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Capturing variation in daily energy demand profiles over time with cluster 
analysis in British homes (September 2019 – August 2022) 
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H I G H L I G H T S  G R A P H I C A L  A B S T R A C T  

• Eight typical domestic energy demand 
profiles identified using cluster analysis. 

• Gas and electricity demand archetypes 
characterised for 13,000 homes over 3 
years. 

• Archetypes include ‘All daytime’ and 
‘Early morning, and evening’ usage 
patterns. 

• Seasonal variations in archetype energy 
demand, particularly for gas. 

• Variations in prevalence on weekends, 
by temperature and during COVID-19 
pandemic.  

A R T I C L E  I N F O   
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A B S T R A C T   

This study investigates typical domestic energy demand profiles and their variation over time. It draws on a 
sample of 13,000 homes from Great Britain, applying k-means cluster analysis to smart meter data on their 
electricity and gas demand over a three-year period from September 2019 to August 2022. Eight typical demand 
archetypes are identified from the data, varying in terms of the shape of their demand profile over the course of 
the day. These include an ‘All daytime’ archetype, where demand rises in the morning and remains high until the 
evening. Several other archetypes vary in terms of the presence and timing of morning and/or evening peaks. In 
the case of electricity demand, a ‘Midday trough’ archetype is notable for its negative midday demand and high 
overnight demand, likely a combination of the effects of rooftop solar panels exporting to the grid during the day 
and overnight charging of electric vehicles or electric storage heating. The prevalence of each archetype across 
the sample varies substantially in relation to different temporally-varying factors. Fluctuations in their preva
lence on weekends can be identified, as can Christmas Day. Among homes with gas central heating, the prev
alence of gas archetypes strongly relates to external temperature, with around half of homes fitting the ‘All 
daytime’ archetype at temperatures below 0 ◦C, and few fitting it above 14 ◦C. COVID-19 pandemic restrictions 
on work and schooling are associated with households' patterns of daily demand becoming more similar on 
weekdays and weekends, particularly for households with children and/or workers. The latter group had still not 
returned to pre-pandemic patterns by March 2022. The results indicate that patterns of daily energy demand vary 

* Corresponding author at: UCL Energy Institute, 14 Upper Woburn Place, London WC1H 0NN, United Kingdom. 
E-mail address: m.pullinger@ucl.ac.uk (M. Pullinger).  

Contents lists available at ScienceDirect 

Applied Energy 

journal homepage: www.elsevier.com/locate/apenergy 

https://doi.org/10.1016/j.apenergy.2024.122683 
Received 23 October 2023; Received in revised form 5 January 2024; Accepted 15 January 2024   

mailto:m.pullinger@ucl.ac.uk
www.sciencedirect.com/science/journal/03062619
https://www.elsevier.com/locate/apenergy
https://doi.org/10.1016/j.apenergy.2024.122683
https://doi.org/10.1016/j.apenergy.2024.122683
https://doi.org/10.1016/j.apenergy.2024.122683
http://creativecommons.org/licenses/by/4.0/


Applied Energy 360 (2024) 122683

2

with factors ranging from societal weekly rhythms and festivals to seasonal temperature changes and system 
shocks like pandemics, with implications for demand forecasting and policymaking.   

1. Introduction 

Domestic energy demand in many countries is in a state of substan
tial flux, driven by ongoing changes to behaviour induced by the COVID- 
19 pandemic and subsequent exceptional energy price fluctuations, set 
against the longer-term spread of new low carbon technologies such as 
electric vehicles, heat pumps and rooftop solar panels. This is in addition 
to patterns driven by societal rhythms of work and schooling, and sea
sonal variation in demand for heating and cooling, among other factors. 
Policymakers and energy system engineers are faced with supplying 
secure, affordable and increasingly sustainable energy in response to 
uncertain changes in demand. Good data on patterns of energy demand 
can be of value to help reduce this uncertainty, by allowing changes in 
demand over time to be better observed, and how that demand responds 
to such rapidly-changing social and environmental factors to be 
investigated. 

In the context of Great Britain, the growing availability of data from 
smart meters has facilitated a growth in research into such patterns. This 
has enabled domestic energy demand to be investigated in greater 
detail, including change over time and for different household types 
[1,2]. Research has further investigated how demand has varied in 
relation to specific major events such as the COVID-19 pandemic [3] and 
the recent cost of living crisis [4], as well as some of the behavioural 
factors underlying such variation [5,6]. 

To date, the majority of this research has focused on daily average 
demand, and in some cases average demand profiles, i.e. the average 
timings and sizes of peaks and troughs in demand over the day for a 
group of households over a period of time. This paper aims to contribute 
to this field of research by focusing on demand profiles in more detail, to 
investigate common demand profiles occurring behind such group av
erages, and the changes in their prevalence over time, for a broadly 
representative sample of British households, through the application of 
cluster analysis to their smart meter data. A substantial body of research 
has arisen that applies cluster analysis to granular smart meter data to 
identify distinct but commonly occurring demand profiles in the do
mestic, as well as industrial and commercial, sectors [7–10]. The aim of 
cluster analysis is to take a set of cases and segment them into a number 
of groups (clusters), such that cases within a group are more similar to 
each other than they are to those in other groups. In the case of daily 
energy demand profiles, this “reveals characteristic customer load pro
files within the heterogeneous population” [7]; that is, the process 
identifies typical patterns of energy demand over the day (such as the 
timings and sizes of peaks and troughs), and allocates each case (for 
example, the demand profile from a given day and for a given home) to 
one of the identified patterns based on similarity. A range of clustering 
approaches exist for identifying ‘similarity’, many of which have been 
applied in the energy profile literature [7,8]. In the case of domestic 
energy demand, the outputs can be thought of as a set of typical energy 
demand ‘archetypes’, grounded in the empirical data, along with in
formation on their prevalence across the sample being analysed. With 
the addition of linked contextual data, the factors shaping their preva
lence can also be investigated. 

There are several notable gaps in the literature to date relating to the 
clustering of domestic daily demand profiles. Firstly, most studies utilise 
datasets that are static and relate to periods prior to the COVID-19 
pandemic, so the impacts on demand profiles of the extensive 
pandemic-induced changes in levels of working from home and other 
occupancy patterns have not been investigated. Secondly, existing 
studies deal almost exclusively with electricity demand. Only one 
research group was identified that has published peer-reviewed cluster 
analyses of gas demand profiles [11]. No studies were identified that 

have included both fuels, electricity and gas, in the same analysis. This 
means that there is currently no research that has developed clustering 
results that allow direct investigation of the relationship between do
mestic electricity and gas demand archetypes. 

In this paper, we aim to address these gaps. The paper has the 
following research aims:  

• To identify and present domestic daily demand archetypes for both 
electricity and gas profiles for the same sample of homes, drawing on 
a dataset that includes periods before, during, and after the COVID- 
19 pandemic. 

• To describe the characteristics of the resultant daily demand arche
types: their typical energy profiles, their average prevalence across 
the sample, and the relationships between electricity and gas 
archetypes.  

• To investigate how the prevalence of these archetypes changes in the 
sample with time-variant factors, including weekly and annual so
cietal rhythms and festivals, external temperature, and over the 
course of the COVID-19 pandemic. 

We draw on the Smart Energy Research Lab (SERL) Observatory 
dataset [12–14] in this research. This is a longitudinal dataset of elec
tricity and gas smart meter data and linked contextual data including 
weather, survey and EPC data, from a sample of 13,000+ consenting 
households that is broadly representative of the Great Britain1 (GB) 
population. We draw on the full sample and three full years of data, from 
September 2019 to August 2022, so spanning periods prior to, during 
and after the main phases of the COVID-19 pandemic. In the current 
study, we focus on daily demand archetypes, i.e. taking each day's profile 
from each home and fuel as a separate case. In forthcoming work, we 
will be investigating household demand archetypes, i.e. identifying the 
typical daily demand profiles of households averaged over extended 
periods of time, and identifying how these vary with household 
characteristics. 

The paper addresses the following research questions to achieve the 
above aims:  

1. What are the typical energy profiles of the daily demand archetypes 
identified through the analysis?  

2. How do the observed archetypes relate to the full sample's average 
demand profile?  

3. Does the occurrence of the gas and electricity archetypes relate to 
each other?  

4. How prevalent are the demand archetypes across the sample, and 
how does their prevalence vary over time in relation to different 
time-varying factors? 

