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Abstract

Surface defect classification plays a very important role in industrial
production and mechanical manufacturing. However, there are cur-
rently some challenges hindering its use. The first is the similarity
of different defect samples makes classification a difficult task. Sec-
ond, the lack of defect samples leads to poor accuracies when using
deep learning methods. In this paper, we first design a novel back-
bone network, ResMSNet, which draws on the idea of multi-scale feature
extraction for small discriminative regions in defect samples. Then,
we introduce few-shot learning for defect classification and propose a
Relation-Prototypical network (RPNet), which combines the character-
istics of ProtoNet and RelationNet and provides classification by linking
the prototypes distances and the nonlinear relation scores. Next, we
consider a more realistic scenario where the base dataset for training
the model and target defect dataset for applying the model are usually
obtained from domains with large differences, called cross-domain few-
shot learning (CD-FSL). Hence, we further improve RPNet to KD-RPNet
inspired by knowledge distillation methods. Through extensive compar-
ative experiments and ablation experiments, we demonstrate that either
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our ResMSNet or RPNet proves its effectiveness and KD-RPNet outper-
forms other state-of-the-art approaches for few-shot defect classification.

Keywords: few-shot learning, Defect classification, Multi-scale feature
encoder, Cross-domain, Knowledge distillation

1 Introduction

The vigorous development of industry and manufacturing is beneficial to
economic growth and daily life. However, due to unexpected factors in the
production process, industrial products may to subject to defects, either on
the surface or within the product. The defects may not only affect the use
of products or bring economic losses, but also cause serious safety issues and
accidents. Therefore, surface defect recognition has become an urgent problem
to be solved.

(a) (b)

Fig. 1. Comparison of (a) miniImagenet dataset and (b) NEU-CLS defect
dataset.

There are many approaches to surface defect recognition, from manual
detection methods to computer vision detection methods. In recent years, with
the wide application of deep learning technology, researchers have designed lots
of effective networks based on convolutional neural networks (CNNs) for defect
classification and achieved very good results. However, there remains two prob-
lems. First, compared with samples in common image datasets, the similarity
among different defect samples is high in defect detection datasets, as shown
in Fig. 1, and therefore it is difficult to predict categories. Second, approaches
based on deep learning require large-scale labeled datasets for training, but the
generation of defect samples belongs to small probability events in some sce-
narios, so it is difficult to collect enough defect samples for adequate training.
Hence the accuracy of deep learning methods decreases significantly.

To address the first problem of the high similarity of defect samples, a
learning network is required to identify small and critical discriminative regions
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Source Domain
Target Domain

Cross-domain few-shot learning setting

Traditional few-shot learning setting

Fig. 2. Traditional and cross-domain few-shot learning setting

in defect images to predict the correct category. However, it is difficult to
achieve this for common feature encoders such as VGG and ResNet. Therefore,
we propose to learn from the idea of multi-scale feature extraction commonly
used in the research of small object detection, so that the model can pay
more attention to the tiny and discriminative regions features. Inspired by
[1], we propose a novel multi-scale feature encoder called ResMSNet where
the bottleneck structure in ResNet is replaced with a ResMSNet block with
multiple residual-like structures to expand the receptive field, and the output
of different combinations of scaled receptive fields improves the representation
ability of local features of defect samples.

To solve the second issue, we propose to adopt few-shot learning methods
as traditional convolutional neural networks require large-scale labeled dataset
which are not available for the task of surface defect detection. Few-shot learn-
ing is an emerging research direction in artificial intelligence in recent years.
The purpose is to enable the network to recognize an unknown object using
very few samples. Most existing few-shot learning methods are usually divided
into a meta-training stage and a meta-testing stage. First of all, it is nec-
essary to prepare a labeled base dataset and a disjoint target set, and both
are split into support sets and query sets during training and testing. At the
meta-training stage, a base dataset is used to train the model such that the
model acquires the few-shot learning ability. Then the model will be evalu-
ated on the query sets of target dataset after being adapted with support sets
at the meta-testing stage. These existing few-shot classification methods per-
form successfully, however, the base dataset and the target dataset are usually
obtained from the same large-scale dataset, while in many real scenarios is
difficult to obtain base sets and target sets from the same scenario. The tar-
get domain may be quite different from the source domain which can also be
considered a large domain shift, such as the source domain is natural images
but the target domain is visual inspection images. In such an example, the
performance of the methods falls sharply under traditional few-shot learning
settings. To distinguish from traditional few-shot learning, the scenario when
the source and target domains are different is referred to as cross-domain
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few-shot learning (CD-FSL). Fig. 2 illustrates the two settings. Unfortunately,
there is little research on few-shot defect classification, let alone more suitable
cross-domain few-shot defect classification methods. It is worth mentioning
that although there are also studies on zero-shot learning, in general the per-
formance of zero-shot methods is not as good as few-shot methods, and when
the domain shift is large, the performance will be much worse, so thus it is not
suitable for defect classification tasks.

For traditional few shot learning, we propose a Relation-Prototypical Net-
work (RPNet). RPNet contains a prototypical branch and a relation branch.
We use the relation scores output by the relation branch to correct the pro-
totypical distances output by the prototypical branch, so that the distance
between the prototypes of the same class is close, and the heterogeneity is
further away, thereby increasing the classification accuracy. Extensive experi-
mental results show that our RPNet outperforms few-shot learning baselines
on NEU-CLS defect dataset and demonstrates an advantage compared with
existing methods on common datasets. For CD-FSL, we employ a knowledge
distillation based approach and improve RPNet to KD-RPNet, an end-to-
end knowledge distillation based RPNet. We first collect and devise a new
few-shot ventilation pipeline inner surface defect dataset, namely Pipe-Defect.
We denote it as a target dataset as well as NEU-CLS. Then we respectively
train the student RPNet with labeled source domain data and strongly-
augmented unlabeled target domain defect data and the teacher RPNet
with weakly-augmented unlabeled defect data. The comparative experimen-
tal results indicate that our KD-RPNet outperforms most existing CD-FSL
methods and reaches state-of-the-art performance.

