 

focus of further studies. This cannot begin until the 

‘best’ systems to use and methods of testing are 

transparent. Analysis of the systems currently being 

produced will allow focussed research and 

development. This is not possible without a 

standardised system of reporting, permitting 

assessment of the performance of models currently 

being developed. Standardised reporting of all aspects 

of the study (based on, for example, the CLAIM 

checklist [24]) with transparent methodologies, code 

availability and understandable, appropriate and 

uniform reporting metrics will permit study 

replication, robust systematic reviews and meta-

analyses. This may enhance the trust of the end users 

of these systems to and provide more focussed 

direction for development of clinically useful 

systems. 
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 Appendix 2.2 – Prisma : Preferred Reporting Items for Systematic reviews and Meta-

Analyses extension for Scoping Reviews (PRISMA-ScR) Checklist 

 

SECTION ITEM PRISMA-ScR CHECKLIST ITEM 
REPORTED 
ON PAGE # 

TITLE 
Title 1 Identify the report as a scoping review. 40 

ABSTRACT 

Structured 

summary 
2 

Provide a structured summary that includes (as 

applicable): background, objectives, eligibility 

criteria, sources of evidence, charting methods, 

results, and conclusions that relate to the review 

questions and objectives. 

41-46 

INTRODUCTION 

Rationale 3 

Describe the rationale for the review in the context 

of what is already known. Explain why the review 

questions/objectives lend themselves to a scoping 

review approach. 

41-46 

Objectives 4 

Provide an explicit statement of the questions and 

objectives being addressed with reference to their 

key elements (e.g., population or participants, 

concepts, and context) or other relevant key 

elements used to conceptualize the review 

questions and/or objectives. 

43-46 

METHODS 

Protocol and 

registration 
5 

Indicate whether a review protocol exists; state if 

and where it can be accessed (e.g., a Web 

address); and if available, provide registration 

information, including the registration number. 

N/A 

Eligibility criteria 6 

Specify characteristics of the sources of evidence 

used as eligibility criteria (e.g., years considered, 

language, and publication status), and provide a 

rationale. 

46 

Information 

sources* 
7 

Describe all information sources in the search (e.g., 

databases with dates of coverage and contact with 

authors to identify additional sources), as well as 

the date the most recent search was executed. 

43-44 



 

Page 327 of 516 

 

SECTION ITEM PRISMA-ScR CHECKLIST ITEM 
REPORTED 
ON PAGE # 

Search 8 

Present the full electronic search strategy for at 

least 1 database, including any limits used, such 

that it could be repeated. 

44 

Selection of 

sources of 

evidence† 

9 

State the process for selecting sources of evidence 

(i.e., screening and eligibility) included in the 

scoping review. 

45 

Data charting 

process‡ 
10 

Describe the methods of charting data from the 

included sources of evidence (e.g., calibrated forms 

or forms that have been tested by the team before 

their use, and whether data charting was done 

independently or in duplicate) and any processes 

for obtaining and confirming data from 

investigators. 

N/A 

Data items 11 

List and define all variables for which data were 

sought and any assumptions and simplifications 

made. 

N/A 

Critical appraisal 

of individual 

sources of 

evidence§ 

12 

If done, provide a rationale for conducting a critical 

appraisal of included sources of evidence; describe 

the methods used and how this information was 

used in any data synthesis (if appropriate). 

N/A 

Synthesis of 

results 
13 

Describe the methods of handling and summarizing 

the data that were charted. 
45- 46 

RESULTS 

Selection of 

sources of 

evidence 

14 

Give numbers of sources of evidence screened, 

assessed for eligibility, and included in the review, 

with reasons for exclusions at each stage, ideally 

using a flow diagram. 

45 

Characteristics of 

sources of 

evidence 

15 

For each source of evidence, present 

characteristics for which data were charted and 

provide the citations. 

45, 69 - 88 

Critical appraisal 

within sources of 

evidence 

16 
If done, present data on critical appraisal of 

included sources of evidence (see item 12). 
N/A 

Results of 

individual sources 

of evidence 

17 

For each included source of evidence, present the 

relevant data that were charted that relate to the 

review questions and objectives. 

69 - 88 
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SECTION ITEM PRISMA-ScR CHECKLIST ITEM 
REPORTED 
ON PAGE # 

Synthesis of 

results 
18 

Summarize and/or present the charting results as 

they relate to the review questions and objectives. 
46 - 59 

DISCUSSION 

Summary of 

evidence 
19 

Summarize the main results (including an overview 

of concepts, themes, and types of evidence 

available), link to the review questions and 

objectives, and consider the relevance to key 

groups. 

59 - 68 

Limitations 20 
Discuss the limitations of the scoping review 

process. 
67 - 68 

Conclusions 21 

Provide a general interpretation of the results with 

respect to the review questions and objectives, as 

well as potential implications and/or next steps. 

90 

FUNDING 

Funding 22 

Describe sources of funding for the included 

sources of evidence, as well as sources of funding 

for the scoping review. Describe the role of the 

funders of the scoping review. 

N/A 

JBI = Joanna Briggs Institute; PRISMA-ScR = Preferred Reporting Items for Systematic reviews and Meta-

Analyses extension for Scoping Reviews. 

* Where sources of evidence (see second footnote) are compiled from, such as bibliographic databases, social 

media platforms, and Web sites. 

† A more inclusive/heterogeneous term used to account for the different types of evidence or data sources (e.g., 

quantitative and/or qualitative research, expert opinion, and policy documents) that may be eligible in a scoping 

review as opposed to only studies. This is not to be confused with information sources (see first footnote). 

‡ The frameworks by Arksey and O’Malley (6) and Levac and colleagues (7) and the JBI guidance (4, 5) refer to 

the process of data extraction in a scoping review as data charting. 

§ The process of systematically examining research evidence to assess its validity, results, and relevance before 

using it to inform a decision. This term is used for items 12 and 19 instead of "risk of bias" (which is more 

applicable to systematic reviews of interventions) to include and acknowledge the various sources of evidence 

that may be used in a scoping review (e.g., quantitative and/or qualitative research, expert opinion, and policy 

document). 

 

 

From: Tricco AC, Lillie E, Zarin W, O'Brien KK, Colquhoun H, Levac D, et al. PRISMA Extension for Scoping Reviews (PRISMAScR): 

Checklist and Explanation. Ann Intern Med. 2018;169:467–473. doi: 10.7326/M18-0850. 

 

http://annals.org/aim/fullarticle/2700389/prisma-extension-scoping-reviews-prisma-scr-checklist-explanation
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Appendix B – Chapter 3 (Survey of UK radiographers) 
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Beauty Is in the AI of the Beholder: 

Are We Ready for the Clinical Integration of Artificial Intelligence in Radiography? An Exploratory Analysis 

of Perceived AI Knowledge, Skills, Confidence, and Education Perspectives of UK Radiographers 
 

Clare Rainey 1, Tracy O’Regan 2, Jacqueline Matthew 3, Emily Skelton 3,4, Nick Woznitza 5,6, 
Kwun-Ye Chu 7,8, Spencer Goodman 2, Jonathan McConnell 9, Ciara Hughes 1, 
Raymond Bond 10, Sonyia McFadden 1† and Christina Malamateniou 3,4*† 
1 Faculty of Life and Health Sciences, School of Health Sciences, Ulster University, Newtownabbey, United Kingdom, 2 The 
Society and College of Radiographers, London, United Kingdom, 3 School of Biomedical Engineering and Imaging Sciences, King’s College London, St 

Thomas’ Hospital, London, United Kingdom, 4 Department of Radiography, Division of Midwifery and Radiography, School of Health Sciences, University of 

London, London, United Kingdom, 5 University College London Hospitals, London, United Kingdom, 6 School of Allied and Public Health Professions, 

Canterbury Christ Church University, 
Canterbury, United Kingdom, 7 Department of Oncology, Oxford Institute for Radiation Oncology, University of Oxford, Oxford, 
United Kingdom, 8 Radiotherapy Department, Churchill Hospital, Oxford University Hospitals NHS FT, Oxford, 
United Kingdom, 9 NHS Scotland, Greater Glasgow and Clyde, Glasgow, United Kingdom, 10 Faculty of Computing, 
Engineering and the Built Environment, School of Computing, Ulster University, Newtownabbey, United Kingdom 

Introduction: The use of artificial intelligence (AI) in medical imaging and radiotherapy has been met with both scepticism 

and excitement. However, clinical integration of AI is already well-underway. Many authors have recently reported on the 

AI knowledge and perceptions of radiologists/medical staff and students however there is a paucity of information regarding 

radiographers. Published literature agrees that AI is likely to have significant impact on radiology practice. As radiographers 

are at the forefront of radiology service delivery, an awareness of the current level of their perceived knowledge, skills, and 

confidence in AI is essential to identify any educational needs necessary for successful adoption into practice. 

Aim: The aim of this survey was to determine the perceived knowledge, skills, and confidence in AI amongst UK 

radiographers and highlight priorities for educational provisions to support a digital healthcare ecosystem. 

Methods: A survey was created on Qualtrics® and promoted via social media (Twitter®/LinkedIn®). This survey was open 

to all UK radiographers, including students and retired radiographers. Participants were recruited by convenience, snowball 

sampling. Demographic information was gathered as well as data on the perceived, self-reported, knowledge, skills, and 

confidence in AI of respondents. Insight into what the participants understand by the term “AI” was gained by means of a 

free text response. Quantitative analysis was performed using SPSS® and qualitative thematic analysis was performed on 

NVivo®. 

Results: Four hundred and eleven responses were collected (80% from diagnostic radiography and 20% from a radiotherapy 

background), broadly representative of the workforce distribution in the UK. Although many respondents stated that they 

understood the concept of AI in general (78.7% for diagnostic and 52.1% for therapeutic radiography respondents, 

respectively) there was a notable lack of sufficient knowledge of AI principles, understanding of AI terminology, skills, and 

confidence in the use of AI technology. Many participants, 57% of diagnostic and 49% radiotherapy respondents, do not feel 

adequately trained to implement AI in the clinical setting. Furthermore 52% and 64%, respectively, said they have not 

developed any skill in AI whilst 62% and 55%, respectively, stated that there is not enough AI training for radiographers. 

The majority of the respondents indicate that there is an urgent need for further education (77.4% of diagnostic and 73.9% of 

therapeutic radiographers feeling they have not had adequate training in AI), with many respondents stating that they had to 

educate themselves to gain some basic AI skills. Notable correlations between confidence in working with AI and gender, 

age, and highest qualification were reported. 

https://www.frontiersin.org/articles/10.3389/fdgth.2021.739327/full
https://www.frontiersin.org/articles/10.3389/fdgth.2021.739327/full
https://www.frontiersin.org/articles/10.3389/fdgth.2021.739327/full
https://www.frontiersin.org/articles/10.3389/fdgth.2021.739327/full
https://www.frontiersin.org/articles/10.3389/fdgth.2021.739327/full
https://www.frontiersin.org/articles/10.3389/fdgth.2021.739327/full
https://www.frontiersin.org/articles/10.3389/fdgth.2021.739327/full


 

Page 331 of 516 

 

Conclusion: Knowledge of AI terminology, principles, and applications by healthcare practitioners is necessary for adoption 

and integration of AI applications. The results of this survey highlight the perceived lack of knowledge, skills, and 

confidence for radiographers in applying AI solutions but also underline the need for formalised education on AI to prepare 

the current and prospective workforce for the upcoming clinical integration of AI in healthcare, to safely and efficiently 

navigate a digital future. Focus should be given on different needs of learners depending on age, gender, and highest 

qualification to ensure optimal integration. 

Keywords: artificial intelligence, AI, radiography, education, workforce training, digital health, radiotherapy, adoption 

INTRODUCTION AND BACKGROUND  

The AI Accelerating Trajectory 

In the last decade, Artificial Intelligence (AI) 

implementation has accelerated but has also 

become an increasingly divisive topic in medicine, 

particularly so within medical imaging. The 

development of more sophisticated computers with 

greater storage capabilities and faster graphics 

processing units (GPUs) have allowed systems 

architectures to develop in a way which was not 

possible before (1). This has allowed convolutional 

neural networks (CNNs) in image recognition tasks 

to develop. These systems learn iteratively until 

acceptable performance is achieved relative to the 

previous interpretive standard (2). Wider 

availability of large medical imaging datasets and 

advancements in neuroscience further perpetuated 

AI technology advancement (3). 

While AI is considered to be a promising, fast 

changing area of healthcare innovation (4), able to 

revolutionise care delivery, it is often seen with 

suspicion and mistrust by many healthcare 

professionals working in radiology, leaving them 

concerned about their future careers (5–7). In 

response to the impending digital healthcare 

revolution, the NHS has prioritised the 

development, testing, and validation of AI tools and 

digital health systems as part of their long-term 

improvement plan (8). 

AI Implementation Creates Controversy Among 

Medics, Including Radiologists 

Despite these technological advances, 

implementation of AI into the clinical setting has 

been perceived differently across the 

multidisciplinary team. Difference research projects 

surveyed radiologists and radiology trainees, the 

medical practitioners within medical imaging. In 

2019, Waymel et al. (9) surveyed 270 senior 

radiologists and radiology registrars in France and 

reported an optimistic view as clinicians felt that 

implementation of AI will have a positive impact 

on clinical practise. Respondents thought that AI 

will speed up reporting turnaround times, i.e., the 

time taken to produce a clinical diagnostic report, 

with a possible reduction in the number of imaging-

related medical errors and subsequent increased 

contact time to enable more direct patient care. 

Further work by Oh et al. in Korea (10), surveyed 

the confidence of 669 doctors and medical students 

when using AI, where 62% of respondents 

reiterated the perception that AI would speed the 

collection of clinical data. In Germany, 83% of 263 

surveyed medical students felt that AI will never 

replace the radiologist (11) however this is 

contradicted by reports ranging from 26 to 78% of 

respondents (doctors, nurses, and technicians) 

fearing that AI could replace them in their clinical 

role (10–13). A lack of trust and acceptance of AI 

systems is also apparent in the literature (14, 15) 

with results in Korea reporting that 79% of 
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respondents would always favour the doctor’s 

opinion over the AI when a conflict arose. Whilst 

in Germany (10), 56% of 263 surveyed medical 

students, stated that AI would not be able to 

establish a definitive diagnosis (11). The perceived 

advantages of AI in the current evidence-base are 

clear; however contradictory views exist 

internationally on how exactly AI will work in the 

clinical arena and whether it will lead to role 

depletion among physicians/healthcare workers and 

students. 

The AI Training Gap May Challenge AI 

Implementation Among Clinicians and Perpetuate 

Long-Standing Workforce Shortages 

The majority of published literature has further 

highlighted a lack of training to empower 

healthcare practitioners to optimally use the 

capabilities of AI, as well as the lack of regulatory 

frameworks of AI-enabled healthcare products (16, 

17) and lack of thorough scrutiny of reported 

studies, ensuring a robust knowledge base (18). The 

majority of physicians feel they have received 

insufficient previous information on AI and would 

consider attending continuous medical education or 

technically advanced training on AI, if available 

(9–12). Similarly medical students have reported 

either no AI training at all or insufficient training in 

AI with many believing it should be taught at 

undergraduate level and be part of the compulsory 

curriculum (11, 19). 

Lack of adequate training on AI to prepare 

clinicians and explain basic AI concepts and 

applications may impact on the number of 

physicians choosing to specialise in radiology after 

graduation, as was highlighted by recent research in 

the UK (20). A total of 19 medical schools 

participated in a survey assessing attitudes of 

medical students toward AI, 49% of respondents 

reported that they would be less likely to consider 

specialising in radiology due to the impact of AI. A 

similar picture is emerging in the United States, 

where 44% of 156 survey respondents reported they 

would also be less likely to choose radiology as a 

specialty due to the influence of AI (13). 

The lack of knowledge of AI benefits and risks 

and the skills gap on using AI tools by clinicians 

needs to be urgently addressed to cater for the 

workforce shortages in medical imaging and 

radiotherapy; the current Royal College of 

Radiologist statistics which state that “the NHS 

radiologist workforce is now short staffed by 33% 

and needs at least another 1,939 consultants to meet 

safe staffing levels and pre-coronavirus levels of 

demand for scans” (20). This staffing shortage in 

medical imaging is further compounded by the 

College of Radiographers census of the diagnostic 

radiography workforce in the UK. Results reported 

that the average current UK vacancy rate across 

respondents was 10.5% at the census date of 1 

November 2020 (21). It is imperative to use 

dedicated educational provisions to dispel the 

misperception that “AI will replace radiology staff, 

or that AI may deter staff from specialising in the 

role in the first place.” Further training is required 

not only on how to use AI itself but also on the 

advantages, challenges, and issues surrounding AI 

implementation into clinical departments to ensure 

the confidence of clinicians interested into these 

careers increases. 

The Impact of AI on Radiographers 

Radiographers are registered healthcare 

professionals who work predominantly and directly 

with patients, families, carers, and service users but 

very closely with Radiologists. In the UK, 

diagnostic and therapeutic radiographers form the 

largest proportion of the workforce in clinical 

imaging (radiology) and radiotherapy departments, 

respectively. There are more than 30,000 members 
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of the radiographers’ professional body, the Society 

of Radiographers (SoR) (2020) (22), and 36,941 

currently registered with the regulator for health 

and care professions, the Health and Care 

Professions Council in the UK (23). Collectively 

their roles encompass the provision of health 

screening services, clinical imaging for diagnosis, 

and imaging and therapeutic services to facilitate 

curative, palliative, surveillance, end of life, and 

forensic examinations. Radiographers interact with 

and care for thousands of people each day. This 

requires a wide and encompassing range of skills 

and knowledge and the ability to empower people 

in shared decision making. Radiographers work on 

the interface between technology and service users 

in clinical imaging and radiotherapy. They operate 

the equipment, produce, and report on diagnostic 

images. 

Radiology and radiography, two interconnected 

but distinct professions, are traditionally considered 

to be early adopters of AI technology (24, 25), with 

computerised diagnosis used as early as the 1960s 

(8). Since then, there have been several periods of 

high activity in AI research and development with 

intervening periods of lower activity, so-called AI 

“winters” (26, 27). Pattern recognition computer 

aided diagnosis (CAD) tools have been part of 

mammography image interpretation since the 1980s 

(28, 29), some of which are extant today and 

perpetuate significant human input due to high false 

positive rates (14, 30). 

While research related to radiologists’ roles, 

clinical practise, and education in relation to AI has 

flourished, as discussed in the abovementioned 

paragraphs, very little research has considered the 

impact of AI on radiographers and their perception 

of using it in clinical practise. The limited literature 

available would suggest that radiographers are keen 

to engage with AI but controversy still exists 

whereby some radiographers feel that AI may 

deplete or threaten their jobs in the future whilst 

others think it may lead to more advanced role 

developments (31–34). Abuzaid et al. (35) surveyed 

the opinions of 34 radiologists and 119 

radiographers in the UAE on their willingness to 

accept AI into practise. Staff were excited and 

ready to embrace AI, however 17% of respondents 

stated they had no knowledge of AI, 40% were 

selftaught, and 73% reported difficulty accessing 

training courses to fill the knowledge gap for staff. 

Further work by Botwe et al. (36) surveyed 151 

radiographers in Ghana. Most respondents (83%) 

were positive and would embrace the 

implementation of AI into practise, however 83% 

expressed concerns about AI related errors and job 

displacement. A further 69% felt that AI could lead 

to reductions in radiation dose whilst maintaining 

image quality. Overall, they concluded that there 

was a need for further education for radiographers 

to alleviate these fears. Similar fears and 

apprehensions regarding trust and knowledge gaps 

have been expressed by radiographers in Canada, 

America, and Ireland (32–34). In particular the 

survey of 318 diagnostic and 77 therapeutic 

radiographers from Ireland has identified resistance 

of AI use in particular for patient facing roles. 

Respondents felt that radiographers would always 

have a primary role when caring for the patient and 

that AI would not be able to replace that human 

touch. Similar to other studies, >50% respondents 

worried about changing roles and fewer jobs for 

radiographers, as AI will take over clinical delivery. 

However this notion of role depletion was not 

universally supported in this survey as 47% of 

diagnostic and 38% of therapeutic radiographers 

felt AI will create new specialised/advanced roles 

in the future. This may mean the radiographers can 

work together with AI tools to fulfil roles that 

address the ongoing staff shortages. 
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The Future of AI Within Medical Imaging and 

Radiotherapy: Challenges and Opportunities for 

Integration and the Importance of Education 

Sarwar et al. (37) have predicted the full integration 

of AI in healthcare in the next 5–10 years. 

Implementation of AI into the clinical setting is not 

without barriers; these include a lack of trust and 

acceptance of the systems offered (9, 29), lack of 

training to empower healthcare practitioners to 

optimally use the capabilities of AI, as discussed 

above, the lack of standardised regulatory 

frameworks of AI enabled healthcare products (10, 

12) and lack of thorough scrutiny of reported 

studies, ensuring a robust knowledge base (15) to 

name just a few. It is essential for the design, 

validation, and adoption of AI that radiographers 

are knowledgeable, competent, confident, and well-

trained to be able to fully materialise the benefits of 

new technology while minimising risks but also to 

be in position to explain these benefits and risks to 

the patients; thus radiographers could be 

contributing to and sustaining of a safe, efficient 

medical imaging and radiotherapy service, one that 

is based on trust and research evidence on the use 

of appropriate AI technology. 

A number of suggestions to allow AI systems to 

make their way into clinical application have been 

offered, such as various measures to make AI more 

interpretable or explainable (38, 39). The users of 

AI technologies, for instance the radiographers, 

radiologists, and oncologists and those responsible 

for the procurement of AI for healthcare, need to 

have adequate knowledge, and understanding of the 

functionality and applications of the proposed 

systems to enable unbiased selection, i.e., the best 

application choice for the intended function with an 

awareness of potential limitations and risks. 

The Topol review (40) reiterates the need for 

education in AI to be integrated into preregistration 

programmes, and for the necessity of upskilling the 

existing workforce in AI applications and 

technology. Recent draught HCPC guidelines (41) 

state that radiographers should “be aware of the 

principles of AI and deep learning technology, and 

the methods of assessing the performance of AI 

algorithms” (p. 45). Recent recommendations and 

standards jointly delivered by the International 

Society of Radiographers and Radiological 

Technologists (ISRRT) and European Federation of 

Radiographer Societies (EFRS) (42), state that 

radiographers need to have functional and 

performance assessment knowledge of AI systems. 

This can be described as a form of “AI literacy” 

that should be included in both pre and post 

registration programmes, along with education for 

the whole workforce. The Society and College of 

Radiographers’ AI Working Party has also recently 

offered recommendations for education and training 

of radiographers on AI theory and applications 

(43). 

Rationale, Aims, and Objectives 

The paucity of information available on 

radiographers’ perceptions of AI and its 

implementation into daily clinical practise provides 

a strong rationale for the design of a dedicated 

study. As identified by Lai et al. (44) AI in 

healthcare will only be accepted and satisfactory 

for everyone, if we invest on collaborative effort 

and include everyone within the multidisciplinary 

team in the decision-making process. Hence, this 

exploratory study aims to highlight the perceived, 

self-reported, knowledge, skills, and confidence of 

UK diagnostic and therapeutic radiographers in 

relation to AI. Further objectives were to 

investigate the adequacy of training provisions 

currently available and to propose content and 

format of further education on AI. 

METHODS  
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Questionnaire Design 

A questionnaire was designed using the Qualtrics R 

survey platform. This is an online survey builder 

which allows for open dissemination via an internet 

link, hence optimising participant reach (45). This 

voluntary, fully online survey was designed and 

reported to adhere to the Checklist for Reporting 

Results of Internet E-Surveys (CHERRIES) (46) 

and approved by City, University of London, 

School of Health Sciences Research Ethics 

Committee (ETH1920-1989). No incentives were 

offered to complete this survey. 

This was a fully open survey, available from the 

12th of February 2021 to the 6th of April 2021, for 

everyone who had the link. The survey was set to 

collect fully anonymous responses, therefore 

neither IP addresses nor any other identifying 

information was collected from participants. An 

opening slide gave participants information on the 

study rationale and aim, provided information on 

current literature on the subject, informed 

participants of the approximate time commitment to 

complete the survey and gained consent to proceed. 

A final survey slide notified respondents of 

submission of responses, although a full review of 

responses was not given. Participants were 

permitted to freely navigate back to previous 

questions and allowed to save responses and finish 

the survey at a later time in order to maximise 

response completeness. All responses were 

included in data analysis, even if the survey was not 

complete. Time for completion of the survey was, 

therefore, not analysed. 

The questions included in the survey were 

loosely based on a previous, unpublished, survey 

undertaken by one of the co-authors. The initial 

survey was further modified and expanded with 

new questions based on input from all listed 

authors, many of whom are members of the 

“Society and College of 

Radiographers Artificial Intelligence Working 

Party,” who have a range of senior clinical and 

academic experience. The survey content is 

drawing upon current research evidence as outlined 

in introduction, as well as from the themes 

presented on the Society of Radiographers (SCoR) 

AI guidance document for radiography 

professionals (43). 

The Survey Instrument 

The questionnaire consisted of 91 questions in 

total, divided into five main sections or “blocks”—

(i) participant demographics, (ii) AI knowledge, 

(iii) skills and confidence in AI (including 

questions on education provision), (iv) perceptions 

of the impact of AI on clinical practise (v) 

expectations for the future of radiography with AI 

and finally, (vi) the effect AI may have on image 

perception and reporting. Most questions were 

either multiple choice format, with some free text 

options to allow for more detailed responses or 

Likert scale questions. Only one question required 

a fully open response. 

The demographic section included seven 

questions to gather data on the age, number of 

years’ experience, highest academic qualification, 

region of the UK, clinical setting, and nature of 

current role. This information was requested to 

allow investigation of any relationship between 

these independent variables and dependent 

variables of knowledge, skills and confidence in AI. 

An eligibility filtering question placed at the 

beginning of the survey enquired if the respondent 

was a practising or student radiographer; this was to 

ensure that anyone other than a radiographer did 

not complete the survey. If the participant 

responded that they are not a radiographer, they 

were redirected to the end of the survey and no 

further data was collected. 
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Only the results of the first three sections of the 

survey (i–iii) are discussed in this paper; the 

remaining will be presented in different 

publications given space limit and richness of 

findings. 

Validity and Reliability of the Survey Instrument 

For each new survey face and content validity are 

vital measures of quality (47). 

Face and Content Validity 

Face validity, a subjective measure which concerns 

whether or not the instrument appears to potential 

test takers to be assessing what it intended to 

measure (48) has been assessed and ensured for our 

study (in terms of feasibility, readability, 

consistency of formatting, the clarity of the 

language used), through the piloting phase of the 

survey (49). Content validity, “the degree to which 

items in an instrument reflect the content universe 

to which the instrument will be generalised” (50) 

was ensured by the design and review of this work 

by the SCoR AI working party and other AI 

radiography experts, the piloting with another team 

of AI experts with varying demographics and 

professional backgrounds and by being grounded 

on relevant research evidence, including the SCoR 

AI guidance document for radiographers, which 

outlined priorities for AI adoption within the 

radiography workforce in all areas of practise, 

including education (43). The validation of the 

questionnaire was conducted by a panel of experts 

in the medical imaging and AI field, which 

included 12 qualified, practising radiographers, 

academics, students, and clinical staff, with a range 

of clinical experience from <1 year to >20 years. 

This tested both the technical aspects of the survey 

format (face validity) as well as the suitability of 

the questions (content validity). Minor formatting 

issues involving difficulty in navigating to the next 

question were reported and fixed before final 

dissemination of the survey. 

Internal Consistency 

Cronbach’s alpha was calculated post-hoc for the 

Likert scale questions of this instrument to be able 

to confirm internal consistency (47). Acceptable 

internal reliability was found for the scale questions 

for both professions (α= 0.736 and α= 0.777 for 

diagnostic and therapeutic radiography, 

respectively). 

Participants 

This survey was intended to give a national (UK) 

perspective on perception of knowledge, skills, 

confidence, and educational needs of both the 

diagnostic radiography and therapeutic radiography 

workforce in the field of AI. All radiographers 

(student and trainees, practising and retired, 

academic, and researchers) across all sub-

specialisation areas, including sonographers, were 

invited to participate. The survey was disseminated 

via LinkedIn R and Twitter R employing 

nonprobability snowball, sampling (51), and widely 

shared by the authors through their radiography-

specific professional networks, many of whom are 

members of the SCoR AI Working Party or hold 

different AI leadership positions within decision 

making agencies. Academic colleagues were also 

approached to distribute within radiography 

academic communities and students. 

The link to the survey was also sent to the leads 

of many clinical centres throughout the UK for 

dissemination to all colleagues, therefore ensuring 

maximum reach to relevant parties. 

Data Analysis 

The IBM SPSS (version 23) was used for analysis 

of the data (52). Descriptive statistics, in the form 

of frequencies have been reported for most of the 
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responses. One question required an open-ended 

response, which has been analysed by thematic 

content analysis, using NVivo (version 12) (53). 

Descriptive and inferential statistics were 

calculated using SPSS and graphs produced within 

MS Excel R (Microsoft, 2018). Data was presented 

in percentages for single response questions and 

counts/frequency for questions where more than 

one response was permitted. There were no 

weightings applied to any questions for analysis. 

Combinations of some of the variables have 

been analysed to determine if any patterns emerged 

in order for hypotheses to be proposed for future 

studies (54). The correlations of independent 

variables such as: years practising, highest 

academic qualification, and age with dependent 

variables such as: understanding of AI, confidence 

in AI, understanding of the underlying terminology 

of AI, feelings of being well-trained in AI, and 

agreement that they have developed some skill in 

AI, were all explored and measured on either four-

point or seven-point Likert scales, with the 

exception of “understanding of AI,” which was 

measured on a scale of zero to ten. Spearman’s rank 

(rs) and Kendall’s tau-b (v) correlations between 

ordinal data were run using IBM SPSS R (55). 