This paper therefore contributes to the existing literature by 
providing the first analysis of daily demand archetypes for both elec
tricity and gas from the same sample of households, allowing them to be 
compared and contrasted. Secondly, it contributes by decomposing the 
average electricity and gas demand profiles of the sample to identify 
how they are composed of demand from households exhibiting the 
different archetypes. Finally, it provides a detailed investigation into 
how the prevalence of the demand archetypes for both fuels varies over 
time, including before, during and after the COVID-19 pandemic, and 
how such variation correlates with several different time-varying 

1 Great Britain consists of the United Kingdom excluding Northern Ireland, i. 
e. England, Wales and Scotland. 
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factors. 
The paper has the following structure: Section 2 reviews related 

literature, focusing on the potential end-uses of demand archetype 
analysis and existing findings on the predictors of demand archetypes. 
Section 3 describes the SERL Observatory dataset in more detail. Section 
4 describes the methodology used to identify daily demand archetypes. 
Section 5 presents results, structured around the research questions 
described above. Section 6 discusses the results and concludes. 

2. Literature review 

In the context of Great Britain, existing studies have described 
average domestic demand profiles and their variation with household 
characteristics and time-varying factors. The Energy Follow Up Survey 
(EFUS), an extension of the English Housing Survey, describes heating 
season gas profiles based on data from 143 homes in England from 
October 2018 to April 2019. The profiles show very low overnight de
mand, and morning and evening peaks. The size of the peaks and rela
tive size of drop in demand during the middle of the day is found to vary 
with building characteristics (floor area, and energy efficiency as 
measured for Energy Performance Certificates), occupant characteristics 
(number of occupants, daytime occupancy, fuel poverty status) and 
duration and pattern of heating use [2]. The SERL Statistical Report [1] 
presents average domestic demand profiles for the whole of 2021 for 
both gas and electricity, drawing on the same smart meter dataset from 
around 13,000 homes from Great Britain as used in the current study 
(and with many of the same authors). That finds similar morning and 
evening peaks in demand for gas to those found in the EFUS study, with 
demand falling during the middle of the day and being low overnight. In 
the case of electricity, a morning rise in demand from an overnight low is 
sustained through the middle of the day, then rises further in the evening 
before falling again. In most cases, breaking down by household group 
reveals similar average patterns, with only the sizes of peaks and troughs 
varying, e.g. demand is higher throughout the day at lower outdoor 
temperatures. However, for some groups, demand profiles are substan
tially different to the sample average. Homes with rooftop solar panels, 
for example, have, on average, morning and evening peaks in demand, 
and negative electricity demand during the middle of the day, indicating 
that the home is exporting electricity to the grid [1]. 

In terms of the existing literature that aims to identify common de
mand archetypes using cluster analysis, studies vary in terms of whether 
the target for clustering is taken to be demand profiles from individual 
days from each home, or the households themselves, in which case the 
typical demand profile of homes over periods of time are identified and 
clustered on. As our focus in the current study is on daily demand ar
chetypes, in the literature review here we focus on publications relating 
to this level of analysis.2 Literature dealing with household demand 
archetypes will be considered in our forthcoming paper that focuses on 
that level of analysis. 

Three recent papers (from 2019 and 2020) already contain sub
stantial reviews and evaluations of existing literature and methods 
[7,8,15]. We draw on these, supplemented with papers published sub
sequently (2020 onwards). The published studies of daily demand ar
chetypes that we identified focus exclusively on electricity demand (the 
work on gas demand mentioned in the introduction takes households as 
the unit of analysis). We focus primarily on papers with an applied focus 
and/or using datasets of a similar scale to the one used in this current 
work, with household sample sizes into the thousands, and a duration of 
data of one or more full years. 

Satre-Meloy et al. [15] reviewed 27 published articles in the field, 
with a mix of daily and household-level analyses, but all dealing with 

electricity demand. Among the most common applications of the 
approach at the daily level were:  

• to test and compare clustering approaches (i.e. methodological 
studies);  

• to assess the stability and variability of daily demand profiles over 
time for individual households;  

• and to investigate “the variability in timing of peak demand, the 
contributions of different customer segments to peak demand, or 
related time-of-day and seasonal effects on electricity consumption 
patterns”. 

These different forms of analysis can have a variety of practical end 
uses for energy system actors, particularly energy companies managing 
the energy network. Several are discussed in the literature we reviewed, 
in many cases in the form of proposals rather than evaluated examples. 
These include:  

• To better understand variation in patterns of customer demand [7];  
• To improve the performance of load forecasting algorithms [7,8];  
• To support “the detection of non-technical losses” [7,16], that is, 

electricity that is consumed but not billed for reasons such as inac
curate recording of consumption, defective appliances or deliberate 
fraud. 

The end uses typically involve two stages of analysis: firstly, the 
identification of typical daily demand archetypes using cluster analysis, 
and secondly, the identification of factors that predict the archetype to 
which a particular case belongs. 

While several of the reviewed papers mention that there is often high 
variability in demand profiles from day to day even for the same home, 
alluding to societal and weather-related factors, only one of the 
reviewed papers presented empirical analyses of the relationships be
tween daily demand profiles and other factors. Czétány et al. [17] 
clustered daily electricity profiles from nearly 1000 homes from 
Hungary for January 2017 to December 2018, and found the prevalence 
of each cluster across the sample on a given day correlated with type of 
day (weekdays vs weekends) and season, along with minor differences 
along the lines of a combined building type/number of occupants vari
able. Peak demand was also found to vary by settlement type (village, 
town, city). 

2.1. Key points 

A variety of end uses for clustering daily energy demand profiles 
have been proposed in the existing literature. The existing research also 
points to several factors that vary over time that could impact on the 
chances of a particular home's electricity usage on a given day fitting a 
particular demand archetype, notably weekly societal rhythms and 
seasonal weather variation. However, among these studies, there is little 
empirical research looking at this relationship between the prevalence 
of daily demand archetypes and such temporally varying factors. 

None of the studies reviewed uses energy data from during or after 
the COVID-19 pandemic, which would allow recent demand archetypes 
to be investigated. Gas archetypes have only been studied at the 
household level, and no studies have combined analyses of both elec
tricity and gas. The current paper therefore contributes to the literature 
with its analysis of daily demand archetypes for both electricity and gas 
from before, during and after the main phases of the COVID-19 
pandemic in Great Britain. 

3. Dataset 

The data used in this paper is the Smart Energy Research Lab (SERL) 
Observatory dataset [14,18]. The dataset contains half-hourly smart 
meter readings for electricity and for gas, where available, for a broadly 

2 Published research uses various terminology for daily demand archetypes, 
including substituting the words daily for diurnal, demand for load or con
sumption, household for home or dwelling, and archetype for profile or cluster. 
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representative sample of 13,292 homes recruited into the project from 
across Great Britain. Linked to the smart meter data are hourly- 
resolution weather variables from the ERA5 reanalysis climate data 
[19], along with survey data from the participants relating to building 
and occupant characteristics, among other variables. For more infor
mation on the SERL datasets see [14,20,21]. Data extends back for some 
households to August 2018. The 5th edition of the SERL Observatory 
dataset was used for this article [22], the most recent release of the 
dataset available at the time of analysis, which contains smart meter 
data up to the end of August 2022, and weather data up to the end of 
June 2022. New smart meter and linked contextual data continue to be 
collected, cleaned and periodically released by the SERL team, with the 
dataset made available to approved projects in the UK research com
munity for research in the public interest. This provides scope for the 
current work to be updated over time. 

The dataset has already been utilised to produce statistical reports of 
demand patterns and trends over time [1] and to investigate the range of 
predictors of those patterns [23], as well as the impacts of specific events 
such as the COVID-19 pandemic [3] and of household characteristics 
such as their EPC rating [24]. 

This article focuses on analysis of gas and net electricity demand. Net 
electricity demand is a household's demand from the electricity grid 
minus any electricity that the household generates, such as from rooftop 
solar panels. In households without such microgeneration, net elec
tricity is the same as their total consumption from the grid. In house
holds that do have microgeneration, it is their consumption minus their 
production. In the large majority of the homes with microgeneration, it 
takes the form of rooftop solar voltaic panels (solar PV), and the effect on 
their demand profile is to create a characteristic dip in net consumption 
in the middle of the day, frequently into net negative values. 

