THE UNIVERSITY of EDINBURGH

Edinburgh Research Explorer

Capturing variation in daily energy demand profiles over time with
cluster analysis in British homes (September 2019 — August 2022)

Citation for published version:

Pullinger, M, Zapata-Webborn, E, Kilgour, J, Elam, S, Few, J, Goddard, N, Hanmer, C, McKenna, E,
Oreszczyn, T & Webb, L 2024, 'Capturing variation in daily energy demand profiles over time with cluster
analysis in British homes (September 2019 — August 2022)', Applied Energy, vol. 360, 122683, pp. 1-18.
https://doi.org/10.1016/j.apenergy.2024.122683

Digital Object Identifier (DOI):
10.1016/j.apenergy.2024.122683

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Publisher's PDF, also known as Version of record

Published In:
Applied Energy

General rights

Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy

The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

OPEN () ACCESS

Download date: 11. Feb. 2024


https://doi.org/10.1016/j.apenergy.2024.122683
https://doi.org/10.1016/j.apenergy.2024.122683
https://www.research.ed.ac.uk/en/publications/f845d63e-06de-48f0-bd0d-bf16732b75ba

Applied Energy 360 (2024) 122683

Contents lists available at ScienceDirect

Applied Energy

L

ELSEVIER

journal homepage: www.elsevier.com/locate/apenergy

Capturing variation in daily energy demand profiles over time with cluster
analysis in British homes (September 2019 — August 2022)

Martin Pullinger >, Ellen Zapata-Webborn ?, Jonathan Kilgour ”, Simon Elam ?, Jessica Few ?,

Nigel Goddard ", Clare Hanmer , Eoghan McKenna ?, Tadj Oreszczyn ®, Lynda Webb "

@ UCL Energy Institute, 14 Upper Woburn Place, London WC1H ONN, United Kingdom
® University of Edinburgh, School of Informatics, 10 Crichton St, Edinburgh EH8 9AB, United Kingdom

HIGHLIGHTS

e Eight typical domestic energy demand
profiles identified using cluster analysis.

e Gas and electricity demand archetypes
characterised for 13,000 homes over 3
years.

e Archetypes include ‘All daytime’ and
‘Early morning, and evening’ usage
patterns.

o Seasonal variations in archetype energy
demand, particularly for gas.

e Variations in prevalence on weekends,
by temperature and during COVID-19
pandemic.

ARTICLE INFO

Keywords:

Domestic energy demand profiles
Cluster analysis

Electricity and gas data
Temporal variation

Temperature variation

COVID-19

GRAPHICAL ABSTRACT

Capturing variation in daily energy demand profiles over time with cluster

analysis in British homes (September 2019 — August 2022)
Pullinger et al (2023)
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ABSTRACT

This study investigates typical domestic energy demand profiles and their variation over time. It draws on a
sample of 13,000 homes from Great Britain, applying k-means cluster analysis to smart meter data on their
electricity and gas demand over a three-year period from September 2019 to August 2022. Eight typical demand
archetypes are identified from the data, varying in terms of the shape of their demand profile over the course of
the day. These include an ‘All daytime’ archetype, where demand rises in the morning and remains high until the
evening. Several other archetypes vary in terms of the presence and timing of morning and/or evening peaks. In
the case of electricity demand, a ‘Midday trough’ archetype is notable for its negative midday demand and high
overnight demand, likely a combination of the effects of rooftop solar panels exporting to the grid during the day
and overnight charging of electric vehicles or electric storage heating. The prevalence of each archetype across
the sample varies substantially in relation to different temporally-varying factors. Fluctuations in their preva-
lence on weekends can be identified, as can Christmas Day. Among homes with gas central heating, the prev-
alence of gas archetypes strongly relates to external temperature, with around half of homes fitting the ‘All
daytime’ archetype at temperatures below 0 °C, and few fitting it above 14 °C. COVID-19 pandemic restrictions
on work and schooling are associated with households' patterns of daily demand becoming more similar on
weekdays and weekends, particularly for households with children and/or workers. The latter group had still not
returned to pre-pandemic patterns by March 2022. The results indicate that patterns of daily energy demand vary
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with factors ranging from societal weekly rhythms and festivals to seasonal temperature changes and system
shocks like pandemics, with implications for demand forecasting and policymaking.

1. Introduction

Domestic energy demand in many countries is in a state of substan-
tial flux, driven by ongoing changes to behaviour induced by the COVID-
19 pandemic and subsequent exceptional energy price fluctuations, set
against the longer-term spread of new low carbon technologies such as
electric vehicles, heat pumps and rooftop solar panels. This is in addition
to patterns driven by societal rhythms of work and schooling, and sea-
sonal variation in demand for heating and cooling, among other factors.
Policymakers and energy system engineers are faced with supplying
secure, affordable and increasingly sustainable energy in response to
uncertain changes in demand. Good data on patterns of energy demand
can be of value to help reduce this uncertainty, by allowing changes in
demand over time to be better observed, and how that demand responds
to such rapidly-changing social and environmental factors to be
investigated.