Responses which did not fit with the ordinal 

classification of the data were recategorised as 

“missing” before calculation, such as level of 

highest qualification option “other” and years’ 

experience options “I do not work in the clinical 

setting” and “I am in retirement.” Missing data 

were excluded pairwise, meaning that data could be 

included even if the respondent did not enter a 

response to some other question. Bootstrapping was 

activated for 1,000 samples at 95% confidence 

levels. Subgroup analysis was then carried out to 

better understand the reason for any statistically 

significant correlations between ordinal data. 

Chi-square test for independence was run for 

comparisons between nominal and ordinal data. In 

many cases, assumptions necessary to allow 

accurate interpretation of the Pearson’s chi square 

were found to be violated, so the “likelihood ratio 

Chi square” statistic was used as an alternative. The 

likelihood ratio compares the likelihood of 

obtaining the observed data compared to the 

likelihood of obtaining the data if there is no 

significant difference in the variables, i.e., the data 

which would have been observed if there is no 

statistically significant relationship between 

variables (p ≤ 0.05) (56). Cramer’s V (V) was then 

performed to quantify the magnitude of any 

relationship. 

The resultant cross tabulations were interrogated 

to identify any major differences between observed 

and expected counts within subgroups for 

significant findings. Subgroup analysis was then 

carried out to better understand the reason for any 

statistically significant correlations. 

Thematic analysis using NVivo R was 

performed to analyse qualitative responses (52). 

Responses to the open-ended question “Can you 

describe the term Artificial Intelligence in your own 

words?” were read and coded. Codes were reread 

and collated into four key themes. 

RESULTS  

Demographic Information 

Cleaning of the data removed any blank responses 

from the initial participants. A total of 415 

radiographers responded to the survey. Four 

participants selected the option of “no consent,” 

leaving 411 survey responses for analysis. 

Of the total respondents, 66.4% stated that they 

were practising diagnostic radiography (n = 273), 

14.4% were diagnostic radiography students (n = 

59), 16.1% stated they were practising therapeutic 

radiography (n = 66), and 2.7% were therapeutic 
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radiography students (n = 11). This calculated to an 

approximate 1:4 ratio of therapeutic: diagnostic 

radiographers, which broadly represents the UK 

workforce ratio of 3,794 therapeutic to 20,231 

diagnostic radiographers (57). The most recent data 

from the HCPC, stated above, is not broken down 

into diagnostic and therapeutic radiography (23). 

Two respondents indicated they were practising 

both diagnostic and therapeutic radiography. 

There were responses from throughout the 

regions of the UK with the exception of therapeutic 

radiographers in the Channel Islands (Table 1). 

A range of years of experience was indicated in 

both diagnostic radiography and radiotherapy. 

Visual inspection would indicate there is a similar 

distribution amongst respondents in each profession 

(Table 1). 

There was representation across all age groups 

except for the over 65 years old group in 

radiotherapy (Table 1). 

Of the diagnostic radiography respondents 

(including students), 26% indicated they were male, 

72.2% female, 0.6% non-binary/third gender, and 

1.2% preferred not to say. This is similar to the 

radiotherapy respondents of whom 22.4% 

responded that they were male and 77.6% female, 

which is broadly representative of the UK 

radiographer workforce, which has an approximate 

1:3 ratio of male to female (47). 

Highest Academic Qualification 

For both diagnostic radiography and therapeutic 

radiography, most respondents indicated their 

highest level of academic qualification as a BSc, 

with 24.2 and 35.5%, respectively. There were 

fewer diagnostic radiographers who have attained a 

MSc (19.6 and 36.8%) or doctoral level 

qualification (e.g., Ph.D., Ed.D.) (1.9 and 3.9%) 

than therapeutic radiographers, respectively. Those 

with A-level or equivalent are assumed to be 

student radiographers. This data is represented in 

full in Table 1. Those who selected “other” were 

asked for further explanation, with the majority of 

the respondents across both professions stating they 

hold a Diploma of the College of Radiographers 

(DCR) (n = 7). Other responses included 

conversion degrees such as MRad (n = 2), or other 

types of master’s degrees such as MEd (n = 1) and 

MA (n = 2). 

Clinical Setting 

The greatest proportion of participants from both 

professions indicated that they work in university 

teaching hospitals, closely followed by the district 

general hospital setting. Full details of other 

responses are given in Table 1. 

For those who responded “other” in therapeutic 

radiography, two stated they worked in a 

foundation trust, three in a specialist cancer centre, 

two were students, and one stated they were a 

university lecturer. Most free text responses from 

the diagnostic radiography participants indicated 

that they worked in the university setting as either 

an academic or researcher (n = 15), followed by 

responses from students (n = 10). 

Role Description 

Most of those in clinical practise from both 

professions indicated that they were practising as a 

clinical radiographer (39.1 and 38.2%, diagnostic 

radiography and radiotherapy, respectively), 

followed by those choosing the “advanced 
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TABLE 1 |

Respondents’ demographic details presented as percentages (%) 

and frequencies (n). 
(Continued) 

TABLE 1 | Continued 
  Diagnostic 

radiography 

Therapeutic 
radiography 

 Other 3.1 (n = 10) 6.6 (n = 5) 

 Academic in radiography: 

teaching only 

0.9 (n = 3) 1.3 (n = 1) 

 Industry partner 0.3 (n = 1) 1 (n = 0) 

 Consultant radiographer 4.3 (n = 14) 13.2 (n = 10) 

 Clinical academic/Lecturer: 

practitioner 

3.1 (n = 10) 1.3 (n = 1) 

 Radiology/ 

Radiographer/ 

Radiotherapy manager 

6.2 (n = 20) 6.6 (n = 5) 

 Retired radiographer 0.9 (n = 3) 0 (n = 0) 

 Academic in radiography: 

teaching and research 

3.7 (n = 12) 0 (n = 0) 

Diagnostic radiography 
sub specialism/counts 
(respondents were 
permitted more than one 
selection) 

General radiography including 

emergency, theatre, and 

fluoroscopy 

n = 207 

 

 

 

Mammography n 

= 

32 

 

 

MRI n 

= 

56 

 

 CT n = 100  

 Ultrasound n = 25  

 Interventional n = 44  

 PET/CT n = 3  

 PET/MRI n = 1  

 DEXA/DXA n = 5  

 Reporting n = 63  

 Radiology manager n = 20  

 PACS administrator n = 9  

 Education n = 54  

 Policy maker/professional 

advocate 

n = 11  

 Other (diagnostic) n = 22  

Therapeutic  

Radiography 
 sub-specialism/counts  

(Respondents were 

permitted more than one 

selection) 

 

Pre-treatment,  n = 35 

 Treatment planning  n = 15 

 Treatment delivery

  

 n = 54 

 Patient  

information/support/review 

 

 n = 23 

 Educator  n = 7 

 Research  n = 7 

 Management   n = 10 

 Quality  

assurance/Quality 

improvement 

 

 n = 7 

 DEXA/DXA clinical 

applications 

 n = 0 

 Other (therapeutic)  n = 7 

  

  

   

practitioner” option (15.8% and 17.1%, diagnostic 

radiography and therapeutic radiography, 

respectively). There are fewer consultant 

radiographers responding to this survey in diagnostic 

than therapeutic radiography (4.3 and 13.2%, 

respectively), although it should be noted that there 

were more options available for the diagnostic 

radiography respondents. This was to best reflect the 

specific career landscape in both professions (Table 

1). 

Area of Expertise/Sub-Specialism 

Respondents were given the option of selecting up to 

three options from the list, along with a free-text 

option for further explanation. Most diagnostic 

radiographers indicated that they were involved in 

general radiography (32%) followed by CT (15%), 

followed closely by those working in reporting, MRI 

and education. The responses from respondents in the 

radiotherapy cohort indicated that the majority were 

involved in treatment delivery (33%), followed by 

pre-treatment, simulation, contouring, and 

immobilisation (21%) (Table 1). 

From those who selected “other” in diagnostic 

radiography, most responses were cardiac 
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catheterisation (n = 4) and nuclear medicine (n = 3). 

Radiotherapy respondents indicated areas of sub-

specialism in breast cancer (n = 1), research (n = 1), 

stereotactic radiosurgery (n = 1), and Information 

management and technology (n = 1). 

Perceived Knowledge, Skills, and Confidence in AI 

An understanding of perceived knowledge, skills and 

confidence in AI was sought through an open 

question, asking respondents to describe the term 

“artificial intelligence” in their own words and a 

number of Likert-scale questions. 

Understanding of the Term “Artificial Intelligence” 

Responses were initially coded using thematic 

analysis for each of the professions, resulting in 21 

codes (Supplementary Table 1; Supplementary 

Figure 1). Most codes were common across both 

professions (Supplementary Figure 2). Four general 

themes emerged from thematic analysis: (i) clinical 

applications of AI, (ii) advantages of AI, (iii) 

disadvantages of AI, (iv) technical information of AI 

technology (Supplementary Table 1). 

The top three most frequent codes in the responses 

from the diagnostic radiographers’ cohort included: 

(i) understanding of AI as used in the identification 

of pathology or abnormality (clinical 

applications), for example the following quotes 

are presented as relevant; “reporting, without a 

practitioner looking at the film. Used 

to detect cancers...” 

“...report diagnostic 

images” 

(ii) statements regarding the AI tasks which would 

normally require human input for example, the 

following quotes are presented as relevant; 

“...automated use of computers to perform 

human tasks.” “...computer algorithms 

performing tasks that usually rely on human 

interaction.” 

(iii) comments with evidence of deeper understanding 

of “modern” AI systems, such as descriptions of 

systems which learn from example and “computer 

vision” for example the following quotes are 

presented as relevant; 

“...machine learning.” 

“...can be programmed to develop themselves on 

their own writing their own code, developer 

might even cease to understand the code.” 

The top three codes from the therapeutic 

radiographers’ responses were similar, with the 

majority of comments relating to: 

(i) changing radiography workflows (AI replacing or 

augmenting tasks which require human input) for 

example the following quotes are presented as 

relevant; “...the use of technology, reporting, and 

verify systems, treatment planning systems to 

support patient pathway.” 

(ii) technical description of “modern” AI systems, for 

example the following quotes are presented as 

relevant: “...use of computer algorithms to do 

mundane tasks e.g., outlining organs at risk 

(OAR).” 

“The use of complex interconnecting self-

designing algorithms to achieve a specific 

outcome...” 

(iii) clinical applications of AI in radiotherapy, such as 

segmentation, planning, and/or contouring. The 

following quotes are presented as relevant: 

“Automated RT planning to standardise planning” 

“Using software algorithms to 

calculate/determine outcomes previously 

determined manually, such 

as auto-contouring...” 

Finally there were very few comments regarding the 

disadvantages of AI systems in both professions, with 

only two comments from diagnostic radiography and 



 

Page 341 of 516 

 

one from the therapeutic radiography cohort. A 

representative quote from the diagnostic radiography 

is noted below: 

“Its current role is very ‘task dependent’ and 

limited as it struggles to understand poor quality 

images, artefacts, or normal variants, or post-

surgery image appearances, often it is classed the 

‘next best thing’ but most likely it is the new 

‘emperors clothing”’ 

Another representative comment was offered by 

the radiotherapy respondents: 

“Human reliance on technology... create(s) more 

work to me at work for simple decision-making 

process.” 

Perceived Knowledge and Understanding of AI 

Terminology 

Examples of terms associated with modern AI 

technology and development were provided in the 

question represented in Figure 1—algorithms, deep 

learning, neural networks, computer-aided detection 

diagnosis, data mining, and overfitting. The results 

demonstrate that 42.3% of diagnostic radiography and 

50% of radiotherapy respondents were not confident 

at all in the terminology used in AI. 

 

 

(continues on next page…)
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Development of Skill in AI 
Most of both diagnostic radiography and radiotherapy 

respondents indicated that they do not feel they have 

developed any skill in AI used in radiography (51.6 

and 64.0% of total responses, respectively) (Figure 2). 

Out of the other options presented, the majority in 

both professions indicated that any skill has been 

developed from their own, self-directed learning 

(21.0%). In both professions, the fewest responses 

came from the “CPD in a higher education 

establishment” option. The “other” option was 

selected by 40 respondents over the two professions. 

The diagnostic radiography respondents indicated that 

they have undertaken assignments or dissertations in 

AI (n = 8), have read around the subject or taken 

online courses (n = 4), have had equipment training or 

in house training (n = 4), contributed to a research 

project conducted by someone else (n = 3), listened to 

presentations at conferences (n = 3), or had some form 

of AI training integrated into a postgraduate 
qualification (n = 3). The radiotherapy comments 

included, workplace/applications training or through 

FIGURE 1 | Respondents’ understanding of the terminology of modern AI. 

FIGURE 2 | Development of skill in AI. 
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current use (n = 4), knowledge from a previous career 

(n = 1), and one respondent stated that they work 

for an AI company. 

Confidence in Using AI in Radiography 

More of the diagnostic radiography respondents 

indicated that they understood the term AI than the 

radiotherapy respondents (yes, no, unsure) (78.7 and 
52.1%, respectively) (Figures 3A,B), although a 

slightly smaller percentage of diagnostic 

radiographers stated that they felt confident in using 

AI technologies in radiography, compared to the 

radiotherapy responses (28.2 and 33.8% confident or 

very confident, respectively) (Figure 4). Respondents 

from both professions indicated a moderate 

understanding of AI and asked to rate it using a 0 to 

10 scale, with 0 representing no knowledge at all and 

10 representing “expert.” A mean response of 5.5 and 

4.5 (0–10 scale) was reported for diagnostic 

radiography and radiotherapy, respectively. 

Perceived Acquired Skills in AI and Training to 

Support These Skills 

Questions were posed to respondents regarding their 

perceived level of skill in AI, how they have 

developed this skill, the nature of any training they 

have received and how prepared they feel their skills 

FIGURE 3 | Respondents’ perception of understanding of the term “artificial intelligence” [ ( A ) , diagnostic radiography, ( B ) therapeutic radiography]. 

FIGURE 4 | Respondents’ perceived confidence in using AI technologies. 
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or training has made them for the implementation of 

AI in the clinical setting. 

Perception of Availability of AI Training for 

Radiographers (Generic) 

The majority of respondents from both professions 

either disagree or strongly disagree with this 

statement, with a “disagreement” aggregate 

(somewhat disagree, disagree, and strongly disagree) 

of 77.4 and 73.9% and an agreement aggregate 

(somewhat agree, agree, and strongly agree) of only 

6.7 and 6.1% for diagnostic and therapeutic 

radiography, respectively (Figure 5). 

Perception of Adequacy of Training Provisions for 

AI Implementation 

Both professions indicated they did not feel well-

trained to implement new technologies and AI, with 

over half (56.5%) of diagnostic radiography 

respondents indicating they either disagreed or 

strongly disagreed with this statement. This 

proportion was only slightly lower for radiotherapy 

(49.2%) 

(Figure 6). 

Perception of Skill Acquisition in AI Clinical 

Applications 

FIGURE 5 | Perception of AI training availability for radiographers. 

FIGURE 6 | Perception of ‘adequacy of radiographers’ AI training for clinical implementation. 
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An aggregate of responses in the disagree categories 

(somewhat disagree, disagree, and strongly disagree) 

and agree categories (somewhat agree, agree, and 

strongly agree) from respondents in both professions 

indicate that they did not feel they had developed skill 

in AI, with “disagree” in diagnostic radiography being 

higher than “agree” (54.2 vs. 30.3%). This is similar 

to the radiotherapy responses (50.8 vs. 27.7%) (Figure 

7). 

Future Training Content and Format on AI-

Enabled Technologies 

To determine the type of training and education 

requirements needed in radiography, two questions 

were asked. One question sought to gather 

information on the content of any training— what 

topic areas radiographers felt should be included in 

any training delivered, and another question on how 

or in what format this training might be best delivered 

in. 

Topic Areas Needed for Training 

Most respondents from both professions indicated that 

they were interested in learning about potential 

applications of AI and AI technology, techniques, and 

terminology. Programming and computer science and 

AI development and entrepreneurship were not 

popular choices (Figure 8). The “other” option was 

chosen by 16 respondents from the diagnostic 

radiography cohort and mostly included comments 

suggesting uncertainty around what should be 

included. Two comments suggested that it is too early 

to consider any education in AI. 
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Training Format Preferences 

Most respondents indicated that training would be 

best delivered as part of a preregistration degree 

programme. Elearning/webinars and study days also 

received a high proportion of the total responses. All 

options were selected by some respondents (minimum 

respondent frequency n = 92 counts) (Figure 9). Eight 

diagnostic radiography respondents selected the 

“other” option. Suggestions included; annual CPD 

days for qualified staff and summer schools for pre 

and post registration radiographers to allow time for 

this training to take place in an already busy academic 

year. 

COMPARISONS  

Ordinal vs. Ordinal Comparisons 

A selection of ranked variables (ordinal data) were 

compared using Spearman’s rho (rs) and Kendall’s 

FIGURE 7 | Perceptions of having developed/learned some skill in AI. 

FIGURE 8 | AI education topic preferences. 
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tau (v) to identify any correlations. The results are 

presented in full in Supplementary Table 2. There was 

only one combination of variables which produced 

statistically significant results in both professions i.e., 

the relationship between highest level of academic 

qualification and understanding of AI on a scale of 0–

10, where a medium strength positive correlation was 

found in both professions (54). Sub-group analysis 

revealed that for both the diagnostic and therapeutic 

responses, there was a general downward trend in the 

lower rating of confidence (i.e., scoring 0–3) as level 

of academic qualification increased, with the reverse 

apparent for the higher ratings of confidence (i.e., 

score of 7–10), i.e., as level of highest academic 

achievement increased, the number of respondents 

reporting higher levels of confidence increased. This 

data is presented in full in 

Supplementary Tables 3–6. 

In the diagnostic radiography responses, there was 

also a significant positive relationship between highest 

level of academic qualification and confidence in AI 

terminology (rs = 0.151, v = 0.218, n = 271, p = 0.05), 

but this was not the case in the radiotherapy cohort. 

Further analysis of the groups reveals that very few 

respondents across all categories are very confident, 

or confident enough and a general downward trend in 

the “not confident at all” selection, i.e., as level of 

highest academic qualification increased, from 

undergraduate to Ph.D./Ed.D./D.Prof. or equivalent, 

the proportion of respondents indicating that they 

were “not confident at all,” decreased (Supplementary 

Table 7). 

Additionally, a significant, medium strength 

positive association (rs = 0.417, v = 0.313, n = 71, p = 

0.01) was found in the radiotherapy responses 

between age and understanding of AI (scale 0–10) and 

respondents’ years’ experience and understanding of 

AI (scale 0–10) (rs = 0.437, v = 0.332, n = 70, p = 

0.01). This was not mirrored in the data obtained from 

the diagnostic radiography responses (Supplementary 

Table 2). 

Visual analysis of the subgroup data indicates that, 

there was a general downward trend in the lower 

rating of confidence (i.e., scoring 0–3) as both age 

category and years practising increased, with the 

exception of the 55–65 years age group, as 

demonstrated fully in Supplementary Tables 8–11. 

There was no significant correlation in any of the 

other comparisons. 

Nominal vs. Ordinal Comparisons 

There were no associations found between variables 

in the majority of tests, presented in full in 

Supplementary Table 12. There were four tests in 

diagnostic radiography and three tests in radiotherapy 

FIGURE 9 | Training delivery preferences. 
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which showed a significant relationship between 

variables. 

In both professions there was a statistically 

relationship between gender and the confidence in AI 

terminology, with a medium and large magnitudes in 

diagnostic radiography and therapeutic radiography, 

respectively. 

Additionally, in diagnostic radiography, the 

“likelihood Chi squared test” showed a significant 

relationship between: 

(i) gender and confidence in using AI technologies a 

medium association strength, where male 

respondent report greater perceived confidence 

than females (Supplementary Table 12), 

(ii) gender and confidence in the terminology of AI 

with a medium association strength, where male 

respondent report greater perceived confidence 

than females (Supplementary Table 12), 

(iii) radiographers’ role and their perceptions of the 

adequacy of training available, with a medium 

association strength, where perceptions of 

adequacy of training was lowest in the student 

radiographer responses 

(iv) (Supplementary Table 12), and UK region and 

confidence in AI terminology with a small 

association strength, with no apparent pattern 

(Supplementary Table 12). 

In radiotherapy, significant relationships were found 

to exist between: 

(i) gender and understanding of AI with large 

association strength, where male respondent 

report greater perceptions of understanding than 

females (Supplementary Table 12), 

(ii) gender and confidence in the terminology of AI, 

where male respondent report greater perceived 

confidence than females (likelihood ratio with a 

large association strength; Supplementary Table 

12), 

(iii) radiographers’ role and understanding of AI with 

largeassociation strength, where perceptions of 

understanding was lowest in the student 

radiographer responses (Supplementary Table 

12). 

DISCUSSION 

The focus of this survey was to establish a “snapshot” 

of UK radiographers’ perceived knowledge, skills and 

confidence in AI and to establish the specific detail of 

the educational need and preferences of this 

workforce, in line with AI radiography guidance and 

priorities (43). Furthermore, as an exploratory study it 

would help provide direction for future targeted AI 

research projects in the under-researched field of 

radiography. 

Perceived Knowledge, Understanding, and 

Confidence 

Although a large proportion of both professions 

indicated that they understood AI in general, further 

specific responses from both professions made it clear 

that respondents were not very confident when using 

AI technologies. There was also a lack of 

understanding of the specific terminologies used in 

modern AI, such as “algorithms,” “deep learning,” 

“data mining,” “over-fitting,” and “neural networks” 

(Figure 1). This may indicate that, perhaps, initial 

reported “confidence” was surrounding AI in general 

rather than AI in radiography and modern AI. 

Abuzaid et al. (35) surveyed radiographers and 

radiologists in the United Arab Emirates (UAE) and 

found that 40% of respondents were not familiar with 

AI and a further 30% had merely a basic 

understanding. Other studies also report that there is a 

general lack of understanding of AI amongst 

radiologists (58, 59). The knowledge and 

understanding of AI at this level of detail is essential 

when engaging with literature around modern AI (60). 
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Many applications of AI in medicine are currently in 

the development stage and therefore it is imperative 

for all clinicians to understand the literature in order 

to have a critical appreciation of the “potentials, 

pitfalls, and risks” of proposed technology as we 

move into the inevitable implementation phase (6). 

Level of Skill and Importance of Education and 

Training 

A barrier to clinicians’ confidence and understanding 

may be the dearth of education on the subject, with 

many radiographers in both diagnostic and therapeutic 

radiography stating that they do not consider 

themselves to have any skill in AI. Botwe et al. (36) 

conducted a survey of African radiographers on their 

perception of AI in diagnostic imaging and reported 

that 82.2% of 151 respondents felt that a lack of 

knowledge will be a significant barrier to the 

implementation of AI in the clinical setting. This is 

supported by the responses from our survey indicating 

that very few respondents felt that they were well-

trained to implement AI and new technologies in the 

clinical setting and why both professions 

overwhelmingly agree that there is not enough 

education and training available in AI for 

radiographers (Figure 5). Abuzaid et al. (35) further 

support this in their survey of radiographers and 

radiologists in the UAEs, reporting that 74.5% of 

radiographers and radiologists responding to their 

survey had not studied AI as part of their degree, that 

73.9% indicating that the availability of education and 

training will be a barrier to the implementation of AI 

and that 68.6% of clinical staff lack even a basic 

understanding of the technology. 

As radiography is an evidence-based, applied 

science profession our day-to-day learning is 

supported formally, and informally, through our 

clinical placement and later on clinical roles (61). This 

is evidenced by the number of respondents, who 

reported that, despite not always having been formally 

trained, they did have some skill in AI, indicating that 

they had to seek out their own learning (Figure 2) and 

that AI has started to permeate radiography practise. 

Abuzaid et al. (35) concur, with 39.9% of respondents 

to their survey being self-taught in AI. Radiographers 

tend to learn to work with the tools which are 

introduced into the clinical setting, perhaps without 

the time or resources to fully understand the 

technology (62). This may have implications when 

newer, more complex forms of AI are introduced, 

which need to be approached more critically due to 

complex systems architectures and whose method of 

decision making are not so humanly interpretable (2, 

15, 38). Being in position to know the theory behind 

the practise will enable healthcare professionals and 

radiographers to query, flag, escalate, and 

troubleshoot concerns in the functionality of AI 

ecosystems and intervene, as and when needed, with 

human intelligence, for the safety of the patients. 

Suggestions for the Type and Format of AI 

Learning 

The radiographers responding to the survey indicate 

they wish to have education on potential AI 

applications, technology (technique and terminology), 

patient centeredness with AI, AI ethics, AI standards 

(quality assurance and control), and workflow 

improvements. These are areas which, perhaps, the 

workforce foresees or even witnesses as being the 

most impacted by AI (63). These may also be the 

areas that radiographers feel they can more easily 

relate to, and grasp given their training at level 6 

(Bachelor’s level) to allow for a smoother transition 

into a new field. Other proposed topics included 

applied machine learning, programming and computer 

science, and AI development/entrepreneurship, 

although these subject choices were less popular. The 

above list of topics is similar to those identified in the 

literature as important for inclusion in AI curricula, 

although it is also suggested that a more flexible 

curriculum should be offered to best suit the students’ 



 

Page 350 of 516 

 

interest and current developments in the field (64, 65). 

A minority (2.5%) of respondents across both 

professions indicated that they had received training 

as part of a CPD programme in a higher education 

setting. This could lead to some national or global 

disparity and variability in the type and standard of 

education being delivered in AI knowledge in the 

future (35) and could impact speed and quality of AI 

adoption and implementation as well as job 

satisfaction. The development of a standardised or 

recommended AI curriculum, as suggested for 

radiology trainees, may provide a solution for this (16, 

58, 59). 

The respondents indicate that the best place for any 

AI training was in the pre-registration setting. This 

aligns with the proposed changes to the HCPC 

Standards of 

Proficiency (radiographers) which highlight the 

necessity for all radiographers to have an awareness 

of both the principles of AI, and of the methods of 

assessment of performance of any AI algorithm (41). 

If accepted, these changes would make it essential 

that all HCPC registrants and aspiring registrants have 

this knowledge, and therefore this learning must be 

front-loaded in the radiography education, in both the 

pre-registration as well as post-registration stages. 

The Topol review (40) supports this by 

recommending that training in digital technologies 

and computer science should be integrated into 

undergraduate education for health care professionals. 

A systematic review by Schuur et al. (16) examines 

training opportunities in AI for radiologists and found 

that there was an overwhelming prevalence of short 

courses offered, rather than those integrated fully into 

curricula, with education providers only involved in a 

limited capacity. Interestingly this is not fully 

supported in the results from our study which found 

that, although the respondents indicated they did not 

receive specific training in AI, there was a statistically 

significant relationship between the level of highest 

academic qualification and understanding of AI. This 

suggests that the higher the level of academic 

qualification, the greater the perception of 

understanding in AI. In the absence of specific AI 

training, this may be simply due to the way which 

postgraduate students are required to develop 

transferable skills as fully independent learners and 

the encouragement of those studying for higher 

academic qualifications to become agents of change 

and therefore actively investigate current and future 

developments (such as AI) for clinical practise 

themselves (66). 

Gender, Age, Qualification, and Role Correlations 

in Artificial Intelligence for Radiographers 

The results from the analysis of the nominal data 

indicated that there is a relationship between gender 

and confidence in using AI terminology across both 

professions. Further exploration into the reason for 

this relationship were investigated from the cross 

tabulations of the likelihood ratios. This found that, on 

the whole, the observed values (responses) from the 

male respondents were higher than the expected 

values for “confident” and “very confident” and the 

female respondents were generally the reverse. 

The reason for this is unclear, although it should be 

noted that there were fewer male respondents than 

female in both professions (approximately 1:3 

male:female respondents from both professions, 

which is representative of the workforce gender 

distribution). Studies indicate that AI and computer 

science are male dominated fields (67), with only 18% 

of authors at AI conferences are considered female 

and that in general, females are less confident in using 

technology than males (68). This may be an issue for 

the radiography workforce, where there is a much 

greater proportion of females than males (57). This is 

in contrast to the radiology workforce demographics, 

where 60% of the workforce are male (69). According 

to the Dunner-Kruger effect (64), self-reported 
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confidence is no measure of competence. A possible 

explanation for the lower confidence scores for 

women in our study may be due to the gender 

confidence gap and the tendency for women to think 

less favourably about their scientific reasoning ability 

and underestimate their performance (65). 

Studies suggest that while there remains a gap in 

female perceived self-confidence in AI technology 

related terminology and tasks, there is no difference in 

performance or accuracy between genders (70). Kim 

Nilsson writes in “Forbes,” that, to mitigate service 

inequalities, it is essential that those professionals 

working in AI are representative of the population for 

which the AI will be used (71). There therefore, may 

need to be more targeted investigation into the causes 

for this disparity to allow timely intervention in 

education, training, mentorship, and representation 

before further integration of AI into this female-

dominated clinical setting. 

The Digital Natives Report (72), a multi-

generational survey of over 1,000 UK business 

decision makers reported that AI is used in the daily 

lives of those born after mid-1995, so-called 

“Generation Z,” the youngest participants in the 

survey. The report also found that those in this age 

category have a hunger for new technology and are 

comfortable using it. The findings from our survey 

support this by the relationship found between the 

diagnostic radiography respondents’ role and the 

perception of adequacy of training available in AI. 