3.1. Characteristics of the sample used in this study 

The SERL Observatory sample was recruited in three waves between 
August 2019 and February 2021 using a stratified random sampling 
approach, with stratification along the lines of geographic region and 
Index of Multiple Deprivation (IMD) quintile (IMD is a common indi
cator in the UK of the relative level of deprivation of small geographic 
areas, based on measures of multiple dimensions of deprivation). As 
such, the sample is approximately representative of households in Great 
Britain in terms of their distribution by both these variables (with a 
slight overrepresentation of Wales and underrepresentation of York
shire) [14]. The sample is also approximately representative along the 
lines of several other characteristics (compared to the census and na
tional surveys), with some biases as follows:  

• Numbers of occupants: slight3 overrepresentation of 2-person 
households.  

• Tenure: overrepresentation of owner-occupiers (by 15.7 percentage 
points) and slight underrepresentation of private renters and social 
renters.  

• Managing financially (self-reported): slight overrepresentation of 
those reporting living comfortably.  

• Property characteristics: slight overrepresentation of detached 
houses and underrepresentation of flats and tenements; over
representation of large properties (with 8+ rooms) (by 11.2 per
centage points) and underrepresentation of medium-sized properties 
(4–5 rooms). 

More detailed sample characteristics are available and published in 
the dataset's data descriptor [14]. 

For this study, we drew on the full sample of homes and on three full 

years of data up to the most recently available time point, i.e. 1 
September 2019–31 August 2022. Full years of data were used to help 
account for annual seasonal variations in climate in the analysis. Half- 
hourly smart meter data was collected from participants from up to 
three months preceding their date of joining the study (the data being 
stored locally on their smart meters for at least this long), however the 
recruitment timeline for the SERL project means that for many homes 
smart meter data does not extend back to September 2019. The number 
of households with available half-hourly data in the SERL sample in
creases in blocks, reaching the full sample in the third quarter of 2020. 
The early waves of recruitment were less representative of Great Britain, 
being focused on the south of England due to regional delays in the 
national smart meter rollout. However, as a proportion of all individual 
‘home-fuel-days’ of data, data from this period represents only a small 
proportion of the full dataset analysed, and so any distortionary effects 
on the cluster results is likely to be small. The benefit of including data 
from this period was that it enabled analysis of the prevalence of de
mand archetypes before, during and after the main periods of the 
COVID-19 pandemic and associated restrictions. 

Fig. 1 below shows the number of homes that had sufficient half- 
hourly smart meter data to identify their demand archetypes on each 
given day, separately for electricity and for gas. Counts reached a 
maximum of 12,020 homes with sufficient electricity data and 8930 
homes with sufficient gas data.4 Fewer homes have available gas data 
because not all homes have gas supplies, and not all homes that have 
electricity smart meters have gas smart meters, even if they have gas 
supplies (while all homes with gas smart meters do have electricity 
smart meters, as the latter are required for the gas meters to commu
nicate with the national smart meter infrastructure). In total, 
18,890,620 data points (each data point being a single ‘home-fuel-day’ – 
a day of data for a given home and for a given fuel, either electricity or 
gas) were labelled with their demand archetypes across the full sample 
and three years covered. 

Some of the analyses presented in the results section use data from a 
subset of these homes. Analyses in section 5.2.2 draw on data from 8480 
homes that self-reported having gas central heating and had sufficient 
gas smart meter data to identify demand archetypes. Analyses in section 
5.2.3 draw on data from 3650 homes in England and Wales that had 
sufficient electricity and/or gas data smart meter data to identify de
mand archetypes from January 2020 onwards. 

4. Methodology 

Fig. 2 below provides a graphical overview of the stages of data 
analysis used in this research. The following sections describe the details 
of the approach, starting first with how archetypes were generated, and 
then describing the approach taken to analysing the characteristics of 
the archetypes and factors correlating with their prevalence. 

4.1. Generation of daily electricity and gas demand archetypes 

As a first stage of data preparation, we cleaned the Observatory 
dataset following the same approach used for the SERL Statistical Report 
Volume 1 [1], such that half-hourly readings were retained only where 
they were not flagged as potentially erroneous or anomalous in the 
dataset, e.g. with implausibly high values or incorrect time stamps. 
Where necessary, gas usage measurements in cubic metres were con
verted to kWh following the same calculation used in the SERL Obser
vatory dataset itself (which is also the national standard to convert 
meter readings to kWh), i.e. cubic metres * correction factor (1.02264) * 
calorific value (39.5) / conversion factor (3.6) = kWh. 

Energy demand archetypes were then generated from the cleaned 

3 Slight is used here to signify under- or overrepresentation of less than 10 
percentage points. The sizes of larger differences are stated in the text. 

4 Counts here and throughout this article are rounded to the nearest 10 for 
purposes of statistical disclosure control. 
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energy data through several stages of analysis. Each separate day of data 
for each home and each fuel (a ‘home-fuel-day’) was taken as a separate 
case to which to allocate an archetype. The details of the methodologies 
used in existing published research vary substantially (see, for example, 
the review in [7]); however, the approach we developed and applied in 
this study adapts the general stages commonly found whilst also 
resulting in archetypes for electricity and for gas that can be directly 
compared to one another. We also aimed to meet a further set of criteria 
for the resultant archetypes:  

• Archetypes should be distinguished by the time of day of peaks and 
troughs, rather than their scale in energy terms. This reflects a sub
stantive interest in whether the timing of a household's energy 

demand coincides with system-wide peak times, and provides results 
that complement existing research that focuses instead on the scale 
of total daily demand rather than the timing of demand within the 
day.  

• A relatively low number of archetypes was aimed for, with a target in 
the range of five to ten. This was to capture the diversity in patterns 
of demand in the data whilst producing results that could still be 
clearly communicated – fewer archetypes would likely miss impor
tant diversity, whilst higher numbers would become difficult to 
present and discuss.  

• Given the large dataset and interest in the approach being relatively 
accessible for reuse, a computationally efficient method was 
preferred. 

Fig. 1. Count of homes in the SERL Observatory dataset with sufficient smart meter data to calculate demand archetypes for each day from 1 September 2019 to 31 
August 2022 

Fig. 2. Outline of the data preparation and analysis methodology used in this research. After initial data cleaning, daily demand archetypes are identified through 
initial procedural labelling and then using cluster analysis, so that each ‘home-fuel-day’ (each day of data for each home and fuel) is treated as a separate case and 
labelled. Analyses are then undertaken of the characteristics of these archetypes, and their relationship to time-variant factors. Arrowed lines indicate data flow; 
rectangles indicate stages of analysis; rhomboids indicate outputs of the analyses. 
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Given the wide range of clustering approaches that have been uti
lised in the existing literature, a range of input features and clustering 
methods were tested before selecting the final approach used in this 
research. The approaches selected for testing were initially expert 
driven, based on the existing literature and researcher experience, and 
were then vetted against the above criteria until a suitable approach was 
identified. Hierarchical cluster analysis and hdbscan clustering were 
both tested with various input features but were too computationally 
intensive to apply to the full dataset (in the case of the former), and 
unable to yield a substantively useful number of clusters despite testing a 
range of hyperparameters (in the case of the latter). K-means cluster 
analysis was eventually selected for use in this study, a commonly 
applied method in the field. The sections below detail the approach 
selected for use in this paper. 

4.1.1. Procedural definition of a ‘Flat’ archetype 
Before performing cluster analysis, we first defined a ‘Flat’ archetype 

as a home-fuel-day in which there was little variation in energy use over 
the course of the day. Such home-fuel-days are of low substantive in
terest as they contribute little to overall network peaks and troughs in 
demand. They also indicate little variation in the energy using activities 
in the home for that day. Such low fluctuations in energy use may have 
several origins. In the case of electricity, this includes appliances such as 
fridges and freezers that cycle periodically between low levels of energy 
use, and appliances left charging or on standby. In the case of gas, this 
might include low-level use by boilers, e.g. by combi-boilers that 
maintain a small reserve of hot water, pilot flames in some remaining 
older boilers, use for hand washing, etc. Such cases suggest few other 
appliances are used that day, and/or space heating has not been used. 

We used a data-driven approach to identifying which home-fuel-days 
to label ‘Flat’. We plotted histograms of the daily differences between 
minimum and maximum half-hourly values for each home-fuel-day in 
the cleaned dataset, which revealed a tri-modal distribution of the 
values for both fuels, i.e. three peaks, with two troughs between them. 
The initial trough in the histograms occurred at around 100 Wh for 
electricity and 300 Wh for gas. We took these values as the thresholds 
below which to label home-fuel-days ‘Flat’. That is, individual home- 
fuel-days with differences in minimum and maximum half-hourly 
values below the threshold for the fuel in question were labelled as 
belonging to the ‘Flat’ archetype. These were also excluded from the 
subsequent cluster analysis, as to include flat profiles would have 
skewed the results due to the normalisation process, which stretches 
peaks and troughs, however small. 