In summary, the contributions of our paper are itemized as follows:

1. A novel multi-scale backbone network, ResMSNet, is proposed to extract
defect features and the performance is better than ResNet12 using the NEU-
CLS dataset.

2. To solve the problem of insufficient defect samples, we introduce a Relation-
Prototypical Network (RPNet) based on few-shot learning, which outper-
forms baselines on NEU-CLS with either ResNet12 or ResMSNet and shows
advantages on common datasets compared with current methods.

3. We create a novel few-shot defect dataset called Pipe-Defect for evaluating
the proposed methods.

4. For CD-FSL, we further improve RPNet based on knowledge distillation
and we refer to it as KD-RPNet. After extensively evaluating performance
on both NEU-CLS and Pipe-defect, we find that our approach significantly
outperforms state-of-the-art CD-FSL methods.
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2 Related works

2.1 Defect classification

Defect classification is an important part of surface defect recognition. In the
last century, traditional defect classification mainly depends on a manual pro-
cess, which inherently has issues such as high work intensity, low efficiency,
high cost, poor accuracy etc. [2]. Many of these issues have been overcome
with the use of computer vision for defect classification. In [3] Top Hat oper-
ators were developed with different morphology. By extracting different types
of defect regions, the operator obtains characteristic parameters, establishes
defect templates, and classifies different defects. In [4], binarization and mor-
phological operations are used to predict the categories of defects. In recent
years, inspired by deep learning models for object detection, some research
focused on the use of deep convolution neural networks to solve defect classi-
fication problems. The work in [5] designed an end-to-end method based on
CNN for steel surface defect classification, the parameters of which are ran-
domly initialized and trained from scratch. In [6] a weakly supervised learning
method is proposed known as a classification aware defect detection network
(CADN). Similarly, [7] presented a segmentation-based deep-learning architec-
ture which was designed for surface defect detection and segmentation. The
model was trained on pixel-wise labels of the defect and a decision network
was built to predict the the existence of defects in the whole image. In [8] a
bioinspired visual-integrated model (BIVI-ML) was introduced, where a visual
attention mechanism is designed to reduce the inference of the complex texture
background. The main challenge of applying such methods to defect recogni-
tion tasks is that different products often generate different types of defect.
Therefore, it is necessary to use the product specific dataset to train the model.
However, the generation of defects belongs to small probability events, which
makes it difficult to collect enough defect samples. This hinders the application
of artificial intelligence technology to defect classification.

2.2 Few-shot learning

Few-shot learning [9–11] is a new research topic in recent years. The purpose
is to solve the problem of insufficient training samples in machine learning
tasks. Few-shot learning methods can be summarized as meta-learning meth-
ods, transfer learning methods [12, 13] and semi-supervised methods [14–16],
among which meta-learning methods are the mainstream method. Match-
ingNet [17] adopts the mechanism of attention and external memory, and
compares the cosine distance between the support features of each class and the
query features. ProtoNet [18] learns a metric space and compares the Euclidean
distances of query prototypes and support prototypes in this space. Relation-
Net [19] describes a learnable non-linear comparator to replace the traditional
distance based linear comparator to judge the relationship between query
and support features. MAML [20] is an optimization-based meta-learning
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method. Its purpose is to learn appropriate initialization parameters to enable
it to quickly adapt to new tasks through few samples. In the field of defect
recognition, the few-shot learning method is still in its infancy. TGRNet [21]
introduced a general few-shot surface defect segmentation theory for metals,
and a novel multi-graph reasoning module is proposed for few-shot seman-
tic segmentation tasks by exploring the similarities between images. In short,
few-shot defect classification approaches are of great research value.

2.3 Cross-domain few-shot learning

Cross-domain few-shot learning (CD-FSL) is a realistic setting for evaluation
where base and novel classes are sampled from different domains. The work
in [22] found that traditional few-shot classification methods fail to address
such domain shifts and even worse than the baseline method. To improve the
accuracy when domain shifts exist, [23] proposed a learnable feature-wise trans-
formation layer used in a feature encoder which is able to reduce the distance
between different domains. The method is the first approach to address the
CD-FSL issue but the gap between domains is small. In [24] a novel Broader
Study of Cross-Domain Few-Shot Learning benchmark (BSCD-FSL), consist-
ing of images from multiple image types that differ from natural images is
established and indicated that meta-learning based few-shot learning methods
performed worse than simple fine-tuning methods. To deal with cross-domain
problems in few-shot defect classification tasks, a novel attention and adap-
tive bilinear matching network called AABM [25] is introduced. Similarly, [26]
a graph embedding and distribution transformation (GEDT) module and a
optimal transport (OPT) module to discover more potentially useful informa-
tion between samples and classify the test samples by minimizing Wasserstein
distance. In addition, recent works have utilized unlabeled data from the tar-
get domain to learn specific representations and achieved good performance. A
dynamic distillation based approach is designed in [27] and used to train a fea-
ture extractor with augmented unlabeled target data and labeled source data
so that it could evaluate few-shot learning performance on the target domain.
Our KD-RPNet is a similar approach to this, however, is end-to-end.