In the context of Great Britain, the growing availability of data from
smart meters has facilitated a growth in research into such patterns. This
has enabled domestic energy demand to be investigated in greater
detail, including change over time and for different household types
[1,2]. Research has further investigated how demand has varied in
relation to specific major events such as the COVID-19 pandemic [3] and
the recent cost of living crisis [4], as well as some of the behavioural
factors underlying such variation [5,6].

To date, the majority of this research has focused on daily average
demand, and in some cases average demand profiles, i.e. the average
timings and sizes of peaks and troughs in demand over the day for a
group of households over a period of time. This paper aims to contribute
to this field of research by focusing on demand profiles in more detail, to
investigate common demand profiles occurring behind such group av-
erages, and the changes in their prevalence over time, for a broadly
representative sample of British households, through the application of
cluster analysis to their smart meter data. A substantial body of research
has arisen that applies cluster analysis to granular smart meter data to
identify distinct but commonly occurring demand profiles in the do-
mestic, as well as industrial and commercial, sectors [7-10]. The aim of
cluster analysis is to take a set of cases and segment them into a number
of groups (clusters), such that cases within a group are more similar to
each other than they are to those in other groups. In the case of daily
energy demand profiles, this “reveals characteristic customer load pro-
files within the heterogeneous population” [7]; that is, the process
identifies typical patterns of energy demand over the day (such as the
timings and sizes of peaks and troughs), and allocates each case (for
example, the demand profile from a given day and for a given home) to
one of the identified patterns based on similarity. A range of clustering
approaches exist for identifying ‘similarity’, many of which have been
applied in the energy profile literature [7,8]. In the case of domestic
energy demand, the outputs can be thought of as a set of typical energy
demand ‘archetypes’, grounded in the empirical data, along with in-
formation on their prevalence across the sample being analysed. With
the addition of linked contextual data, the factors shaping their preva-
lence can also be investigated.

There are several notable gaps in the literature to date relating to the
clustering of domestic daily demand profiles. Firstly, most studies utilise
datasets that are static and relate to periods prior to the COVID-19
pandemic, so the impacts on demand profiles of the extensive
pandemic-induced changes in levels of working from home and other
occupancy patterns have not been investigated. Secondly, existing
studies deal almost exclusively with electricity demand. Only one
research group was identified that has published peer-reviewed cluster
analyses of gas demand profiles [11]. No studies were identified that

have included both fuels, electricity and gas, in the same analysis. This
means that there is currently no research that has developed clustering
results that allow direct investigation of the relationship between do-
mestic electricity and gas demand archetypes.

In this paper, we aim to address these gaps. The paper has the
following research aims:

e To identify and present domestic daily demand archetypes for both
electricity and gas profiles for the same sample of homes, drawing on
a dataset that includes periods before, during, and after the COVID-
19 pandemic.

To describe the characteristics of the resultant daily demand arche-
types: their typical energy profiles, their average prevalence across
the sample, and the relationships between electricity and gas
archetypes.

To investigate how the prevalence of these archetypes changes in the
sample with time-variant factors, including weekly and annual so-
cietal rhythms and festivals, external temperature, and over the
course of the COVID-19 pandemic.

We draw on the Smart Energy Research Lab (SERL) Observatory
dataset [12-14] in this research. This is a longitudinal dataset of elec-
tricity and gas smart meter data and linked contextual data including
weather, survey and EPC data, from a sample of 13,000+ consenting
households that is broadly representative of the Great Britain' (GB)
population. We draw on the full sample and three full years of data, from
September 2019 to August 2022, so spanning periods prior to, during
and after the main phases of the COVID-19 pandemic. In the current
study, we focus on daily demand archetypes, i.e. taking each day's profile
from each home and fuel as a separate case. In forthcoming work, we
will be investigating household demand archetypes, i.e. identifying the
typical daily demand profiles of households averaged over extended
periods of time, and identifying how these vary with household
characteristics.

The paper addresses the following research questions to achieve the
above aims:

1. What are the typical energy profiles of the daily demand archetypes
identified through the analysis?

2. How do the observed archetypes relate to the full sample's average
demand profile?

3. Does the occurrence of the gas and electricity archetypes relate to
each other?

4. How prevalent are the demand archetypes across the sample, and
how does their prevalence vary over time in relation to different
time-varying factors?

This paper therefore contributes to the existing literature by
providing the first analysis of daily demand archetypes for both elec-
tricity and gas from the same sample of households, allowing them to be
compared and contrasted. Secondly, it contributes by decomposing the
average electricity and gas demand profiles of the sample to identify
how they are composed of demand from households exhibiting the
different archetypes. Finally, it provides a detailed investigation into
how the prevalence of the demand archetypes for both fuels varies over
time, including before, during and after the COVID-19 pandemic, and
how such variation correlates with several different time-varying

! Great Britain consists of the United Kingdom excluding Northern Ireland, i.
e. England, Wales and Scotland.
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factors.