4.1.2. Feature creation and data tidying 
The features used as inputs into the cluster analysis were then 

created for the remaining unlabelled home-fuel-days, again taking each 
home-fuel-day of data as separate cases. The following approach was 
taken: 

1. Smart meter data were downsampled from the initial 30-min reso
lution to a two-hour resolution, taking the mean of the available 
readings for each two-hour block starting from midnight. Down
sampling is used to avoid ‘the curse of dimensionality’, where the 
more features involved, the more sparsely populated the feature 
space and the less distinguishable cases become from one another 
[8,25]. It is also used to reduce data size and the associated 
computational requirements [7], and can help to smooth shorter- 
term fluctuations in demand that amount to ‘noise’ [8]. A mini
mum of 3 of the 4 valid readings for each 2-h block for each home- 
fuel-day was needed, otherwise the value was set as missing. On 
days when the time zone changed (which occurs at 2 a.m. in the UK), 
the feature corresponding to either 12–2 a.m. (when clocks were 
changed back at 2 am by one hour to Greenwich Mean Time, the 
winter time zone in the UK) or 2–4 a.m. (when clocks were changed 
forwards at 2 am by one hour to British Summer Time, the summer 

time zone in the UK) was based on the average of the six or two 
available readings, respectively. 

2. For each home-fuel-day, the 12 two-hour values were then normal
ised by subtracting the minimum two-hour energy use for that home- 
fuel-day (‘deminning’) and dividing by the difference between the 
maximum and minimum two-hour energy use for the home-fuel-day. 
As such, each home-fuel-day of data had a minimum value of zero 
and maximum value of one, with intermediate values scaled linearly 
between zero and one. Deminning is used in the literature to enable a 
focus on ‘discretionary’ consumption, i.e. not baseload (for example, 
[15]). While some previous studies use input features that capture 
both the timing and size of demand (e.g. [26]), most normalise so 
that each home-fuel-day has a comparable scale. Such an approach 
enables a focus on the timing of demand and resultant shape of the 
demand profile rather than the magnitude of consumption over the 
day [8].  

3. Home-fuel-days with any missing feature values were omitted from 
clustering, and their demand archetype was set to ‘Missing’. 

4.1.3. Cluster analysis 
The cluster analysis method used in this research was k-means [27]. 

This is relatively light on computational resources, and also has the 
benefit that in future new data points can be accurately classified to the 
existing clusters based on which centroid they are closest to. This is 
useful in a case such as ours where the source data is updated periodi
cally with new smart meter data, as in any future research, new points 
can be accurately classified to the existing archetypes, and hence 
compared to earlier data points and research based on them. 

The number of clusters must be specified in advance for k-means 
cluster analysis. The optimal number can be identified through data- 
driven techniques such as identifying the number of clusters with the 
maximum silhouette coefficient, or the ‘elbow’ in the value of the sum of 
squared distances plotted against the number of clusters. In our case, 
these tests indicated the use of a substantially larger numbers of clusters 
than aimed for. As such, we identified an optimum lower number of 
clusters by producing dendrograms from the hierarchical cluster anal
ysis approach that was also tested, using the same input features. Data 
size and resource constraints meant hierarchical cluster analysis could 
only be run on a small fraction of the full dataset at any one time, and so 
repeat runs using random samples of 35,000 home-fuel-days were per
formed. These all generated dendrograms indicating that 6 or 7 clusters 
were optimal, with the modal value being 7, within our target range of 5 
to 10. K-means cluster analysis was therefore performed on the full 
dataset (just over 18 million home-fuel-days) using seven as the input 
parameter for the number of clusters. k-means++ initialisation [28] was 
used, with the best performant results of 10 runs of the algorithm taken, 
each run having a maximum number of iterations set to 300 (the best 
performant iteration converged on the solution in 32 iterations) [29]. 

The feature values of each cluster is presented in the appendix, 
section 10. To make the seven resultant clusters easier to communicate, 
we gave them descriptive names, which were based on each cluster's 
average demand profile. The names are: “All daytime”, “Early morning, 
and evening”, “Evening”, “Late afternoon”, “Mid morning”, “Midday 
peak” and “Midday trough”. The characteristics of each of these arche
types are described in the results, section 5.1. These names are used 
throughout the rest of the paper to refer to them. 

4.2. Analysis of archetype characteristics and prevalence 

The rest of the methodology describes analyses conducted on the 
resultant daily energy demand archetypes. The analyses comprise a 
description of their energy demand characteristics, their relationships to 
each other, and how different factors correlate with their prevalence 
over time across the sample of households in the SERL Observatory 
dataset. More details are provided below. 
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4.2.1. Characteristics of daily demand archetypes 
The results section begins with descriptive analyses of the charac

teristics of the daily demand archetypes: their average prevalence over 
the two full years to August 2022; the average energy demand over the 
day for each archetype, varying by season; and the contribution of each 
archetype to the full sample's average energy demand profile. The 
prevalence of each daily demand archetype across groups of homes in 
the sample was calculated for each day, separately for electricity and 
gas. To do this, for each day and fuel, for each archetype, the number of 
households labelled with that archetype was divided by the total num
ber of households with valid archetype labels on that day, and multi
plied by 100 to give the percentage prevalence. Averages over periods of 
time weight each day's average value equally, to control for variation in 
levels of missing data over time. Average energy use for each half-hour 
was calculated for each group of households in a similar way, taking the 
average of the available labelled home-fuel-days each day, and 
weighting each day equally when calculating averages over time. We 
also use a chi-squared test of independence to investigate the correlation 
between the electricity and gas archetypes. 

4.2.2. Relationship between daily demand archetype prevalence and time- 
variant factors 

The literature review indicated that the likelihood of a home 
exhibiting a particular energy demand archetype for a particular day 
was correlated with factors which can, broadly, be characterised as 
either contextual factors that vary over time, or household factors that 
are typically invariant or at least stable over significant periods. Time- 
variant factors include the weather and patterns of work and 
schooling. Household-level factors include the age of the building, the 
type of heating fuel, and number of occupants. For time-variant factors, 
we investigate their relationship to the prevalence of each daily demand 
archetype across the sample. Household-level factors are considered in a 
forthcoming paper. 

We plot the prevalence of each archetype in the sample over time for 
the three years 1 September 2019 to 31 August 2022. We then present 
the prevalence of each archetype each day plotted against mean external 
temperature that day, focusing on gas data for homes with gas central 
heating, as temperature primarily influences heating energy use. More 
details of the approach to each analysis is given along with the results to 
aid in their interpretation. 

The final time-variant factor we investigate is the relationship be
tween COVID-19 restrictions and daily demand archetypes. For this 
analysis, we calculated a metric based on the prevalence values that we 
called a ‘weekday-weekend difference score’. This is an aggregate 
measure of the difference in the prevalence of each archetype between 
weekdays and weekends, summed across all the archetypes, calculated 
per calendar month. More details of the rationale for the score are given 
in the relevant section of the results. 

The score was calculated per fuel and per calendar month, and 
separately for each of three groups of households defined by their family 
status: those with workers (people 16 or over in formal paid or unpaid 
employment) and no children (defined as occupants aged below 16 
years), those with children (with or without workers), and those with no 
workers or children. These groups were defined based on the age bands 
of the occupants and work status data that was self-reported by partic
ipants when joining the SERL panel, and follows the approach used by 
Webborn et al. (2023) [3]. 

The formula for calculating the weekday-weekend difference score 
for a given month, fuel and family status is presented below: 

wwds =
1
2
∑

x∈M
|Pwd.x − Pwe.x|

where:  

• wwds is the weekday-weekend difference score for a given month, 
fuel and family status;  

• M is the set of all archetypes (excluding ‘Missing’);  
• Pwd.x is the mean prevalence, P, of archetype x on weekdays, wd;  
• Pwe.x is the mean prevalence, P, of archetype x on weekend days, we. 

In short, the absolute difference in prevalence of each archetype for 
weekdays compared to weekends is calculated and the values for each 
archetype summed. Finally, the value is divided by two to give a 
maximum value of 100 and a minimum of 0 for a given month, fuel and 
family status. Change in these values over time is presented in the results 
and discussed in more detail there. 