3 Proposed methods

3.1 Problem definition

In few-shot learning, we use a N -way K-shot setting, such that images of
support sets are collected from N classes, and each class contains K images.
Similar to general deep learning methods, the dataset needs to be divided into
a training set and a testing set. During an episode in the training stage, the
algorithm will randomly sampleN categories and construct a few-shot learning
classification task. The task consists of a support set and a query set, which
share the label space, but when testing, the label space is disjoint.
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Fig. 3. Comparison between the bottleneck block and ResMSNet block

For RPNet using the few-shot learning settings, we define the ResMSNet
feature encoder as fr, a labeled support sample set as S = {xi}Mi=1, a query
set as Q = {xj}Nj=1, the corresponding categorical labels as yi and yj and Sk

denotes the labeled support samples set belongs to class k.
For KD-RPNet using the CD-FSL setting, we name the labeled data from

source domain DS = {(xS
i , y

S
i )}

MS
i=1 and the unlabeled data DT = {xT

j }
NT
j=1

from target domain. We further define the teacher RPNet as gt and the student
RPNet as gs.

3.2 ResMSNet

In this subsection, we will describe ResMSNet, a novel multi-scale feature
encoder for defect features extraction.

ResMSNet is an improvement and promotion of the ResNet12 feature
encoder commonly used in few-shot learning methods. The difference between
the two is that the ResMSNet block, which gives the ability of multi-scale
defect feature extraction, replaces the traditional bottleneck block.

Fig. 3 shows a comparison of the bottleneck block and ResMSNet block.
Fig. 3a is the bottleneck block of the classical ResNet network, which is com-
posed of a 1× 1, a 3× 3, and another 1× 1 convolution layer. The first 1× 1
layer is responsible for reducing dimensions and the other one is for increasing,
such that the number of parameters in the overall calculation is reduced com-
pared with the basic block. Although the ResNet network constructed using
the bottleneck block is excellent, its performance is still insufficient for defect
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samples with high similarity and small defect resolution. Taking these factors
into account, we decide to use a multi-scale feature encoder to extract defect
features. However, traditional multi-scale feature encoders such as Feature
Pyramid Network (FPN) have complex structures and require high computa-
tional resources. It is worth mentioning that Res2Net inspires us to increase the
receptive field of the model by modifying the structure of the block, rather than
merging on the basis of layers, thus we design a ResMSNet block accordingly
to improve ResNet12.

Fig. 3b shows the ResMSNet block. Here, a smaller set of 3×3 convolution
kernels is used to replace the 3× 3 convolution kernel in the bottleneck block,
and each filter group is linked with a similar residual-like structure. This change
enables each 3×3 convolution operation to potentially accept the previous set
of feature information, and each output can increase the receptive field. Hence
each block can obtain feature combinations with different numbers and sizes of
receptive fields. Moreover, we continue to add the residual-like structure inside
each filter group, and connect the feature maps before and after convolution
in the same group. The calculation process is as follows: we input the defect
image into a 1 × 1 convolution kernel, and then split the obtained feature
map into s sub-feature maps. Each sub-feature map is denoted as ui, where
i ∈ 1, 2, ..., s. The number of channels of each sub-feature map is 1/s of the
input feature map while the scale size is the same as the input feature map.
In order to reduce the number of parameters, we use a piecewise function such
that: when i=1, the output vi is the same as the input sub-feature map ui;
when i=2, in addition to ui sub-feature map, each sub-feature map contains
a small 3× 3 convolution kernel, denoted as Ci(,) which is convolved with ui;
and in all other cases ui is added to the output feature vi−1, then fed into
Ci(,), and the convolution result obtained is then added to the sub-feature
map ui. The whole calculation process can be written as:

vi =


ui, i = 1;

Ci(ui) + ui, i = 2;

Ci(ui + vi−1) + ui, 2 < i ≤ s.

(1)

At the end of this series of convolutions, all output sub-feature maps are
concatenated and passed to a 1 × 1 convolution to obtain the output feature
map fused with more detailed feature information. In addition, we also replace
the activation function with Mish [28] from ReLU. Mish is a self-regularized
non-monotonic neural activation function. The smooth activation function pro-
vides better information as inputs to the neural network, thus ensuring better
performance and improved generalization ability. The Mish activation function
is denoted as:

Mish(x) = x× tanh(ln(1 + ex)) (2)

where x is a variable that input to the function.
Furthermore, we use the DropBlock [29] to avoid overfitting, which is

a structured and two-dimensional Dropout. This method involves dropping
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Fig. 4. Relation-Prototypical Network (RPNet) for few-shot defect classi-
fication (5-way 1-shot). (a) shows the prototypical branch, which compute
distances between support and query prototypes in the embedding space. (b)
shows the relation branch, whose aim is to judge the similarity by calculating
the relation scores. (c) shows the relation-enhanced module , it is the key to
improve the performance of RPNet by using relation scores to adjust the pro-
totype distances

the adjacent regions of the layer feature map instead of dropping the indi-
vidual random elements can effectively improve the accuracy and robustness
of the algorithm. Finally, we replace all the bottleneck blocks in ResNet12
with ResMSNet blocks, to obtain a new feature encoder named ResMSNet
backbone.

In our approach, we use s as the control parameter of the scale dimension,
where a larger s gives the backbone a larger receptive field. Specifically, in
our experiment using the NEU-CLS dataset, we imperially determined that
when s = 3, the best accuracy is be obtained. The best s may be different on
different datasets.