The paper has the following structure: Section 2 reviews related
literature, focusing on the potential end-uses of demand archetype
analysis and existing findings on the predictors of demand archetypes.
Section 3 describes the SERL Observatory dataset in more detail. Section
4 describes the methodology used to identify daily demand archetypes.
Section 5 presents results, structured around the research questions
described above. Section 6 discusses the results and concludes.

2. Literature review

In the context of Great Britain, existing studies have described
average domestic demand profiles and their variation with household
characteristics and time-varying factors. The Energy Follow Up Survey
(EFUS), an extension of the English Housing Survey, describes heating
season gas profiles based on data from 143 homes in England from
October 2018 to April 2019. The profiles show very low overnight de-
mand, and morning and evening peaks. The size of the peaks and rela-
tive size of drop in demand during the middle of the day is found to vary
with building characteristics (floor area, and energy efficiency as
measured for Energy Performance Certificates), occupant characteristics
(number of occupants, daytime occupancy, fuel poverty status) and
duration and pattern of heating use [2]. The SERL Statistical Report [1]
presents average domestic demand profiles for the whole of 2021 for
both gas and electricity, drawing on the same smart meter dataset from
around 13,000 homes from Great Britain as used in the current study
(and with many of the same authors). That finds similar morning and
evening peaks in demand for gas to those found in the EFUS study, with
demand falling during the middle of the day and being low overnight. In
the case of electricity, a morning rise in demand from an overnight low is
sustained through the middle of the day, then rises further in the evening
before falling again. In most cases, breaking down by household group
reveals similar average patterns, with only the sizes of peaks and troughs
varying, e.g. demand is higher throughout the day at lower outdoor
temperatures. However, for some groups, demand profiles are substan-
tially different to the sample average. Homes with rooftop solar panels,
for example, have, on average, morning and evening peaks in demand,
and negative electricity demand during the middle of the day, indicating
that the home is exporting electricity to the grid [1].

In terms of the existing literature that aims to identify common de-
mand archetypes using cluster analysis, studies vary in terms of whether
the target for clustering is taken to be demand profiles from individual
days from each home, or the households themselves, in which case the
typical demand profile of homes over periods of time are identified and
clustered on. As our focus in the current study is on daily demand ar-
chetypes, in the literature review here we focus on publications relating
to this level of analysis.” Literature dealing with household demand
archetypes will be considered in our forthcoming paper that focuses on
that level of analysis.

Three recent papers (from 2019 and 2020) already contain sub-
stantial reviews and evaluations of existing literature and methods
[7,8,15]. We draw on these, supplemented with papers published sub-
sequently (2020 onwards). The published studies of daily demand ar-
chetypes that we identified focus exclusively on electricity demand (the
work on gas demand mentioned in the introduction takes households as
the unit of analysis). We focus primarily on papers with an applied focus
and/or using datasets of a similar scale to the one used in this current
work, with household sample sizes into the thousands, and a duration of
data of one or more full years.

Satre-Meloy et al. [15] reviewed 27 published articles in the field,
with a mix of daily and household-level analyses, but all dealing with

2 Published research uses various terminology for daily demand archetypes,
including substituting the words daily for diurnal, demand for load or con-
sumption, household for home or dwelling, and archetype for profile or cluster.
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electricity demand. Among the most common applications of the
approach at the daily level were:

e to test and compare clustering approaches (i.e. methodological
studies);

e to assess the stability and variability of daily demand profiles over
time for individual households;

e and to investigate “the variability in timing of peak demand, the
contributions of different customer segments to peak demand, or
related time-of-day and seasonal effects on electricity consumption
patterns”.

These different forms of analysis can have a variety of practical end
uses for energy system actors, particularly energy companies managing
the energy network. Several are discussed in the literature we reviewed,
in many cases in the form of proposals rather than evaluated examples.
These include:

e To better understand variation in patterns of customer demand [7];

e To improve the performance of load forecasting algorithms [7,8];

e To support “the detection of non-technical losses” [7,16], that is,
electricity that is consumed but not billed for reasons such as inac-
curate recording of consumption, defective appliances or deliberate
fraud.

The end uses typically involve two stages of analysis: firstly, the
identification of typical daily demand archetypes using cluster analysis,
and secondly, the identification of factors that predict the archetype to
which a particular case belongs.

While several of the reviewed papers mention that there is often high
variability in demand profiles from day to day even for the same home,
alluding to societal and weather-related factors, only one of the
reviewed papers presented empirical analyses of the relationships be-
tween daily demand profiles and other factors. Czétany et al. [17]
clustered daily electricity profiles from nearly 1000 homes from
Hungary for January 2017 to December 2018, and found the prevalence
of each cluster across the sample on a given day correlated with type of
day (weekdays vs weekends) and season, along with minor differences
along the lines of a combined building type/number of occupants vari-
able. Peak demand was also found to vary by settlement type (village,
town, city).

2.1. Key points

A variety of end uses for clustering daily energy demand profiles
have been proposed in the existing literature. The existing research also
points to several factors that vary over time that could impact on the
chances of a particular home's electricity usage on a given day fitting a
particular demand archetype, notably weekly societal rhythms and
seasonal weather variation. However, among these studies, there is little
empirical research looking at this relationship between the prevalence
of daily demand archetypes and such temporally varying factors.