4.3. Software 

Data analysis was performed using Python version 3.7.6 [30] and the 
following libraries: pandas 1.0.1 [31], numpy 1.18.1 [32], scikit-learn 
0.22.1 [33], scipy 1.4.1 [34], Jupyter Lab 1.2.6 [35], matplotlib 3.1.3 
[36] and seaborn 0.10.0 [37]. 

5. Results 

The results presented below are grouped into two sections. Section 
5.1 presents analyses of the characteristics of the electricity and gas 
demand archetypes, including the relationships between them, 
addressing research questions 1 to 3 presented in the Introduction. 
Section 5.2 addresses the fourth research question, presenting analyses 
of the prevalence of the daily demand archetypes over time, and the 
relationship between their prevalence and different time-variant factors. 

5.1. Characteristics of the electricity and gas daily demand archetypes 

5.1.1. Energy demand 
Fig. 3 below presents the average energy demand profile for each 

archetype, separately for electricity and for gas, at a half-hourly reso
lution. Given the large variation in demand over the course of a year, we 
present values for summer and winter periods as well as annual aver
ages. Annualised values are based on the means for the two full years 
from 1 September 2020 to 31 August 2022 (we omit data from 1 
September 2019 to 31 August 2020 because the majority of homes do 
not have data available for much of that period, and because of the 
disruptive effects of the COVID-19 pandemic). Winter and summer en
ergy demand are each based on three months of data (13 weeks/91 
days): 30 November 2021 to 28 February 2022 for winter, and 2 June to 
31 August 2022 for summer. 

The archetypes vary from each other primarily in terms of the 
presence and exact timing of morning and evening peaks, and the extent 
to which demand through the middle of the day dips or is maintained 
relative to those peaks. For the ‘All daytime’ archetype, average demand 
begins to rise from an overnight low at around 6 am, then remains 
higher with some variation until the late evening. The ‘Early morning, 
and evening’ archetype shows a more pronounced morning peak and a 
smaller but distinct evening one, with lower energy use during the 
middle of the day. The next four archetypes in the figure can be differ
entiated by variation in the timing of a single peak, with relatively lower 
energy use for the rest of the day. The profile of the ‘Midday trough’ 
archetype shows a distinct pattern, defined by lower energy use during 
the middle of the day compared to overall higher use in the evening and 
overnight. Average energy demand for the ‘Flat’ archetype, as per its 
initial definition, remains nearly constant, and is also very low. 

Comparing electricity and gas archetypes, electricity demand is 
overall lower in every archetype than it is for gas. This reflects the 
different uses of the two fuels, particularly that gas is the primary 
heating fuel in most homes in the source dataset, as it is for Great Britain 
generally. The electricity archetypes also exhibit generally less variation 
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Fig. 3. Mean energy use over the day for each energy demand archetype, for each of: the two years 1 September 2020–31 August 2022; Winter 2021–2022 (31 
November 2021–28 February 2022); Summer 2022 (2 June - 31 August 2022). Electricity and gas shown separately. Note different y-axis scales for the two fuels. 
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than gas archetypes over the course of the day; in particular, overnight 
demand for electricity is higher as a proportion of daytime demand than 
for gas. 

The use of gas as a heating fuel results in much higher seasonal 
variation in demand in the gas archetypes than is seen for electricity. For 
gas, average summer demand does not exceed 2 kW in any given half 
hour for any of the archetypes; by contrast, it reaches close to 10 kW in 
several archetypes in winter. 

The ‘Midday trough’ archetype is somewhat distinct from the others 
for both fuels. In the case of electricity, it shows much higher seasonal 
variation than the other archetypes, higher overnight demand, reaching 
over 1.5 kW in winter, and negative demand during the middle of the 
day in summer and on average over the year. This pattern can be 
explained by the fact that the ‘Midday trough’ electricity demand 
archetype occurs primarily in homes with rooftop solar photovoltaics, 
and represents net grid demand (i.e. consumption minus generation) – in 
Great Britain, excess household generation can typically be exported 
back to the grid, explaining the average negative values for this arche
type during the middle of the day. We speculate that the high overnight 
demand may be the result of a combination of overnight charging of 
electric vehicles and electric storage heaters; future work could inves
tigate this further. In the case of gas, the ‘Midday trough’ archetype is 
the only one with high overnight demand, similar to daytime levels. This 
and the relatively high summertime demand is consistent with it being 
exhibited by homes that keep their heating turned on overnight as well 
as during the day, and throughout the year. Again, future work could 
investigate this further. 

5.1.2. Average prevalence of the archetypes 
Table 1 presents the average prevalence of each archetype across the 

sample of households over the two years 1 September 2020 to 31 August 
2022, split by fuel. 

In the case of electricity, on average (mean), 20% of homes on any 
given day exhibit the ‘All daytime’ archetype. Aside from ‘All daytime’, 
the most common archetypes are those with higher energy use towards 
the middle or later part of the day, i.e. ‘Midday peak’, ‘Late afternoon’ 
and ‘Evening’. ‘Midday trough’ occurs in 8% of homes on an average 
day. Variation in the prevalence of the archetypes from day to day across 
the sample is generally moderate, as indicated by the standard de
viations, which vary from 1.5 to 5.0 percentage points. 

Gas archetypes, by contrast, have rather different patterns of 

prevalence, which is to be expected given the substantially different end 
uses of the two fuels. Across the two years, the most common gas 
archetype was ‘Early morning, and evening’, with just under 26% of 
homes exhibiting this archetype on average. The ‘All daytime’ arche
type, and the archetypes representing a single peak at some point during 
the day, are all approximately equally common: 12–14% of homes 
exhibit each of them, on average. The prevalence of a few of the ar
chetypes varies substantially over the period, most notably ‘All day
time’, with a standard deviation of over 12 percentage points, and which 
occurs in over 56% of households on its most prevalent day, more than 
four times as many as the average over the period. ‘Early morning, and 
evening’ also has a high maximum prevalence, at 44% of households. 
This variability in the prevalence of the gas demand archetypes is 
returned to in section 5.2.2. 

5.1.3. Decomposition of average daily demand profiles 
Fig. 4 plots the average daily energy demand profile of the full 

sample of households for 1 September 2020 to 31 August 2022. This is 
decomposed to show how the different energy demand archetypes 
combine together to generate this average profile. In essence, this stacks 
the individual demand archetypes from Fig. 3 multiplied by their mean 
prevalence across the sample from Table 1. 

The figure reveals how for both fuels, the average daily energy de
mand from all the homes in the sample is the result of energy demand 
archetypes that each appear quite different from that average. For 
example, two archetypes, ‘Late afternoon’ and ‘Evening’, do much to 
create the high peak in evening demand for both fuels. 

In the case of electricity, the ‘Midday trough’ archetype contributes 
much to increasing overnight demand. It contributes over a third of total 
nighttime demand after midnight, despite only 8% of homes on average 
exhibiting this profile. Similarly, it accounts for much of the midday dip 
that is observed in the full sample. The ‘Midday peak’ archetype, 
conversely, substantially reduces the size of the dip in average demand 
that there would otherwise be during the middle of the day. 

For gas demand, most overnight demand is due to homes in the 
‘Midday trough’ archetype, despite less than 4% of homes fitting that 
profile on average. The ‘All daytime’ archetype contributes a large 
proportion of total daytime demand, while the ‘Midday peak’ archetype 
contributes to smoothing the trough in demand in the middle of the day. 

5.1.4. Relationship between electricity and gas archetypes 
It might be expected that a home's electricity demand archetype on a 

given day is correlated with its gas demand archetype: patterns of oc
cupancy and sleep, for example, can be expected to influence both. We 
therefore tested for relationships between electricity and gas daily de
mand archetypes, using a chi-squared test of independence. We tested 
for relationships separately for the winter 2021–22 and the summer 
2022 periods defined earlier. This allowed us to investigate relationships 
in different weather and seasonal conditions. 

In both periods, the tests indicated that the occurrence of the ar
chetypes was highly statistically significantly correlated. However, re
siduals indicated that this was entirely due to a strong relationship 
between the fuels in the occurrence of the Flat archetype. As a confir
mation, rerunning the chi squared tests with the Flat archetype omitted 
from the contingency table yielded non-significant results for both 
winter 2021–22 and summer 2022, i.e. apart from the Flat archetype, no 
statistically significant relationships were found between homes' elec
tricity and gas demand archetypes on a given day. 