3.3 RPNet

RPNet, as shown in Fig. 4, includes 3 main components: a prototypical branch,
a relation branch and a relation-enhanced module. We adopt the ResMSNet
network as the feature encoder to extract defect features. Then the features
are passed to the two branches in parallel. The prototypical branch evaluates
the samples’ initial prediction by calculating the Euclidean distance of feature
prototypes, and the relation branch gives the relation scores between query
features and support features of each class. The relation-enhanced module
integrates the calculation results obtained by two branches and provides the
final classification results.
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3.3.1 Prototypical branch

Fig. 4a shows the prototypical branch, which calculates the distance of query
prototypes and support prototypes analogous to [18]. The branch computes
a prototype pk ∈ RD, a D dimensional feature representation, of each class
through the ResMSNet fr : RD → RM . In the process of feature vector embed-
ding, in order to reduce the number of parameters, we use the global average
pooling layer instead of a full connection layer. Each support prototype is the
mean vector of the embedded support points belonging its class:

pk =
1

| Sk |
∑

(xi,yi)∈Sk

fr(xi) (3)

The query prototype is the feature vector after embedding:

pj = fr(xj) (4)

Then given a Euclidean distance d : RD × RD → [0,+∞), the branch
computes the distance between pj and each support prototype pk as:

dk,j =
√

(pj − pk)
2 (5)

General models based on prototypical networks generates the class dis-
tribution for a query point xj based on a softmax over distances obtained
above to the prototypes in the embedding space. However, for our Relation-
Prototypical Network, the distances will be calculated using the output of the
relation branch in the relation-enhanced module, so as to improve classification
performance.

3.3.2 Relation branch

The relation branch is shown in Fig. 4b. The input feature maps of the
branch are exactly the same as those input into the prototypical branch. First,
each support feature map fr(xi) and query feature map fr(xj) are combined
using the operator ∆(fr(xi), fr(xj)). In this work, we assume ∆(, ) to be
concatenation of feature maps.

The combined feature map from the sample and query is fed into the rela-
tion module Gr(,), which consists of two convolutional layers, a global average
pooling layer and a sigmoid layer and eventually produces a scalar in the range
of 0 to 1 representing the similarity between xi and xj , which is called the
relation score. For a N -way K-shot process where K > 1, we element-wise sum
over the embedding module outputs of all samples from each support class
to form the corresponding feature map. This pooled class-level feature map
is combined with the query image feature map as above so that the number
of relation scores for one query is always N no matter how many samples in
each support class. Finally, under the N -way K-shot setting, we generate N
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relation scores for a query sample xj . The calculation process of relation score
ri,j can be written as:

ri,j = Gr(∆(fr(xi), fr(xj))), i = 1, 2, ..., N (6)

3.3.3 Relation-enhanced module

The prototypical distances obtained by the prototypical branch can be used as
the judgment basis of the class of query samples. Through the continuous train-
ing of the model, the distance between prototypes of the same category can be
reduced and that between prototypes of different categories can be increased.
In addition, the relation scores obtained by the relation branch can also reflect
the relationship between samples. The relation score of similar samples should
be close to 1, while the score of heterogeneous samples should be close to 0. We
found that errors can occur in the prototypical network classification due to the
distance between the heterogeneous prototypes being less than that of similar
prototypes but not different enough to discriminate between the two classes;
therefore we need to ensure clear discrimination between the class distances.
Considering this, we decided to introduce the relation scores into the distances
measurement. We take the negative logarithm of the relation score, with a
value range of 0 to 1, and multiply each distance by it, which can increase the
discrimination between the two classes. The classification probability pϕ for a
query point x is determined using softmax:

pϕ(y = k | x) = exp(−dk,k × (−log rk,k))∑
k′ exp(−dk′,k × (−log rk′,k))

(7)

The rest of RPNet is similar to ProtoNet. Learning proceeds by minimizing
the negative log-probability J(ϕ) of the true class k via SGD. J(ϕ) can be
written as:

J(ϕ) = −log pϕ(y = k | x) (8)

Thus, a training episode simulates few-shot learning where the training
episodes are formed by randomly selecting a subset of classes from the training
set, then selecting a subset of examples within each class acts as the support
set and a subset of remaining examples to serve as query points.

3.4 KD-RPNet

Compared with traditional few-shot learning, there is a large gap between
the source domain and the target domain known as CD-FSL. This domain
shift leads to poor performance of models in the target domain. Therefore, we
propose KD-RPNet which utilizes unlabeled data during RPNet training and
combines supervised and unsupervised learning to provide more transferable
representations as illustrated in Fig. 5.

Since the source domain data input to the student network xS
i is labeled,

we compute the supervised cross-entropy loss as:
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RPNet(teacher)

Cross-Entropy

Label
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Fig. 5. KD-RPNet for cross-domain few-shot defect classification. To fairly
compare the performance with other cross-domain methods, we replace ResM-
SNet in RPNet with ResNet10 specified in the BSCD-FSL benchmark. The
student network and the teacher network are identical in structure.

lCE(y
S
i , p

S
i ) = −ySi log pSi (9)

where pSi = Softmax(gs(x
S
i )).

In our approach, the primary purpose of the teacher model is to provide
soft labels for unlabeled data. For unlabeled samples xT

j , we use random-
resize-crop, horizontal flip and normalization as weak augmentation (which is
indicated by the superscript Tw) methods to process the images. The aug-
mented data are denoted as xTw

j and then are imported into the teacher model.