None of the studies reviewed uses energy data from during or after
the COVID-19 pandemic, which would allow recent demand archetypes
to be investigated. Gas archetypes have only been studied at the
household level, and no studies have combined analyses of both elec-
tricity and gas. The current paper therefore contributes to the literature
with its analysis of daily demand archetypes for both electricity and gas
from before, during and after the main phases of the COVID-19
pandemic in Great Britain.

3. Dataset
The data used in this paper is the Smart Energy Research Lab (SERL)

Observatory dataset [14,18]. The dataset contains half-hourly smart
meter readings for electricity and for gas, where available, for a broadly
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representative sample of 13,292 homes recruited into the project from
across Great Britain. Linked to the smart meter data are hourly-
resolution weather variables from the ERA5 reanalysis climate data
[19], along with survey data from the participants relating to building
and occupant characteristics, among other variables. For more infor-
mation on the SERL datasets see [14,20,21]. Data extends back for some
households to August 2018. The 5th edition of the SERL Observatory
dataset was used for this article [22], the most recent release of the
dataset available at the time of analysis, which contains smart meter
data up to the end of August 2022, and weather data up to the end of
June 2022. New smart meter and linked contextual data continue to be
collected, cleaned and periodically released by the SERL team, with the
dataset made available to approved projects in the UK research com-
munity for research in the public interest. This provides scope for the
current work to be updated over time.

The dataset has already been utilised to produce statistical reports of
demand patterns and trends over time [1] and to investigate the range of
predictors of those patterns [23], as well as the impacts of specific events
such as the COVID-19 pandemic [3] and of household characteristics
such as their EPC rating [24].

This article focuses on analysis of gas and net electricity demand. Net
electricity demand is a household's demand from the electricity grid
minus any electricity that the household generates, such as from rooftop
solar panels. In households without such microgeneration, net elec-
tricity is the same as their total consumption from the grid. In house-
holds that do have microgeneration, it is their consumption minus their
production. In the large majority of the homes with microgeneration, it
takes the form of rooftop solar voltaic panels (solar PV), and the effect on
their demand profile is to create a characteristic dip in net consumption
in the middle of the day, frequently into net negative values.

3.1. Characteristics of the sample used in this study

The SERL Observatory sample was recruited in three waves between
August 2019 and February 2021 using a stratified random sampling
approach, with stratification along the lines of geographic region and
Index of Multiple Deprivation (IMD) quintile (IMD is a common indi-
cator in the UK of the relative level of deprivation of small geographic
areas, based on measures of multiple dimensions of deprivation). As
such, the sample is approximately representative of households in Great
Britain in terms of their distribution by both these variables (with a
slight overrepresentation of Wales and underrepresentation of York-
shire) [14]. The sample is also approximately representative along the
lines of several other characteristics (compared to the census and na-
tional surveys), with some biases as follows:

Numbers of occupants: slight’ overrepresentation of 2-person
households.

Tenure: overrepresentation of owner-occupiers (by 15.7 percentage
points) and slight underrepresentation of private renters and social
renters.

Managing financially (self-reported): slight overrepresentation of
those reporting living comfortably.

Property characteristics: slight overrepresentation of detached
houses and underrepresentation of flats and tenements; over-
representation of large properties (with 84 rooms) (by 11.2 per-
centage points) and underrepresentation of medium-sized properties
(4-5 rooms).

More detailed sample characteristics are available and published in
the dataset's data descriptor [14].
For this study, we drew on the full sample of homes and on three full

3 Slight is used here to signify under- or overrepresentation of less than 10
percentage points. The sizes of larger differences are stated in the text.

Applied Energy 360 (2024) 122683

years of data up to the most recently available time point, i.e. 1
September 2019-31 August 2022. Full years of data were used to help
account for annual seasonal variations in climate in the analysis. Half-
hourly smart meter data was collected from participants from up to
three months preceding their date of joining the study (the data being
stored locally on their smart meters for at least this long), however the
recruitment timeline for the SERL project means that for many homes
smart meter data does not extend back to September 2019. The number
of households with available half-hourly data in the SERL sample in-
creases in blocks, reaching the full sample in the third quarter of 2020.
The early waves of recruitment were less representative of Great Britain,
being focused on the south of England due to regional delays in the
national smart meter rollout. However, as a proportion of all individual
‘home-fuel-days’ of data, data from this period represents only a small
proportion of the full dataset analysed, and so any distortionary effects
on the cluster results is likely to be small. The benefit of including data
from this period was that it enabled analysis of the prevalence of de-
mand archetypes before, during and after the main periods of the
COVID-19 pandemic and associated restrictions.

Fig. 1 below shows the number of homes that had sufficient half-
hourly smart meter data to identify their demand archetypes on each
given day, separately for electricity and for gas. Counts reached a
maximum of 12,020 homes with sufficient electricity data and 8930
homes with sufficient gas data.” Fewer homes have available gas data
because not all homes have gas supplies, and not all homes that have
electricity smart meters have gas smart meters, even if they have gas
supplies (while all homes with gas smart meters do have electricity
smart meters, as the latter are required for the gas meters to commu-
nicate with the national smart meter infrastructure). In total,
18,890,620 data points (each data point being a single ‘home-fuel-day’ —
a day of data for a given home and for a given fuel, either electricity or
gas) were labelled with their demand archetypes across the full sample
and three years covered.