5.2. Variation in the prevalence of daily demand archetypes with time- 
variant factors 

5.2.1. Chronological variation 
The prevalence of each demand archetype over time is plotted in 

Fig. 5 (for electricity) and Fig. 6 (for gas). These show the percentage of 
households exhibiting each daily demand archetype each day from 

Table 1 
Percentage prevalence of each archetype across the sample, by fuel, for 1 
September 2020 to 31 August 2022   

Mean Median Standard 
deviation 

Minimum Maximum 

Electricity 
All daytime 19.6 18.2 5.0 12.8 34.2 
Early morning, 

and evening 
5.0 5.2 1.5 1.3 8.6 

Mid morning 8.7 8.7 1.5 4.6 13.5 
Midday peak 15.4 14.1 3.6 9.8 34.0 
Late afternoon 15.3 14.8 2.6 7.9 24.3 
Evening 23.1 23.5 3.3 7.6 30.5 
Midday trough 8.2 8.8 2.1 3.3 12.1 
Flat 4.7 4.4 2.2 1.4 13.0  

Gas 
All daytime 12.0 6.3 12.4 1.5 56.3 
Early morning, 

and evening 
25.5 25.3 6.5 9.4 43.7 

Mid morning 12.8 12.7 3.0 6.6 19.3 
Midday peak 11.2 10.3 4.7 3.7 23.5 
Late afternoon 13.6 13.6 2.5 5.9 23.3 
Evening 13.4 14.2 3.9 3.1 23.2 
Midday trough 3.7 4.0 2.5 0.2 10.3 
Flat 7.6 5.7 4.5 2.3 20.4  
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September 2019 to August 2022. (Note that due to the timing of 
participant recruitment waves, sample sizes are small until February 
2020, reaching about 75% of the full sample by May 2020, so compar
isons of prevalence before and after approximately mid-2020 should be 
treated with caution). Patterns of change in the prevalence of certain 
archetypes can be discerned. For example, for electricity, the ‘Midday 
peak’ and ‘Evening’ archetypes show consistent differences in their 
prevalence between weekdays and weekends (visible as frequent and 
regular spikes and dips in the figure). This weekly rhythm is consistent 
with changing weekday and weekend patterns of occupancy and time 
use, and hence timing of energy using activities, likely driven by stan
dard daytime Monday-Friday work and school patterns. 

Seasonal variation can be readily seen for both fuels in the preva
lence of the ‘All daytime’ archetype, among others. In the case of gas, the 
primary space-heating fuel for most homes in Great Britain, this is highly 
influenced by external temperature, which accounts for much of the day- 
to-day fluctuation apparent in the figure (see section 5.2.2 for more 
analysis of this relationship). 

One-off events, notably Christmas Day (25th December), commonly 
observed in Great Britain, can be seen in the form of spikes or dips in the 
prevalence of several archetypes on that day each year, notably the 

electricity ‘Midday peak’, ‘Late afternoon’ and ‘Evening’ archetypes. We 
speculated that this was driven by the use of electric ovens to cook 
Christmas dinners, traditionally prepared for consumption as a midday 
meal, with a concomitant reduction in cooking for an evening meal 
(evening is the most common time for eating a hot meal in the majority 
of UK homes on most other days). We reproduced the plots omitting 
households that self-reported having electric ovens (as part of the initial 
recruitment survey), and found the spikes in prevalence in the ‘Midday 
peak’ archetype to be almost absent, while the dips in the ‘Late after
noon’ and ‘Evening’ archetypes were smaller (plots not presented here 
for space purposes). Also visible around Christmas Day each year in 
Fig. 5 and Fig. 6 is a spike in the prevalence of the ‘Flat’ archetype, likely 
from people staying with relatives or friends for a day or two, leaving 
their homes unoccupied (note also that the prevalence of the ‘Flat’ 
archetype is not substantially affected by omitting homes with electric 
ovens, which is what would be expected if the spikes around Christmas 
Day are due to an increase in unoccupied homes). 

There are also some changes in archetype prevalence in the plot that 
appear consistent with impacts of COVID-19 restrictions, particularly 
around the start of the first lockdown, from 23 March 2020. For elec
tricity, there is a reduction in the prevalence of the ‘Early morning, and 

Fig. 4. Stacked area plots indicating how different archetypes contribute to the overall daily profiles seen for electricity and gas demand across the full sample, 
averaged for 1 September 2020 to 31 August 2022. 
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evening’ and the ‘Evening’ archetypes on weekdays around the start of 
the first lockdown, and an increase in the prevalence of the ‘All daytime’ 
and ‘Midday peak’ archetypes, particularly on weekdays, which could 
be indicative of increased daytime occupancy. The ‘Flat’ archetype also 
increases for a period in the electricity data, possibly as some people 
opted to move out and stay with others temporarily. For the gas data, the 
‘Mid-morning’ archetype becomes relatively more common on week
days compared to weekends. Other changes around the time, such as in 
the prevalence of the ‘All daytime’ archetype for gas, are likely the result 
of changes in external temperature and associated space heating de
mand. The changes in many cases seem quite subtle, so the impacts of 
COVID-19 restrictions are investigated with additional analyses in sec
tion 5.2.3 below. 

5.2.2. Variation in gas archetype prevalence with external temperature 
Here we investigate the relationship between the prevalence of daily 

demand archetypes and external temperature. As gas is the primary 
central heating fuel in Great Britain, the analysis focuses on gas 

archetypes only, and on the subsample of homes from the SERL Obser
vatory dataset that self-reported having gas central heating systems. 

Fig. 7 shows scatter plots of the relationships between the prevalence 
of each gas daily demand archetype and mean external temperature. 
Each point represents the prevalence of the given archetype on a single 
day across the sample of homes with gas central heating, for the two 
years 1 July 2020 to 30 June 2022.5 Complete years of data were 
preferred for the current analysis, as external temperature follows 
annual cycles. Colour coding distinguishes weekdays from weekends, to 
reveal the interaction between temperature and this driver of 
occupancy. 

All the archetypes show a clear relationship between their preva
lence across the sample on a given day and mean external temperature 
that day. The prevalence of the ‘All daytime’ archetype in particular is 

Fig. 5. Line graph of the prevalence of the electricity demand archetypes each day from 1 September 2019 to 31 August 2022 
n homes = 2140–12020 (varies by data point) 

5 Although the smart meter data in the dataset runs until August 2022, June 
2022 is the last month in the dataset that also has weather data. 
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strongly inversely correlated with external temperature up until about 
14 ◦C is reached. Below 0 ◦C, the prevalence exceeds half of the sample 
on some days, while it drops close to zero from around 14 ◦C and above. 
This is an archetype that is consistent with the central heating being on 
throughout the waking hours of the day (e.g. because it is programmed 
to maintain either a comfortable indoor temperature or a lower set-back 
temperature), a pattern that would be expected to be found in more 
households as temperature decreases. 

The ‘Early morning, and evening’ archetype also shows a strong 
relationship with external temperature, although this time a curvilinear 
one. This is consistent with heating being used intermittently in the 
shoulder seasons (spring and autumn), where heating is only required 
for part of the day in order to maintain comfortable indoor tempera
tures. At lower temperatures, this pattern gives way to the ‘All daytime’ 
archetype, while at higher temperatures it gives way to other arche
types. The interaction with occupancy is clear in this plot – during the 
week, when more homes are unoccupied during the day, the ‘Early 
morning, and evening’ archetype is more common than it is on 

weekends. The ‘All daytime’ archetype is on average more common at 
weekends than on weekdays at any given temperature, most likely as 
more homes are occupied through the day, although the pattern is less 
strong than for the ‘Early morning, and evening’ archetype. 

The remaining archetypes, except ‘Midday trough’, become more 
common as temperature increases – each would be consistent with a 
single period of heating, either in the morning or the evening, at external 
temperatures when less heating is required to maintain a comfortable 
indoor temperature. The consistently higher prevalence of the ‘Mid 
morning’ and, in particular, ‘Midday peak’ archetypes on weekends 
compared to weekdays is again consistent with higher daytime occu
pancy across the sample on weekends. 