The prediction pTw
j produced by the teacher model is:

pTw
j = Softmax(gt(x

Tw
j )) (10)

where pTw
j serves as the soft targets for the strongly-augmented (the super-

script is Ts) unlabeled samples xTs
j , which we obtain via the color jitter,

Gaussian blur, and random gray scale transformations. The prediction pTs
j

produced by the student model is:

pTs
j = Softmax(gt(x

Ts
j )/t) (11)

where t is the distillation temperature, a parameter that can smooth the output
probability distribution. Additionally, we use the KL divergence lKL as the
distillation loss, which is written as:

lKL(p
Tw
j , pTs

j ) =

NT∑
j=0

pTw
j log(

pTw
j

pTs
j

) (12)
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crazing inclusionpatches pitted surfacerolled-in scale scratches

(a)

rust stainseam solderscratch

(b)

Fig. 6. (a) Examples of NEU-CLS. (b) Examples of Pipe-Defect

Finally, we update the parameters of the student RPNet fs by minimizing
the total loss function:

min
fs

L =
1

MS

∑
(xS

i ,yS
i )∈DS

lCE(y
S
i , p

S
i ) + λ

1

NT

∑
xT
j ∈DT

lKL(p
Tw
j , pTs

j ) (13)

where λ is a hyper-parameter. After the training process, we evaluate the
performance of the student RPNet on the target defect datasets.

4 Experiments

4.1 Datasets

In order to evaluate the effectiveness of the propsoed RPNet in few-shot defect
classification, we use the benchmark dataset NEU-CLS [30] as shown in Fig.
6a. NEU-CLS is a dataset of steel surface defects collected and sorted by
Northeastern University, covering 6 different types of defects with 300 images
per type, including rolled-in scale, patches, crazing, pitted surface, inclusion
and scratches. One of the challenges of NEU-CLS is the high similarity among
the different classes. In our traditional few-shot learning experiments, we divide
NEU-CLS into a training set and a testing set with a ratio of 7:3.

To effectively evaluate the performance of RPNet we benchmark with
standard datasets and defect detection datasets. We the standard bench-
mark datasets miniImageNet, tieredImageNet [31] and CIFAR-FS [32]. The
miniImageNet dataset is the most popular few-shot learning benchmark pro-
posed by [17] and derived from the original ILSVRC-12 [33] dataset. It
contains 100 randomly sampled different categories and each with 600 images
of size 84×84 pixels. The tieredImageNet dataset is another few-shot learning
benchmark. Like miniImageNet, it is also a subset of ILSVRC-12. However,
tieredImageNet is a larger subset which consists of 608 classes. There are 34
categories in the dataset and the categories are divided into 20 training, 6 val-
idation and 8 test classes, with each category contains 10 to 30 classes. The
CIFAR-FS dataset is a subset of CIFAR-100 [34]. It has 100 classes divided
into 64 training, 16 validation and 20 test classes and each class has 600 RGB
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images with a size of 32× 32 pixels. For each image, it has a fine-grained label
and a coarse-grained label.

To evaluate our KD-RPNet in cross-domain few-shot defect classification
tasks, we not only applied it to NEU-CLS dataset, but also independently
constructed a novel few-shot ventilation pipeline defect dataset named Pipe-
Defect. The examples of Pipe-Defect dataset is shown in Fig. 6b and the
collection scene of dataset images is shown in Fig. 7. Pipe-Defect dataset
contains 5 ventilation pipeline defect categories with 100 images each class,
including rust, scratch, seam, solder and stain.

Fig. 7. The collection scene of the Pipe-Defect dataset

4.2 Experimental setting

Our RPNet and KD-RPNet models adopt an end-to-end training mode. When
training, we use Adam [35] with an initial learning rate 10−3, annealed by
half for every 30,000 episodes and cross-entropy is used in RPNet as the loss
function.

In data processing, we resized the input images from all datasets to
100 × 100 pixels and conducted 5-way 1-shot and 5-way 5-shot classification
following the standard settings adopted by most existing few-shot learning
works. As defined, the support images are 5 for 1-shot and 25 for 5-shot. Addi-
tionally, we set 15 query images for each sample class in one training episode
for both 1-shot and 5-shot setting experiments. Finally, the evaluation accu-
racy determined within a 95% confidence interval and computed by averaging
over 600 randomly sampled episodes from the testing set.

For CD-FSL, we follow the BSCD-FSL benchmark [24] to use ResNet10 as
feature encoder. The model is trained on source domain miniImageNet with
unlabeled target data in NEU-CLS or Pipe-Defect. The distillation temper-
ature is set to 7 specific values and λ is increased from 0 to 1 using cosine
scheduling. For evaluation, we only applied the student RPNet on target
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domain. Additionally, we used NVIDIA RTX3090 GPUs and PyTorch deep
learning framework for training our networks on an Ubuntu system.

4.3 ResMSNet experimental results

For fair comparison, we use ProtoNet, FRN [36] and DeepEMD v2 [37] as the
metric module respectively combined with ResNet12, a widely used backbone
in few-shot classification, or ResMSNet to determine the classification results.
As previously described, s is a control parameter of scale dimension. Therefore,
we vary s (denote by s2, s3 and s4) to vary the scale dimension of ResMSNet,
train the networks on NEU-CLS and compare the 5-way 1-shot and 5-way 5-
shot results achieved by ResNet12 and ResMSNet in different scale dimensions.
The results are shown in Table 1.