Some of the analyses presented in the results section use data from a
subset of these homes. Analyses in section 5.2.2 draw on data from 8480
homes that self-reported having gas central heating and had sufficient
gas smart meter data to identify demand archetypes. Analyses in section
5.2.3 draw on data from 3650 homes in England and Wales that had
sufficient electricity and/or gas data smart meter data to identify de-
mand archetypes from January 2020 onwards.

4. Methodology

Fig. 2 below provides a graphical overview of the stages of data
analysis used in this research. The following sections describe the details
of the approach, starting first with how archetypes were generated, and
then describing the approach taken to analysing the characteristics of
the archetypes and factors correlating with their prevalence.

4.1. Generation of daily electricity and gas demand archetypes

As a first stage of data preparation, we cleaned the Observatory
dataset following the same approach used for the SERL Statistical Report
Volume 1 [1], such that half-hourly readings were retained only where
they were not flagged as potentially erroneous or anomalous in the
dataset, e.g. with implausibly high values or incorrect time stamps.
Where necessary, gas usage measurements in cubic metres were con-
verted to kWh following the same calculation used in the SERL Obser-
vatory dataset itself (which is also the national standard to convert
meter readings to kWh), i.e. cubic metres * correction factor (1.02264) *
calorific value (39.5) / conversion factor (3.6) = kWh.

Energy demand archetypes were then generated from the cleaned

4 Counts here and throughout this article are rounded to the nearest 10 for
purposes of statistical disclosure control.
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Fig. 1. Count of homes in the SERL Observatory dataset with sufficient smart meter data to calculate demand archetypes for each day from 1 September 2019 to 31

August 2022
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Fig. 2. Outline of the data preparation and analysis methodology used in this research. After initial data cleaning, daily demand archetypes are identified through
initial procedural labelling and then using cluster analysis, so that each ‘home-fuel-day’ (each day of data for each home and fuel) is treated as a separate case and
labelled. Analyses are then undertaken of the characteristics of these archetypes, and their relationship to time-variant factors. Arrowed lines indicate data flow;

rectangles indicate stages of analysis; rhomboids indicate outputs of the analyses.

energy data through several stages of analysis. Each separate day of data
for each home and each fuel (a ‘home-fuel-day’) was taken as a separate
case to which to allocate an archetype. The details of the methodologies
used in existing published research vary substantially (see, for example,
the review in [7]); however, the approach we developed and applied in
this study adapts the general stages commonly found whilst also
resulting in archetypes for electricity and for gas that can be directly
compared to one another. We also aimed to meet a further set of criteria
for the resultant archetypes:

e Archetypes should be distinguished by the time of day of peaks and
troughs, rather than their scale in energy terms. This reflects a sub-
stantive interest in whether the timing of a household's energy

demand coincides with system-wide peak times, and provides results
that complement existing research that focuses instead on the scale
of total daily demand rather than the timing of demand within the
day.

A relatively low number of archetypes was aimed for, with a target in
the range of five to ten. This was to capture the diversity in patterns
of demand in the data whilst producing results that could still be
clearly communicated — fewer archetypes would likely miss impor-
tant diversity, whilst higher numbers would become difficult to
present and discuss.

Given the large dataset and interest in the approach being relatively
accessible for reuse, a computationally efficient method was
preferred.
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Given the wide range of clustering approaches that have been uti-
lised in the existing literature, a range of input features and clustering
methods were tested before selecting the final approach used in this
research. The approaches selected for testing were initially expert
driven, based on the existing literature and researcher experience, and
were then vetted against the above criteria until a suitable approach was
identified. Hierarchical cluster analysis and hdbscan clustering were
both tested with various input features but were too computationally
intensive to apply to the full dataset (in the case of the former), and
unable to yield a substantively useful number of clusters despite testing a
range of hyperparameters (in the case of the latter). K-means cluster
analysis was eventually selected for use in this study, a commonly
applied method in the field. The sections below detail the approach
selected for use in this paper.

4.1.1. Procedural definition of a ‘Flat’ archetype

Before performing cluster analysis, we first defined a ‘Flat’ archetype
as a home-fuel-day in which there was little variation in energy use over
the course of the day. Such home-fuel-days are of low substantive in-
terest as they contribute little to overall network peaks and troughs in
demand. They also indicate little variation in the energy using activities
in the home for that day. Such low fluctuations in energy use may have
several origins. In the case of electricity, this includes appliances such as
fridges and freezers that cycle periodically between low levels of energy
use, and appliances left charging or on standby. In the case of gas, this
might include low-level use by boilers, e.g. by combi-boilers that
maintain a small reserve of hot water, pilot flames in some remaining
older boilers, use for hand washing, etc. Such cases suggest few other
appliances are used that day, and/or space heating has not been used.