The greatest discrepancy between actual and expected 

responses, as determined by the likelihood ratio, noted 

was in the student radiography cohort, with three 

times as many responses than predicted disagreeing 

with the statement “There is enough training on AI 

currently available for radiographers.” Additionally, 

there was a relationship found between role and 

understanding of AI (yes, no and unsure responses 

available). Interrogation of the responses would 

indicate that student therapeutic radiographers were 

more likely than expected, based on the likelihood 

ratio, to respond that they did not understand AI, and 

less likely to respond “yes” (Supplementary Table 

12). The young professionals, and radiography 

students, of today are ready to embrace technology 

and education providers and employers should be in a 

position to maximise this potential. 

A positive correlation between respondents’ age 

and perceived confidence in AI and years practising 

and perceived confidence in AI was found in the 

radiotherapy responses, indicating that those in the 

younger age categories and those with fewer years’ 

experience felt less confident in AI, which to some 

extent contradicts the literature referenced above. This 

may be due to progressively greater exposure to new 

technologies in the clinical setting over time (61). 

Also a positive correlation was found between 

confidence on AI tems and applications and highest 

academic degree, which suggests the need for a 

customised approach to AI learning provisions for 

different healthcare practitioners depending on the 

level of their prior knowledge, as expected. 

Finally, a correlation was also found between 

diagnostic radiographers’ UK region and confidence 

in the terminology of AI, although interrogation of the 

crosstabulation revealed no apparent pattern 

(Supplementary Table 12). 

LIMITATIONS AND FUTURE RESEARCH 

This exploratory study gathered responses from a 

diverse sample of diagnostic and therapeutic 

radiographers, focussing on the UK radiography 

workforce. The male to female ratio (1:3) and 

diagnostic-to-therapeutic radiographers ratio (4:1) 

within the survey are representative of the actual UK 

radiography workforce. However, given that the 

survey employs convenience sampling (53), the 

results cannot be generalisable to the wider UK 

radiography population. This might relate to selection 

bias in relation to IT literacy and interest and 

knowledge of AI, as the participants were invited 
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from the professional networks of the co-authors, 

many of which are established academics and 

researchers in the AI field. In reality the results of this 

work may possibly underestimate the lack of 

knowledge, skills, and confidence about AI as the 

respondents may come from settings of more 

established AI cultures and environments. However, 

convenience sampling remains an inexpensive 

sampling method for hard-to-reach populations (53). 

The sample size and sampling method is also 

comparable with similar studies in the field of 

radiography in other countries (34, 35). 

Limited free response information was obtained as 

many of the questions required Likert-scale or closed 

type responses. The team is planning focus groups 

with purposive sampling to understand in greater 

depth the educational need and challenges faced with 

the upcoming integration of clinical AI. 

The study is exploratory in nature to set the basis 

for future studies; hence a hypothesis was not used but 

an explicit aim with objectives was stated alluding to 

workforce readiness for AI adoption. 

Finally, the survey instrument used did not employ 

a validated knowledge, skills, confidence scale as the 

team wished to contextualise and customise the 

survey to the priorities and needs of the workforce and 

validated questionnaires do not offer that flexibility; 

instead survey questions were developed by 

professional experts to get the information required to 

inform practise change in educational provisions in 

the near future. 

It is hoped that this study will provide some useful 

material for future studies to build on. 

CONCLUSION 

The results from this survey demonstrate that the UK 

radiography workforce is not yet knowledgeable, 

appropriately skilled, confident, or sufficiently 

educated for full integration of modern AI into the 

clinical setting. Some of the workforce are resorting 

to educating themselves on AI using short courses 

online but there is a need to prioritise formalised 

education and mentoring at all levels of the 

profession. This should not discriminate against those 

who do not have or do not wish to have postgraduate 

qualifications but also should allow flexibility by 

availability of postgraduate and CPD provisions for 

those who wish to keep abreast of technological 

developments after graduation. Radiographers, as 

integral to patient care and as direct consumers of AI 

technologies, need to be educated to critically 

embrace the emerging technologies, to ensure optimal 

patient care and outcomes and to be able to lead the 

way toward an AI-enabled future in health care. 

Radiographers are usually the first and, many 

times, the only point of patient contact in medical 

imaging or radiotherapy service. Consequently, an 

imperative exists for all radiographers to be part of the 

conversation as equal members in the decision making 

and co-designers of any new AI technological 

developments in the clinical setting. In order to 

appropriately engage in these conversations, we need 

to have a workforce where all feel confident and 

adequately educated to be able to have a critical 

appreciation of the technology, its capabilities, 

challenges, and risks. This should come naturally for 

the radiography workforce, which has been 

traditionally trained on the interface between 

technological innovation and patient care. This does 

not mean that radiographers need to become computer 

science experts; but it does mean that they should be 

in position to safely and expertly apply AI solutions in 

clinical practise, be able to meaningfully appraise, 

interpret, and apply the evidence from literature for 

the benefit of their patients and collaborate in the 

design of new AI solutions addressing clinical 

challenges. With this realised, the radiographic 

profession would in a position to procure, use, and 

validate the most clinically useful AI tools for the 

context and patient population within which they 
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operate, and additionally, influence the system 

interfaces to allow for optimal integration into current 

workflows. 
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Appendix 3.2 – An insight into the current perceptions of UK radiographers on the 

future impact of AI on the profession: A cross-sectional survey (Rainey et al., 2022a) 
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ABSTRACT  
Introduction: As a profession, radiographers have always 

been keen on adapting and integrating new technologies. 

The increasing integra- tion of artificial intelligence (AI) 

into clinical practice in the last five years has been met with 

scepticism by some, who predict the demise of the 

profession, whilst others suggest a bright future with AI, full 

of opportunities and synergies. Post COVID-19 pandemic 

need for eco- nomic recovery and a backlog of medical 

imaging and reporting may accelerate the adoption of AI. It 

is therefore timely to appreciate practitioners’ perceptions of 

AI used in clinical practice and their perception of the short-

term impact on the profession.  

Aim: This study aims to explore the perceptions of AI in the 

UK radiography workforce and to investigate its current AI 

applications and future technological expectations of 

radiographers.  

Results: 411 responses were collected (80% diagnostic 

radiographers (DR); 20% therapeutic radiographers (TR)). 

Awareness of AI used in clinical practice is low, with DR 

respondents suggesting AI will have the most 

value/potential in cross sectional imaging and image 

reporting. TR responses linked AI as having most value in 

treatment planning, contouring, and image 

acquisition/matching. Respondents felt that AI will impact 

radiographers’ daily work (DR, 79.6%; TR, 88.9%) by 

standardising some aspects of patient care and technical 
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factors of radiography practice. A mixed response about 

impact on careers was reported.  

Conclusions: Respondents were unsure about the ways in 

which AI is currently used in practice and how AI will 

impact on careers in the future. It was felt that AI integration 

will lead to increased job opportunities to contribute to 

decision making as an end user. Job security was not 

identified as a cause for concern.  

Methods: An online survey (Qualtrics) was created by a 

team of radiography AI experts. The survey was 

disseminated via social media and professional networks 

in the UK. Demographic information and perceptions of 

the impact of AI on several aspects of the radiography 

profession were gathered, including the current use of AI 

in practice, future expectations and the perceived impact 

of AI on the profession 

 

 

 

 

 

Introduction and background  

Artificial intelligence (AI) has attracted attention and 

debate in the imaging community, in particular, the 

emergence of ‘modern AI’ i.e. the use of machine 

learning (ML) and deep learning (DL) technologies in 

medicine, which clinicians are unfamiliar with. The 

practice of radiology as we know it today would not 

exist without technology [1] . However, the 

integration of these modern AI solutions has become 

a divisive topic, with some studies reporting 

clinicians’ hesitancy [2] and others expound- ing the 

merits of a future with AI [3 , 4] . Hesitancy may be 

due to uncertainty of the impact of AI on clinical 

practice, the rapid rate of development of newer 

technologies and the impact this will have on jobs and 

career prospects. AI is already present in healthcare 

and new applications are evolving which have the 

potential to affect clinical practice further [5–8] . 

However, it is yet to be fully established if the use of 

advanced AI will benefit or hinder clinical workflow.  

The current landscape and ‘near-future’ of AI in 

radiography  

There is limited data available on the opinions of 

radiographers on the future of radiography with AI, 

however, several studies report positive attitudes of 

radiographers to a technology enhanced future [4 , 9] 

. Use of technology and change have been an 

accepted part of radiography practice [1 , 9] , 

although modern AI using DL is presenting its own 

unique challenges and it is anticipated that an even 

greater degree of adaptability may be required [6] , 

particularly in the post-COVID era, where additional 

applications of AI are used to support workflows and 

minimise reporting backlogs [10 , 11] .  

Applications of AI are present in current 

radiography practice, ranging from workflow 

assistance to assisted diagnosis and treatment 

planning [3 , 6 , 8 , 12] . These systems are based on 

complex computer algorithms and their 

functionality is not al- ways easily understood by 

the clinical end-users. This may be due, in part, to 

variation in the terminology used in the AI 

literature, with many different architectures and 

performance metrics employed, which clinicians are 

not familiar with [13] . Lack of understanding may 

contribute to clinicians’ heightened awareness of the 

potential system idiosyncrasies, potential for 

machine error, and ethical, legal and trust issues in 

the medical imaging community [4 , 9 , 14–16] .  

Reimagining the future of radiography roles with 

AI  
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It has been predicted that AI will change 

professions, roles will be reimagined, and more 

mechanistic tasks may be entirely replaced [6–14] . 

A negative depiction of AI in the media together 

with dichotomy of opinion regarding AI in the 

literature may influence the perceptions of clinicians 

and may impact the attractiveness of radiology as a 

career [5 , 17 , 18] . However, it is important to note 

that there is a paucity of information in the 

published literature regarding radiographers’ 

perceptions on this topic. Sit et al. [17] , found that 

approximately 50% (n = 242) of UK medical 

students felt that AI would make them less likely to 

consider radiology as a specialism, and that some 

roles would be entirely replaced by AI within their 

life- time. Similar results are reported in Canada and 

America, with 48.6% of respondents responding 

that they ‘felt anxious’ about choosing radiology as 

a specialism [18 , 19] .  

Further understanding is needed about radiographers’ 

perceptions of the impact of AI on radiography as a 

career, to ensure adequate recruitment and retention 

of the workforce. It has been postulated that there 

will be dramatic changes in both healthcare planning 

and job roles [6] ; new roles will emerge in AI 

development and implementation pathways, which 

will have an impact on workforce planning and 

develop enhanced roles. Recent research suggests 

that successful implementation of AI can be 

facilitated by the provision of clinical AI 

‘champions’ [20] i.e. staff who are well educated and 

proficient in the use of AI systems. This is supported 

by professional recommendations from the UK 

Society of Radiographers (SoR) and in a joint 

statement from International Society of 

Radiographers and Radiological Technologists 

(ISRRT) and European Federation of Radiographer 

Societies (EFRS), where generation of new roles for 

the future of the profession is suggested [21 , 22] . 

The formation of new expert groups, involving 

developers, clinical end users and service users in 

each stage of the development process to enhance 

trust in and integration of new technologies has been 

recommended [23] . This has been facilitated in the 

UK with the recent formation of the SoR Arti- ficial 

Intelligence Advisory Group ( 

https://www.sor.org/about/ get-involved/advisory-

groups/artificial-intelligence-advisory- group ). Yet, 

to the authors’ knowledge, there is no current 

research around the ability of radiographers to 

promote, direct and champion the effective 

implementation of AI technologies within clinical 

settings. As the rate of development and 

implementation of clinically useful AI solutions are 

predicted to accelerate [6] , these roles will be 

essential to ensure the safe, efficient integration of AI 

into clinical radiography [20] .  

Shifting the paradigm to radiographer’ 

perceptions in relation to AI  

AI solutions are now trialled increasingly on 

patient-facing tasks e.g. ascertaining patient 

identification, auto-positioning, dose optimisation, 

calculating contrast agent dose and flow rate [1 , 12 

, 24 , 25] . Therefore, one could wonder what the 

future holds for radiographers [26] . Radiographers 

are technologically adept and proficient at coping 

with rapid changes in technology [1 , 25 , 27] . As 

key patient-facing users of the technology, they are 

in a prime position to advise on the most effective 

use of AI and to critically engage with and 

champion new technology. However, many studies 

report that radiographers feel that they are not 

knowledgeable enough with respect to newer forms 

of AI, using machine and deep learning. The results 

of the first part of this survey found that 57% of 

diagnostic radiographers (DR) and 49% of 

therapeutic radiographers (TR) felt that they were 

not adequately trained in AI to be able to 
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implement it in the clinical setting [28] . This 

finding was similar to other national surveys of 

radiographers in the United Arab Emirates (UAE), 

Australia and Ireland [2 , 3 , 9] . Several 

professional guidance documents for radiography 

seek to ensure the workforce is prepared for the 

future with AI, with direction provided for 

educators, employers and pertinent research 

outlined [21 , 22 , 29] .  

Rationale and aims  

This paper reports the second part of a larger survey, 

which attempts to provide a snapshot of the current 

landscape in UK radiography. The main aim is to 

investigate the perceived im- pact of AI on 

radiography as a profession. The objectives are 1) to 

investigate the current perceptions of the UK 

radiographers on practice of AI and 2) explore their 

future expectations of the impact that AI will have on 

radiography as a profession.  

Methods  

Questionnaire design and recruitment of 

participants  

A Qualtrics  e-survey was designed based on the 

available literature, refined, and revised by a team of 

experts in AI in radiography representing clinical, 

academic and research fields. It incorporates themes 

presented in SoR AI Guidance Document for Clinical 

Imaging and Therapeutic Radiography 

Professionals[22] . The study was structured and 

reported to adhere to a Checklist for Reporting 

Results of Internet E-Surveys (CHER- RIES) [30] . 

Ethical permission was gained from City, University 

of London Research Ethics Committee (ETH1920-

1989).  

Participants were recruited via dissemination of an e-

link to authors’ professional networks and publicised 

further on LinkedIn  and Twitter , therefore 

convenience snowball sampling was employed to 

recruit respondents [31] . The survey was open from 

the 12th February to the 6th April 2021.  

On accessing the survey, background information, 

rationale, aims, and objectives were presented to 

participants. Explicit consent was sought by asking 

participants to read the information and click an icon 

to gain access to the survey. Each participant was 

asked to confirm that they were a practicing 

radiographer by selecting their current role from a 

drop-down list. There were no incentives given to 

complete the survey. Participants were permitted to 

navigate back to previous questions, although a full 

overview of responses was not given. Participants 

were permitted to leave and return to the survey to 

maximise completion rate. A final slide notified 

participants when the survey had been submitted.  

The survey instrument  

The full survey was divided into six blocks with 91 

questions in total – (i) demographics, (ii) AI 

knowledge, (iii) skills and confidence in AI, (iv) 

perceptions of the impact of AI on clinical practice, 

(v) expectations of the future of radiography with AI 

and (vi) the effect AI may have on image perception 

and reporting (reporting radiographers only in this 

section of the survey.). This paper presents and 

discusses the results of sections (i), (iv) and (v) of the 

survey, with the remaining presented in a separate 

publication [28] .  

The mixture of multiple choice (yes, no, maybe; yes, 

no, unsure) and Likert scale questions was piloted 

with 12 radiographers, including clinicians, 

academics, researchers, and students. Feedback was 

sought on the technical aspects of the survey, 

ensuring face validity, and understanding and 

appropriate- 

Table 1  
Respondents’ demographic details.  
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  Diagnostic radiography Therapeutic radiography 

Region of UK where 

respondents currently 

work/% 

England 56.7 (n=183) 88.2 (n=67) 

Scotland 30 (n=97) 9.2 (n=7) 

Northern Ireland 11.1 (n=36) 1.3 (n=1) 

Wales 1.9 (n=6) 1.3 (n=1) 

Channel Islands 0.3 (n=1) 0 (n=0) 

 

Years practicing 

radiography/% 

0-2 years 22.7 (n=75) 23.4 (n=18) 

3-5 years 10.6 (n=35) 16.9 (n=13) 

6-10 years 13.9 (n=46) 11.7 (n=9) 

11-20 years 23.0 (n=76) 23.4 (n=18) 

> 20 years 27.5 (n=91) 22.1 (n=17) 

Not practicing 1.2 (n=4) 1.3 (n=1) 

Retired  1.3 (n=4) 1.3 (n=1) 

 

Age range 18-25 years old 19.3 (n=63) 23.7 (n=18) 

26-35 years old 28.4 (n=93) 26.3 (n=20) 

36-45 years old 27.2 (n=89) 25.0 (n=19) 

46-55 years old 12.5 (n=41) 18.4 (n=14) 

56-65 years old 11.3 (n=37) 6.6 (n=5) 

> 65 years old 1.2 (n=4) 0 (n=0) 

 

Highest academic 

qualification 

A-level  14.9 (n=48) 11.8 (n=9) 

BSc 24.2 (n=78) 35.5 (n=27) 

PgCert 19.9 (n=64) 1.3 (n=1) 

PgDip 13.0 (n=42) 6.6 (n=5) 

MSc 19.6 (n=63) 36.8 (n=28) 

PhD/EdD/DProf or equivalent 1.9 (n=6) 3.9 (n=3) 

Other 6.5 (n=21) 3.9 (n=3) 

 

Clinical setting/counts 

(respondents were permitted 

more than one selection) 

University teaching hospital n=195 n=50 

District general hospital n=103 n=19 

Private sector n=12 n=2 

Poly-trauma unit n=30 n=0 

Other n=14 n=5 

Mobile unit n=4 n=0 

I do not work in the clinical setting n=25 n=4 

 

Current role/% Clinical radiographer 39.1 (n=126) 38.2 (n=29) 

Undergraduate radiography student 19.6 (n=63) 13.2 (n=10) 

Advanced practitioner 15.8 (n=51) 17.1 (n=13) 

Radiology/ 

Radiographer/ radiotherapy manager 

6.2 (n=20) 6.6 (n=5) 

Consultant radiographer 4.3 (n=14) 13.2 (n=10) 

Academic in radiography: teaching and research 3.7 (n=12) 0 (n=0)  

Other  3.1 (n=10) 6.6 (n=5) 

Clinical academic/ lecturer:practitioner 3.1 (n=10) 1.3 (n=1) 

Assistant practitioner radiographer 1.2 (n=4) 0 (n=0) 

Research radiographer 0.9 (n=3) 2.6 (n=2) 

Academic in radiography: teaching only 0.9 (n=3) 

 

1.3 (n=1) 

Retired radiographer 0.9 (n=3) 0 (n=0) 

PhD researcher radiographer 0.6 (n=2) 0 (n=0) 
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Industry partner 0.3 (n=1) 1 (n=0) 

 

Diagnostic radiography Sub-

specialism/  

counts (respondents were 

permitted more than one 

selection) 

General radiography inc. emergency, theatre and fluoroscopy n=207  

CT n=100  

Reporting n=63  

MRI n=56  

Education n=54  

Interventional n=44  

Mammography n=32  

Ultrasound  n=25  

Other (diagnostic) n=22  

Radiology manager n=20  

Policy maker/professional advocate n=11  

PACS administrator n=9  

DEXA/DXA n=5  

PET/CT n=3  

PET/MRI n=1  

Therapeutic radiography 

Sub-specialism/  

counts (respondents were 

permitted more than one 

selection) 

Treatment delivery  n=54 

Pre-treatment, simulation, contouring, immobilisation  n=35 

Patient information/ support/ review  n=23 

Treatment planning  n=15 

Management   n=10 

Educator   n=7 

Research   n=7 

Quality assurance/ Quality improvement  n=7 

Other (therapeutic)  n=7 

DEXA/DXA clinical applications  n=0 
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ness of the questions posed, thereby ensuring content 

validity. Post hoc Cronbach’s alpha was calculated to 

confirm internal consistency on the Likert scale 

questions [32] , where acceptable internal reliability 

was found for both professions ( α= 0.792 and α= 

0.852 for DR and TR respectively).  

Available data and data analysis  

Following cleaning of the data (removal of blank 

surveys or where only the demographic section was 

completed), the re- sponses from 411 surveys 

remained for analysis. Of the 411, all data recorded 

was included in the analysis, even if the survey had 

not been fully completed. Data were imported from 

Qualtrics  into IBM SPSS  

(version 23) to complete analysis. Descriptive 

statistics are re- ported for many of the responses 

except one question asking participants to rate the 

areas of radiography where respondents felt there is 

most scope for development. Otherwise, percent- 

ages are reported for questions where a single 

response per par- ticipant is possible and 

counts/frequency for questions allowing multiple 

choices. There were no weightings applied to any in- 

dividual questions.  

 

Demographic information  

Demographic details of respondents are detailed in 

Table 1 .  

There were responses from both professions in all 

UK regions, except therapeutic radiographers in the 

Channel Islands. Most age ranges are represented 

except the over 65 age group in TR group. 

Respondents with a range of years’ experience 

responded to the survey ( Table 1 ).  

The approximate ratio of TR to DR respondents was 

1:4 ( n = 77, n = 332, TR and DR) respectively, 

including stu- dents, broadly representative of the 

UK workforce [33] . There were two respondents 

practicing both DR and TR. Male and female 

radiographers responded to the survey, with a split 

which is broadly representative of the UK workforce 

(1:3, male:female radiographers) [34] . There was 

also an option for non-binary/third gender and ‘prefer 

not to say’ ( n = 2, n = 4 respectively in DR responses 

only, n = 0 for both non- binary/third gender and 

‘prefer not to say’ in TR responses).  

Perceptions of current practice of AI in 

radiography  

Initial questions explored awareness and applications 

of AI in the clinical setting. Many respondents were 

unsure if AI was used currently in their clinical 

setting (43.1% and 44.6%, DR and TR respectively). 

Of the remainder, a greater proportion of TR 

indicated that AI was being used in their practice (TR 

us- ing AI 33.8%; not using AI 18.5%), with the 

converse true for DR respondents (DR using AI 

20.6%; not using AI 35.6%). When asked where AI 

will have the greatest impact, DR respondents 

indicated reporting ( n = 145) with treatment 

planning suggested in TR ( n = 46) ( Fig. 1 a and b). 

Free text an- swers in the DR responses included 

examples of the use of AI e.g. “screening AAA 

(abdominal aortic aneurysm)” and “stroke 

recognition”, “recognition and warnings that systems 

are about to fail”, “education” and “research”. One 

TR respondent com- mented “treatment planning will 

become more complex with the influence of AI”.  
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Participants were asked to identify which areas of 

radiography they thought had the greatest scope for 

the development of AI solutions in the future. 

Participants could select from several options ( Fig. 2 

a and b) and rate them in order of preference, from 5 

– 0 (where 5 represents most preferred to 0 rep- 

resenting least preferred). A mean score is calculated 

from the number of responses for each score in the 

chosen option. The response with the highest mean 

score in the DR responses was ‘CT’ followed by 

‘reporting’, ‘MRI’ and ‘mammography’. The highest 

mean score in the TR responses was in the ‘treatment 

planning/optimisation/adaptive planning’ option, 

followed by ‘contouring’ and ‘image 

acquisition/matching’. Half of the DR respondents 

using the free text option indicated they can only 

 

Fig. 1. a. Which part of daily work do you currently see being influenced by the development and implementation of AI in 

radiography (diagnostic)? (counts), b. Which part of daily work do you currently see being influenced by the development 

and implementation of AI in radiography (therapeutic)? (counts).  
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comment on their own area of expertise ( n = 3, out of 

a total of 6 free text responses). Others commented 

that AI will have scope for dose and image quality 

optimisation ( n = 1), request- ing and vetting ( n = 1) 

and one respondent commented that  

AI has scope for development in all modalities ( n = 

1). There were no free text answers to this question 

in the TR responses.  

Expectations of the impact of AI on the future of 

radiography  

Likert scale questions were used to gain insight into 

the re- spondents’ perceptions on how AI might 

impact radiography and professional practice in the 

future. The majority in both professions indicated 

they agreed that AI would change daily clinical 

practice, with an aggregate agreement (strongly 

agree, agree, somewhat agree) of 79.6% and 88.9% 

for DR and TR respectively ( Fig. 3 ). A less 

definitive perception was noted in response to the 

question of AI reducing radiographers’ workload 

with an aggregate agreement of 43.5% and 54.0% 

 

Fig. 2. a. Which areas of radiography (diagnostic) do you think there is the greatest scope for the development of AI systems 

in the future (mean score)? b. Which areas of radiography (therapeutic) do you think there is the greatest scope for the 

development of AI systems in the future (mean score)?  
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and an aggregate disagreement of 27.3% and 27.0% 

DR and TR respectively ( Fig. 4 ). An even smaller 

degree of difference in agreement and disagreement 

aggregates was noted in response to the statement 

‘AI will make my practice more patient centered’, 

with agreement aggregates of 36.6% and 45.9% and 

disagreement aggregates of 22.4% and 27.0% for DR 

and TR respectively ( Fig. 5 ). The greatest 

proportion of responses to this statement were 

recorded in the ‘neither agree nor disagree’ choice.  

Most respondents agreed that AI would provide more 

consistent patient safety standards in radiography 

(aggregate agreement 68.3%, 73.0%, aggregate 

disagreement 7.1% and 9.6% DR and TR 

respectively) ( Fig. 6 ). Similar results were also 

noted in response to the statement ‘AI will allow for 

more consistent patient care pathways’, with an 

aggregate agreement of 62.5% and 58.6% and an 

aggregate disagreement of 6.0% and  

9.6% DR and TR respectively ( Fig. 7 ).  

Specific statements were presented to each individual 

profession (DR and TR) regarding the impact of AI 

on profession specific areas of practice ( Figs. 8 and 

9 ). The DR respondents were asked to what extent 

they   

(continued on next page…) 
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agreed that ‘AI will improve and standardise image 

quality during data acquisition in diagnostic 

radiography’. The majority (75.7%) selected an 

‘agree’ option, few respondents (6.4%) selected any 

‘disagree’ option ( Fig. 8 a). A greater difference 

between aggregate agreement and disagreement was 

noted in response to the statement ‘AI will improve 

and standardise pre and post processing in diagnostic 

radiography’, with 81.6% agreeing and only 2.2% 

indicating some level of disagreement with this 

statement ( Fig. 8 b).  

In response to a statement regarding AI improving 

and standardising treatment planning in radiotherapy, 

most TR respondents (88.9%) indicated some level 

of agreement, while very few respondents selected 

one of the disagreement options (3.2%) ( Fig. 9 a). 

There were similar levels of agreement regard- ing 

AI improving treatment delivery, with agreement and 

 

Fig. 3. AI will change the daily clinical practice for radiographers (diagnostic and 

therapeutic). (%).  

 

Fig. 4. AI will reduce the workload of the radiographer (diagnostic and therapeutic). (%).  
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dis- agreement aggregates of 81.0% and 6.4% 

respectively ( Fig. 9 b).  

 A series of statements regarding the potential 

specific im- pact on radiography as a profession 

were presented to the respondents. The top three 

choices were the same for both DR and TR, namely, 

‘it will create different specialist roles’, ‘AI will 

support role development’ and ‘the type of work I 

am doing will change’ ( Fig. 10 a, and b). With the 

exception of the ‘other’ option, ‘it will deskill my 

profession’ was the least pop- ular selection across 

both professions ( n = 78, n = 19, DR and TR 

respectively). The ‘other’ option was chosen by 20 

DR respondents and responses indicated that many 

were not sure about the impact AI would have on 

jobs ( n = 5), whilst others felt that AI would 

promote advanced practice and role devel- opment ( 

n = 5). Other responses included indication that AI 

would deskill the workforce ( n = 3) and two 

respondents indi- cated that they felt there would be 

no change in the near future ( n = 2). Of the TR 

responses, two felt that AI would deskill the 

 

Fig. 5. AI will make my practice more patient centered. (%).  

 

Fig. 6. AI will ensure more consistent patient safety standards for radiography (diagnostic and 

therapeutic). (%)  
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workforce, two indicated that AI would allow the 

treatment of more patients and three were concerned 

about the impact that AI would have on patient 

contact.  

Most radiographers were unsure if AI would reduce 

career opportunities, with the ‘neutral’ response 

selected most frequently by respondents from both 

professions (29.6% and 25.4%, diagnostic and 

therapeutic radiography respectively)  

( Fig. 11 ). Fig. 7. AI will ensure more consistent 

patient care pathways for radiography (diagnostic and 

therapeutic). (%).  

Discussion  

Definitions of AI  

The availability of AI solutions for use in radiology 

is increasing [8] but many respondents to this survey 

indicated that they were not aware of AI being used 

in the clinical setting ( Fig. 1 ). This may indicate 

some confusion regarding what we define as ‘AI’. 

Technology enabled assistance is already present in 

many aspects of general clinical practice, for 

instance in the  

 

digitisation and archiving of images to computer 

assisted diagnosis, although many of these 

applications may not represent what we understand 

by ‘modern AI’, such as deep and machine learning 

systems [25] . Supporting this notion, although 

respondents to this survey indicated that they were 

not sure if AI was being used in their daily practice, 

most were able to identify areas where AI was being 

used, for example, in ‘reporting’ and ‘treatment 

planning’. These areas are commonly identified in 

current literature [3 , 8 , 25] . Although there has 

been inconsistent use of the term or concept of AI in 

literature, respondents do appear to have explored 

some AI literature related to those areas which 

interest them, albeit awareness of the uses of AI in 

practice was low in the survey. Radiography 

literature about AI should be clear about how the 

term AI is being used.  
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Fig 8. a and b. Diagnostic radiography: Impact of AI on resultant image quality (acquisition to processing). (%).  
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Figs 9. a and b. AI will improve radiotherapy treatment (planning and delivery). (%).  
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Awareness of potential applications of AI  

AI currently pervades many avenues of 

radiography. A worldwide study [8] identified the 

current state of development and availability of AI 

application in radiology, finding that most 

applications were in MRI (29%), CT (28%), and 

’x-ray’ (17%). DR respondents to this UK survey 

indicated an awareness of potential applications of 

AI in those areas, also ultrasound and 

mammography, which were evident to a lesser 

extent in the worldwide study [8] . UK respondents 

also felt that ‘reporting’ would be an area with 

scope for development in the future. Inclusion may 

reflect that reporting is an area of focus within the 

scope of reporting radiographers in the UK. It is 

possible that the sub specialism of the respondents 

impacted on the choice of preference options, 

indeed, several respondents stated that they were 

only aware of developments in their immediate 

field.  