As indicated in Table 1, we can conclude that our ResMSNet outperforms
ResNet12 and improves performance on NEU-CLS when its scale dimension is
both 2 and 3. Overall, ResMSNet has the best performance when s = 3, the
5-way 1-shot classification accuracy is improved by 0.92% , 0.78%, and 0.93%
respectively and the 5-way 5-shot accuracy is improved by 0.81% , 0.87%, and
0.85% respectively. ResMSNet also achieves better performance than ResNet12
when s = 2. However, when the scale dimension is 4, the performance of ResM-
SNet has decreased significantly, even worse than ResNet12. When s is large
(s = 4), the number of sub-feature maps is large, which leads to an excessively
large receptive field and hence the network’s ability to extract detailed dis-
criminative region features of defect samples is weakened. Therefore, we use
ResMSNet with s = 3 as the multi-scale feature extraction backbone network
for few-shot defect classification tasks.

Table 2. Ablation study of few-shot defect classification accuracies(%) of
ResMSNet on NEU-CLS

ResMSNet Mish DropBlock
NEU-CLS

5-way 1-shot 5-way 5-shot

✓ 94.57 ± 0.08 96.82 ± 0.09

✓ ✓ 95.12 ± 0.09 97.38 ± 0.06

✓ ✓ 94.83 ± 0.07 97.19 ± 0.10

✓ ✓ ✓ 95.68 ± 0.09 97.75 ± 0.12

In addition, since we add the DropBlock to the ResMSNet block and change
the activation function from ReLU to Mish, we conduct relevant ablation
experiments in order to verify the effectiveness of these amendments. We still
use ProtoNet as metric network and change the indicators in ResMSNet-s3 and
the results can be seen in Table 2. The results indicate that using either the
Mish activation function or DropBlock can increase the performance. When
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combining both, the 1-shot accuracy is increased by 1.11% and the 5-shot
performance improvement is 0.93% compared with the baseline ResMSNet.

Last but not least, we computed the number of parameters for both
ResNet12 and ResMSNet backbone networks, and the results are shown in
Table 3. It can be seen that our ResMSNet not only performs better, but also
takes up less resources on the computation.

Table 3. Comparison results of the number of ResNet12 and ResMSNet
parameters

Methods Params(M)

ResNet12 12.42

ResMSNet 6.52

4.4 RPNet experimental results

4.4.1 Evaluation on defect dataset

We evaluate the performance of the proposed RPNet model by comparing with
the few-shot learning baselines RelationNet [19], ProtoNet [18], MatchingNet
[17] and MAML [20] using the NEU-CLS defect dataset. For a fair comparison,
our model uses the well-known ResNet12 backbone. The results are summa-
rized in Table 4. Additionally, to prove the effectiveness of the combination of
ResMSNet and RPNet, another comparative experiment between RPNet with
ResNet12 and RPNet with ResMSNet-s3 is set up. From the bottom two rows
of Table 4 we can see the comparison results.

Table 4. Comparison results of few-shot defect classification accuracies(%) of
RPNet and baselines on NEU-CLS

Methods Backbone
NEU-CLS

5-way 1-shot 5-way 5-shot

MatchingNet ResNet12 92.97 ± 0.03 94.85 ± 0.03

MAML ResNet12 93.68 ± 0.07 95.13 ± 0.06

RelationNet ResNet12 94.78 ± 0.04 95.62 ± 0.01

ProtoNet ResNet12 94.76 ± 0.02 96.94 ± 0.02

RPNet (Ours) ResNet12 95.81 ± 0.09 97.68 ± 0.05

RPNet (Ours) ResMSNet-s3 96.89 ± 0.09 98.73 ± 0.07
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(a) (b) (c)

Fig. 8. Confusion matrices of classification results of (a) ProtoNet with
ResNet12. (b) RPNet with ResNet12. (c) RPNet with ResMSNet-s3 on NEU-
CLS

From the results shown in Table 4, it can be seen that the classification
accuracy of our RPNet model has improved significantly which partly solves
the main problem of similar color, shape and texture of the defect images in
the NEU-CLS dataset compared with the baselines for few-shot classification.
Particularly, when compared to ResNet12 feature encoding, our RPNet out-
performs ProtoNet by 1.05% and 0.74% in terms of 5-way 1-shot and 5-way
5-shot performance, using the NEU-CLS dataset. Additionally, it also can be
seen that the classification accuracy reached by RPNet with ResMSNet-s3 is
96.89% for 1-shot evaluation and 98.73% for 5-shot evaluation, which is 1.08%
and 1.05% better than RPNet with ResNet12 respectively. Finally, to better
analyze the performance of the model we proposed, we randomly draw 150
samples for each category and give the confusion matrices of the classification
results of RPNet with ResNet12, RPNet with ResMSNet-s3 and ProtoNet with
ResNet12 which has the best results among the baselines on NEU-CLS. Confu-
sion matrices are shown in Fig. 8. Taking all these factors into account, we can
see that either RPNet or RPNet with ResMSNet surpasses all the baselines in
few-shot learning and shows the superiority in defect classification tasks.