We used a data-driven approach to identifying which home-fuel-days
to label ‘Flat’. We plotted histograms of the daily differences between
minimum and maximum half-hourly values for each home-fuel-day in
the cleaned dataset, which revealed a tri-modal distribution of the
values for both fuels, i.e. three peaks, with two troughs between them.
The initial trough in the histograms occurred at around 100 Wh for
electricity and 300 Wh for gas. We took these values as the thresholds
below which to label home-fuel-days ‘Flat’. That is, individual home-
fuel-days with differences in minimum and maximum half-hourly
values below the threshold for the fuel in question were labelled as
belonging to the ‘Flat’ archetype. These were also excluded from the
subsequent cluster analysis, as to include flat profiles would have
skewed the results due to the normalisation process, which stretches
peaks and troughs, however small.

4.1.2. Feature creation and data tidying

The features used as inputs into the cluster analysis were then
created for the remaining unlabelled home-fuel-days, again taking each
home-fuel-day of data as separate cases. The following approach was
taken:

1. Smart meter data were downsampled from the initial 30-min reso-
lution to a two-hour resolution, taking the mean of the available
readings for each two-hour block starting from midnight. Down-
sampling is used to avoid ‘the curse of dimensionality’, where the
more features involved, the more sparsely populated the feature
space and the less distinguishable cases become from one another
[8,25]. It is also used to reduce data size and the associated
computational requirements [7], and can help to smooth shorter-
term fluctuations in demand that amount to ‘noise’ [8]. A mini-
mum of 3 of the 4 valid readings for each 2-h block for each home-
fuel-day was needed, otherwise the value was set as missing. On
days when the time zone changed (which occurs at 2 a.m. in the UK),
the feature corresponding to either 12-2 a.m. (when clocks were
changed back at 2 am by one hour to Greenwich Mean Time, the
winter time zone in the UK) or 2-4 a.m. (when clocks were changed
forwards at 2 am by one hour to British Summer Time, the summer
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time zone in the UK) was based on the average of the six or two
available readings, respectively.

2. For each home-fuel-day, the 12 two-hour values were then normal-
ised by subtracting the minimum two-hour energy use for that home-
fuel-day (‘deminning’) and dividing by the difference between the
maximum and minimum two-hour energy use for the home-fuel-day.
As such, each home-fuel-day of data had a minimum value of zero
and maximum value of one, with intermediate values scaled linearly
between zero and one. Deminning is used in the literature to enable a
focus on ‘discretionary’ consumption, i.e. not baseload (for example,
[15]). While some previous studies use input features that capture
both the timing and size of demand (e.g. [26]), most normalise so
that each home-fuel-day has a comparable scale. Such an approach
enables a focus on the timing of demand and resultant shape of the
demand profile rather than the magnitude of consumption over the
day [8].

3. Home-fuel-days with any missing feature values were omitted from
clustering, and their demand archetype was set to ‘Missing’.

4.1.3. Cluster analysis

The cluster analysis method used in this research was k-means [27].
This is relatively light on computational resources, and also has the
benefit that in future new data points can be accurately classified to the
existing clusters based on which centroid they are closest to. This is
useful in a case such as ours where the source data is updated periodi-
cally with new smart meter data, as in any future research, new points
can be accurately classified to the existing archetypes, and hence
compared to earlier data points and research based on them.

The number of clusters must be specified in advance for k-means
cluster analysis. The optimal number can be identified through data-
driven techniques such as identifying the number of clusters with the
maximum silhouette coefficient, or the ‘elbow’ in the value of the sum of
squared distances plotted against the number of clusters. In our case,
these tests indicated the use of a substantially larger numbers of clusters
than aimed for. As such, we identified an optimum lower number of
clusters by producing dendrograms from the hierarchical cluster anal-
ysis approach that was also tested, using the same input features. Data
size and resource constraints meant hierarchical cluster analysis could
only be run on a small fraction of the full dataset at any one time, and so
repeat runs using random samples of 35,000 home-fuel-days were per-
formed. These all generated dendrograms indicating that 6 or 7 clusters
were optimal, with the modal value being 7, within our target range of 5
to 10. K-means cluster analysis was therefore performed on the full
dataset (just over 18 million home-fuel-days) using seven as the input
parameter for the number of clusters. k-means++ initialisation [28] was
used, with the best performant results of 10 runs of the algorithm taken,
each run having a maximum number of iterations set to 300 (the best
performant iteration converged on the solution in 32 iterations) [29].

The feature values of each cluster is presented in the appendix,
section 10. To make the seven resultant clusters easier to communicate,
we gave them descriptive names, which were based on each cluster's

2 G

average demand profile. The names are: “All daytime”, “Early morning,
and evening”, “Evening”, “Late afternoon”, “Mid morning”, “Midday
peak” and “Midday trough”. The characteristics of each of these arche-
types are described in the results, section 5.1. These names are used

throughout the rest of the paper to refer to them.