The responses from the TR cohort appeared to 

agree with other research [3] , with respondents 

indicating plan optimisation, contouring and plan 

checking and quality assurance were areas which 

show scope for the future [3] . This suggested that 

TR respondents were also exploring the evidence 

with regards to advances in their field.  

Perceived impact on radiographer workload  

Most respondents indicated that they believed daily 

clinical practice would change with the 

introduction of AI ( Fig. 3 ) and radiographers’ 

workload would decrease. This reflects the results 

of other surveys [4 , 16] . Respondents therefore 

appeared to agree that AI would ‘ease’ the work of 

the radiographer [4] . This perception may be 

influenced by claims made in literature and 

companies developing AI solutions, but a word of 

caution: whilst it is predicted that AI may allow for 

individual patient time efficiencies, with AI 

speeding up or taking over tasks, this may be 

counterbalanced by increased patient throughput, 

as found in study conducted in the Netherlands in 

2017 [27] . In- deed, there is some controversy 

over what exactly AI can do to help ser vice deliver 

y in clinical departments, with suggestion that AI 

may cause an increase in false positives which will 

re-  
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(counts).  

quire review, or decreased trust causing the 

clinician to ‘re-do’ the interpretation of the AI [27] 

.  

Perceived impact on radiography practice: care, 

safety, service delivery  

Despite AI literature expounding the merits of AI 

in reallocating time to patient care [1 , 35] , 

respondents to the UK sur- vey indicated that they 

were unsure of the impact of AI on the patient-

centeredness of radiography practice.  

There is the hope that the integration of AI will 

foster more streamlined, consistent practice [35 , 

36] but it is important to note that consistent 

practice is not necessarily patient-centred care, 

tailored to the needs of the person, their family and 

carers. AI may target the mundane, repetitive work 

of the radiographer, allowing clinicians to perform 

the tasks which are not automatable, for instance 

patient contact and care [35] , time to talk with 

patients and families, time for professional study, 

education, and lifelong learning. All are important 

points to focus on because it has been reported that 

radiographers felt the intro- duction of advanced 

technology meant some staff are using less of their 

knowledge for their professional work [27] . Care 

should be taken to ensure radiographers do not 

experience ‘burn out’, decreased job satisfaction 

and loss of morale in response to an increased 

examination speed and patient throughput [1] .  

UK radiographers perceived that AI would have a 

positive impact on standardising safety, image 

quality, image processing, contouring/planning and 

treatment delivery. These are areas of practice 

 

Fig 10. a. Influence of AI on diagnostic radiography jobs in the near future (counts). Fig 10 . b. Influence of AI on therapeutic 

radiography jobs in the near future  
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where there is already some impact from AI and 

UK respondents may, therefore, be noticing the 

benefits of the technology. Similarly, for example, 

a recent survey of Ghanian radiographers indicated 

that 68.8% of respondents felt that AI would allow 

dose reduction whilst maintaining image quality 

[4] . Also adding to evidence of positive 

perceptions, a survey of therapeutic radiographers 

in Australia found that 66% of respondents felt that 

automation in radiotherapy planning would change 

the primary tasks of some aspects of professional 

practice and 55% of respondents felt it would allow 

staff to accomplish the rest of their work more 

effectively [3] .  

Potential impact of AI on workflow optimisation  

 Perceptions of the impact of AI in clinical 

radiology work- load appear to vary worldwide. 

A study in the UAE reported that 94.8% of 

respondents disagreed that AI will be used in im- 

age production and other applications. This is at 

odds with the results of this UK survey; perhaps 

related to the understanding of the international 

respondents, where 40% reported they had no 

idea about AI and 30% indicating they have only 

a basic understanding [2] . This uncertainty is 

reflected at a period when, considering the recent 

global COVID-19 pandemic, there is still much 

debate about the future ser vice deliver y of 

health- care; with remote care, infection risk, 

increasing patient numbers and staffing shortages 

driving change [10 , 11] . Hesitancy about the use 

of AI is, however, not unanimous, with a 

contrasting international study reporting that only 

10% of respondents indicated that AI would have 

no image-based role [16] . Respondents to this 

UK survey were clear that they did view AI as 

having capability to optimise workflow.  

Perceived impact on workforce recruitment and 

radiography careers  

The prevalence of neutral responses to some 

questions suggests that UK radiographers are 

unsure how AI might impact on radiography in 

terms of recruitment and the appeal of the 

profession to prospective professionals. 

Responses to this survey indicate that 

 

Fig. 11. The implementation of AI will reduce career opportunities in radiography (diagnostic and 

therapeutic). (%).  
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respondents are optimistic about the future of the 

profession using AI, with many indicating that 

they feel that AI will create different specialist 

roles and that AI will support role development.  

There have been similar findings among 

radiologists [2] , where 66% of respondents 

indicated that they were ‘excited’ about a future 

with AI and radiographers’ attitudes to AI in 

Ghana where 87.4% of radiographers responded 

that AI would have a positive impact on medical 

imaging practice [4] . With respect to career 

progression, post-   

 

registration therapeutic radiographers in Australia 

also reported that 65% of respondents felt that 

automation in radiotherapy planning would create 

new advanced practice roles [3] .  

Previous concern regarding the negative impact 

that AI might have on the future of radiology, has 

been modified recently. This also appears to be the 

case for radiographers, with evidence from the 

literature including the results of this UK sur- vey 

indicating that the advent of AI in radiography may 

present diverse career opportunities, from 

technology development to clinical ‘champions’. It 

is encouraging to note that job security was not 

identified as a cause for concern.  

Limitations and future research  

Respondents to the survey were UK radiographers, 

there- fore, findings will not be representative of 

the worldwide radiographer population where 

educational provisions, clinical practice, roles 

within radiography may vary.  

The response rate of DR and TR was representative 

of the ratio of DR and TR registered in the UK, 

accordingly there were a smaller number of 

respondents in the TR category. Similarly, there 

were fewer respondents who identified themselves 

as male, although the proportion of male: female 

respondents was also broadly representative of the 

UK radiography population.  

We propose that to counter the limitations of an 

exploratory survey method, future international 

focus groups should be carried out, using purposive 

sampling techniques, to gain further understanding 

of radiographers’ perceptions on the topics ad- 

dressed by this paper.  

 

Conclusions  

Respondents were unsure of the impact of the 

increasing use of AI in clinical practice and 

uncertain about its future impact on radiography 

careers, but a majority agreed that AI will have an 

impact on the daily clinical practice of the 

radiographer. This uncertainty is reflected at a 

period when, considering the recent global 

COVID-19 pandemic, there is debate about the 

future ser vice deliver y and needs of healthcare. 

Four main conclusions are drawn from the UK 

survey:  

First, there is awareness of the ways in which AI 

technology is used currently and could potentially 

be used in the future. ‘Reporting’ in diagnostic 

radiography and ‘treatment plan- ning’ in 

therapeutic radiography were areas which 

respondents thought were heavily influenced by 

AI. Respondents also felt those areas would be 

further developed in the future.  

Second, because respondents to this survey were 

unsure of the impact of AI on their career, it was 

unclear to them whether this will herald a new type 

of radiographer with different roles, or whether 

certain areas of the profession will gradually disap- 

pear, and new ones will emerge, defined by 

patients’ clinical need and technological 

innovation. Only a small minority of respondents 
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to this survey indicated that AI would deskill their 

jobs.  

Third, radiographers may be unsure of the future 

with AI and the impact this will have on patient 

centredness, but the majority agree that AI will 

allow for standardisation of some elements of 

patient care and safety as well as the technical 

aspects of the radiographers’ work. It is essential 

that this is considered with a critical awareness of 

the functions and capability of AI, to allow for 

quality of service to be maintained or improved.  

Finally, the survey suggests that AI is being used 

actively in medical imaging and radiotherapy. It is 

vital and timely for radiographers, as the key 

professionals who bridge the knowledge and 

practice between patients and technology, to shape 

a future with AI. This can be made possible by 

empowered members of the profession who at 

current times of change re-imagine clinical practice 

in the future, innovate, and secure the position of 

radiography as a technology adept profession with 

future-ready professional roles.  
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Appendix 3.3 – UK reporting radiographers’ perceptions of AI in radiographic image 

interpretation & Current perspectives and future developments (Rainey et al., 2022b) 
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a b s t r a c t 
Introduction: Radiographer reporting is accepted practice in the UK. With a national shortage of radiographers and radiologists, artificial intelligence (AI) 

support in reporting may help minimise the backlog of unreported images. Modern AI is not well understood by human end-users. This may have ethical 

implications and impact human trust in these systems, due to over- and under-reliance. This study investigates the perceptions of reporting radiographers about 

AI, gathers information to explain how they may interact with AI in future and identifies features perceived as necessary for appropriate trust in these systems. 
Methods: A Qualtrics® survey was designed and piloted by a team of UK AI expert radiographers. This paper reports the third part of the survey, open to 

reporting radiographers only. 
Results: 86 responses were received. Respondents were confident in how an AI reached its decision (n ¼ 53, 62%). Less than a third of respondents would be 

confident communicating the AI decision to stakeholders. Affirmation from AI would improve confidence (n ¼ 49, 57%) and disagreement would make 
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respondents seek a second opinion (n ¼ 60, 70%). There is a moderate trust level in AI for image interpretation. System performance data and AI visual 

explanations would increase trust. 
Conclusions: Responses indicate that AI will have a strong impact on reporting radiographers’ decision making in the future. Respondents are confident in how 

an AI makes decisions but less confident explaining this to others. Trust levels could be improved with explainable AI solutions. 
Implications for practice: This survey clarifies UK reporting radiographers’ perceptions of AI, used for image interpretation, highlighting key issues with AI 

integration. 
© 2022 The Author(s). Published by Elsevier Ltd on behalf of The College of Radiographers. This is an open access article under the CC BY license 

(http://creativecommons.org/licenses/by/4.0/). 

Introduction and 

background 

The NHS is under significant pressure from increasing 

service demand and decreasing staffing levels. This is 

particularly true in 

diagnostic radiology where staffing levels are not 

increasing in parallel to service demand.1 Many 

clinicians are already experiencing burn out and 

fatigue, which may become more problematic in the 

post pandemic healthcare setting.1e3 

Radiographer reporting 

Radiographer reporting allows for timely reporting of 

images with a high accuracy at decreased cost.4e6 The 

Getting It Right First 

Time (GIRFT) report recommends training more 

reporting radiographers and using AI to support some 

aspects of image interpretation in the future.7 This is 

echoed in ‘Diagnostics: Recovery and Renewal’ 

(2020)3 which recommends that a minimum of 50% of 

plain radiographic images should be reported by a 

radiographer. However, with an average radiographer 

vacancy rate of 10.5% in the UK,8 the report 

recognises that this aim will require the training and 

recruitment of an additional 4000 radiographers. The 

NHS, in its Long-Term Plan also promotes the role AI 

and advanced technologies could play in the future of 

healthcare.9 Computers have been used in image 

interpretation for many years, however new systems 

using advanced technologies are now more prevalent 

clinically, enabling improved performance with 

reduced false positive rates compared with earlier 

human programmed machines.10,11 However, the 

complexity of these systems mean that the system 

processes are not transparent, sometimes even to the 

developer.12,13 

Computer vision 

A paradigm shift in computer vision occurred in 2012 

when a convolutional neural network (CNN) won the 

ImageNet challenge for identification of common 

objects, far outperforming its next nearest 

competitor.14 The use of complex AI models, such as 

CNNs, in medical imaging presents several unique 

challenges, such as the lack of transparency in how 

the system reaches its decisions. To counteract this, 

there have been attempts to explain the way in which 

these systems reach their diagnosis, such as the use of 

heatmaps, overall system performance, region of 

interest identification, and confidence in prediction for 

a particular image.15e19 The format of end-user 

interfaces is particularly important for radiographers 

and radiologists. There is a reasonable expectation 

that when AI is implemented into care pathways in 

radiology, the systems can support greater interaction 

between the clinical reporter and patient at the time 

and point of care.20 

Barriers to successful implementation of AI in image 

interpretation 

There are several potential barriers to the effective 

implementation of AI systems, including clinical 

http://creativecommons.org/licenses/by/4.0/
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practitioners' trust, system operating knowledge, 

ethical issues and integration of the AI into existing 

infrastructure.21e26 As technology translates from 

concept into a clinically useful product, it is important 

to recognize and address the concerns and opinions of 

end users of these systems, as central to the successful 

adoption and implementation of these technologies. 

There has been increasing focus on involving 

clinicians in the development of AI systems as 

‘domain experts’ to ensure clinical relevance and 

usefulness.27,28 The perceptions of clinical end-users 

about AI should be understood before AI comes into 

widespread use. 

Adequate levels of trust and awareness of potential 

automation bias are some areas which are being 

discussed as central to AI adoption in the 

literature.29e31 The clinician, as the end-user should be 

able to interact effectively with the AI whilst 

exercising due caution. Methods to interpret and 

explain the functionality of the AI have been 

proposed to mitigate against either over- or 

underreliance on the system.15,32,33 Interpretable AI 

refers to the understanding of the system itself 

therefore allowing the end-user to understand the 

mechanics behind its decision making.17 This can be 

difficult in modern AI where some of the 

mathematical and statistical processing is 

unintelligible, even to the developer. Explainable AI 

refers to methods whereby the user can be provided 

with an indication of how the system reached its 

decision in a human-comprehensible way, for 

instance, by a colour-coded overlay of decision 

confidence levels on a radiographic image.15 Impact of 

AI on clinicians’ decision making 

Studies on the use of clinical decision support tools in 

different fields of health care have found that a user's 

response to the information gained from the AI may 

differ. This depends on several factors, such as the 

experience level of the user and the complexity of the 

task.31,32 Excessive trust, decreased levels of 

experience and increased complexity of a task have 

been shown to increase the likelihood of the clinician 

changing their mind from their initial decision to 

agree with the AI.29e31 Whilst studies are reporting 

impressive and even human-exceeding performances 

of AIenabled tools when used in image interpretation 

tasks,34,35 no system in use or development is flawless. 

Incorrect automated diagnoses have been shown to 

negatively impact the decision making of expert and 

non-expert clinicians alike.31 It is therefore important 

to ensure all clinicians exercise appropriate caution 

and own judgement and use AI to assist and augment, 

but not to solely guide decision making.30,32 

Rationale and aims 

This survey aims to provide insight into the current 

use of AI in image interpretation by reporting 

radiographers in the UK and to identify how they 

currently interact, or expect they will interact, with 

this technology, in the future 

Methodology 

Questionnaire design and recruitment of participants 

A Qualtrics® survey was designed, based on the 

available literature and with input from the Society of 

Radiographers (SoR) AI Working Group, 

incorporating themes from the SoR AI Guidance 

Document for Clinical Imaging and Radiotherapy.36 

The design and reporting of the survey was based on 

the Checklist for Reporting Results of Internet E-

Surveys (CHERRIES).37 Ethical permission was 

gained from City, University of London Research 

Ethics Committee (ETH1920-1989). The entire 

survey was open to all UK radiographers, although 

the sub-section reported here was open to reporting 

radiographers only. 
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The survey link was distributed on professional social 

media (LinkedIn®/Twitter®) and via authors’ 

professional networks. It was available from the 12th 

February to 6th April 2021. 

The survey instrument 

There were eight questions in this part of the survey, 

focussed specifically on AI as used in radiographer 

reporting. There were different question types offered: 

multiple choice, Likert scale and some free text 

options. 

Validity and reliability of the survey instrument 

The survey was piloted on 12 radiographers with 

differing professional backgrounds (including 

reporting) with a range of years’ experience. Feedback 

was sought on the relevance of the survey contents, 

readability, and technical aspects of the survey design, 

therefore ensuring face and content validity. 

Post-hoc Cronbach's alpha was calculated to ensure 

internal consistency on the Likert scale questions (a¼ 

0.869). 

Data analysis 

Data analysis was conducted on IBM SPSS® (version 

23). Results are reported using descriptive statistics. 

Statistical analyses were conducted to investigate any 

correlations between variables. Data was gathered on 

the perceptions of individuals and therefore 

considered to be either ordinal or nominal only. Non-

parametric tests were therefore used for the purposed 

of analysis. Spearman's rho and Kendall's tau were 

used to investigate any relationship between ordinal 

data. Chi square likelihood ratio was used to 

investigate correlations in nominal data, as the data 

violated assumptions necessary for Pearson's Chi 

square test to be used. 

Results are represented graphically in percentages for 

questions where the participant was only permitted to 

select one response and in counts, where multiple 

responses were possible. Weightings were not applied 

to any questions. Error bars are included to represent 

the standard error of proportion. 

Results 

There were 411 full survey responses after removal of 

blank surveys and surveys which respondents did not 

give consent to data analysis. Incomplete surveys 

were included in the analysis to contribute to the final 

results and as an acknowledgement that not all 

reporting radiographers would be in position to 

answer all of the questions due to varying personal 

and professional experiences. 

Demographic information 

Full details of respondents’ demographic information 

are given in Table 1. Representation from each 

profession was broadly proportional to the UK 

radiographer population (diagnostic radiography 

(DR): therapeutic radiography (TR); 4:1).38 

Statistical analyses 

Independent variables of years' of clinical experience, 

level of highest academic qualification and current use 

of AI in reporting practice were compared to 

dependent variables given in the paragraphs below. 

Spearman's rho or Kendall's tau (ordinal data) and Chi 

square Likelihood ratio (nominal data) were used to 

investigate any relationships. No correlations were 

found between any variable tested. 

Image reporting and use of AI as part of respondents’ 

clinical role 

This section of the survey was open to DR only. Of 

the total respondents, 86 indicated that image 

reporting was a part of their role; this is a 

representative sample as it is more than the reporting 

radiographers currently registered with the Society 
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and College of Radiographers (SCoR) respective 

specialist interest group (n ¼ 70), although it is 

acknowledged that some reporting radiographers are 

not registered with SCoR. If not a reporting 

radiographer, respondents exited the survey. Of the 

remaining respondents, only 10.5% (n ¼ 9) were 

currently using AI as part of their reporting role. 

Understanding of how an AI system reaches its 

decision 

Reporting radiographer respondents were asked if 

they understood how an AI makes its decisions. 

61.6% (n ¼ 53) of respondents agreed by selecting 

any of the ‘agree’ options (‘aggregate agreement’), and 

29.1% (n ¼ 25) selecting any of the ‘disagree’ options 

(‘aggregate disagreement’). The most popular 

selection was the ‘somewhat agree’ option (n ¼ 34, 

39.5%) (Fig. 1). 

Respondents’ confidence in explaining AI decisions 

The majority of respondent disagreed that they would 

be confident in explaining the AI decision to other 

healthcare practitioners (59.3% (n ¼ 51) aggregate 

disagreement; 27.9% (n ¼ 24) aggregate agreement). 

Similarly, only 29.1% agreed that they would be 

confident explaining AI decisions to patients and 

carers (n ¼ 25). No respondents indicated strong 

agreement with either statement (Fig. 2). 

Impact of AI on diagnosis/professional opinion 

Respondents indicated that an affirmation from AI 

would serve to increase their certainty in their 

diagnosis (n ¼ 49, 57%), while disagreement from an 

AI system would cause them to feel less certainty (n ¼ 

29, 33.7%). A large proportion of respondents stated 

they would seek a second opinion when AI disagrees 

with them (n ¼ 60, 69.8%) (Fig. 3). 

Factors influencing trustworthiness of AI in image 

interpretation decision support 

Respondents were asked to indicate their trust in AI 

for diagnostic image interpretation decision support 

on a 0e10 scale (0 ¼ no trust and 10 ¼ absolute trust), 

resulting in a mode of 5, mean of 5.28 and median of 

5 (Fig. 4). 

Additionally, respondents were asked to choose from 

a list of suggestions of features to increase their trust 

in a clinical AI system. Respondents could select all 

applicable options (Fig. 5). An indication of the 

‘overall performance/accuracy of the system’, ‘visual 

explanation’ and ‘indication of the confidence of the 

system in its diagnosis’ were the most popular 

choices. One respondent made an additional 

suggestion using the ‘other’ option: 

‘I would want to know that the system would be 

equally accurate in dismissing insignificant findings 

and not generating additional work’. 

The other two respondents who inputted text using the 

‘other’ function did not add any suggestions: 

‘Do not 

understand’. 

‘Unsure’. 

Discussion 

Image reporting 

Many respondents (n ¼ 77, 89.5%) indicated that they 

were not utilising AI as part of their reporting role. 

However, an international technography study found 

that 70% of AI applications were focused on 

‘Perception and Reasoning’, including feature 

extraction, diagnosis and highlighting of specific 

features.11 This slow pick up of AI in reporting and 

image interpretation might relate with the multitude of 

challenges for AI adoption, as described in 

introduction, and the lack of reliable evidence on AI-
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enabled system accuracy and performance from 

prospective studies. With shortages of both 

radiologists and radiographers,1,8 the impact of the 

COVID-19 pandemic on imaging services and 

staffing levels39,40 and the aspirations of the NHS long 

Term plan,9 there will be more scope for the 

integration of these systems to assist with diagnostic 

imaging decision making. This demand, coupled with 

the availability and relative simplicity of plain 

radiographic images may mean that this area will be 

targeted for continued development of AI systems.10 

International consensus among radiologists is that AI 

will aid diagnostic accuracy, with systems acting as a 

second reader.24,41,42 Reporting radiographer 

respondents, in contrast, feel that interpretation should 

remain a mainly human task; perhaps influenced by 

their professional background of values-based 

radiography43 and humanistic models of care assuring 

that care is tailored to the person during the 

acquisition of images.23,44 

Table 1 
Respondents’ demographic details. 

 

  Diagnostic radiography Therapeutic radiography 

Region of UK where 

respondents 

currently work/% 

England 56.7 (n=183) 88.2 (n=67) 

Scotland 30 (n=97) 9.2 (n=7) 

Northern Ireland 11.1 (n=36) 1.3 (n=1) 

Wales 1.9 (n=6) 1.3 (n=1) 

Channel Islands 0.3 (n=1) 0 (n=0) 

 

Years practicing 

radiography/% 

0-2 years 22.7 (n=75) 23.4 (n=18) 

3-5 years 10.6 (n=35) 16.9 (n=13) 

6-10 years 13.9 (n=46) 11.7 (n=9) 

11-20 years 23.0 (n=76) 23.4 (n=18) 

> 20 years 27.5 (n=91) 22.1 (n=17) 

Not practicing 1.2 (n=4) 1.3 (n=1) 

Retired  1.3 (n=4) 1.3 (n=1) 

 

Age range 18-25 years old 19.3 (n=63) 23.7 (n=18) 

26-35 years old 28.4 (n=93) 26.3 (n=20) 

36-45 years old 27.2 (n=89) 25.0 (n=19) 

46-55 years old 12.5 (n=41) 18.4 (n=14) 

56-65 years old 11.3 (n=37) 6.6 (n=5) 

> 65 years old 1.2 (n=4) 0 (n=0) 

 

Highest academic 

qualification 

A-level  14.9 (n=48) 11.8 (n=9) 

BSc 24.2 (n=78) 35.5 (n=27) 

PgCert 19.9 (n=64) 1.3 (n=1) 

PgDip 13.0 (n=42) 6.6 (n=5) 

MSc 19.6 (n=63) 36.8 (n=28) 

PhD/EdD/DProf or equivalent 1.9 (n=6) 3.9 (n=3) 

Other 6.5 (n=21) 3.9 (n=3) 

 

University teaching hospital n=195 n=50 
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Clinical 

setting/counts 

(respondents were 

permitted more than 

one selection) 

District general hospital n=103 n=19 

Private sector n=12 n=2 

Poly-trauma unit n=30 n=0 

Other n=14 n=5 

Mobile unit n=4 n=0 

I do not work in the clinical setting n=25 n=4 

 

Current role/% Clinical radiographer 39.1 (n=126) 38.2 (n=29) 

Undergraduate radiography student 19.6 (n=63) 13.2 (n=10) 

Advanced practitioner 15.8 (n=51) 17.1 (n=13) 

Radiology/ 

Radiographer/ radiotherapy manager 

6.2 (n=20) 6.6 (n=5) 

Consultant radiographer 4.3 (n=14) 13.2 (n=10) 

Academic in radiography: teaching and research 3.7 (n=12) 0 (n=0)  

Other  3.1 (n=10) 6.6 (n=5) 

Clinical academic/ lecturer:practitioner 3.1 (n=10) 1.3 (n=1) 

Assistant practitioner radiographer 1.2 (n=4) 0 (n=0) 

Research radiographer 0.9 (n=3) 2.6 (n=2) 

Academic in radiography: teaching only 0.9 (n=3) 

 

1.3 (n=1) 

Retired radiographer 0.9 (n=3) 0 (n=0) 

PhD researcher radiographer 0.6 (n=2) 0 (n=0) 

Industry partner 0.3 (n=1) 1 (n=0) 

 

Diagnostic 

radiography Sub-

specialism/  

counts (respondents 

were permitted more 

than one selection) 

General radiography inc. emergency, theatre and 

fluoroscopy 

n=207  

CT n=100  

Reporting n=63  

MRI n=56  

Education n=54  

Interventional n=44  

Mammography n=32  

Ultrasound  n=25  

Other (diagnostic) n=22  

Radiology manager n=20  

Policy maker/professional advocate n=11  

PACS administrator n=9  

DEXA/DXA n=5  

PET/CT n=3  

PET/MRI n=1  

Therapeutic 

radiography Sub-

specialism/  

counts (respondents 

were permitted more 

than one selection) 

Treatment delivery  n=54 

Pre-treatment, simulation, contouring, immobilisation  n=35 

Patient information/ support/ review  n=23 

Treatment planning  n=15 

 Management   n=10 
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Educator   n=7 

Research   n=7 

Quality assurance/ Quality improvement  n=7 

Other (therapeutic)  n=7 

DEXA/DXA clinical applications  n=0 

 

 

Figure 1. ‘I understand how an AI system reaches its 

decisions’ (n ¼ 86) (Error bars represent the standard 

error of proportion). 

Figure 2. ‘I would be confident in explaining AI 

decisions to ‘ … other health professionals’ and ‘ … 

service users and carers’ (n ¼ 86) (Error bars represent 

the standard error of proportion). 

 

 

Understanding of how an AI system reaches its 

decision 

The level of clinicians' understanding of AI warrants 

further investigation. Studies report that radiographers 

perceive they have little confidence in modern AI 

terminology and feel they have no skill in clinical 

AI.45e47 It should be noted, however, that ‘confidence’ 

is a subjective feeling rather than indication of the 

likelihood of the decision being correct48 i.e. 

confidence may not be an indicator of 

competence.49,50 Many respondents to this study 

indicate understanding in how AI makes its decisions 

(n ¼ 53, 61.6%). This may be due to participants to 

this section of the survey having higher levels of 

academic achievement; a correlation found in the first 

part of this survey.47 These conflicting reports paint a 

confusing picture, and any lack of understanding may 

act as a barrier to implementation and use of AI in 

clinical departments.23 The contextual nature of results 

will persist for as long as AI implementation in 

medical imaging is heterogenous between different 

sectors, modalities and functions.51 

Confidence in explaining AI decisions 

Despite indicating understanding of AI, less than 

30.0% of the respondents felt that they would be 

confident in explaining AI decisions to healthcare 

professionals or patients/carers. Understanding how 

the AI made its decision may make it easier for the 

clinician to explain the decision to others, although 

there is need for balance as more transparent models 
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generally exhibit poorer performance, due to 

decreased complexity.32,52 

 

Figure 3. Potential impact of AI feedback on 

reporting radiographers' decision making (n ¼ 

86)(Error bars represent the standard error of 

proportion). 

 

 

Figure 4. On a scale of 0e10, how trustworthy do 

you consider AI systems for use in image 

interpretation decision support (0 ¼ no trust, 10 ¼ 

absolute trust) (n ¼ 86) (Error bars represent the 

standard error of proportion). 

Impact of AI on diagnosis/professional opinion 

It is imperative to understand how AI will impact 

human decision making in order to assure users of 

the safe deployment of systems. Automation Bias 

(AB) is a potential risk which occurs when over-

reliance on a decision support tool causes the user 

to change their mind from a correct to an incorrect 

diagnosis. Bond et al. (2018)31 and Goddard et al. 

(2014)30 report the impact of AB in relation to the 

experience level of clinicians using AI in ECG 

reading and prescribing amongst physicians, 

respectively and found that more experienced 

clinicians are less likely to change their mind from 

their initial decision, but are equally susceptible to 

AB. In this study, respondents indicated that an 

agreement from an AI system would increase their 

certainty in their interpretation (n ¼ 49, 57.0%), 

while disagreement from an AI would cause them 

to seek a second opinion (n ¼ 60, 69.8%). 

We might expect that these are conservative 

findings as the evidence in the literature indicates 

that reporting radiographers, as experienced 

clinicians, are less likely than clinicians with less 

experience to change their mind. 