5.2.3. System shocks: The case of COVID-19 
The changes in the prevalence of demand archetypes over time 

presented earlier in Fig. 5 suggest that there were changes related to the 
COVID-19 pandemic, at least around the period of the first lockdown, 
from 23 March 2020. However, as discussed above, the changing sample 

Fig. 6. Line graph of the prevalence of the gas demand archetypes each day from 1 September 2019 to 31 August 2022 
n homes = 1660–8930 (varies by data point). 
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numbers over that period add a confounding factor to the observations. 
Here, we refine the analytical tools to attempt a more powerful inves
tigation of possible COVID-19-related impacts on the prevalence of the 
different daily demand archetypes. 

Firstly, we take a fixed subsample of the households that had data 
throughout a period from shortly before the start of the pandemic to 
beyond the end of the last major restrictions on behaviour. We selected 
January 2020 to March 2022 for the analysis. We also focused on En
gland and Wales, removing Scottish households for two reasons: there 
were very few Scottish households in this subsample due to the time
table of recruitment of participants into the SERL Observatory panel; 
and Scotland had substantially differing COVID-19-related restrictions. 
The sample consists of 3650 households in total: 3540 of which had 
electricity data, and 2850 of which had gas data. 

Secondly, COVID-19-related restrictions impacted different groups 
to different extents. Whilst some restrictions on leaving home applied to 
the whole population, such as ones related to socialising and attending 
leisure venues, two major sets of restrictions varied by household type: 
work-from-home rules impacted households with workers that were 
deemed ‘non-essential’, whilst home-schooling rules impacted all 
households with school-attending children. We therefore expect that 
any impacts on the prevalence of demand archetypes would vary by 
household type: those with and without adults in formal work (paid or 
unpaid), and those with and without children. Furthermore, as 
schooling and, for many, formal work, occur primarily on weekdays, we 

would expect different impacts in these groups on weekdays to 
weekends. 

Here we formalise these expectations into three related testable hy
potheses regarding specific changes in the prevalence of different de
mand archetypes that we might expect due to COVID-19-related 
restrictions for different segments of the population:  

• The sample of households with children and/or at least one adult in 
work will have seen their weekday demand archetypes become more 
similar to their weekend demand archetypes during periods of 
stronger restrictions on schooling and/or work, respectively.  

• Households with differing mixes of children and work will have 
responded differently to the changing restrictions (e.g. households 
with adults in work but no children will have been less affected by 
school closures).  

• Households with no children and no adults in work will have had 
more similar demand archetypes on weekdays and weekends 
throughout, and the difference between weekdays and weekends will 
have been less affected by restrictions in place for this group. 

Fig. 8 presents line plots of the change over time in a ‘weekday- 
weekend difference score’ for different family statuses, separately for 
electricity and for gas, to test the above hypotheses. If the hypothesis 
holds, we would expect this score to fall during periods with lockdowns 
and restrictions, and to be higher at other times, particularly for 

Fig. 7. Scatter plot of the relationship between daily demand archetype prevalence against mean external temperature, for gas, for homes with gas central heating, 
for 1 July 2020 to 30 June 2022. Each point indicates the prevalence of the archetype across the selected homes for one day. 
n homes = 6720–8480 (varies by data point). 
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households with children and/or with workers. The score is a derived 
measure that compares, for each group and for each month, the preva
lence of the archetypes on weekdays versus weekends. A lower value 
indicates that weekdays and weekends are more similar in the spread of 
archetypes found in that group for that month, with 0 indicating that 
each archetype occurs equally frequently on weekdays as it does on 
weekends for that month, while 100 indicates no overlap at all, i.e., 
archetypes occurring on weekdays are absent on weekends and vice 
versa during that month for that group. The formula for calculating the 
weekday-weekend difference score is presented in the methods, section 
4.2.2. 

The coloured bars in Fig. 8 indicate the average level of restrictions 
in place month by month, with darker shading representing higher levels 
of restrictions. Yellows indicate general lockdowns and restrictions, 
which in the UK included varying restrictions on leaving the home, 
meeting people from other households, and attending social events and 
leisure venues (drawn from dates provided in [38]). Reds indicate 
nursery and school closures, including regular holiday periods as well as 
closures related to COVID-19 restrictions. Blues indicate work-from- 
home and furlough requirements. The values are approximate, as rules 
frequently changed over time and often varied by different regions of 
England and Wales, as well as by different school year groups and cat
egories of worker. 

Although causality cannot be determined with this approach, the 
results are nonetheless consistent with the hypotheses presented above. 
Households with no children and no adults in work (solid black line) 
have consistently more similar weekdays and weekends before and 
throughout the pandemic than the other groups (indicated by a lower 
difference score that shows no discernible changes related to the levels 
of COVID-19 restrictions). In contrast, households with adult workers 
and/or children show a substantial drop in their difference scores at the 
start of the first lockdown, for both electricity and gas. For households 
with children (dotted red line) (90% of which also have at least 1 adult 
in work in the sample), subsequent change in this weekday-weekend 
difference score over time is also largely consistent with patterns of 
school openings and closures in England and Wales, with the score 
generally falling with greater levels of school closures, including holi
days, and rising as schools reopened. 

For households with adults in work but no children (dashed blue 
line), the difference score again drops substantially at the start of the 
first lockdown, and subsequently stays lower overall and more constant 

than for households with children (dotted red line). This pattern is 
consistent with a substantial level of self-imposed home-working 
continuing even during periods when it was no longer government- 
mandated. 

6. Discussion and conclusion 

This paper set out to investigate the diversity of daily electricity and 
gas demand profiles from GB households between September 2019 and 
August 2022, using data from a broadly representative sample of homes. 
Analyses drew on the SERL Observatory dataset of smart meter and 
linked contextual data from 13,000 consented households, and applied a 
methodology based on k-means cluster analysis to identify eight demand 
‘archetypes’, i.e. typical daily energy demand profiles. The cluster 
analytical approach was designed to focus on the shape of the energy 
demand profiles - the pattern and timing of peaks and troughs, rather 
than their size in kWh terms, by using normalised energy demand pro
files for each day for each home and fuel as input features into the cluster 
analysis. The characteristics of these archetypes and their prevalence 
across the sample over the period was analysed. 

Four research questions were presented in the introduction, and how 
the results relate to each of these is discussed below. 

1. What are the typical energy profiles of the daily demand ar
chetypes identified through the analysis? Four of the archetypes, 
which we named ‘Mid morning’, ‘Midday peak’, ‘Late afternoon’ and 
‘Evening’, each exhibit a single dominate peak in demand, which 
varies between them in its timing over the day, from mid morning to 
evening. One other, ‘Early morning, and evening’, exhibits a more 
bimodal distribution with an early morning and an evening peak, 
while ‘All daytime’ shows a morning rise in demand that is then 
sustained through to the evening. A ‘Flat’ archetype remains low and 
flat through the day. A final archetype, ‘Midday trough’, is particu
larly distinctive for electricity, where average demand is negative 
during the middle of the day and high overnight in the early hours of 
the morning, which we speculate results from a combination of 
generation from rooftop solar photovoltaic panels, and overnight 
charging of electric vehicles and electric storage heaters. Electricity 
demand is consistently lower than gas demand across all the arche
types, reflecting the primary heating role of gas in most homes. Gas 
demand exhibits significant seasonal variation across the archetypes, 

Fig. 8. Line plots of ‘weekday-weekend difference scores’, being the percentage point differences in the prevalence of demand archetypes between weekdays and 
weekends, by month, for different family statuses (see text for details). Background shading represents the levels of general restrictions, school and nursery closures 
(including holidays), and work-from-home/furlough requirements in place for each month. 
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with low summer demand and substantial winter demand. Electricity 
demand varies much less with season, which is consistent with 
electricity use being primarily on non-heating end uses that are less 
affected by weather. The exception is the ‘Midday trough’ archetype; 
the relatively higher winter usage throughout the day, particularly 
from just after midnight until the evening, is again consistent with 
overnight charging of storage heating (higher in the winter) and 
reduced winter electricity generation from solar PV. Future work 
could investigate this in more detail by analysing patterns for this 
archetype just for homes in the dataset that have self-reported having 
these technologies.  

2. How do the observed archetypes relate to the full sample's 
average demand profile? The daily demand archetypes identified 
by the clustering method were used to ‘decompose’ the average daily 
electricity and gas demand profiles of the full sample, revealing how 
the average pattern of peaks and troughs in demand over the day 
across the sample is built up from a mix of demand archetypes that 
exhibit a range of substantially different profiles. This result high
lights the diversity of demand profiles exhibited by households that 
is not apparent from average demand data, even when broken down 
by consumer segments. Some of the results have particular relevance 
for policy. For example, the ‘Midday trough’ archetype contributes 
over a third of nighttime demand despite only 8% of homes exhib
iting this profile on average, while for gas, most overnight demand is 
due to just 4% of homes that are on average exhibiting this same 
archetype. This suggests that small groups of homes with certain 
electrical appliances and technologies, and having particular heating 
patterns (with heating left on overnight as well as during the day) 
have substantial impacts on average domestic demand patterns over 
the day. Further research could look into the relationships between 
technologies, heating behaviours and the demand archetypes.  