4.2. Analysis of archetype characteristics and prevalence

The rest of the methodology describes analyses conducted on the
resultant daily energy demand archetypes. The analyses comprise a
description of their energy demand characteristics, their relationships to
each other, and how different factors correlate with their prevalence
over time across the sample of households in the SERL Observatory
dataset. More details are provided below.
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4.2.1. Characteristics of daily demand archetypes

The results section begins with descriptive analyses of the charac-
teristics of the daily demand archetypes: their average prevalence over
the two full years to August 2022; the average energy demand over the
day for each archetype, varying by season; and the contribution of each
archetype to the full sample's average energy demand profile. The
prevalence of each daily demand archetype across groups of homes in
the sample was calculated for each day, separately for electricity and
gas. To do this, for each day and fuel, for each archetype, the number of
households labelled with that archetype was divided by the total num-
ber of households with valid archetype labels on that day, and multi-
plied by 100 to give the percentage prevalence. Averages over periods of
time weight each day's average value equally, to control for variation in
levels of missing data over time. Average energy use for each half-hour
was calculated for each group of households in a similar way, taking the
average of the available labelled home-fuel-days each day, and
weighting each day equally when calculating averages over time. We
also use a chi-squared test of independence to investigate the correlation
between the electricity and gas archetypes.

4.2.2. Relationship between daily demand archetype prevalence and time-
variant factors

The literature review indicated that the likelihood of a home
exhibiting a particular energy demand archetype for a particular day
was correlated with factors which can, broadly, be characterised as
either contextual factors that vary over time, or household factors that
are typically invariant or at least stable over significant periods. Time-
variant factors include the weather and patterns of work and
schooling. Household-level factors include the age of the building, the
type of heating fuel, and number of occupants. For time-variant factors,
we investigate their relationship to the prevalence of each daily demand
archetype across the sample. Household-level factors are considered in a
forthcoming paper.

We plot the prevalence of each archetype in the sample over time for
the three years 1 September 2019 to 31 August 2022. We then present
the prevalence of each archetype each day plotted against mean external
temperature that day, focusing on gas data for homes with gas central
heating, as temperature primarily influences heating energy use. More
details of the approach to each analysis is given along with the results to
aid in their interpretation.

The final time-variant factor we investigate is the relationship be-
tween COVID-19 restrictions and daily demand archetypes. For this
analysis, we calculated a metric based on the prevalence values that we
called a ‘weekday-weekend difference score’. This is an aggregate
measure of the difference in the prevalence of each archetype between
weekdays and weekends, summed across all the archetypes, calculated
per calendar month. More details of the rationale for the score are given
in the relevant section of the results.

The score was calculated per fuel and per calendar month, and
separately for each of three groups of households defined by their family
status: those with workers (people 16 or over in formal paid or unpaid
employment) and no children (defined as occupants aged below 16
years), those with children (with or without workers), and those with no
workers or children. These groups were defined based on the age bands
of the occupants and work status data that was self-reported by partic-
ipants when joining the SERL panel, and follows the approach used by
Webborn et al. (2023) [3].

The formula for calculating the weekday-weekend difference score
for a given month, fuel and family status is presented below:

1 _ _
wwds = sz€M|Pwd.x — Pyes|

where:
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e wwds is the weekday-weekend difference score for a given month,
fuel and family status;

e M is the set of all archetypes (excluding ‘Missing’);

e P4, is the mean prevalence, P, of archetype x on weekdays, wd;

e P,. is the mean prevalence, P, of archetype x on weekend days, we.

In short, the absolute difference in prevalence of each archetype for
weekdays compared to weekends is calculated and the values for each
archetype summed. Finally, the value is divided by two to give a
maximum value of 100 and a minimum of 0 for a given month, fuel and
family status. Change in these values over time is presented in the results
and discussed in more detail there.

4.3. Software

Data analysis was performed using Python version 3.7.6 [30] and the
following libraries: pandas 1.0.1 [31], numpy 1.18.1 [32], scikit-learn
0.22.1 [33], scipy 1.4.1 [34], Jupyter Lab 1.2.6 [35], matplotlib 3.1.3
[36] and seaborn 0.10.0 [37].

5. Results

The results presented below are grouped into two sections. Section
5.1 presents analyses of the characteristics of the electricity and gas
demand archetypes, including the relationships between them,
addressing research questions 1 to 3 presented in the Introduction.
Section 5.2 addresses the fourth research question, presenting analyses
of the prevalence of the daily demand archetypes over time, and the
relationship between their prevalence and different time-variant factors.

5.1. Characteristics of the electricity and gas daily demand archetypes

5.1.1. Energy demand

Fig. 3 below presents the average energy demand profile for each
archetype, separately for electricity and for gas, at a half-hourly reso-
lution. Given the large variation in demand over the course of a year, we
present values for summer and winter periods as well as annual aver-
ages. Annualised values are based on the means for the two full years
from 1 September 2020 to 31 August 2022 (we omit data from 1
September 2019 to 31 August 2020 because the majority of homes do
not have data available for much of that period, and because of the
disruptive effects of the COVID-19 pandemic). Winter and summer en-
ergy demand are each based on three months of data (13 weeks/91
days): 30 November 2021 to 28 February 2022 for winter, and 2 June to
31 August 2022 for summer.