Factors influencing trustworthiness of AI in image 

interpretation decision support 

Lack of trust has been cited as a potential barrier to 

the implementation of AI in the clinical 

setting,28,33,53 although excessive trust may also lead 

to an increased likelihood of the clinician changing 

their mind from their initial decision.30 Adequate 

trust levels are needed to ensure beneficial use and 

management of expectations of end-users. The 

respondents to this survey reported a mean trust of 

five out of ten, indicating neither a lack of, nor 

excessive trust. This is in contrast to a study 

examining attitudes of radiologists, IT specialists 

and industry to AI, where only a quarter of 

respondents felt that they could trust results from an 

AI system53 but this might relate to interpretation of 

more complex images, like those from cross-

sectional imaging (MRI and CT). 

Respondents to this survey were asked which 

features of an AI system may offer assurance of 
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trustworthiness. The most popular choices were 

‘indication of the overall performance of the 

system’ (n ¼ 76), and ‘visual explanation’ (n ¼ 67). 

Two main methods to increase trust in AI have 

been proposed in the literature e (i) model 

explainability and (ii) interpretability. 

Explainability refers to ‘human-comprehensible’ 

methods to reveal how the decision was reached 

while interpretability is the knowledge of the user 

into how the system works.17 Interpretability of 

modern AI systems can be difficult, due to system 

complexity.13,15 Visual explanations, e.g. colour-

coded overlays, have been proposed as means to 

explain the focus of the system in making its 

decision,15,16 the desire for which has been 

supported by the responses to this survey. However, 

caution is recommended with the use of explainable 

AI e if the prediction can be incorrect, the 

explanation can be incorrect, leading to overinflated 

trust in the system.19 Explainability skeptics argue 

that the performance of the system may be 

sufficient to gain end-users’ trust.33,54 Respondents 

to this survey may agree with this sentiment, 

indicating that they would have greatest desire for 

the overall performance data to be supplied. 

However, performance indicators may be biased 

too, as human errors might creep into these 

indicators as well depending on what is the 

reference level for these measurements. 

 

Limitations 

The respondents to this survey were recruited via 

convenience sampling and therefore may not be a 

true reflection of the UK radiographer population. 

This sampling method has been used in other 

comparable studies in this area, with which 

comparisons are made44,46 (Abuzaid et al., 2020; 

Ryan et al., 2021). 

There are currently 70 SoR members enrolled to 

use an online networking space for reporting 

radiographers, although estimates bring the number 

of reporting radiographers to be much higher, with 

264 UK reporting radiographers responding to a 

survey by Milner et al. (2016).55 There were 86 

reporting radiographers responding to this section 

of the survey. The results may therefore not be 

representative of the target population as a whole, 

however with the lack of definitive data on the 

number of practicing reporting radiographers in the 

UK this is difficult to determine. 

Further investigation is required to quantify 

automation bias and trust in radiographers of all 

experience levels to provide targeted intervention 

suggestions. Focus groups or interviews may allow 

for richer perception data to be obtained with an 

inductive approach. 

The survey questions were developed by a team of 

UK radiography AI experts to elicit specific 

information pertinent to the focus of this study. A 

validated scale did not exist in the literature to best 

capture the perceptions of the target population. 

Conclusions 

While many reporting radiographers are not 

currently using AI as part of their reporting role, 

this may change in the near future. Radiographers 

responding to this survey are confident in 

understanding how an AI system reached its 

decisions but less confident in explaining the 

process to patients and other healthcare staff. This 
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may illustrate that confidence does not equate to 

competence and therefore education of the 

workforce and increased transparency of the 

systems are suggested. As the use of AI becomes 

more prevalent, consideration should be given to 

the expectations of patients and service users in the 

role of AI in radiographic image interpretation. 

Developers should engage with clinicians to ensure 

they have the information they need to allow for 

appropriate trust to be built. Awareness of how 

clinicians interact with an AI system may promote 

responsible use of clinically useful AI in the future. 
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 Appendix 3.4 – Ethics approval 

 

This study was approved by City, University of London as a small-scale study, using 

different questions.  The general concept of the study was approved, and an extension and 

amendment were granted as below: 

Email communication from Dr C Malamateniou to Ethics panel for amendment (dated 21st 

January 2021): 

 

Dear Liam, 

I hope you and yours are well. 

I am emailing you as you are the chair of the radiography proportionate review committee. 

You might remember that we have submitted a survey last year Ethics application ETH1920-

0591 to assess the knowledge, perceptions and expectations of radiographers on the use of AI 

in medical imaging. This was a master's project for one of our students (Sofia Torre) and ran 

in a small sample size as a pilot study in the UK-the radiography 2020 conference 

participants. 

We are now requesting an extension to this study Ethics application ETH1920-1989 

(extension). 

This is to extend the horizon of this project until June 2021 to collect data as part of a 

collaborative project of the AI WG at the Society and college of radiographers, that I am 

leading and that University of Ulster is collaborating with Dr Sonyia McFadden, Mrs Clare 

Rainey as Co-Is. 

The aim, rationale, objectives are as per original project but the following things need to be 

updated: 

1) period of running (until June 2021) 

2) sample size (this time we seek up to 1000 answers from the UK radiography work force, to 

give us a goof idea of all the disciplines with diagnostic, therapeutic radiography and all other 

subspecialties e.g. sonographers) 

3) questionnaire modification (added one for the radiotherapy workforce as well, which is 

currently being finalised by Kwun-Ye and Spencer Goodman, and we also extended the 

questions to ensure the latest AI developments of the last year were incorporated into it)-once 

this radiotherapy questionnaire is ready, we will be ready to submit. I attach the diagnostic 

https://eur03.safelinks.protection.outlook.com/?url=https%3A%2F%2Fresearchmanager.city.ac.uk%2F81xz8%2Fethics-application-eth1920-0591&data=04%7C01%7Cc.rainey%40ulster.ac.uk%7Cab5556ff69da4ff5ffcd08d8c0ac1538%7C6f0b94874fa842a8aeb4bf2e2c22d4e8%7C0%7C0%7C637471192616001464%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C1000&sdata=CrmwwEi8OGo6r1OyvxpPvIwHt3YW%2FmapN%2BVkb%2BrOoq4%3D&reserved=0
https://eur03.safelinks.protection.outlook.com/?url=https%3A%2F%2Fresearchmanager.city.ac.uk%2F81xz8%2Fethics-application-eth1920-0591&data=04%7C01%7Cc.rainey%40ulster.ac.uk%7Cab5556ff69da4ff5ffcd08d8c0ac1538%7C6f0b94874fa842a8aeb4bf2e2c22d4e8%7C0%7C0%7C637471192616001464%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C1000&sdata=CrmwwEi8OGo6r1OyvxpPvIwHt3YW%2FmapN%2BVkb%2BrOoq4%3D&reserved=0
https://eur03.safelinks.protection.outlook.com/?url=https%3A%2F%2Fresearchmanager.city.ac.uk%2F83121%2Fethics-application-eth1920-1989-&data=04%7C01%7Cc.rainey%40ulster.ac.uk%7Cab5556ff69da4ff5ffcd08d8c0ac1538%7C6f0b94874fa842a8aeb4bf2e2c22d4e8%7C0%7C0%7C637471192616011452%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C1000&sdata=uPrLGQFzmgKQn%2BVfEU5rKb69VcxwGyjlroazCgrr6xc%3D&reserved=0
https://eur03.safelinks.protection.outlook.com/?url=https%3A%2F%2Fresearchmanager.city.ac.uk%2F83121%2Fethics-application-eth1920-1989-&data=04%7C01%7Cc.rainey%40ulster.ac.uk%7Cab5556ff69da4ff5ffcd08d8c0ac1538%7C6f0b94874fa842a8aeb4bf2e2c22d4e8%7C0%7C0%7C637471192616011452%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C1000&sdata=uPrLGQFzmgKQn%2BVfEU5rKb69VcxwGyjlroazCgrr6xc%3D&reserved=0
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one here for your information and we are modelling the radiotherapy to this one. Will also 

forward the survey links once ready. 

This study will help us understand the wider knowledge, perceptions and expectations of a 

larger sample size this time of UK radiographers from the use of AI in medical Imaging and 

define recommendations for practice. 

 

I will submit this application as extension, as it does not allow me to submit as amendment-

not sure why it does not give me this option but we have had several issues with this 

application as Sofia-my master's student, has now graduated and has a young baby, so we 

were unable to contact her to make the required changes so Stefan has kindly tried to give me 

direct access as best he could. 

I hope you understand and this email makes it a bit clearer as an introduction to you and the 

proportionate review committee members. 

We would like to start collecting data sometime in February 2021, I know how busy this 

period is for everyone and grateful for your support. 

if you are not anymore the chair of the radiography proportionate ethics review committee, 

could you please kindly let me know who I might need to forward this email to? 

many thanks for all of your help at this challenging time. 

Kindest regards 

Christina 

 

  

 

 
Dr Christina Malamateniou  
PhD MA MAcadMEd DIC BSc Hons SFHEA 

 
Programme Director, Postgraduate taught and research (MRI), 
Division of Midwifery and Radiography 
City, University of London, www.city.ac.uk 

 
Northampton Square, London EC1V 0HB 
T: +44 (0)20 7040 3318, christina.malamateniou@city.ac.uk 
  
EFRS Medical Imaging Expert Committee Lead (www.efrs.eu) 
FoRRM steering committee lead (funded by SCoR) 
Please find my latest pubmed papers here:  

www.ncbi.nlm.nih.gov/pubmed/?term=malamateniou+c 

https://eur03.safelinks.protection.outlook.com/?url=http%3A%2F%2Fwww.city.ac.uk%2F&data=04%7C01%7Cc.rainey%40ulster.ac.uk%7Cab5556ff69da4ff5ffcd08d8c0ac1538%7C6f0b94874fa842a8aeb4bf2e2c22d4e8%7C0%7C0%7C637471192616011452%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C1000&sdata=hyiEWL64LnTBV9o899MjQPhfrzJh5BArNdLvOjIrGpA%3D&reserved=0
mailto:christina.malamateniou@city.ac.uk
https://eur03.safelinks.protection.outlook.com/?url=http%3A%2F%2Fwww.efrs.eu%2F&data=04%7C01%7Cc.rainey%40ulster.ac.uk%7Cab5556ff69da4ff5ffcd08d8c0ac1538%7C6f0b94874fa842a8aeb4bf2e2c22d4e8%7C0%7C0%7C637471192616021445%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C1000&sdata=03oZIbxWoaJQd5ekBbvVwImcyphXHVFRgO4QekCPEMk%3D&reserved=0
https://eur03.safelinks.protection.outlook.com/?url=http%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpubmed%2F%3Fterm%3Dmalamateniou%2Bc&data=04%7C01%7Cc.rainey%40ulster.ac.uk%7Cab5556ff69da4ff5ffcd08d8c0ac1538%7C6f0b94874fa842a8aeb4bf2e2c22d4e8%7C0%7C0%7C637471192616031441%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C1000&sdata=7mzvVAhbmkDqjnISICdS8cR8FThT85ITQ0FSdkgX%2FGQ%3D&reserved=0
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ORGINAL APPLICATION: 

Ethics ETH1920-0591: Dr Christina Malamateniou (Low risk) 

Date Created 08 Nov 2019 

Date Submitted 18 Dec 2019 

Date of last resubmission 27 Mar 2020 

Date forwarded to  20 Dec 2019 committee 

Academic Staff Dr Christina Malamateniou 

Category Academic Staff 

Supervisor Dr Ricardo Khine 

Project Artificial Intelligence in Radiography: Radiographers perceptions,  

experiences and expectations. 

School School of Health Sciences 

Department Division of Midwifery & Radiography 

Current status Approved after amendments made 

 
Ethics application 

Risks 

R1) Does the project have funding? No 

R2) Does the project involve human participants? 

Yes 

R3) Will the researcher be located outside of the UK during the conduct of the research? 

No 

R4) Will any part of the project be carried out under the auspices of an external organisation, involve 

collaboration between institutions, or involve data collection at an external organisation? No 

R5) Does your project involve access to, or use of, material that could be classified as security sensitive? 

No 

R6) Does the project involve the use of live animals? 

No 

R7) Does the project involve the use of animal tissue? 

No 

R8) Does the project involve accessing obscene materials? 

No 

R9) Does the project involve access to confidential business data (e.g. commercially sensitive data, trade secrets, 

minutes of internal meetings)? 

No 

R10) Does the project involve access to personal data (e.g. personnel or student records) not in the public 

domain? No 

R11) Does the project involve deviation from standard or routine clinical practice, outside of current guidelines? 

No 

R12) Will the project involve the potential for adverse impact on employment, social or financial standing? 
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No 

R13) Will the project involve the potential for psychological distress, anxiety, humiliation or pain greater than 

that of normal life for the participant? 

No 

R15) Will the project involve research into illegal or criminal activity where there is a risk that the researcher 

will be placed in physical danger or in legal jeopardy? 

No 

R16) Will the project specifically recruit individuals who may be involved in illegal or criminal activity? 

No 

R17) Will the project involve engaging individuals who may be involved in terrorism, radicalisation, extremism 

or violent activity and other activity that falls within the CounterTerrorism and Security Act (2015)? No 

Applicant & research team 

T1) Principal Applicant 

 
Name 

Sofia Torre Torre 

 
T2) Co-Applicant(s) at City 

 
Name 

Dr Christina Malamateniou 

 
Name 

Dr Ricardo Khine 

 
T3) External Co-Applicant(s) 

T4) Supervisor(s) 

Dr Christina Malamateniou 

Dr Ricardo Khine 

T5) Do any of the investigators have direct personal involvement in the organisations sponsoring or funding the 

research that may give rise to a possible conflict of interest? 

No 

T6) Will any of the investigators receive any personal benefits or incentives, including payment above normal 

salary, from undertaking the research or from the results of the research above those normally associated with 

scholarly activity? 

No 

T7) List anyone else involved in the project. 

Project details 

P1) Project title 

Artificial Intelligence in Radiography: Radiographers perceptions, experiences and expectations. 



 

Page 396 of 516 

 

P1.1) Short project title 

P2) Provide a lay summary of the background and aims of the research, including the research questions (max 

400 words). 

Artificial Intelligence (AI) and deep learning became, in recent years, a topic of discussion in the healthcare 

industry. AI is the ability of a machine to imitate human intelligent/learning behaviour and deep learning refers 

to a group of AI methods that use a large number of interconnected units to perform complex tasks. Deep 

learning algorithms are capable of learning tasks from large amounts of data, such as: learning how to classify 

and localize objects in images, understanding human language or playing games. 

The potential applications of AI in medical imaging are vast and can be used in multiple fields, from image 

acquisition, follow up planning, data storage, lesion classification and many others. In view of these potential 

applications, AI is expected to have a substantial impact in the radiographer and radiologist work  

The advances in AI imaging tools can already be seen within the clinical context and demonstrated promising 

results for some medical imaging features: identification of breast or lung lesions, assessment of skeletal 

maturity, detection of abnormal lymph nodes, classification of brain tumors are just a few examples of the large 

amount of applications being developed or already in use.  

The expansion of the radiography profession in recent decades has widened the scope of radiographic practice. 

One of the great achievements of the radiography profession in the UK is to be able to perform tasks that were 

traditionally reserved to radiologists, namely: reporting radiographers, and sonographers. The implementation of 

AI in Radiology does not concern only to Radiologists, on the contrary, it will, potentially , have an impact on 

the radiography profession. 

Rationale: Radiography professions have always experienced several technological developments, however AI 

is expected to transform workflows, change clinical practice, changing teaching and learning methods and create 

a new knowledge base in the Radiography profession.  

While the full development of AI it’s still a promise, it is important to recognize the impact that AI and deep 

learning will have in the future of the radiography profession and its daily practice. Identify the trends it is a 

necessity to recognize the opportunities and the threats to the profession.  

Aims: The aim of this research is to explore the Radiographers perceptions and expectations on the 

implementation of artificial intelligence and deep learning in the Radiography profession.  

P4) Provide a summary and brief explanation of the research design, method, and data analysis. 

My research design strategy will be a mixed methods exploratory research. 

Research study design: 

A mixed methods (primary data) exploratory research. 

Data collection: an online survey with closed and open-ended questions.  

Data collection methods and data analysis: 

Online survey: I will design an electronic survey using the Qualtrics software application. The aim of this 

survey is to evaluate the perceptions, professional experiences and expectations on the implementation of 

artificial intelligence in the Radiography profession. 

The participants for the survey will be recruited as described here: an event organized by City,  
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University of London called "RADIOGRAPHY 2020" will be held at the University on the 8th of July 2020 

(innitially the date was 28th of April but because of the Coronovirus outbreak in the UK the event was 

postponed to the 8th of July). 

For this conference, around 250 people, mainly radiographers and radiographers students will be invited. The 

event invitations will be sent by email through the "Radiography 2020" organization. I will send an invitation 

for the invited delegates to answer an online survey, using the same email contact list used by the conference`s 

organizing team. I will be using a purposive sampling for the survey, therefore the use of a Radiography 

conference to recruit the participants was appropriated.  

The survey will be designed with Qualtrics XM (QualtricsXM 2005, USA) software and distributed amongst the 

event participants prior to the event via an email containing a non-serialised URL link.  

The survey will be composed of 4 sub-parts. 

The first part consists in 5 questions regarding participant’s demographics (gender, age, professional role, 

numbers of years practicing Radiography and sub-specialty in radiography). The second part consists in 5 

multiple-choice questions and was designed to evaluate the current knowledge and familiarity of the participants 

regarding AI in Radiography. The third part consists in 12 multiplechoice questions to evaluate the participant’s 

perceptions and attitudes towards the implementation and development of AI in the Radiology departments and 

in the Radiography profession. The fourth part of the survey consists in 3 open-ended questions to evaluate the 

participant`s expectations regarding the potential impact of AI in the Radiography profession and education.  

Data analysis of the survey: The multiple-choice answers will be analysed with descriptive statistics (using the 

Qualtrics software tool) and for the open-ended questions, a thematic analyses will be used to analyse the data.  

Prior to the distribution, the survey will be reviewed by the project`s research supervisors from City,  

University of London in order to validate the survey 

There will be a specific prompt in the survey to explain the purpose of the project and to formally request 

consent to the participants. All data will be collected anonymously. 

Due to the Coronovirus outbreak in the UK and Europe, the "Radiography 2020" event it will not take place on 

the 28th of April 2020, as initially planned. The recruitment for the participants of the online survey will still 

utilize the delegates that would participate and be invited to this event.  

The new date for the "Radiography 2020" will be the 8th of July, this is a provisional date, which depends on 

the evolving situation of the Coronovirus outbreak. For my dissertation purposes (which I have to submit by the 

15th of September 2020) I cannot, unfortunately, wait for the conference date to collect the data. 

Therefore, the online survey will be available for distribution and completion as soon as the Ethics approval is 

granted and at a convenient time, given the constrains that the Coronovirus outbreak created in all aspects of 

society, including the closure of all UK universities, including City, University of London. 

P4.1) If relevant, please upload your research protocol. 

P5) What do you consider are the ethical issues associated with conducting this research and how do you 

propose to address them? 

I will enumerate a few ethical considerations regarding the online survey. I will enumerate those ethical issues 

and the measures to overcome them. There is no conflict of interest to be reported regarding this project . 

I will use the research principal of safeguarding all the participants beneficence and non-maleficence.  

Regarding the online survey: 
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-Participants will be free to participate or not in the survey (no coercion).  

-The participants will not feel coerced into completing the survey, they can still attend the "Radiography 2020" 

even if they do not answer or complete the online survey, and the participants can exit the survey at any time.  

-Completing the survey is optional for the "Radiography 2020" event participants.  

-No incentives will be given to participate in the survey.  

-The participants will be given the content and purpose of the survey so that they can make an informed 

judgment about whether they wish to participate or not. Any assurances, such as confidentiality or anonymity, 

will also be provided by the researcher. 

-I will be collecting only identifiable information that it is specifically required for research purposes, all the rest 

of the information will be anonymous. The data will be stored on encrypted hardware in a safe place at City, 

University of London 

P6) Project start date 

The start date will be the date of approval. 

P7) Anticipated project end date 

15 Sept 2020 

P8) Where will the research take place? 

City, University of London. 

The data will be collected through an online survey 

P10) Is this application or any part of this research project being submitted to another ethics committee, or has it 

previously been submitted to an ethics committee? No 

Human participants: information and participation 

The options for the following question are one or more of: 

'Under 18'; 'Adults at risk'; 'Individuals aged 16 and over potentially without the capacity to consent'; 'None of 

the above'. 

H1) Will persons from any of the following groups be participating in the project? None of the above 

H2) How many participants will be recruited? 250 

H3) Explain how the sample size has been determined. 

The sample has been determined by the delegates of the "Radiography2020" event. 

So I will use convenience sampling. This sample however is representative of the radiography community, 

including practitioners, policymakers, educators, industry partners and students. 250 participants is the 

maximum number of delegates of the conference "Radiography 2020" 

Completing the survey is optional for the "Radiography 2020" event participants.  

I will send the invitations for participants to complete the online survey as soon as the Ethics approval is granted 

and at a convenient time given the constrains created by the Coronovirus outbreak, which as explained before, 

changed the initial date planned for the event. Nevertheless, the participants invited to the event remain the same 

and I will utilize the event's invitation list to send the online survey to the participants.  

H4) What is the age group of the participants? 

LowerUpper 

18 75 

H5) Please specify inclusion and exclusion criteria. 
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The participants will be included if they are 18 years old or above. The participants will be recruited if they are 

radiographer students or qualified radiographers who are attending the Radiography "2020 event" 

I will be excluding oversees participants. 

H6) What are the potential risks and burdens for research participants and how will you minimise them? 

There are no potential risks or burdens for research participants, there is no intervention involved, anonymity 

will be preserved throughout, all participants are invited to participate voluntarily and there is no coercion, as 

there is no consequence on them, whether they decide to participate or not. 

I will not ask any professional satisfaction or comments regarding the participant`s role or job situation.  

This is the current plan, but the dates might change slightly due to time constrains regarding the project. I will 

ensure anonymity as followed:  

1. The questions will not ask any directly identifying information (name, address, phone number, etc.) 

2.The demographic questions will not contain any level of specificity that could allow the participants to be 

indirectly identified. 

3.The students will not have to display their student number or any identifiable information. It will not be asked 

the participant`s workplace.  

4. The survey population (sample) is wide and diverse enough to maintain the anonymity of individual 

respondents. 

5.I will not enable the respondents tracking inbuilt email tool (on Qualtrics) functionality to preserve anonymity 

and no coercion issues.  

I will be using the "Radiograohy 2020" participants list to send the online surveys invitations, but the username 

or participants`s email addresses will not be used as pre-population parameters in the survey. 

Should more than two people have access to the survey, access must be restricted so that no one person has 

simultaneous access to the Analyse and Distribute tabs until the survey has been closed and the identifying 

information has been purged. 

H7) Will you specifically recruit pregnant women, women in labour, or women who have had a recent stillbirth 

or miscarriage (within the last 12 months)? 

No 

H8) Will you directly recruit any staff and/or students at City? 

Staff 

Students 

H8.1) If you intend to contact staff/students directly for recruitment purpose, please upload a letter of approval 

from the respective School(s)/Department(s). 

H8.2) Will you recruit students by virtue of their attendance on specific programmes or modules? Yes 

H9) How are participants to be identified, approached and recruited, and by whom? Participants to answer the 

survey will be attendees of the event "Radiography 2020" 

Around 100 undergraduate and postgraduate students will be invited to attend the conference. The remaining 

delegates will be qualified radiographers who will be invited to the conference "Radiography 2020". 

The data collection participants were recruited from the participants/delegates to the “Radiography  

2020”, an event organised specifically to discuss and learn more about the impact of Artificial  
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Intelligence in radiography Practice and education. This event was planned to take place at the City, University 

of London large lecture theatre on Tuesday April 28th 2020 and would bring together a diverse audience of 

radiography clinical practitioners, modality leads and practice educators from the major affiliated teaching 

hospitals. The participants included research collaborators, current undergraduate and postgraduate radiography 

students and alumni of City, University of London, industrial partners in the field of AI and technological 

education, professional body researchers, education leads (Society and College of radiographers, British 

Institute of Radiology) and radiography academics.  

Thus, this group would provide a unique opportunity for a snapshot research, being a representative sample of 

the radiography community in terms of practice, research and education at all levels, all in one room at the same 

time.  

This event initially would take place on the 28th of April 2020, but this event is currently postponed to the 8th 

of July 2020. This is due to the Coronovirus outbreak in the UK and Europe.  

Due to this project time restrains I will send the invitations for participants to complete the online survey 

(regardless of when the conference will take place) as soon as Ethics approval is granted (by City University of 

London) and the survey will be open for completion for approximately one month after the invitations are sent.  

H10) Please upload your participant information sheets and consent form, or if they are online (e.g. on 

Qualtrics) paste the link below. 

The survey will have a prompt where participant can tick a box to formally give consent 

H11) If appropriate, please upload a copy of the advertisement, including recruitment emails, flyers or letter. 

H12) Describe the procedure that will be used when seeking and obtaining consent, including when consent will 

be obtained. 

The survey will be designed on the Qualtrics software application. A written introduction informing about the 

project's background. 

I will seek explicit consent in the online survey, by asking participants to tick a box. 

H13) Are there any pressures that may make it difficult for participants to refuse to take part in the project? 

No 

H14) Is any part of the research being conducted with participants outside the UK? 

No 

Human participants: method 

The options for the following question are one or more of: 

'Invasive procedures (for example medical or surgical)'; 'Intrusive procedures (for example psychological or 

social)'; 'Potentially harmful procedures of any kind'; 'Drugs, placebos, or other substances administered to 

participants'; 'None of the above'. 

M1) Will any of the following methods be involved in the project: 

None of the above 

M2) Does the project involve any deceptive research practices? 

No 

M3) Is there a possibility for over-research of participants? 

No 
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M4) Please upload copies of any questionnaires, topic guides for interviews or focus groups, or equivalent 

research materials. 

M5) Will participants be provided with the findings or outcomes of the project? Yes 

M5.1) Explain how this information will be provided. 

The outcome of this research will be made public to the participants via email.  

M6) If the research is intended to benefit the participants, third parties or the local community, please give 

details. 

The research aims to create provisions on AI in the future of Radiography. It aims to understand the impact of 

implementing AI in the radiography profession and to create provisions on AI which would support 

Radiographer education and training in AI 

M7) Are you offering any incentives for participating? 

No 

M8) Does the research involve clinical trial or clinical intervention testing that does not require Health Research 

Authority or MHRA approval? No 

M9) Will the project involve the collection of human tissue or other biological samples that does not fall under 

the Human Tissue Act (2004) that does not require Health Research Authority Research Ethics Service 

approval? No 

M10) Will the project involve potentially sensitive topics, such as participants' sexual behaviour, their legal or 

political behaviour, their experience of violence? 

No 

M11) Will the project involve activities that may lead to 'labelling' either by the researcher (e.g. categorisation) 

or by the participant (e.g. 'I'm stupid', 'I'm not normal')? 

No 

Data 

D1) Indicate which of the following you will be using to collect your data. 

Questionnaire 

D2) How will the the privacy of the participants be protected? 

Anonymised sample or data 

D3) Will the research involve use of direct quotes? 

Yes 

D5) Where/how do you intend to store your data? 

Storage on encrypted device (e.g. laptop, hard drive, USB 

Storage at City 

D6) Will personal data collected be shared with other organisations? 

No 

D7) Will the data be accessed by people other than the named researcher, supervisors or examiners? No 

D8) Is the data intended or required (e.g. by funding body) to be published for reuse or to be shared as part of 

longitudinal research or a different/wider research project now or in the future? No 

D10) How long are you intending to keep the research data generated by the study? The research data will be 

kept until the research project is formally finished and marked (this research project is part fulfillment of the 
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requirements of City, University of London for the degree of Master in MRI) and it will be kept until 

publication, if appropriate.  

D11) How long will personal data be stored or accessed after the study has ended? Personal data on the survey 

will be kept until all the data is analysed and the research project is formally finished and marked(this research 

project is part fulfillment of the requirements of City, University of London for the degree of Master in MRI.  

D12) How are you intending to destroy the personal data after this period? I will destroy the data through the 

University appropriate department All requests for destruction of University owned electronic media should be 

logged via Service Now 

website www.city.ac.uk/itservicedesk or call on 

0207 040 8181 

Health & safety 

HS1) Are there any health and safety risks to the researchers over and above that of their normal working life? 

No 

HS3) Are there hazards associated with undertaking this project where a formal risk assessment would 

be required? 

No 
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 Appendix 3.5 – Qualtrics® study transcript including participant information and 

consent 

 

Artificial Intelligence in Radiography: The beauty is in the AI of the beholder. 

 
 Beauty is in the AI of the beholder : a survey of current practice, perceptions and 
expectations of AI use in all specialties of radiography in the UK   
     
    
  In the last decade Artificial Intelligence (AI) has increasingly become a contentious topic 
for Medical Imaging practice, education and research and it is considered one of the most 
promising areas of healthcare innovation.   Diagnostic imaging and radiotherapy are two of 
the most technology-enabled fields in healthcare and, therefore, the integration of AI is 
expected to transform radiography workflows, practice, research and education.          This is 
a collaborative project between City University of London (Dr Christina Malamateniou), 
University of Ulster (Dr Sonyia McFadden, Mrs Clare Rainey) and the Society and College 
of Radiographers AI working group (Dr Tracy O'Regan and a big team of 
collaborators).   This project is funded by CoRIPS, a research grant initiative established by 
the Society and College of Radiographers.     The aim of this study is to:  
 i) explore the impact of AI on the radiography profession, taking into account the different 
perspectives of clinicians, researchers, educators, managers, students, representatives from 
professional bodies and industry. 
 ii) identify radiographers' knowledge, perceptions and expectations of AI. 
   
 What is required of you?  You can start the survey at any point after receiving the invitation 
to participate. You can also stop the survey and return to it within a 24 hour period, within 
which your data will be saved.  The survey is anonymous and you cannot withdraw the 
responses after you have completed it. It will take approximately 15 minutes of your time.     
  