4.4.2 Evaluation on common datasets

In addition few-shot defect classification scenarios, we proposed that our
RPNet can also be applied to general few-shot classification scenarios. Hence
we evaluate the performance of RPNet on three common datasets, and com-
pare it with existing approaches. For fair comparison, we employ RPNet with
the same backbones as other methods. We divide the methods into two groups
according to ResNet12 and ConvNet-64. What’s more, in our opinion, the abil-
ity of ResMSNet to extract tiny and discriminative features is also effective in
improving the performance of RPNet in common datasets. In order to verify
the robustness of ResMSNet in different scenarios, we also evaluate RPNet with
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Table 5. Comparison results of few-shot classification accuracies(%) on
miniImageNet

Methods Backbone
miniImageNet

5-way 1-shot 5-way 5-shot

BOIL [38] ConvNet-64 49.61 ± 0.16 66.45 ± 0.37

OVE PG G P+Cosine [39] ConvNet-64 48.00 ± 0.24 67.14 ± 0.23

IMP [40] ConvNet-64 49.60 ± 0.80 68.10 ± 0.80

Arcmax [41] ConvNet-64 51.90 ± 0.79 69.07 ± 0.59

RPNet (Ours) ConvNet-64 51.93 ± 0.64 70.63 ± 0.45

MetaGAN [42] ResNet12 52.71 ± 0.64 68.63 ± 0.67

AdaResNet [43] ResNet12 56.88 ± 0.62 71.94 ± 0.57

PPA [44] ResNet12 59.60 ± 0.41 73.74 ± 0.19

RPNet (Ours) ResNet12 59.85 ± 0.65 75.20 ± 0.24

RPNet (Ours) ResMSNet-s3 60.88 ± 0.39 76.87 ± 0.43

ResMSNet-s3 on each dataset. The experimental results on miniImageNet,
tieredImageNet and CIFAR-FS are summarized in Table 5, 6 and 7.

Table 6. Comparison results of few-shot classification accuracies(%) on
tieredImageNet

Methods Backbone
tieredImageNet

5-way 1-shot 5-way 5-shot

Ravichandran et al. [45] ConvNet-64 48.19 ± 0.43 65.50 ± 0.39

BOIL ConvNet-64 49.35 ± 0.26 69.37 ± 0.12

ProtoNet ConvNet-64 53.34 ± 0.89 72.69 ± 0.74

RPNet (Ours) ConvNet-64 54.67 ± 0.90 73.93 ± 0.61

TPN [15] ResNet12 59.91 ± 0.94 73.30 ± 0.75

TapNet [46] ResNet12 63.08 ± 0.15 80.26 ± 0.12

Meta-Transfer [47] ResNet12 65.62 ± 1.80 80.61 ± 0.90

RPNet (Ours) ResNet12 65.89 ± 0.34 80.83 ± 0.76

RPNet (Ours) ResMSNet-s3 66.73 ± 0.23 83.11 ± 0.42
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Table 7. Comparison results of few-shot classification accuracies(%) on
CIFAR-FS

Methods Backbone
CIFAR-FS

5-way 1-shot 5-way 5-shot

R2D2 [32] ConvNet-64 65.3 ± 0.2 79.4 ± 0.1

SIB [48] ConvNet-64 68.7 ± 0.6 77.1 ± 0.4

Wang et al. [49] ConvNet-64 64.2± 0.3 78.4± 0.3

ConstellationNet [50] ConvNet-64 69.3 ± 0.3 82.7 ± 0.2

RPNet (Ours) ConvNet-64 71.4 ± 0.3 85.9 ± 0.4

TEAM [51] ResNet12 70.43 81.25

MetaOptNet [52] ResNet12 72.0 ± 0.7 84.2 ± 0.5

ICI [53] ResNet12 73.97 84.13

NCA nearest centroid [54] ResNet12 72.49± 0.12 85.15± 0.10

Curvature Generation [55] ResNet12 73.0± 0.7 85.8± 0.5

RPNet (Ours) ResNet12 74.0 ± 0.5 86.9 ± 0.8

RPNet (Ours) ResMSNet-s3 75.6 ± 0.7 87.6 ± 0.3

As the experimental results show in Table 5, 6, and 7, our RPNet shows
strong competitiveness on common datasets when compared with existing
methods. In Table 5, The performance shows superiority, demonstrating up
to 1.56% improvement over other methods for 5-way 5-shot evaluation and a
0.25% improvement for 5-way 1-shot evaluation. Additionally, it can be seen
from Table 6 that the classification accuracies of RPNet under the two set-
tings exceed those of existing methods by a maximum of 1.33% and 1.24%.
The CIFAR-FS experimental results shown in Table 7 indicate that our accu-
racies exceed other state-of-the-art methods by 2.1% and 3.2%. Additionally,
the performance of RPNet with ResMSNet-s3 surpass RPNet with ResNet12
on no matter which dataset. Given these results, our RPNet method proves its
effectiveness for general few-shot learning classification tasks and ResMSNet
is a robust backbone.

4.5 KD-RPNet experimental results

4.5.1 Find the best distillation temperature

Before comparing with state-of-the-art methods, we need to obtain a KD-
RPNet model with the best cross-domain effect. In the network structure of
KD-RPNet there is a parameter, distillation temperature t, which can affect
the cross-domain performance. We change t and conduct extensive experiments
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using NEU-CLS and Pipe-Defect to determine the value of t that provides
the best cross-domain defect classification accuracy. We train KD-RPNet with
a ResNet10 backbone using miniImageNet and evaluate the student RPNet
on target defect datasets. In addition, we set a controlled trial with a simple
RPNet respectively. Experimental results are shown in Fig. 9.