3. Does the occurrence of the gas and electricity archetypes relate 
to each other? Certain factors such as patterns of occupancy and 
sleep might be expected to influence the timing of demand for both 
gas and electricity and so lead to co-occurrence of their demand 
archetypes. As such, the relationship between gas and electricity 
archetypes in the sample was investigated using chi-squared tests of 
independence. However, aside from a strong relationship in the 
occurrence of the ‘Flat’ archetype between the two fuels, no other 
statistically significant relationships were found in either winter 
(2021− 22) or summer (2022). The ‘Flat’ archetype occurring in 
homes for both fuels on the same days could indicate times when 
homes are left unoccupied for the day, although this could not be 
confirmed with the current dataset.  

4. How prevalent are the demand archetypes across the sample 
and how does their prevalence vary over time in relation to 
different time-varying factors? For electricity, the most common 
demand archetype on average was found to be ‘All daytime’ (20% of 
homes), followed by archetypes with higher energy use in the middle 
or latter part of the day: ‘Midday peak,’ ‘Late afternoon,’ and ‘Eve
ning’. ‘Midday trough’ occurs in 8% of homes on average. Gas usage 
patterns were found to be quite different, with the ‘Early morning 
and evening’ archetype being most common (about 26% of homes on 
average), followed by ‘All daytime’ and archetypes with a single 
peak during the day (all around 12–14% of homes). Variation in the 
prevalence of the archetypes over time is moderate for the electricity 
archetypes, but more substantial for the gas archetypes, especially 
‘All daytime,’ with a high standard deviation of over 12 percentage 
points. Analysis of change over time revealed that several factors 
could be seen to relate to prevalence. Weekly rhythms (likely related 
to work and school schedules) were visible as peaks or dips in the 
prevalence of several archetypes on weekends compared to week
days, in line with past work that has investigated this [17]. Annual 
events, notably Christmas Day, could be seen in the data, with var
iations in archetype prevalence consistent with increased oven use 
for preparing the traditional midday meal, as well as with people 

temporarily leaving their homes unoccupied, as would happen if 
visiting others over the festival. 

In the case of gas archetypes, among gas centrally-heated homes, 
analysis of their prevalence by external temperature revealed a clear 
relationship, consistent with heating being used for more of the day 
at lower temperatures. Furthermore, after controlling for external 
temperature, distinct weekday and weekend variations in the prev
alence of several gas archetypes were identified that are consistent 
with higher occupancy and hence daytime heating use across the 
sample on weekends. Conversely, archetypes consistent with heating 
being used primarily during peak morning and evening times was 
more prevalent on weekdays, consistent with lower occupancy dur
ing the middle of the day. Further research could investigate the 
relationship between these energy archetypes and patterns of heat
ing use and achieved indoor temperatures, both of which have been 
found in other research to exhibit similar kinds of diversity in their 
profiles over the day [25,39]. The relationship between energy de
mand, heating and achieved temperatures has implications for 
models of energy demand such as the UK's Standard Assessment 
Procedure (SAP), a widely used model for assessing the energy effi
ciency of homes, that assumes standard weekday and weekend pat
terns of occupancy and heating when estimating a property's energy 
demand [40]. 

The evidence from the analyses (for England and Wales) was also 
found to be consistent with the hypotheses that the COVID-19 
pandemic, and associated restrictions on movement, led house
holds to have demand patterns that were more similar on weekdays 
and weekends than previously. This is consistent with the more 
similar occupancy patterns between weekdays and weekends that 
were enforced by lockdowns and other restrictions on leaving the 
home. The results were consistent with the hypotheses that changes 
in demand patterns from restrictions were stronger in households 
with children and those in formal work; the latter appears to have 
still not returned to pre-pandemic patterns by March 2022, despite 
work-from-home requirements having been ended around a year 
prior to that. These results are interesting to compare with previous 
work on the impacts of the pandemic on total daily demand using the 
same dataset: Zapata-Webborn et al. (2023) [3] found generally 
higher daily demand for both fuels during lockdowns compared to 
modelled predictions, returning to predicted levels, or even slightly 
below them in the case of gas, by Q1 2022. Changes varied by the 
same family types as used in this research, but there was little 
detected difference in changes in daily demand on weekdays and 
weekends. 

6.1. Limitations and future work 

The current research did include some limitations that future 
research may be able to address. Firstly, even though the clustering 
approach helps reveal distinct daily demand archetypes, the k-means 
method inherently allocates all home-fuel-days in the data to the nearest 
cluster no matter how different they are. Some previous research has 
used methods that include a concept of ‘noise’, which in this case means 
profiles that are far from any cluster centre, in relatively sparsely 
populated regions of feature space. Such home-fuel-days are likely to 
account for some proportion of the variation in prevalence of the ar
chetypes observed between days in the current study; assessing the 
extent of this would be of value, as it could lead to more robust identi
fication of archetypes and stronger certainty about the relationships 
between demand archetypes and other factors. Future work could 
therefore investigate cluster methods that include a concept of ‘noise’, 
such as revisiting the hdbscan approach tested for this work, or Gaussian 
Mixture Models, which attribute a probability to each case of its 
belonging to each cluster. 

The current paper uses data up until August 2022, the most recent 
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available at the time of analysis. The SERL Observatory dataset used in 
this research continues to be collected and periodically released for use 
by GB researchers on approved projects [14]. Future work could 
therefore utilise future releases to continue the observational analysis of 
change in demand archetype prevalence over time, and to study the 
ongoing impacts of system-wide changes that are expected to affect 
domestic energy demand. The impacts of the large increases in energy 
prices over the winter of 2022–2023, and wider cost of living crisis, 
would be of particular interest and policy relevance to investigate. 

Future work will also use the same dataset to investigate energy 
demand archetypes at the level of the household, based on their typical 
demand profiles over extended periods of time. As discussed elsewhere 
in the paper, household-level analysis has also been the subject of pre
vious research and has its own particular applications, distinct from the 
day-level analysis presented in this paper. 

7. Conclusion 

The analytical approach used in this paper has enabled the charac
terisation of distinct energy demand archetypes for both electricity and 
gas demand, for a GB-wide sample of over 13,000 homes with data 
spanning three years. The approach taken maintains comparability be
tween fuels (electricity and gas). Although several papers have analysed 
demand profiles in similar ways using cluster analysis of smart meter 
data, to our knowledge no other published research to date has done this 
for a sample of households in the thousands with data from before, 
during and after the COVID-19 pandemic, and for both gas and elec
tricity from the same households, nor explored in such detail how the 
prevalence of demand archetypes varies with different temporally- 
varying factors. 

The analyses have demonstrated that there are detectable relation
ships between energy demand archetypes for both fuels and multiple 
factors that vary on different timescales (from weekly to annually). 
These could be of substantive interest for forecasting demand profiles, 
for targeting interventions and for informing policymaking. 
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Appendix A. Feature values for the daily demand archetypes 

Fig. 9 presents the distribution of feature values for the daily energy demand archetypes. As described in the methodology, section 4.1, for each day 
of data per fuel and per home, the highest 2-h period of energy use was normalised to a value of 1, and the lowest point to 0. The blue lines in Fig. 9 
indicate the trend over the day in the mean value for each archetype, while the red shading is a heat map indicating the proportions of the home-fuel- 
days in each archetype that fall into each banded value for each feature. The ‘Flat’ profile is not presented; this was procedurally defined, and as it 
includes home-fuel-days in which there is no variation in demand over the day, it is not possible to calculate feature values for it (the calculation 
method requires some variation). 

M. Pullinger et al.                                                                                                                                                                                                                               

https://doi.org/10.5255/UKDA-SN-8666-6
https://doi.org/10.5255/UKDA-SN-8666-6
https://doi.org/10.3390/en14216934
https://doi.org/10.3390/en14216934


Applied Energy 360 (2024) 122683

17

Fig. 9. Average feature values for each daily energy demand archetype, at a two-hour granularity, based on data from 13 January 2019 to 31 August 2022.  
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