 If you have any queries at any point, please contact the lead researcher:  Mrs Clare 
Rainey  c.rainey@ulster.ac.uk     
  
 The outcome of this research will be disseminated via emailed reports and papers to all 
SCoR members.  Many thanks for taking the time to complete this survey.   
                                                                                                                                                        

o Yes, I consent participating in this survey  (1)  

o No, I do not consent participating in this survey  (2)  
 
Skip To: End of Survey If Artificial Intelligence in Radiography: Radiographers perceptions, experiences and 
expectation = No, I do not consent participating in this survey 
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Q1 Are you currently practicing in diagnostic or therapeutic radiography or both? 

o Diagnostic radiography  (1)  

o Therapeutic radiography  (2)  

o Both  (3)  

o I am a diagnostic radiography student  (4)  

o I am a radiotherapy student  (5)  
 
End of Block: WELCOME AND CONSENT 

 

Start of Block: 1. Demographics RT 

 
Q1 RT How many years have you practiced radiotherapy so far (including clinical, teaching 
and research)? 
 N.B. for  pre-registration/undergraduate students the 0-2 year option should be chosen. 

o 0-2 years  (1)  

o 3-5 years  (2)  

o 6-10 years  (3)  

o 11-20 years  (4)  

o >20 years  (5)  

o I have worked as a radiographer, but I am currently in retirement  (8)  

o Not practicing Radiography - please explain  (6) 
__________________________________________________ 

 
Skip To: End of Survey If How many years have you practiced radiotherapy so far (including clinical, teaching 
and research)... = Not practicing Radiography - please explain 
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Q2 RT What is your gender? 

o Male  (1)  

o Female  (2)  

o Non-binary / third gender  (3)  

o Prefer not to say  (4)  
 

 

Q3 RT What is your age range? 

o 18-25 years old  (1)  

o 26-35 years old  (2)  

o 36-45 years old  (8)  

o 46-55 years old  (3)  

o 55-65 years old  (4)  

o >65 years old  (5)  
Q4 RT In which region of the UK do you currently work? 

o England  (1)  

o Scotland  (2)  

o Wales  (3)  

o Northern Ireland  (4)  

o Channel Islands  (6)  
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Q5 RT What is your highest academic qualification? 

o A-level or equivalent  (7)  

o BSc  (1)  

o Pg Certificate  (2)  

o Pg Diploma  (3)  

o MSc  (4)  

o PhD/EdD/DProf or equivalent  (5)  

o Other. Please clarify below:  (6) 
__________________________________________________ 

 

 

Q6 RT What type of clinical setting do you work in?  Please select all that apply. 

▢ University teaching hospital  (1)  

▢ District general hospital  (2)  

▢ Private sector  (3)  

▢ Poly-trauma unit  (4)  

▢ Mobile unit  (5)  

▢ Other. Please explain.  (7) 
__________________________________________________ 

▢ I do not work in the clinical setting. Please explain.  (6) 
__________________________________________________ 
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Q7 RT Which of the following options best describes your current role? Please choose ONE 
of the below: 

o Assistant Practitioner Radiographer  (1)  

o Undergraduate radiography student  (2)  

o Clinical radiographer  (3)  

o Research radiographer  (4)  

o Advanced practitioner  (5)  

o Consultant radiographer  (12)  

o PhD researcher radiographer  (6)  

o Professional body staff (i.e. employed by professional body)  (7)  

o Academic in radiography: teaching only  (9)  

o Academic in radiography: teaching and research  (16)  

o Clinical academic/lecturer:practitioner  (13)  

o Radiology/radiography/radiotherapy manager  (14)  

o Industry partner  (11)  

o Retired radiographer  (15)  

o Other. Please Explain  (8) 
__________________________________________________ 
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End of Block: 1. Demographics RT 
 

Start of Block: 2. Knowledge, skills and confidence RT 

 
Q8 RT Please choose what you consider to be your primary area of expertise within 
radiotherapy.   
Please choose up to three of the most relevant options from the list below.     

▢ Pretreatment: simulation, contouring, immobilisation  (1)  

▢ Treatment planning  (2)  

▢ Treatment delivery  (3)  

▢ Patient information and support / Patient review  (4)  

▢ Educator  (15)  

▢ Research  (5)  

▢ Management  (6)  

▢ Quality Assurance / Quality Improvements  (7)  

▢ DEXA/DXAClinical Applications  (11)  

▢ Other. Please Specify  (12) 
__________________________________________________ 
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Q9 RT Do you understand the term 'artificial intelligence', as used in diagnostic/therapeutic 
radiography? 

o Yes  (28)  

o No  (30)  

o Unsure  (29)  
 

 

 
Q10 RT On a scale of 0-10 how well do you think you understand 'artificial intelligence' as 
used in radiography (0=no knowledge at all and 10=expert) 

 0 1 2 3 4 5 6 7 8 9 10 
 

Understanding of the term 'artificial 
intelligence' ()  

 
 

 

 
Q11 RT Can you describe the term 'artificial intelligence' (AI) in your own words? 

________________________________________________________________ 
 

 

 
Q12 RT How confident are you/would you be in using any AI technologies and innovations 
you have defined in your response to the previous question? 

o Not confident at all  (1)  

o Somewhat confident  (2)  

o Confident enough  (3)  

o Very confident  (4)  
 

 

Q13 RT Do you feel confident in your understanding of the underlying terminology of AI, for 
example; algorithms, deep learning, neural networks, computer-aided detection diagnosis, 
data-mining, over-fitting etc. 
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o Not confident at all  (4)  

o Somewhat confident  (5)  

o Confident enough  (6)  

o Very confident  (7)  
 

 

Q14 RT How did you develop any AI skill you use in radiotherapy? Please choose ALL that 
apply. 

▢ I do not consider myself to have any skill in AI in radiotherapy  (1)  

▢ I am self taught; I keep up to date with latest research in the field  (2)  

▢ I was taught AI as part of an undergraduate degree programme  (3)  

▢ I was taught AI as part of a postgraduate degree programme  (4)  

▢ I have taken an online CPD-type programme delivered by a higher education 
establishment  (5)  

▢ I have taken an online CPD-type programme delivered by 
equipment/technology vendor  (6)  

▢ Other. Please explain.  (7) 
__________________________________________________ 
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Q15 RT I feel I have been well trained to implement new AI technologies and innovations in 
my daily practice. 

o Strongly agree  (1)  

o Agree  (2)  

o Somewhat agree  (3)  

o Neither agree nor disagree  (4)  

o Somewhat disagree  (5)  

o Disagree  (6)  

o Strongly disagree  (7)  
 

 

Q16 RT I consider myself to have developed/learned some skill in AI as used in 
radiography/radiotherapy. 

o Strongly agree  (4)  

o Agree  (5)  

o Somewhat agree  (6)  

o Neither agree nor disagree  (7)  

o Somewhat disagree  (8)  

o Disagree  (9)  

o Strongly disagree  (10)  
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Q17 RT There is enough training on AI currently available for radiographers. 

o Strongly agree  (1)  

o Agree  (2)  

o Somewhat agree  (3)  

o Neither agree nor disagree  (4)  

o Somewhat disagree  (5)  

o Disagree  (6)  

o Strongly disagree  (7)  
 

 

Q18 RT What topic areas do you feel should be included in the pre and post registration 
radiography curricula to equip new graduates for a future with AI? 

▢ AI technology, technique and terminology  (4)  

▢ Potential applications of AI in radiography  (5)  

▢ AI ethics  (11)  

▢ AI standards, quality assurance and quality control  (12)  

▢ How to improve patient centeredness with the use of AI  (13)  

▢ How AI can be used to improve workflows  (7)  

▢ Development of AI and entrepreneurship  (9)  

▢ Introduction to programming and computer science  (14)  

▢ Applied machine learning in imaging  (15)  

▢ Other. Please explain.  (8) 
__________________________________________________ 
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Q19 RT How would any training in AI in radiography/radiotherapy be best delivered? 

▢ As part of a pre-registration (undergraduate) degree programme  (1)  

▢ As part of a post-registration (postgraduate) degree programme  (2)  

▢ Study days  (3)  

▢ Short course/summer school  (6)  

▢ Conferences  (7)  

▢ E-learning or webinars  (4)  

▢ Other  (5) __________________________________________________ 
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End of Block: 2. Knowledge, skills and confidence RT 
 

Start of Block: 3. Perceptions RT 

 
Q20 RT Is AI currently being used in your practice (clinical, education, research or other 
type of radiography practice)? 

o Yes  (1)  

o No  (2)  

o Not sure  (3)  

o Not applicable  (4)  
 

 



 

Page 415 of 516 

 

Q21 RT Which specific part of your daily workload do you currently see being 
influenced by the development and implementation of AI in radiotherapy? Please choose the 
answers that apply in your practice.     

▢ Patient pathway management  (9)  

▢ Patient care and symptom management  (16)  

▢ Patient safety/ ID confirmation  (1)  

▢ Initial patient positioning / surface guidance  (2)  

▢ Patient immobilisation  (4)  

▢ Contouring  (3)  

▢ Treatment planning / optimisation / adaptive planning  (5)  

▢ Image acquisition and matching  (6)  

▢ Treatment delivery / tumour and OAR tracking / motion management  (7)  

▢ Quality assurance and quality control  (8)  

▢ Protocol optimisation  (10)  

▢ Other, please explain  (14) 
__________________________________________________ 

▢ I do not know  (13)  
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Q22 RT In which areas of radiotherapy do you think there is the greatest scope for the 
development of AI systems in the future?  Please use the slider to indicate your order of 
preference. 

 Least           Greatest 
 

 0 1 2 3 4 5 
 

Patient pathway management () 
 

Patient care and symptom management () 
 

Patient safety/ ID confirmation () 
 

Initial patient positioning / surface 
guidance ()  

Patient immobilisation () 
 

Contouring () 
 

Treatment planning / optimisation / 
adaptive planning ()  

Image acquisition and matching () 
 

Treatment delivery / tumour and OAR 
tracking / motion management ()  

Quality assurance and quality control () 
 

I do not know () 
 

Other. Please Explain () 
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End of Block: 3. Perceptions RT 
 

Start of Block: 4. Expectations RT 

 
Q23 RT Artificial Intelligence will change the daily clinical practice for radiographers. 

o Strongly agree  (1)  

o Agree  (2)  

o Somewhat agree  (3)  

o Neither agree nor disagree  (4)  

o Somewhat disagree  (5)  

o Disagree  (6)  

o Strongly disagree  (7)  
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Q23 RT AI will reduce the workload of the radiographer. 

o Strongly agree  (8)  

o Agree  (9)  

o Somewhat agree  (10)  

o Neither agree nor disagree  (11)  

o Somewhat disagree  (12)  

o Disagree  (13)  

o Strongly disagree  (14)  
 

 

Q24 RT AI will make my practice more patient-centred.  

o Strongly agree  (8)  

o Agree  (9)  

o Somewhat agree  (10)  

o Neither agree nor disagree  (11)  

o Somewhat disagree  (12)  

o Disagree  (13)  

o Strongly disagree  (14)  
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Q25 RT AI will ensure more consistent patient safety standards for radiography/radiotherapy. 

o Strongly agree  (1)  

o Agree  (2)  

o Somewhat agree  (3)  

o Neither agree nor disagree  (4)  

o Somewhat disagree  (5)  

o Disagree  (6)  

o Strongly disagree  (7)  
 

 

Q26 RT AI will ensure more consistent patient care pathways for radiography/radiotherapy. 

o Strongly agree  (1)  

o Agree  (2)  

o Somewhat agree  (3)  

o Neither agree nor disagree  (4)  

o Somewhat disagree  (5)  

o Disagree  (6)  

o Strongly disagree  (7)  
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Q27 RT AI will improve and standardise treatment planning (contouring/planning) in 
radiotherapy 
 
     

o Strongly agree  (1)  

o Agree  (2)  

o Somewhat agree  (3)  

o Neither agree nor disagree  (4)  

o Somewhat disagree  (5)  

o Disagree  (6)  

o Strongly disagree  (7)  
 

 

Q28 RT AI will improve and standardise treatment delivery in radiotherapy. 
 
     

o Strongly agree  (1)  

o Agree  (2)  

o Somewhat agree  (3)  

o Neither agree nor disagree  (4)  

o Somewhat disagree  (5)  

o Disagree  (6)  

o Strongly disagree  (7)  
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Q29 RT The implementation of AI will make the radiography/radiotherapy profession more 
attractive to me. 

o Strongly agree  (1)  

o Agree  (2)  

o Somewhat agree  (3)  

o Neither agree nor disagree  (4)  

o Somewhat disagree  (5)  

o Disagree  (6)  

o Strongly disagree  (7)  
 

 

Q30 RT The implementation of AI will reduce radiography/radiotherapy career opportunities. 

o Strongly agree  (1)  

o Agree  (2)  

o Somewhat agree  (3)  

o Neither agree nor disagree  (4)  

o Somewhat disagree  (5)  

o Disagree  (6)  

o Strongly disagree  (7)  
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Q31 RT Teaching of AI technology should be included in pre-registration radiography 
programmes at universities. 

o Strongly agree  (1)  

o Agree  (2)  

o Somewhat agree  (3)  

o Neither agree nor disagree  (4)  

o Somewhat disagree  (5)  

o Disagree  (6)  

o Strongly disagree  (7)  
 

 

Q32 RT Teaching of AI technology teaching should be included in post-registration 
radiography programmes at universities. 

o Strongly agree  (11)  

o Agree  (12)  

o Somewhat agree  (13)  

o Neither agree nor disagree  (14)  

o Somewhat disagree  (15)  

o Disagree  (16)  

o Strongly disagree  (17)  
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Q33 RT How do you foresee AI influencing radiography/radiotherapy jobs in the next 5–10 
years in the UK? Please chose all the responses you agree with. 

▢ The type of work I am doing will change  (1)  

▢ AI will support role development  (2)  

▢ It will deskill my profession  (3)  

▢ It will create different specialist roles  (5)  

▢ It will reduce the amount of administrative and routine tasks I do  (6)  

▢ Other. Please Explain  (4) 
__________________________________________________ 
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End of Block: 4. Expectations RT 
 

Start of Block: 5. Image perception and reporting RT 

 
Q34 RT Are you currently using any form of AI as part of your role? 

o Yes  (1)  

o No  (2)  
 

 

Q35 RT I understand how an AI system reaches its decisions. 

o Strongly agree  (1)  

o Agree  (2)  

o Somewhat agree  (3)  

o Neither agree nor disagree  (4)  

o Somewhat disagree  (5)  

o Disagree  (6)  

o Strongly disagree  (7)  
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Q36 RT I am/would be confident in explaining AI decisions to other healthcare professionals. 

o Strongly agree  (1)  

o Agree  (2)  

o Somewhat agree  (3)  

o Neither agree nor disagree  (4)  

o Somewhat disagree  (5)  

o Disagree  (6)  

o Strongly disagree  (7)  
 

 

Q37 RT I am/would be confident in explaining an AI decisions to service users/patients and 
their carers. 

o Strongly agree  (4)  

o Agree  (5)  

o Somewhat agree  (6)  

o Neither agree nor disagree  (7)  

o Somewhat disagree  (8)  

o Disagree  (9)  

o Strongly disagree  (10)  
 

 

Q38 RT Would you feel more certain of your decision-making if an AI system agreed with 
your professional opinion/practice. For example, if you made an image matching decision 
and the AI agreed with your assessment, would you feel reassured? 
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o Yes  (2)  

o No  (5)  

o Unsure  (4)  
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Q39 RT Would you feel uncertain of your decision-making if an AI system disagreed with 
your professional opinion/practice. For example, if you made an image matching decision 
and the AI disagreed with your assessment, would you feel doubtful? 

o Yes  (1)  

o No  (3)  

o Unsure  (2)  
 

 

Q40 RT Use the slider to indicate on a scale of 0 - 10, how trustworthy you consider AI 
systems for use in radiotherapy, with 0 representing no trust at all and 10 representing 
absolute trust. 

 0 1 2 3 4 5 6 7 8 9 10 
 

Trustworthiness of AI in radiotherapy () 
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Q41 RT Which features might serve to enhance your trust in an AI system for use in 
diagnostic image interpretation decision support?  Please select all that apply. 

▢ The overall performance of the AI system, i.e. how accurate is this system in 
determining correct image interpretation  (9)  

▢ A visual explanation showing where the AI looked and found important areas 
of interest on the image, e.g. a ‘heat map’ or region of interest (ROI).  (11)  

▢ A textual natural explanation of its decision ‘It is likely X because of the 
fracture line in the top left of the image.’  (4)  

▢ An indication of the confidence of the AI system in its diagnosis expressed 
numerically e.g. the system is 96% certain that the image contains a pathology 
somewhere on the image.  (6)  

▢ The AI image interpretation itself with clinical codes to allow for automated 
patient journey.  (8)  

▢ A recommendation for further interpretations or imaging, including 
recommendation of other imaging modalities.  (12)  

▢ Other  (7) __________________________________________________ 
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End of Block: 6. Thanks and focus group invitation RT 

 

Start of Block: 1. DEMOGRAPHICS 

 
Q2 How many years have you practiced radiography so far (including clinical, teaching and 
research)? 
 N.B. for  pre-registration/undergraduate students the 0-2 year option should be chosen. 

o 0-2 years  (1)  

o 3-5 years  (2)  

o 6-10 years  (3)  

o 11-20 years  (4)  

o >20 years  (5)  

o I have worked as a radiographer, but I am currently in retirement  (8)  

o Not practicing Radiography - please explain  (6) 
__________________________________________________ 

 
Skip To: End of Survey If How many years have you practiced radiography so far (including clinical, teaching and 
research)?... = Not practicing Radiography - please explain 
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Q3 What is your gender? 

o Male  (1)  

o Female  (2)  

o Non-binary / third gender  (3)  

o Prefer not to say  (4)  
 
 
Q4 What is your age range? 

o 18-25 years old  (1)  

o 26-35 years old  (2)  

o 36-45 years old  (8)  

o 46-55 years old  (3)  

o 55-65 years old  (4)  

o >65 years old  (5)  
 

 

Q5 In which region of the UK do you currently work? 

o England  (1)  

o Scotland  (2)  

o Wales  (3)  

o Northern Ireland  (4)  

o Channel Islands  (6)  
 

 

 
 
 
Q6 What is your highest academic qualification? 
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o A-level or equivalent  (7)  

o BSc  (1)  

o Pg Certificate  (2)  

o Pg Diploma  (3)  

o MSc  (4)  

o PhD/EdD/DProf or equivalent  (5)  

o Other. Please clarify below:  (6) 
__________________________________________________ 

 

 

Q7 What type of clinical setting do you work in?  Please select all that apply.   

▢ University teaching hospital  (1)  

▢ District general hospital  (2)  

▢ Private sector  (3)  

▢ Poly-trauma unit  (4)  

▢ Mobile unit  (5)  

▢ Other. Please explain.  (7) 
__________________________________________________ 

▢ I do not work in the clinical setting. Please explain.  (6) 
__________________________________________________ 
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Q8 Which of the following options best describes your current role? Please choose ONE of 
the below: 

o Assistant Practitioner Radiographer  (1)  

o Undergraduate radiography student  (2)  

o Clinical radiographer  (3)  

o Research radiographer  (4)  

o Advanced practitioner  (5)  

o Consultant radiographer  (12)  

o PhD researcher radiographer  (6)  

o Professional body staff (i.e. employed by professional body)  (7)  

o Academic in radiography: teaching only  (9)  

o Academic in radiography: teaching and research  (16)  

o Clinical academic/lecturer:practitioner  (13)  

o Radiology/radiography/radiotherapy manager  (14)  

o Industry partner  (11)  

o Retired radiographer  (15)  

o Other. Please Explain  (8) 
__________________________________________________ 
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End of Block: 1. DEMOGRAPHICS 
 

Start of Block: 2. KNOWLEDGE, SKILLS AND CONFIDENCE 

 
Q9 Please choose what you consider to be your primary area of expertise within diagnostic 
radiography.   
Please choose up to three of the most relevant options from the list below.       

▢ General X-Ray inc. Emergency radiography, theatre and fluoroscopy  (1)  

▢ Mammography  (2)  

▢ MRI  (3)  

▢ CT  (4)  

▢ Ultrasound  (15)  

▢ Interventional Radiography  (5)  

▢ PET/CT  (6)  

▢ PET/MRI  (7)  

▢ DEXA/DXA  (11)  

▢ Reporting Radiography  (8)  

▢ Radiology Manager  (9)  

▢ PACS Administrator  (10)  

▢ Education  (13)  

▢ Policy making and advocacy for the profession  (14)  

▢ Other. Please Specify  (12) 
__________________________________________________ 
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Q10 Do you understand the term 'artificial intelligence', as used in diagnostic/therapeutic 
radiography? 

o Yes  (28)  

o No  (30)  

o Unsure  (29)  
 

 

 
Q11 On a scale of 0-10 how well do you think you understand 'artificial intelligence' as used 
in radiography (0=no knowledge at all and 10=expert) 

 0 1 2 3 4 5 6 7 8 9 10 
 

Understanding of the term 'artificial 
intelligence' ()  

 
 

 

 
Q12 Can you describe the term 'artificial intelligence' (AI) in your own words? 

________________________________________________________________ 
 

 

 
Q13 How confident are you/would you be in using any AI technologies and innovations you 
have defined in your response to the previous question? 

o Not confident at all  (1)  

o Somewhat confident  (2)  

o Confident enough  (3)  

o Very confident  (4)  
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Q14 Do you feel confident in your understanding of the underlying terminology of AI, for 
example; algorithms, deep learning, neural networks, computer-aided detection diagnosis, 
data-mining, over-fitting etc. 

o Not confident at all  (4)  

o Somewhat confident  (5)  

o Confident enough  (6)  

o Very confident  (7)  
 

 

Q15 How did you develop any AI skill you use in diagnostic radiography? Please choose 
ALL that apply. 

▢ I do not consider myself to have any skill in AI in diagnostic radiography  (1)  

▢ I am self taught; I keep up to date with latest research in the field  (2)  

▢ I was taught AI as part of an undergraduate degree programme  (3)  

▢ I was taught AI as part of a postgraduate degree programme  (4)  

▢ I have taken an online CPD-type programme delivered by a higher education 
establishment  (5)  

▢ I have taken an online CPD-type programme delivered by 
equipment/technology vendor in the diagnostic radiography field  (6)  

▢ Other. Please explain.  (7) 
__________________________________________________ 
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Q16 I feel I have been well trained to implement new AI technologies and innovations in my 
daily practice. 

o Strongly agree  (1)  

o Agree  (2)  

o Somewhat agree  (3)  

o Neither agree nor disagree  (4)  

o Somewhat disagree  (5)  

o Disagree  (6)  

o Strongly disagree  (7)  
 

 

Q17 I consider myself to have developed/learned some skill in AI as used in 
radiography/radiotherapy. 

o Strongly agree  (4)  

o Agree  (5)  

o Somewhat agree  (6)  

o Neither agree nor disagree  (7)  

o Somewhat disagree  (8)  

o Disagree  (9)  

o Strongly disagree  (10)  
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Q18 There is enough training on AI currently available for radiographers. 

o Strongly agree  (1)  

o Agree  (2)  

o Somewhat agree  (3)  

o Neither agree nor disagree  (4)  

o Somewhat disagree  (5)  

o Disagree  (6)  

o Strongly disagree  (7)  
 

 

Q19 What topic areas do you feel should be included in the pre and post registration 
radiography curricula to equip new graduates for a future with AI? 

▢ AI technology, technique and terminology  (4)  

▢ Potential applications of AI in radiography  (5)  

▢ AI ethics  (11)  

▢ AI standards, quality assurance and quality control  (12)  

▢ How to improve patient centeredness with the use of AI  (13)  

▢ How AI can be used to improve workflows  (7)  

▢ Development of AI and entrepreneurship  (9)  

▢ Introduction to programming and computer science  (14)  

▢ Applied machine learning in imaging  (15)  

▢ Other. Please explain.  (8) 
__________________________________________________ 
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Q20 How would any training in AI in radiography be best delivered? 

▢ As part of a pre-registration (undergraduate) degree programme  (1)  

▢ As part of a post-registration (postgraduate) degree programme  (2)  

▢ Study days  (3)  

▢ Short course/summer school  (6)  

▢ Conferences  (7)  

▢ E-learning or webinars  (4)  

▢ Other  (5) __________________________________________________ 
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End of Block: 2. KNOWLEDGE, SKILLS AND CONFIDENCE 
 

Start of Block: 3. PERCEPTIONS 

 
Q21 Is AI currently being used in your practice (clinical, education, research or other type of 
radiography practice)? 

o Yes  (1)  

o No  (2)  

o Not sure  (3)  

o Not applicable  (4)  
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Q22  Which specific part of your daily workload do you currently see being influenced by 
the development and implementation of AI in diagnostic radiography? Please choose the 
answers that apply in your practice.    
  

▢ Patient bookings/requesting  (9)  

▢ Workflow optimisation  (16)  

▢ Patient record management/ID confirmation  (1)  

▢ Vetting of imaging requests from referrers  (2)  

▢ Patient safety  (4)  

▢ Patient positioning/planning  (3)  

▢ Quality assurance and quality control  (5)  

▢ Image acquisition  (6)  

▢ Image reconstruction  (7)  

▢ Image post-processing and segmentation  (8)  

▢ Protocol optimisation  (10)  

▢ Dose optimisation  (12)  

▢ Reporting examinations - assisted reporting  (15)  

▢ Reporting examinations - fully automated reporting  (11)  

▢ Other, please explain  (14) 
__________________________________________________ 

▢ I do not know  (13)  
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Q23 In which areas do you think there is the greatest scope for the development of AI 
systems in the future?  Please use the slider to indicate your order of preference. 

 Least           Greatest 
 

 0 1 2 3 4 5 
 

General projection radiography () 
 

Sonography () 
 

MRI () 
 

CT () 
 

Radiotherapy () 
 

PACS Systems () 
 

Reporting Radiography () 
 

PET/CT () 
 

PET/MRI () 
 

DEXA () 
 

Fluoroscopy () 
 

Interventional Radiography () 
 

Mammography () 
 

I do not know () 
 

Other. Please Explain () 
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End of Block: 3. PERCEPTIONS 
 

Start of Block: 4. EXPECTATIONS 

 
Q24 Artificial Intelligence will change the daily clinical practice for radiographers. 

o Strongly agree  (1)  

o Agree  (2)  

o Somewhat agree  (3)  

o Neither agree nor disagree  (4)  

o Somewhat disagree  (5)  

o Disagree  (6)  

o Strongly disagree  (7)  
 

 

Q25 AI will reduce the workload of the radiographer. 

o Strongly agree  (8)  

o Agree  (9)  

o Somewhat agree  (10)  

o Neither agree nor disagree  (11)  

o Somewhat disagree  (12)  

o Disagree  (13)  

o Strongly disagree  (14)  
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Q26 AI will make my practice more patient-centred.  

o Strongly agree  (8)  

o Agree  (9)  

o Somewhat agree  (10)  

o Neither agree nor disagree  (11)  

o Somewhat disagree  (12)  

o Disagree  (13)  

o Strongly disagree  (14)  
 

 

Q27 AI will ensure more consistent patient safety standards for radiography/radiotherapy. 

o Strongly agree  (1)  

o Agree  (2)  

o Somewhat agree  (3)  

o Neither agree nor disagree  (4)  

o Somewhat disagree  (5)  

o Disagree  (6)  

o Strongly disagree  (7)  
 

 

  



 

Page 444 of 516 

 

 
Q28 AI will ensure more consistent patient care pathways for radiography/radiotherapy. 

o Strongly agree  (1)  

o Agree  (2)  

o Somewhat agree  (3)  

o Neither agree nor disagree  (4)  

o Somewhat disagree  (5)  

o Disagree  (6)  

o Strongly disagree  (7)  
 

 

Q29 AI will improve and standardise image quality during data acquisition in radiography. 
 
     

o Strongly agree  (1)  

o Agree  (2)  

o Somewhat agree  (3)  

o Neither agree nor disagree  (4)  

o Somewhat disagree  (5)  

o Disagree  (6)  

o Strongly disagree  (7)  
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Q30 AI will improve and standardise pre and post processing in radiography. 
 
     

o Strongly agree  (1)  

o Agree  (2)  

o Somewhat agree  (3)  

o Neither agree nor disagree  (4)  

o Somewhat disagree  (5)  

o Disagree  (6)  

o Strongly disagree  (7)  
 

 

Q31 The implementation of AI will make the radiography/radiotherapy profession more 
attractive to me. 

o Strongly agree  (1)  

o Agree  (2)  

o Somewhat agree  (3)  

o Neither agree nor disagree  (4)  

o Somewhat disagree  (5)  

o Disagree  (6)  

o Strongly disagree  (7)  
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Q32 The implementation of AI will reduce radiography/radiotherapy career opportunities. 

o Strongly agree  (1)  

o Agree  (2)  

o Somewhat agree  (3)  

o Neither agree nor disagree  (4)  

o Somewhat disagree  (5)  

o Disagree  (6)  

o Strongly disagree  (7)  
 

 

Q33 Teaching of AI technology should be included in pre-registration radiography 
programmes at universities. 

o Strongly agree  (1)  

o Agree  (2)  

o Somewhat agree  (3)  

o Neither agree nor disagree  (4)  

o Somewhat disagree  (5)  

o Disagree  (6)  

o Strongly disagree  (7)  
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Q34 Teaching of AI technology teaching should be included in post-registration 
radiography programmes at universities. 

o Strongly agree  (11)  

o Agree  (12)  

o Somewhat agree  (13)  

o Neither agree nor disagree  (14)  

o Somewhat disagree  (15)  

o Disagree  (16)  

o Strongly disagree  (17)  
 

 

Q35 How do you foresee AI influencing radiography jobs in the next 5–10 years in the UK? 
Please chose all the responses you agree with. 