(a) (b)

Fig. 9. (a) Results of RPNet (Column 1) and KD-RPNet in different t (Column
2 to 8) on NEU-CLS. (b) Results of RPNet (Column 1) and KD-RPNet in
different t (Column 2 to 6) on Pipe-Defect

Fig. 9a shows that t = 5 is the optimal distillation temperature for NEU-
CLS. The cross-domain classification performance of simple RPNet is not as
good as KD-RPNet when t = 1 and when t is from 1 to 5, the performance
gradually increases. However, when t is greater than 5, we can find the accuracy
has decreased. The maximum t shown in the figure is 7, but in fact we increased
t to 10 during experiments, and the performance keeps declining. So we believe
that the accuracy is monotonically decreasing if t exceeds the maximum value.
Experiments on Pipe-Defect are similar and we conclude that our KD-RPNet
can achieve the highest cross-domain classification accuracy when t = 3 as
Fig. 9b shown. In the subsequent comparison experiments, we use KD-RPNet
model with the best performance by default to participate in the comparison.

4.5.2 Comparison to state-of-the-art

Table 8 shows the comparison results of our proposed methods with other
state-of-the-art methods. As indicated in BSCD-FSL, all models use ResNet10
as the backbone network and are trained on miniImageNet (source domain).
Apart from this our KD-RPNet is fed with the same amount of unlabeled
target data as the source data during training.

Our KD-RPNet has not only made improvements relative to our RPNet,
but also outperformed almost all state-of-the-art approaches at all settings.
Using NEU-CLS, we achieve a maximum of 4.66% improvement for 1-shot.
For the 5-shot evaluation we achieve a more significant improvement of 5.5%.
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Among the approaches evaluated, the accuracy of ME-D2N is closest to KD-
RPNet, but we still outperform it by 0.96% for 1-shot. Using Pipe-Defect,
we obtain similar results as when using NEU-CLS. Compared with ATA and
FT methods, two methods introduced in 2021, we achieve 1.54% average
improvement for 1-shot and 2.69% average improvement for 5-shot. As for
methods proposed in 2022, our KD-RPNet is better than AFA and compara-
ble to ME-D2N. We also set up experiments of KD-RPNet with ResMSNet-s3
and it outperforms KD-RPNet with ResNet10. In order to better reflect the
performance improvement of KD-RPNet, we randomly draw 150 samples on
NEU-CLS for each class and give the confusion matrices of RPNet and KD-
RPNet experimental results as shown in Fig. 10. These results give us reason
to believe that our approaches can apply to cross-domain few-shot defect
classification tasks and achieve state-of-the-art performance.

(a) (b)

Fig. 10. Confusion matrices of classification results of (a) RPNet. (b) KD-
RPNet on NEU-CLS

We further conduct inference time experiments to investigate the computa-
tion efficiency of KD-RPNet and other state-of-the-art methods. We compute
the average inference time required for each 5-shot task on NEU-CLS and
Pipe-Defect. The results can also be seen in Table 8. It shows that our model
not only performs better than other recent models but also costs less time
except for ME-D2N.

4.5.3 Analysis and visualization

In order to explore the reasons why our method can improve the classifi-
cation performance of the target domain, we use the model pretrained on
miniImageNet to extract features of the same domain and NEU-CLS sepa-
rately. We then use KD-RPNet, whose source domain is miniImageNet, and
the unlabeled target domain NEU-CLS to extract defect features. We plot the
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(a) (b) (c)

Fig. 11. T-SNE visualization of RPNet training on miniImageNet and (a)
evaluation on miniImageNet; (b) evaluation on NEU-CLS; (c) KD-RPNet
evaluation with miniImageNet as source domain and NEU-CLS as unlabeled
target domain

learned features with t-SNE [62]. The number of clusters is set to be 5 ran-
dom classes of the target domain. Fig. 11 shows the t-SNE visualization of the
three cases. It can be seen from Fig 11a that in-domain classification has a
good clustering effect. However, under CD-FSL the clustering performance is
greatly reduced as shown in Fig. 11b. In Fig. 11c we see the effect of including
unlabeled target data in the model training process where our model learns
better clusters than before. By comparing the embeddings and analysing, we
see that even though we do not use any labels for target data during training,
our model can learn more specific representations from target domain, which
is good for improving cross-domain few-shot classification performance.

Although our KD-RPNet achieves state-of-the-art level in cross-domain
few-shot defect classification tasks, there are still some shortcomings and chal-
lenges. As the last column of Table 8 shown is the number of KD-RPNet
and other state-of-the-art methods parameters. It can be seen that the num-
ber of our KD-RPNet parameters is not the most, but still quite a few. Since
our KD-RPNet is a knowledge distillation-based method that aims to learn
more target specific representations while learning common embedding. It con-
tains a teacher network and a student network, this leads to a relatively high
number of parameters. At present, using target domain embeddings to guide
network training has been considered to be a very effective method, and the
biggest challenge we face is how to build a more effective and lightweight bridge
between target domain features and source domain features so as to improve
the performance of the network while avoiding a large increase in the amount
of network parameters.

5 Conclusion

In this paper, in order to tackle the current problems in defect classification,
we develop a novel backbone namely ResMSNet, which aims to focus on tiny
discriminative defect features. We then propose a Relation-Prototypical Net-
work (RPNet) which improves classification performance by using relation
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scores to adjust prototype distances. Finally, for CD-FSL, a more realistic
scenario, we improve RPNet with the idea of knowledge distillation and intro-
duce KD-RPNet. By utilizing unlabeled target defect data we demonstrate
our model can learn more specific representations. Extensive ablation and
comparative experiments show the effectiveness of ResMSNet and our RPNet
in outperforming baselines on NEU-CLS. In addition, we construct a novel
dataset, Pipe-Defect and use this to further evaluate the approaches. Exper-
iments on the novel dataset and NEU-CLS prove that KD-RPNet provides a
state-of-the-art approach in cross-domain few-shot defect classification.
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