▢ The type of work I am doing will change  (1)  

▢ AI will support role development  (2)  

▢ It will deskill my profession  (3)  

▢ It will create different specialist roles  (5)  

▢ It will reduce the amount of administrative and routine tasks I do  (6)  

▢ Other. Please Explain  (4) 
__________________________________________________ 
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End of Block: 4. EXPECTATIONS 
 

Start of Block: 5. IMAGE PERCEPTION AND REPORTING 

 
Q36 For the remainder of this section of the survey please assume AI to mean any interface 
or tool used to aid in diagnosis, for example, computer aided diagnosis (CAD), decision 
support systems and automated diagnosis systems. 
 

 

 
Q37 Is image reporting part of your role? 

o Yes  (1)  

o No  (2)  
 
Skip To: End of Block If Is image reporting part of your role? = No 

 

 
Q38 Are you currently using AI as part of your reporting role? 

o Yes  (1)  

o No  (2)  
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Q39 I understand how an AI system reaches its decisions. 

o Strongly agree  (1)  

o Agree  (2)  

o Somewhat agree  (3)  

o Neither agree nor disagree  (4)  

o Somewhat disagree  (5)  

o Disagree  (6)  

o Strongly disagree  (7)  
 

 

Q40 I am/would be confident in explaining AI decisions to other healthcare professionals. 

o Strongly agree  (1)  

o Agree  (2)  

o Somewhat agree  (3)  

o Neither agree nor disagree  (4)  

o Somewhat disagree  (5)  

o Disagree  (6)  

o Strongly disagree  (7)  
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Q41 I am/would be confident in explaining an AI decisions to service users/patients and their 
carers. 

o Strongly agree  (4)  

o Agree  (5)  

o Somewhat agree  (6)  

o Neither agree nor disagree  (7)  

o Somewhat disagree  (8)  

o Disagree  (9)  

o Strongly disagree  (10)  
 

 

Q42 Would you feel more certain of your diagnosis if an AI system agreed with your 
interpretation? 

o Yes  (2)  

o No  (5)  

o Unsure  (4)  
 

 

Q43 Would you feel less certain of your diagnosis if an AI system disagreed with your 
interpretation? 

o Yes  (1)  

o No  (3)  

o Unsure  (2)  
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Q44 If an AI disagreed with your image interpretation would this cause you to seek a second 
opinion regarding your initial decision? 
 
 
       

o Yes  (1)  

o No  (3)  

o Unsure  (2)  
 

 

Q45 Use the slider to indicate on a scale of 0 - 10, how trustworthy you consider AI systems 
(as defined at the beginning of this section) for use in image interpretation decision support to 
be, with 0 representing no trust at all and 10 representing absolute trust. 

 0 1 2 3 4 5 6 7 8 9 10 
 

Trustworthiness of AI in image 
interpretation decision support ()  
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Q46 Which features might serve to enhance your trust in an AI system for use in diagnostic 
image interpretation decision support?  Please select all that apply. 

▢ The overall performance of the AI system, i.e. how accurate is this system in 
determining correct image interpretation  (9)  

▢ A visual explanation showing where the AI looked and found important areas 
of interest on the image, e.g. a ‘heat map’ or region of interest (ROI).  (11)  

▢ A textual natural explanation of its decision ‘It is likely X because of the 
fracture line in the top left of the image.’  (4)  

▢ An indication of the confidence of the AI system in its diagnosis expressed 
numerically e.g. the system is 96% certain that the image contains a pathology 
somewhere on the image.  (6)  

▢ The AI image interpretation itself with clinical codes to allow for automated 
patient journey.  (8)  

▢ A recommendation for further interpretations or imaging, including 
recommendation of other imaging modalities.  (12)  

▢ Other  (7) __________________________________________________ 
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 Appendix 3.6: Diagnostic and Therapeutic Radiography correlations tabulations – 

Spearman’s rho/Kendall’s tau 

Appendix%203.6%20
Spear%20and%20Ken 

 Appendix 3.7: Diagnostic and Therapeutic Radiography correlations tabulations – Chi 

square 

Appendix%203.7%20
Chi%20Square.docx   
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Appendix C – Chapter 4 (Automation Bias study) 
 

 Appendix 4.1 – Ethics approval 
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 Appendix 4.2 – Participant information sheet 

 
Participant Information Sheet 

 

 

 
 
 

 
 
 

You are invited to participate in an Ulster University research project. Before 

deciding whether or not you wish to be involved in the study it is important you 

understand what the research is for and what it will require you to do. Please read 

the following information and do not hesitate to ask questions about anything that 

may not be clear to you. Make sure you are happy before you decide to participate. 

Thank you for taking the time to read this invitation.  

 
What is the purpose of this study? 

The aim of this study is to discover how binary diagnosis (pathology / no pathology) 

and heat maps from an AI algorithm, specifically built for this study, will affect 

decision switching (‘changing mind’) of radiographers at both differing stages in their 

training and differing level of expertise when interpreting radiographic images of the 

upper extremities. 

 

Artificial intelligence (AI) is ever more asserting itself in healthcare, with applications 

including diagnosis of pathology on medical images.  The NHS has recognised the 

necessity to embrace technologies such as this in their Long-Term Plan (2019).  The 

latest AI systems have proven to have high accuracy in detection of abnormality on 

radiographic images, but are not currently fully utilised in imaging due, in large part, 

to trust issues with the system in a landscape where error carries significant weight. 

Title of the study:    An observational study to investigate the impact of AI feedback on image 

comment, decision switching and trust perception in student and experienced radiographers. 

  
Investigators:          Dr. Raymond Bond, Prof. Ciara Hughes, Dr. Jonathan McConnell  
 Dr. Sonyia McFadden (Chief Investigator) 
 
Doctoral Student:   Clare Rainey 
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Little research has been conducted in the ability of AI in detecting appendicular 

skeletal pathology, despite plain radiography being the initial modality of choice 

when imaging this area.   

With integration of AI into the clinical setting, there are concerns that the over 

reliance on machines may also be a problem in radiology and there have already 

been studies conducted to quantify the impact of this.  This is known as automation 

bias and may induce errors in interpretation. 

 

This study aims to investigate the effect of two forms of AI feedback on diagnostic 

accuracy and decision switching on student radiographers and qualified 

radiographers with differing levels of expertise. 

**Please note that the AI diagnoses used for this study may or may not be correct.  

This information is known only to the research team** 

 

What will the study involve? 
The study will be conducted using Qualtrics® survey platform.  You will access this 

from a suitable computer monitor at a location convenient to you.   

Embedded in the survey are radiographic images from 21 examinations.  Each 

examination contains more than one radiographic image.  A series of questions 

regarding the image and examination will be posed, relating to your perception of 

trust in the diagnosis and the location of any pathology plotted by the AI model.  You 

will be expected to identify whether or not you believe pathology is present on a 

radiographic image and draw a conclusion regarding whether or not you believe is a 

pathology visible in the examination as a whole.  Only the researcher will be aware 

of whether or not the AI diagnosis is correct. 

You should have access to suitable home-computer monitor for this Qualtrics® 

survey as mobile devices are not permitted (RCR, 2019, pp 6-7). 

Who is eligible to take part in this study? 
Any student who is enrolled on an HCPC/SCoR accredited undergraduate 

Diagnostic Radiography programme in a UK university and HCPC registered 

Diagnostic Radiographers currently practicing in a diagnostic x-ray department (plain 
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radiography) in the UK for at least three days per week are welcome to take part in 

this study. 

Do I have to take part?  
Your participation in this study is voluntary and you are able to withdraw at any point 

during the survey without any given reason, however, if the survey has been 

submitted, your responses will not able to be withdrawn at this stage. 

Will my taking part in this study be kept confidential?  
All data will be stored securely and will be made available only to persons directly 

involved in conducting the study. No reference will be made in oral or written reports 

that could link you to the study. Your data collected will be anonymous i.e. we will not 

record your name. The results of the study will be used to further research. All 

information generated from this study will be kept in accordance with the Ulster 

University regulations. This will involve all participant data being stored within a data 

protection office for a minimum of 10 years following the study, after which all 

information relating to this study will be destroyed.  

What are the potential benefits or risks for participants? 
This study aims to assist in shaping the way that AI will be incorporated into the 

clinical environment, identifying any potential pitfalls and the potential effect of 

automation bias.  This is determined by assessing the effect of an AI model used for 

diagnosis on plain radiographs on diagnostic accuracy and decision switching in 

radiographers of varying levels of experience.   

There may be a risk of anxiety due to the image interpretation being carried out in 

format different to what you are accustomed to.  There may also be a risk of fatigue.  

Please take rests as required to mitigate the effects of fatigue and refer again to 

page 7 of: 

https://www.rcr.ac.uk/system/files/publication/field_publication_files/bfcr192_pacs-

diagnostic-display.pdf 

 

What if something goes wrong?  

https://www.rcr.ac.uk/system/files/publication/field_publication_files/bfcr192_pacs-diagnostic-display.pdf
https://www.rcr.ac.uk/system/files/publication/field_publication_files/bfcr192_pacs-diagnostic-display.pdf
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As this study has been carefully planned and approved by the Ulster University 

Institute of Nursing and Health Research Committee, it is extremely unlikely that 

something will go wrong during this study. However, you should know that the 

university has procedures in place for reporting, investigating, recording and 

handling adverse events and complaints from study volunteers. In addition, the 

university routinely insures for its staff to carry out research involving people. Further 

information on the complaints procedure can be found at the University’s ‘‘Research 

Ethics and Governance’’ webpage (Internet address: 

http://research.ulster.ac.uk/rg/0208ResearchVolunteerComplaintsProcedure.pdf). 

Any complaint or concerns should be made, in the first instance, to the Chief 

Investigator identified for this particular study (contact details are below); complaints 

will be treated seriously and reported to the appropriate authority. The Chief 

Investigator will try their best to resolve this concern or complaint, however should 

this attempt fail the Research Ethics and Governance should be contacted (contact 

details below).  

 
Who is organising the funding for this research?  
This study is being funded by Ulster University and the College of Radiographers 

Industry Partnership Scheme (CoRIPS) and will form part of a PhD study. 

 

Has an ethical committee approved this study?                                                                                      
The Ulster University Institute of Nursing and Health Research Ethics Filter 

Committee has approved this study. 

 

How do I go about participating?  
If you have any questions at any time about the study or the procedures, you may 

contact Clare Rainey (doctoral researcher) via email or phone: 

Email: c.rainey@ulster.ac.uk Tel: 02890366665 

Address: Room 17J02, Ulster University, Jordanstown campus, Shore Road, 

Newtownabbey, Co. Antrim, BT370QB 

 

http://research.ulster.ac.uk/rg/0208ResearchVolunteerComplaintsProcedure.pdf
mailto:c.rainey@ulster.ac.uk
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Further information:  
If you would like further information about the research study please contact:  

 

Chief Investigator 
Dr. Sonyia McFadden 

Address: Room 14J15, School of Health Sciences 

University of Ulster, Jordanstown campus, Shore Road, Newtownabbey, Co. Antrim, 

BT37 0QB  

Email: s.mcfadden@ulster.ac.uk   

Tel: 02890366224 

 

Investigators:  
Dr. Raymond Bond               rb.bond@ulster.ac.uk  

Prof. Ciara Hughes           cm.hughes@ulster.ac.uk 

Dr. Jonathan McConnell      jonathan.mcconnell@ggc.scot.nhs.uk   

 
Research Ethics and Governance: 
Mr. Nick Curry 

Address: Room 26A17, Research & Innovation, University of Ulster, Jordanstown 

campus, Shore Road, Newtownabbey, Co. Antrim, BT37 0QB 

Email: n.curry@ulster.ac.uk 

Tel: 028903666229 

  

mailto:s.mcfadden@ulster.ac.uk
mailto:rb.bond@ulster.ac.uk
mailto:cm.hughes@ulster.ac.uk
mailto:jonathan.mcconnell@ggc.scot.nhs.uk
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 Appendix 4.3 – Patient examinations (Images from Patients 1 – 21) 

 

Appendix%20PPT%2
0images%20for%20q 
 

 Appendix 4.4 – Per-patient diagnoses (ground truth and AI predictions) 

 
PATIENT 

NUMBER 

AREA CASE NO AI DIAG. PROB GROUND 

TRUTH 

AGREEMENT

? 

1 elbow  141 0 99.83% 0 y 

2 elbow  184 0 99.32% 1 n 

3 elbow  329 0 99.54% 0 y 

4 finger 252 0 98.69% 1 n 

5 finger 290 0 97.35% 1 n 

6 finger 367 0 92.92% 0 y 

7 forearm 225 1 52.60% 0 n 

8 forearm 339 1 72.49% 1 n 

9 forearm 340 1 94.66% 1 y 

10 hand 1 1 56.85% 0 n 

11 hand 101 1 83.60% 1 y 

12 hand 103 1 65.24% 0 n 

13 humerus 120 0 53.51% 0 y 

14 humerus 199 1 55.80% 1 y 

15 humerus 321 0 59.11% 1 n 

16 thumb 66 0 96.98% 0 y 

17 thumb 128 0 91.79% 0 y 

18 thumb 370 0 97.79% 0 y 

19 wrist 98 0 79.94% 0 y 

20 wrist 124 0 56.13% 1 n 

21 wrist 221 0 88.81% 0 y 
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 Appendix – 4.5 Personal communication Dr D. Kumar – performance of CNN on 

MURA 

 
From: Devinder Kumar <devinder.kumar@uwaterloo.ca> 

Date: Friday, 1 November 2019 at 01:00 

To: "Bond, Raymond" <rb.bond@ulster.ac.uk> 

Cc: "Rainey, Clare" <c.rainey@ulster.ac.uk>, "McFadden, Sonyia" <s.mcfadden@ulster.ac.uk>, "Hughes, 

Ciara" <cm.hughes@ulster.ac.uk>, "McConnell, Jonathan" <Jonathan.McConnell@ggc.scot.nhs.uk>, Alex 

Wong <a28wong@uwaterloo.ca> 

Subject: Re: re MURA AI test 

 

[EXTERNAL EMAIL]  

Hi All,  

 

Hope you all had a nice halloween!! 

 

Please find the cohen kappa scores (table below) from our first iteration using a Convolution Neural 

Network (CNN) model in particular ResNet152 architecture along with the baseline results reported in 

the seminal dataset paper.   

We have also attached some of the interpretability map results for correctly and wrongly classified 

cases from the validation set from MURA dataset using a method called Grad CAM. We are currently 

running another iteration using a bigger CNN model to improve the kappa scores further.  

 

Please let us know your feedback especially with respect to the interpretability maps and how would 

you like proceed further.  

Also, please let me know if you have any questions. 

 

 CK_val (ours) MURA baseline 

XR_ELBOW 0.737 0.71 

XR_FINGER 0.528 0.389 

XR_FOREARM 0.635 0.737 

XR_HAND 0.541 0.851 

mailto:devinder.kumar@uwaterloo.ca
mailto:rb.bond@ulster.ac.uk
mailto:c.rainey@ulster.ac.uk
mailto:s.mcfadden@ulster.ac.uk
mailto:cm.hughes@ulster.ac.uk
mailto:Jonathan.McConnell@ggc.scot.nhs.uk
mailto:a28wong@uwaterloo.ca
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XR_HUMERUS 0.729 0.6 

XR_SHOULDER 0.644 0.729 

XR_WRIST 0.715 0.931 

Devinder  

 

--  

Devinder Kumar,  

Lead AI Scientist in Residence, NextAI, 

PhD Candidate, Systems Design Engg, 

Member, Vector Institute, Toronto 

Intel Student Ambassador, 

University of Waterloo,  

200 University Avenue, Waterloo,  

Ontario, Canada- N2L 3G1 

Office: EC4 - 2038Q 

http://devinderkumar.com 

 

  

https://eur03.safelinks.protection.outlook.com/?url=http%3A%2F%2Fdevinderkumar.com&data=02%7C01%7Cc.rainey%40ulster.ac.uk%7C595658644c9d4f67e92408d75ee62b82%7C6f0b94874fa842a8aeb4bf2e2c22d4e8%7C0%7C0%7C637082214975713653&sdata=VcMZcoF1CTx4bOx8Akv0QqhYSjP12quTxeoQIq%2F5ZlA%3D&reserved=0
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Appendix 4.6 – Qualtrics® study Chapter 4: including Consent, Demographics section, 

and example questions from Patient 1. 

 

AI in radiology study (ii) 

 

Start of Block: Welcome 

    
  
 You are invited to participate in an Ulster University research project. This project is funded 
by CoRIPS, a research grant initiative established by the Society and College of 
radiographers.  The aim of this study is to investigate the impact of AI feedback on image 
comment, decision switching and trust perception in student and experienced 
radiographers when interpreting radiographic images of the upper extremities.  Artificial 
intelligence (AI) is ever more asserting itself in healthcare, with applications including 
diagnosis of pathology on medical images.  The NHS has recognised the necessity to embrace 
technologies such as this in their Long-Term Plan (2019).      With integration of AI into the 
clinical setting, there are concerns that the over reliance on machines may also be a problem 
in radiology.  This is known as automation bias and may induce errors in 
interpretation.      This study investigates the effect of two forms of AI feedback on diagnostic 
accuracy and decision switching on student radiographers and qualified radiographers with 
differing levels of expertise.  **Please note that the AI diagnoses used for this study may or 
may not be correct.  This information is known only to the research team**        What will 
the study involve?  Embedded in this survey are images from three radiographic 
examinations.  These examinations have been randomly generated for you and will have 
different 'patient numbers' which will not necessarily be in numerical order. You will be 
asked to give your opinion on whether or not you believe there to be any ACUTE pathology 
evident on the radiographic image and draw conclusions based on the examination as a 
whole.  You will be asked to rate your trust in the AI used to assist you in making your 
decision. You will be asked if the AI caused you to change your mind from your initial 
decision.   
 You can start the survey at any point after receiving the invitation to participate. You can 
also stop the survey and return to it within a 24 hour period, within which your data will be 
saved.  The survey is anonymous and you cannot withdraw the responses after you have 
completed it. It will take approximately 15 minutes of your time.     
   
The full version of the Participation Information Sheet and detailed instructions are available 
below or by emailing c.rainey@ulster.ac.uk 
 Participant instruction sheet study ii for qualtrics participants 
     
 Who is eligible to take part in this study?  Any student who is enrolled on an accredited 
undergraduate Diagnostic Radiography programme and registered Diagnostic 
Radiographers currently practicing in a diagnostic x-ray department (plain radiography) as 

https://ulsterhealth.eu.qualtrics.com/CP/File.php?F=F_3b1D5gDCXsotsMu
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some part of their role are welcome to take part in this study.  Do I have to take part? 
 Your participation in this study is voluntary and you are able to withdraw at any point 
during the survey without giving a reason, however, your responses up to that point will be 
saved.  Your responses will automatically be submitted after 24 hours.  Will my taking part 
in this study be kept confidential?   All data will be stored securely and will be made 
available only to persons directly involved in conducting the study. No reference will be 
made in oral or written reports that could link you to the study. Your data collected will be 
anonymous i.e. we will not record your name. The results of the study will be used to further 
research. All information generated from this study will be kept in accordance with the Ulster 
University regulations. This will involve all participant data being electronically stored on a 
password protected computer and on the researchers' password protected 
Qualtrics(r) account for a minimum of 10 years following the study, after which all 
information relating to this study will be destroyed.  What are the potential benefits or risks 
for participants?  There may be a risk of anxiety due to the image interpretation being 
carried out in format different to what you are accustomed to.  There may also be a risk of 
fatigue.  Please take rests as required to mitigate the effects of fatigue.  What if something 
goes wrong?   As this study has been carefully planned and approved by the Ulster 
University Institute of Nursing and Health Research Committee, it is extremely unlikely that 
something will go wrong during this study. However, you should know that the university has 
procedures in place for reporting, investigating, recording and handling adverse events and 
complaints from study volunteers. In addition, the university routinely insures for its staff to 
carry out research involving people. Further information on the complaints procedure can be 
found at the University’s ‘‘Research Ethics and Governance’’ webpage (Internet address: 
http://research.ulster.ac.uk/rg/0208ResearchVolunteerComplaintsProcedure.pdf). Any 
complaint or concerns should be made, in the first instance, to the Chief Investigator 
identified for this particular study (contact details are below); complaints will be treated 
seriously and reported to the appropriate authority. The Chief Investigator will try their best 
to resolve this concern or complaint, however should this attempt fail, Ulster University 
Research Ethics and Governance should be contacted.  Has an ethical committee approved 
this study?  The Ulster University Institute of Nursing and Health Research Ethics Filter 
Committee has approved this study.  Chief Investigator  Dr. Sonyia McFadden  Email: 
s.mcfadden@ulster.ac.uk  Investigators:   Dr. Raymond 
Bond                             rb.bond@ulster.ac.uk   Prof. Ciara 
Hughes                             cm.hughes@ulster.ac.uk  Dr. Jonathan 
McConnell                     jonathan.mcconnell@ggc.scot.nhs.uk    
      
     
     

o I consent to taking part in this study  (1)  

o I DO NOT consent to taking part in this study  (2)  
 
Skip To: End of Survey If   You are invited to participate in an Ulster University research project. This project is 
funded... = I DO NOT consent to taking part in this study 
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Q2 How would you rate your level of trust in AI systems used for diagnosis in radiographic 
imaging in general, with 0 indicating no trust at all and 5 indicating absolute trust? 

o 0  (1)  

o 1  (2)  

o 2  (3)  

o 3  (4)  

o 4  (5)  

o 5  (6)  
 
End of Block: Welcome 

 

Start of Block: Demographics 

 
Q3 Are you currently practicing plain radiography within your role as a radiographer 
(either as a student or registered diagnostic radiographer)? 

o Yes  (1)  

o No  (2)  
 
Skip To: End of Survey If Are you currently practicing plain radiography within your role as a radiographer 
(either as a st... = No 

 

 
Q4 What is your gender? 

o Male  (1)  

o Female  (2)  

o Non binary / third gender  (3)  

o Prefer not to say  (4)  
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Q5 What is your age range? 

o 18-25 years old  (1)  

o 26-35 years old  (4)  

o 36-45 years old  (5)  

o 46-55 years old  (6)  

o 55-65 years old  (7)  

o >65 years old  (8)  
 

 

 
Q6 In which country do you currently work / study? 

________________________________________________________________ 
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Q7 Please select from the options below to indicate your level of experience in Diagnostic 
Radiography: 

o Undergraduate student - year 1  (1)  

o Undergraduate student - year 2  (2)  

o Undergraduate student - year 3  (3)  

o Undergraduate student - year 4 (Scotland only)  (4)  

o Less than or equal to 1 year experience  (5)  

o Greater than or equal to 1 to less than 6 years' experience  (6)  

o Greater than or equal to 6 to less than 11 years' experience  (7)  

o Greater than or equal to 11 to less than 20 years' experience  (8)  

o Greater than or equal to 20 years' experience  (9)  
 

 

 
Q8 Please briefly describe your current role in clinical Diagnostic Radiography e.g. reporting 
radiographer (appendicular skeleton); year 3 student radiographer, with 28 weeks clinical 
placement experience to date; band 5 diagnostic radiographer working full time in 'general' 
radiography. 

________________________________________________________________ 
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Q9 How proficient would you consider yourself to be in the use of information technology 
(I.T.) in general: 

o Very proficient: I choose to use IT and computer systems in all aspects of my 
personal and work life and feel comfortable with the introduction of newer systems.  (1)  

o Proficient: I choose to use IT and computer systems in many aspects of my personal 
and work life and I am somewhat comfortable with the introduction of newer systems.  
(2)  

o Somewhat proficient: I use IT and computer systems when I need to in my personal 
and work life but I feel overwhelmed and confused by newer systems.  (3)  

o Not proficient: I only use IT and computer systems when there is no other option and 
avoid its use were possible in my work and personal life. I avoid using newer systems 
where possible and tend to take a long time to be able to use them.  (4)  

 

 

 
Q325 How are you accessing this survey? 

o Home personal computer (PC)  (1)  

o Diagnostic display workstation  (2)  

o Mobile phone  (3)  

o Tablet  (4)  

o Other, please explain.  (5) 
__________________________________________________ 

 
Q10 Please proceed to the next slide to begin the study by clicking on the arrow in the 
bottom, right-hand corner of the screen. 
Thank you, in advance, for your participation in this study. 
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End of Block: Demographics 
 

Start of Block: Patient 1 - Elbow (141) 

 
Q303 Patient 1  
    
The following screens will contain radiographic examinations from patient number 1. Please 
select next to start. 

 

Q11 Do you think there is any evidence of acute injury visible on this radiographic image? 
 

o Definitely yes  (1)  

o Probably yes  (2)  

o Might or might not  (3)  

o Probably not  (4)  

o Definitely not  (5)  
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Q12 This is a heatmap produced by the AI model.  The WHITE area represents the area the 
AI system found most important in determining its diagnosis.    
Do you now believe there is evidence of acute injury visible on this radiographic image? 

o Definitely yes  (1)  

o Probably yes  (2)  

o Might or might not  (3)  

o Probably not  (4)  

o Definitely not  (5)  
 
 

  
Q13 Has viewing the heatmap caused you to change your mind from your initial decision? 

o Yes  (1)  

o No  (2)  

o No - but it did make me reconsider my initial decision  (3)  
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Q18 Do you think there is any evidence of acute injury visible on this radiographic image? 

o Definitely yes  (1)  

o Probably yes  (2)  

o Might or might not  (3)  

o Probably not  (4)  

o Definitely not  (5)  
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Q19 This is a heatmap produced by the AI model.  The WHITE area represents the area the 
AI system found most important in determining its diagnosis.    
Do you now believe there is any evidence of acute injury visible on this radiographic image? 

o Definitely yes  (1)  

o Probably yes  (2)  

o Might or might not  (3)  

o Probably not  (4)  

o Definitely not  (5)  
 
 

 
 

 
Q20 Has viewing the heatmap caused you to change your mind from your initial decision? 

o Yes  (1)  

o No  (2)  

o No - but it did make me reconsider my initial decision  (3)  
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Q17 Overall, having viewed all the images for this patient (presented again below), do you 
think there is any evidence of acute injury visible in this examination? 

o Definitely yes  (1)  

o Probably yes  (2)  

o Might or might not  (3)  

o Probably not  (4)  

o Definitely not  (5)  
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Q15 The AI system determined that this examination/imaging series DID NOT contain 
evidence of pathology with 99.83% certainty.  Do you now believe there is any evidence of 
acute injury visible on this radiographic image? 

o Definitely yes  (1)  

o Probably yes  (2)  

o Might or might not  (3)  

o Probably not  (4)  

o Definitely not  (5)  
 
 

 
Q16 Has being given the AI decision caused you to change your mind from your initial 
diagnosis for the examination? 

o Yes  (1)  

o No  (2)  

o No - but it did make me reconsider my initial decision  (3)  
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Q30 Following exposure to both the AI heat map and the AI diagnosis, how would you rate 
your level of TRUST in the AI system now, with 0 indicating no trust at all and 5 indicating 
absolute trust? 

o 0  (1)  

o 1  (2)  

o 2  (3)  

o 3  (4)  

o 4  (5)  

o 5  (6)  
 
 

 
Q16 Please select the blue arrow at the bottom right-hand corner of the screen to progress to 
the next examination. 
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Q302 Following exposure to both the AI heat map and the AI diagnosis, how would you rate 
your level of TRUST in the AI system now, with 0 indicating no trust at all and 5 indicating 
absolute trust? 

o 0  (1)  

o 1  (2)  

o 2  (3)  

o 3  (4)  

o 4  (5)  

o 5  (6)  
 
 

End of Block: Patient 21 - hand and wrist (221) 

 
** Followed by next Patient.  Images for all patients are provided in Appendix 4.4** 

Start of Block: end 
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Q304  
You have now reached the end of the survey.  Thank you for your responses.   
  Following exposure to the AI heat/attention maps and diagnoses for all 
examinations/imaging series in this dataset, how do you rate your level of trust in AI systems 
used for diagnosis in radiographic imaging now, with 0 indicating no trust at all and 5 
indicating absolute trust? 
  
 Ai feedback cert for participants ecr spring 2021 

o 0  (1)  

o 1  (2)  

o 2  (3)  

o 3  (4)  

o 4  (5)  

o 5  (6)  
 

 

 
Q305 Thank you for your participation in this study.  
If you have any further queries please contact:   
Clare Rainey   
c.rainey@ulster.ac.uk 
 
End of Block: end 

 
 
 

  

https://ulsterhealth.eu.qualtrics.com/CP/File.php?F=F_1LYIoE10xzgesd0
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Appendix D – Chapter 5 (Reporting Radiographers’ trust in AI study) 
 Appendix 5.1 – Ethics approval 
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 Appendix 5.2 – Participant Information Sheet 

 

Appendix 1 
 

Participant Information Sheet  
 

 

 
 
 
 
 
 
 
 
 

 

 

You are invited to participate in an Ulster University research project. Before deciding 

whether or not you wish to be involved in the study it is important you understand what the 

research is for and what it will require you to do. Please read the following information and 

do not hesitate to ask questions about anything that may not be clear to you. Make sure you 

are happy before you decide to participate.  

 

Thank you for taking the time to read this invitation.  

 
What is the purpose of this study? 

The aim of this study is to investigate the agreement of experienced radiographers and an AI 

model for both binary diagnosis and region of interest, and to gain insight into the level of 

Title of the study:    An observational study to investigate the agreement and trust 

perception of expert radiographers with an Artificial intelligence (AI) model on diagnosis of 

pathology from plain radiographic images of the appendicular skeleton.  

  
Investigators:          Prof. Raymond Bond, Prof. Ciara Hughes, Prof. Jonathan 

McConnell  
 Dr. Sonyia McFadden (Chief Investigator) 
 
Doctoral Student:   Clare Rainey 
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trust of users following exposure to the AI model used for diagnosis of pathology on plain 

radiographic images. 

Artificial intelligence (AI) is ever more asserting itself in healthcare, with applications 

including diagnosis of pathology on medical images.  The NHS has recognised the necessity 

to embrace technologies such as this in their Long-Term Plan (2019).  The latest AI systems 

have proven to have high accuracy in detection of abnormalities on radiographic images, but 

are not currently fully utilised in imaging due, in large part, to trust issues with the system in 

a landscape where error carries significant weight. Little research has been conducted on 

the ability of AI in detecting appendicular skeletal pathology, despite plain radiography being 

the initial modality of choice when imaging this area.   

 

This study aims to investigate the effect of two forms of AI feedback on trust perception and 

diagnosis agreement in a small sample of experienced radiographers.   

 

 

What will the study involve? 
The study will be conducted using Qualtrics® survey platform.  You will access this from a 

suitable computer monitor at a location convenient to you.   

Embedded in the survey are radiographic images from 16 examinations, which will be 

allocated to you randomly.  A series of questions regarding the image will be posed, relating 

to your perception of trust in the diagnosis and the location of any pathology plotted by the AI 

model.  You will be asked to identify whether or not you believe pathology is present on an 

image and to plot the location of any pathology/ies.   

 

*Please note that these are images which are used to train AI algorithms and do not 

represent the quality of images normally expected in the clinical setting* 

 

It is anticipated the survey will take approximately 2 hours to complete. 
 

Who is eligible to take part in this study? 
Reporting radiographers who are trained and have received a postgraduate qualification 

from a UK institution to report on appendicular skeleton or appendicular and axial skeleton 

and who are currently reporting for at least one full day per week. 
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Do I have to take part?  
Your participation in this study is voluntary and you are able to withdraw at any point without 

any given reason.  

 

Will my taking part in this study be kept confidential?  
All data will be stored securely and will be made available only to persons directly involved in 

conducting the study. No reference will be made in oral or written reports that could link you 

to the study. Your data collected will be anonymous i.e. we will not record your name. The 

results of the study will be used to further research in this area of practice. All information 

generated from this study will be kept in accordance with the Ulster University regulations. 

This will involve all participant data being stored within a data protection office for a minimum 

of 10 years following the study, after which all information relating to this study will be 

destroyed.  

 

What are the potential benefits or risks for participants? 
This study aims to assist in shaping the way that AI will be incorporated into the clinical 

environment by assessing the trust of expert radiographers and thus, identifying potential 

barriers to implementation of AI systems.   

There may be a risk of anxiety due to the image interpretation being carried out in format 

different to what you are accustomed to.  There may also be a risk of fatigue.  Please take 

rests, as required.  Further information on mitigating the risk of fatigue can be found on page 

7 of: https://www.rcr.ac.uk/system/files/publication/field_publication_files/bfcr192_pacs-

diagnostic-display.pdf 

 

What if something goes wrong?  
As this study has been carefully planned and approved by the Ulster University Ethics 

Committee, it is extremely unlikely that something will go wrong during this study. However, 

you should know that the university has procedures in place for reporting, investigating, 

recording and handling adverse events and complaints from study volunteers. In addition, 

the university routinely insures its staff to carry out research involving people. Further 

information on the complaints procedure can be found at the University’s ‘‘Research Ethics 

and Governance’’ webpage (Internet address: 

http://research.ulster.ac.uk/rg/0208ResearchVolunteerComplaintsProcedure.pdf). Any 

complaint or concerns should be made, in the first instance, to the Chief Investigator 

https://www.rcr.ac.uk/system/files/publication/field_publication_files/bfcr192_pacs-diagnostic-display.pdf
https://www.rcr.ac.uk/system/files/publication/field_publication_files/bfcr192_pacs-diagnostic-display.pdf
http://research.ulster.ac.uk/rg/0208ResearchVolunteerComplaintsProcedure.pdf
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identified for this particular study (contact details are below); complaints will be treated 

seriously and reported to the appropriate authority. The Chief Investigator will try their best to 

resolve this concern or complaint, however should this attempt fail the Research Ethics and 

Governance should be contacted (contact details below).  

 
Who is organising the funding for this research?  
This study is being funded by Ulster University and will form part of a PhD study. 

 

Has an ethical committee approved this study?                                                                                      
The Ulster University Institute of Nursing and Health Research Filter Committee has 

approved this study. 

 

How do I go about participating?  
If you have any questions at any time about the study or the procedures, you may contact 

Clare Rainey (doctoral researcher) via email or phone: 

Email: c.rainey@ulster.ac.uk Tel: 02890366665 

Address: Room 17J02, Ulster University, Jordanstown campus, Shore Road, 

Newtownabbey, Co. Antrim, BT370QB 

 

Further information:  
If you would like further information about the research study please contact:  

 

Chief Investigator 
Dr. Sonyia McFadden 

Address: Room 14J15, School of Health Sciences 

University of Ulster, Jordanstown campus, Shore Road, Newtownabbey, Co. Antrim, BT37 

0QB  

Email: s.mcfadden@ulster.ac.uk   

Tel: 02890366224 

 

Investigators:  
Prof. Raymond Bond               rb.bond@ulster.ac.uk  

Prof. Ciara Hughes           cm.hughes@ulster.ac.uk 

Prof. Jonathan McConnell      jonathan.mcconnell@ggc.scot.nhs.uk   

mailto:c.rainey@ulster.ac.uk
mailto:s.mcfadden@ulster.ac.uk
mailto:rb.bond@ulster.ac.uk
mailto:cm.hughes@ulster.ac.uk
mailto:jonathan.mcconnell@ggc.scot.nhs.uk
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Research Ethics and Governance: 
Mr. Nick Curry 

Address: Room 26A17, Research & Innovation, University of Ulster, Jordanstown campus, 

Shore Road, Newtownabbey, Co. Antrim, BT37 0QB 

Email: n.curry@ulster.ac.uk 

Tel: 028903666229 
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 Appendix 5.3 – Participant instruction sheet 

 

 
 

Instruction Sheet for Participants 
 

Title of the study: An observational study to investigate the agreement and trust 

perception of expert radiographers with an Artificial Intelligence (AI) model on 

diagnosis of pathology from plain radiographic images of the appendicular skeleton. 

 

Investigators:         Prof. Raymond Bond, Prof. Ciara Hughes, Prof. Jonathan 

McConnell  

 Dr. Sonyia McFadden (Chief Investigator) 

 

Doctoral Student:   Clare Rainey 
 

Thank you in advance for agreeing to participate in this Ulster University research 

study.  The aim of this study is to investigate the agreement of experienced 

radiographers and an AI model for both binary diagnosis and region of interest, and 

to gain insight into the level of trust of users following exposure to the AI model used 

for diagnosis of pathology on plain radiographic images. 

 

Thank you for taking the time to read this document thoroughly.  

 

What is the purpose of this study? 
This study aims to investigate the effect of two forms of AI feedback on trust 

perception and diagnosis agreement in a small sample of experienced 

radiographers.   
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What will this study involve?  
General points to note: 

The study is being conducted using Qualtrics® survey platform.   

Response to a question will permit progression to the next by clicking on at the 

bottom right hand corner of the screen.   

Please ensure you use the best viewing conditions available.  Additional guidance is 

provided by the Royal College of Radiologists and is available at: 

https://www.rcr.ac.uk/system/files/publication/field_publication_files/bfcr192_pacs-

diagnostic-display.pdf.  Please pay particular attention to pages 6, 7 and 8 regarding 

the use of acceptable monitors and the setting up of an optimal viewing environment. 

It is possible to ‘zoom’ the image by using the ‘Ctrl’ and + function.   

Please note that not all images demonstrate evidence of pathology. 
 

Survey format: 
Following an introductory/welcome paragraph, you will be asked to indicate your 

level of trust in AI systems used in radiographic imaging for diagnosis.  This is to 

establish a baseline level of trust before your exposure to the examinations/imaging 

series used for this study. 

You will then be requested to proceed to the next slide where you will be presented 

with a plain radiographic image from a complete examination/imaging series.  This 

image is free of any annotations and will allow you to view the radiograph in as 

similar a format to the clinical setting as possible.  You will be asked to state whether 

or not you feel a pathology is present on the image by providing a yes/no response 

only.  Please note: this survey has been set up to not permit backtracking. 
*Pathology should be considered as any feature you determine to be pathological.  

Normal variants should be excluded from this definition.  MURA, the team who 

collated the radiographs for this dataset, have stated pathology in this dataset to be:  

“Fractures… 

Degenerative joint diseases… 

Miscellaneous abnormalities, including lesions and subluxations.”  

https://www.rcr.ac.uk/system/files/publication/field_publication_files/bfcr192_pacs-diagnostic-display.pdf
https://www.rcr.ac.uk/system/files/publication/field_publication_files/bfcr192_pacs-diagnostic-display.pdf
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For example, for this image, a ‘yes’ response would be appropriate here, as there is 

a distal humeral fracture present.  Please note: these images are real images used 

to train AI algorithms.  They do not represent acceptable diagnostic image quality on 

all occasions. 

 

Clicking  will bring you to the next page in the survey where you will be asked 

to locate the area of pathology/ies on the grid, using standard co-ordinate 

localisation (x-y).   

The radiographic image will be presented with a grid superimposed and co-ordinates 

on the x and y axis like so: 
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In this example, the pathology is located in D-3 and D-4.  You should select all co-

ordinates you believe a pathology to be located in. 

 

The next slide in the survey will present the same image following processing and 

prediction by the AI model.  The AI has produced a ‘heat map’ or ‘attention map’ 
to visually represent the area the AI found most important in determining its 
decision.  You should focus on the whitest area on the heatmap as this is the area 

of greatest AI attention.  
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For example, the whitest area in this image is located in 1-C, 2-C, 3-C, 4-C, 1-D, 2-

D, 3-D and 4 but with greatest focus in 3-D.  The question related to this image will 

ask if the white area overlaps with the area you identified in: 

- all the areas previously identified 

- in greater than half the areas I have previously identified 

- in less than half the areas I have previously identified 

- in all the areas identified but with areas identified by the AI which you consider to 

not contain pathology OR 

- there are no areas of agreement with the areas previously identified. 

 

The purpose of this question is to gain an understanding of the agreement of your 

localisation of pathology (if applicable) and the area(s) the AI used to determine its 

diagnosis. 

 

The next slide will ask you to rate your trust in the AI model on a scale of 0 to 5, 

where 0 indicates no trust and 5 indicates absolute trust. 
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These slides will continue for all images in the examination/imaging series.  Most 

examinations/imaging series will contain more than one image.   

 

To conclude the examination/imaging series, you will be presented with the AI 

decision.  This will be presented in the format of pathology/no pathology.  You will be 

asked if your diagnosis from the images agrees with this: 

 - yes - in every image in the series, for example in the case of a pathological 

finding, you feel that there is evidence of pathology in every image in the 

examination/imaging series.  

 -  no – you do not believe pathology to be evident in any of the images in the 

examination/imaging series. 

 - partly – you feel that some, but not all, of the images contain evidence of 

pathology. 

 

A question will then be posed to gather information on your level of trust of AI in 

radiology following exposure to all of the images, heat maps and binary diagnoses.  

This is to gain an understanding of your trust in the AI following exposure to both the 

heat/attention map and the binary diagnosis (pathology/no pathology).  Please try to 

answer this question related to this examination/imaging series only.  Please try to 

not let previous examinations/imaging series influence your response. 

 

You will also be asked to rate the quality of the images presented to you.  This will 

allow the researcher to further investigate the effect of poor image quality on 

responses. 

 

At the end of the survey you will have an opportunity to give your thoughts on your 

level of trust in the AI following exposure to all the examinations/imaging series.  This 

should be a holistic representation of your trust in the AI used in this study only. 

 

Do I have to take part?  
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Your participation in this study is voluntary and you are able to withdraw at any point 

without any given reason.  Any data collected from you will be permanently deleted 

at this stage. 

 

Will my taking part in this study be kept confidential?  
All data will be stored securely and will be made available only to persons directly 

involved in conducting the study. Your identity will be known only to the researcher 

and will not be shared with anyone else.  No reference will be made in oral or written 

reports that could link you to the study. The results of the study will be used to further 

research. All information generated from this study will be kept in accordance with 

the Ulster University regulations. This will involve all participant data being stored 

within a data protection office for a minimum of 10 years following the study, after 

which all information relating to this study will be destroyed.  

 

What are the potential benefits or risks for participants? 
This study aims to assist in shaping the way that AI will be incorporated into the 

clinical environment by assessing the trust of expert radiographers and thus, 

identifying potential barriers to implementation of AI systems.   

There may be a risk of anxiety due to the image interpretation being carried out at 

home.  there may also be a risk of fatigue.  Please refer again to page 7 of: 

https://www.rcr.ac.uk/system/files/publication/field_publication_files/bfcr192_pacs-

diagnostic-display.pdf 

 

 

Further information: 
If you would like further information about this research study please contact: 

 

Clare Rainey 

c.rainey@ulster.ac.uk 

02890366665 

 

https://www.rcr.ac.uk/system/files/publication/field_publication_files/bfcr192_pacs-diagnostic-display.pdf
https://www.rcr.ac.uk/system/files/publication/field_publication_files/bfcr192_pacs-diagnostic-display.pdf
mailto:c.rainey@ulster.ac.uk
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Appendix 5.4 – Qualtrics® study Chapter 5: including Consent, Demographics section 

and example question from Patient 1  

 

AI in Radiography Experts' study 

 

Start of Block: Welcome and consent 

Q1.1  
 You are invited to participate in an Ulster University research project. Before deciding whether or not you wish 
to be involved in the study it is important you understand what the research is for and what it will require you to 
do. Please read the following information in the attached links and do not hesitate to ask questions by 
contacting Mrs. Clare Rainey via email:  c.rainey@ulster.ac.uk .  
  
 **Please take time to read the full instructions and consent sheet by clicking on the link below: 
 Participant consent information (also included in  APPENDIX 5.2) 
Participant instruction sheet (also included in  APPENDIX 5.3) 
  
  
 Chief Investigator 
 Dr. Sonyia McFadden 
 Address: Room 14J15, School of Health Sciences 
 University of Ulster, Jordanstown campus, Shore Road, Newtownabbey, Co. Antrim, BT37 0QB 
 Email: s.mcfadden@ulster.ac.uk  
 Tel: 02890366224 
  
 Investigators: 
 Prof. Raymond Bond                             rb.bond@ulster.ac.uk 
 Prof. Ciara Hughes                             cm.hughes@ulster.ac.uk 
 Prof. Jonathan McConnell                     jonathan.mcconnell@ggc.scot.nhs.uk  
  
 Research Ethics and Governance: 
 Mr. Nick Curry 
 Address: Room 26A17, Research & Innovation, University of Ulster, Jordanstown campus, Shore Road, 
Newtownabbey, Co. Antrim, BT37 0QB 
 Email: n.curry@ulster.ac.uk 
 Tel: 028903666229 
  
 Thank you, in advance, for your participation.Click to write the question text 

o I consent to taking part in this study  (1)  

o I DO NOT consent to taking part in this study  (2)  
 
Skip To: End of Survey If You are invited to participate in an Ulster University research project. Before 
deciding whether... = I DO NOT consent to taking part in this study 

End of Block: Welcome and consent 
 

Start of Block: DS a 

https://ulsterhealth.eu.qualtrics.com/CP/File.php?F=F_7VruGJor0b3LsfI
https://ulsterhealth.eu.qualtrics.com/CP/File.php?F=F_1LV8Yr2AK3gdUTI
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Q2.1 Patient 1a 
    
The following screens will contain radiographic examinations from patient number 1a. Please 
select next to start. 
 
Q2.2  
Do you think there are any pathology/ies visible on this radiographic image?  

o Yes  (1)  

o No  (2)  
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Q2.3 Please identify region(s) where any pathology is located, if applicable. If you believe 
there to be no pathology evident please select no pathology. 
 

 

▢ No pathology  (26)  

▢ 1 - A  (1)  

▢ 1 - B  (2)  

▢ 1 - C  (3)  

▢ 1 - D  (4)  

▢ 1 - E  (5)  

▢ 2 - A  (6)  

▢ 2 - B  (7)  
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▢ 2 - C  (8)  

▢ 2 - D  (9)  

▢ 2 - E  (10)  

▢ 3 - A  (11)  

▢ 3 - B  (12)  

▢ 3 - C  (13)  

▢ 3 - D  (14)  

▢ 3 - E  (15)  

▢ 4 - A  (16)  

▢ 4 - B  (17)  

▢ 4 - C  (18)  

▢ 4 - D  (19)  

▢ 4 - E  (20)  

▢ 5 - A  (21)  

▢ 5 - B  (22)  

▢ 5 - C  (23)  

▢ 5 - D  (24)  

▢ 5 - E  (25)  
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Q2.4 This is a heatmap produced by the AI model.  The WHITE area represents the area the 
AI system found most important in determining its diagnosis.  Does the area you found any 
abnormality match the white area on this image?  If you believe there to be no pathology 
evident please select no pathology. 
  

  

o No pathology  (6)  

o Yes - in all the areas I have previously identified  (1)  

o Yes - in greater than half of the areas I have previously identified  (2)  

o Yes - in less than half of the areas I have previously identified  (3)  

o Yes - but there are also areas identified which I DO NOT consider to indicate pathology  (4)  

o No - there are no areas of agreement with the area I have previously identified  (5)  
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Q2.5 Following exposure to the AI heatmap, how would you rate your level of TRUST in the 
AI system, with 0 indicating no trust at all and 5 indicating absolute trust? 

o 0  (1)  

o 1  (2)  

o 2  (3)  

o 3  (4)  

o 4  (5)  

o 5  (6)  
 

 

Q2.6  
Do you think there are any pathology/ies visible on this radiographic image? 

o Yes  (1)  

o No  (2)  
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Q2.7 Please identify region(s) where any pathology is located, if applicable. If you believe 
there to be no pathology evident please select no pathology. 
  

   

▢ No pathology  (26)  

▢ 1 - A  (1)  

▢ 1 - B  (2)  

▢ 1 - C  (3)  

▢ 1 - D  (4)  

▢ 1 - E  (5)  

▢ 2 - A  (6)  

▢ 2 - B  (7)  

▢ 2 - C  (8)  
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▢ 2 - D  (9)  

▢ 2 - E  (10)  

▢ 3 - A  (11)  

▢ 3 - B  (12)  

▢ 3 - C  (13)  

▢ 3 - D  (14)  

▢ 3 - E  (15)  

▢ 4 - A  (16)  

▢ 4 - B  (17)  

▢ 4 - C  (18)  

▢ 4 - D  (19)  

▢ 4 - E  (20)  

▢ 5 - A  (21)  

▢ 5 - B  (22)  

▢ 5 - C  (23)  

▢ 5 - D  (24)  

▢ 5 - E  (25)  
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Q2.8 This is a heatmap produced by the AI model.  The WHITE area represents the area the 
AI system found most important in determining its diagnosis.  Does the area you found any 
abnormality match the white area on this image?  If you believe there to be no pathology 
evident please select no pathology. 
  

 

o No pathology  (6)  

o Yes - in all the areas I have previously identified  (1)  

o Yes - in greater than half of the areas I have previously identified  (2)  

o Yes - in less than half of the areas I have previously identified  (3)  

o Yes - but there are also areas identified which I DO NOT consider to indicate pathology  (4)  

o No - there are no areas of agreement with the area I have previously identified  (5)  
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Q2.9 Following exposure to the AI heatmap,  how would you rate your level of TRUST in 
the AI system, with 0 indicating no trust at all and 5 indicating absolute trust? 

o 0  (1)  

o 1  (2)  

o 2  (3)  

o 3  (4)  

o 4  (5)  

o 5  (6)  
 
 

Q2.10 All images from this examination are given again below.  The AI system determined 
that this examination/imaging series DID contain evidence of pathology.  Do your initial 
diagnoses agree with this? 
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o Yes - I think there is evidence of pathology on every image in the imaging series  (1)  

o No - I think that there is no evidence of pathology on any of the images in the imaging series.  
(2)  

o Partly - I think that some, but not all, images in the imaging series contained evidence of 
pathology  (3)  

 
 

Q2.11 Following exposure to both the AI heat map and the AI diagnosis, how would you rate 
your level of TRUST in the AI system now, with 0 indicating no trust at all and 5 indicating 
absolute trust? 

o 0  (1)  

o 1  (2)  

o 2  (3)  

o 3  (4)  

o 4  (5)  

o 5  (6)  
 

 

 
Q2.12 If you were presented with the heatmap and decision made by the AI for this 
examination, do you feel this would have caused you to change your mind about your initial 
diagnosis? 

o Yes  (1)  

o Maybe  (2)  

o No  (3)  
 
 
Q2.13 How would you rate the diagnostic quality of the images used in this examination, 
with 0 representing totally undiagnostic and 5 representing excellent diagnostic quality? 
 

 0 1 2 3 4 5 
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Diagnostic Quality perception Patient 1a () 
 

 

 
Q2.14  
This is the last question relating to this imaging series/examination.  Please click the arrow in 
the bottom right of the screen to progress to the next imaging series/examination. 
 

 

** Followed by next selected Patient.  Images for all patients are provided in Appendix 
5.5** 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Appendix 5.5 – Patient examinations (Images from Dataset A, B and C ) 

 

Appendix%205.4%20
PPT%20images%20fo 
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 Appendix 5.6 – Per-patient diagnoses (reporting radiographer participants and AI 
Image EXPERT DIAGNOSIS 

- consensus 
AI DIAGNOSIS Expert/AI 

AGREE 
EXPLAINATION 

1a_1 1 1 Y 
 

1a_2 
2a_1 0 0 Y   
2a_2 
2a_3 
3a_1 1 0 N AI false neg 
3a_2 
4a_1 0 0 Y   
4a_2 
4a_3 
5a_1 0 1 N AI false pos 
5a_2 
5a_3 
6a_1 1 1 Y   
6a_2 
6a_3 
7a_1 0 0 Y   
7a_2 
7a_3 
8a_1 1 1 Y   
8a_2 
8a_3 
9a_1 0 0 Y   
9a_2 
9a_3 
10a_1 0 0 Y   
10a_2 
10a_3 
11a_1 0 0 Y   
11a_2 
11a_3 
12a_1 0 0 Y   
12a_2 
12a_3 
1b_1 0 0 Y   
1b_2 
1b_3 
2b_1 0 0 Y   
2b_2 
2b_3 
3b_1 0 1 N AI false pos 
3b_2 
3b_3 
4b_1 0 0 Y   
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4b_2 
4b_3 
5b_1 0 1 N AI false pos 
5b_2 
5b_3 
6b_1 0 0 Y   
6b_2 
6b_3 
6b_4 
7b_1 0 0 Y   
7b_2 
8b_1 1 1 Y   
8b_2 
8b_3 
8b_4 
9b_1 0 0 Y   
9b_2 
9b_3 
10b_1 1 1 Y   
10b_2 
10b_3 
11b_1 0 0 Y   
11b_2 
12b_1 0 0 Y   
12b_2 
12b_3 
1c_1 0 0 Y   
1c_2 
1c_3 
1c_4 
2c_1 0 0 Y   
2c_2 
2c_3 
3c_1 0 0 Y   
3c_2 
3c_3 
4c_1 0 0 Y   
4c_2 
4c_3 
4c_4 
5c_1 0 0 Y   
5c_2 
5c_3 
6c_1 1 1 Y   
6c_2 
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Appendix 5.7: Instances of human/AI diagnostic disagreement with AI Binary 

feedback: 

Patient 3a All images from this examination are given again below.  The AI system determined that this 

examination/imaging series DID NOT contain evidence of pathology.  Do your initial diagnoses agree with 

this? 
 

    

***** 

Patient 5a All images from this examination are given again below.  The AI system determined that this 

examination/imaging series DID contain evidence of pathology.  Do your initial diagnoses agree with this? 
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***** 

Patient 3b: All images from this examination are given again below.  The AI system determined that this 

examination/imaging series DID contain evidence of pathology.  Do your initial diagnoses agree with this? 
 

      

 

 ***** 

Patient 5b: All images from this examination are given again below.  The AI system determined that this 

examination/imaging series DID contain evidence of pathology.  Do your initial diagnoses agree with this? 
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Appendix E – Publications, presentations and awards 

 Appendix 6.1 Publications, presentations and awards 

Location Authors Title Year 

Publications Rainey, C., McConnell, J., 

Hughes, C., Bond, R., 

McFadden, S., 

Artificial intelligence for diagnosis of 

fractures on plain radiographs: A 

scoping review of current literature 

2021 

 Rainey, C., O’Regan, T., 

Matthew, J., Skelton, E., 

Woznitza, N., Chu, K-Y, 

Goodman, S., McConnell, 

J., Hughes, C., Bond, R., 

McFadden, S., 

Malamateniou, C 

Beauty is in the AI of the beholder: 

are we ready for the clinical 

integration of artificial intelligence in 

Radiography? An exploratory 

analysis of perceived AI knowledge, 

skills, confidence and education 

perspectives of UK radiographers 

2021 

 Rainey C., O’Regan, T., 

Matthew, J., Skelton, E., 

Woznitza, N., Chu, K-Y, 

Goodman, S., McConnell, 

J., Hughes, C., Bond, R. 

Malamateniou, C., 

McFadden, S 

An insight into the current 

perceptions of UK radiographers on 

the future impact of AI on the 

profession: A cross-sectional survey 

2022 

 Rainey C., O’Regan, T., 

Matthew, J., Skelton, E., 

Woznitza, N., Chu, K-Y, 

Goodman, S., McConnell, 

J., Hughes, C., Bond, R. 

UK reporting radiographers’ 

perceptions of AI in radiographic 

image interpretation - Current 

perspectives and future 

developments. 

2022 
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Malamateniou, C., 

McFadden, S 

Presentations Rainey C., O’Regan, T., 

Matthew, J., Skelton, E., 

Woznitza, N., Chu, K-Y, 

Goodman, S., McConnell, 

J., Hughes, C., Bond, R. 

Malamateniou, C., 

McFadden, S 

Beauty is in the AI of the beholder: 

An analysis of knowledge, skills, 

confidence and education 

requirements of UK radiographers 

and radiotherapists (at The 

International Society of 

Radiographers and Radiological 

Technologists World Congress, 

Dublin/online.) 

2021 

 Rainey, C., McFadden, S., 

Bond, R. 

Digital Divides in healthcare 

education innovations.  (at The 

Medical Education Informatics 

Conference, online) 

2021 

 Rainey C., O’Regan, T., 

Matthew, J., Skelton, E., 

Woznitza, N., Chu, K-Y, 

Goodman, S., McConnell, 

J., Hughes, C., Bond, R. 

Malamateniou, C., 

McFadden, S 

UK reporting radiographers’ 

perceptions of AI in radiographic 

image interpretation (at The UK 

Imaging and Oncology conference) 

2022 

 Rainey, C., McConnell, J., 

Hughes, C., Bond, R., 

Kumar, D., McFadden, S 

The impact of AI feedback on the 

accuracy of diagnosis, decision 

switching and trust in Radiography 

(at The European Congress of 

Radiology, Vienna) 

2023 
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Posters Rainey, C., McConnell, J., 

Hughes, C., Bond, R., 

McFadden, S 

Human vs Machine: A comparison of 

computer and human visual 

processes in radiographic image 

interpretation. (at The International 

Society of Radiographers and 

Radiological Technologists World 

Congress, Dublin/online)  

2021 

 Rainey C., O’Regan, T., 

Matthew, J., Skelton, E., 

Woznitza, N., Chu, K-Y, 

Goodman, S., McConnell, 

J., Hughes, C., Bond, R. 

Malamateniou, C., 

McFadden, S 

UK radiographers’ and 

radiotherapists’ perceptions and 

expectations of AI in radiology – 

current status and future 

developments (at The European 

Congress of Radiology, Vienna) 

2022 

Awards Rainey, C., McFadden, S., 

Bond, R. 

Digital Divides in healthcare 

education innovations.  (at The 

Medical Education Informatics 

Conference, online  

(Bronze award for excellent 

presentation) 

2021 

 Clare Rainey (PI), Dr S 

McFadden, Dr J 

McConnell, Prof. C 

Hughes, Dr R Bond.  

 

CoRIPS (College of Radiographers 

Industry Partnership Scheme. ‘An 

observational study to investigate the 

impact of AI feedback on image 

comment, decision switching and 

trust perception in student and 

experienced radiographers. (Principal 

Investigator). £10,000. 

2021 



 

Page 516 of 516 

 

 

 

 

 Clare Rainey (PI), Dr S 

McFadden, Dr J 

McConnell, Prof. C 

Hughes, Dr R Bond 

‘An experimental study to investigate 

the impact of different forms of AI 

feedback on automation bias and 

decision switching on diagnostic 

radiographers’ (Principal 

Investigator) £10000. CoRIPS (AI 

round) (College of Radiographers 

Industry Partnership Scheme 

 

2022 

 Rainey C., O’Regan, T., 

Matthew, J., Skelton, E., 

Woznitza, N., Chu, K-Y, 

Goodman, S., McConnell, 

J., Hughes, C., Bond, R. 

Malamateniou, C., 

McFadden, S. 

An insight into the current 

perceptions of UK radiographers on 

the future impact of AI on the 

profession: A cross-sectional survey 

‘The Journal of Medical Imaging and 

Radiation Sciences Editor’s Choice 

Award’ – Top 5 Papers of 2022 

2022 
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