The archetypes vary from each other primarily in terms of the
presence and exact timing of morning and evening peaks, and the extent
to which demand through the middle of the day dips or is maintained
relative to those peaks. For the ‘All daytime’ archetype, average demand
begins to rise from an overnight low at around 6 am, then remains
higher with some variation until the late evening. The ‘Early morning,
and evening’ archetype shows a more pronounced morning peak and a
smaller but distinct evening one, with lower energy use during the
middle of the day. The next four archetypes in the figure can be differ-
entiated by variation in the timing of a single peak, with relatively lower
energy use for the rest of the day. The profile of the ‘Midday trough’
archetype shows a distinct pattern, defined by lower energy use during
the middle of the day compared to overall higher use in the evening and
overnight. Average energy demand for the ‘Flat’ archetype, as per its
initial definition, remains nearly constant, and is also very low.

Comparing electricity and gas archetypes, electricity demand is
overall lower in every archetype than it is for gas. This reflects the
different uses of the two fuels, particularly that gas is the primary
heating fuel in most homes in the source dataset, as it is for Great Britain
generally. The electricity archetypes also exhibit generally less variation
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Fig. 3. Mean energy use over the day for each energy demand archetype, for each of: the two years 1 September 2020-31 August 2022; Winter 2021-2022 (31
November 2021-28 February 2022); Summer 2022 (2 June - 31 August 2022). Electricity and gas shown separately. Note different y-axis scales for the two fuels.
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than gas archetypes over the course of the day; in particular, overnight
demand for electricity is higher as a proportion of daytime demand than
for gas.

The use of gas as a heating fuel results in much higher seasonal
variation in demand in the gas archetypes than is seen for electricity. For
gas, average summer demand does not exceed 2 kW in any given half
hour for any of the archetypes; by contrast, it reaches close to 10 kW in
several archetypes in winter.

The ‘Midday trough’ archetype is somewhat distinct from the others
for both fuels. In the case of electricity, it shows much higher seasonal
variation than the other archetypes, higher overnight demand, reaching
over 1.5 kW in winter, and negative demand during the middle of the
day in summer and on average over the year. This pattern can be
explained by the fact that the ‘Midday trough’ electricity demand
archetype occurs primarily in homes with rooftop solar photovoltaics,
and represents net grid demand (i.e. consumption minus generation) — in
Great Britain, excess household generation can typically be exported
back to the grid, explaining the average negative values for this arche-
type during the middle of the day. We speculate that the high overnight
demand may be the result of a combination of overnight charging of
electric vehicles and electric storage heaters; future work could inves-
tigate this further. In the case of gas, the ‘Midday trough’ archetype is
the only one with high overnight demand, similar to daytime levels. This
and the relatively high summertime demand is consistent with it being
exhibited by homes that keep their heating turned on overnight as well
as during the day, and throughout the year. Again, future work could
investigate this further.

5.1.2. Average prevalence of the archetypes

Table 1 presents the average prevalence of each archetype across the
sample of households over the two years 1 September 2020 to 31 August
2022, split by fuel.

In the case of electricity, on average (mean), 20% of homes on any
given day exhibit the ‘All daytime’ archetype. Aside from ‘All daytime’,
the most common archetypes are those with higher energy use towards
the middle or later part of the day, i.e. ‘Midday peak’, ‘Late afternoon’
and ‘Evening’. ‘Midday trough’ occurs in 8% of homes on an average
day. Variation in the prevalence of the archetypes from day to day across
the sample is generally moderate, as indicated by the standard de-
viations, which vary from 1.5 to 5.0 percentage points.

Gas archetypes, by contrast, have rather different patterns of

Table 1
Percentage prevalence of each archetype across the sample, by fuel, for 1
September 2020 to 31 August 2022

Mean Median  Standard Minimum  Maximum
deviation
Electricity
All daytime 19.6 18.2 5.0 12.8 34.2
Early morning, 5.0 5.2 1.5 1.3 8.6
and evening
Mid morning 8.7 8.7 1.5 4.6 13.5
Midday peak 15.4 14.1 3.6 9.8 34.0
Late afternoon 15.3 14.8 2.6 7.9 24.3
Evening 23.1 23.5 3.3 7.6 30.5
Midday trough 8.2 8.8 2.1 3.3 121
Flat 4.7 4.4 2.2 1.4 13.0
Gas
All daytime 12.0 6.3 12.4 1.5 56.3
Early morning, 25.5 25.3 6.5 9.4 43.7
and evening
Mid morning 12.8 12.7 3.0 6.6 19.3
Midday peak 11.2 10.3 4.7 3.7 23.5
Late afternoon 13.6 13.6 2.5 5.9 23.3
Evening 13.4 14.2 3.9 3.1 23.2
Midday trough 3.7 4.0 2.5 0.2 10.3
Flat 7.6 5.7 4.5 2.3 20.4
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prevalence, which is to be expected given the substantially different end
uses of the two fuels. Across the two years, the most common gas
archetype was ‘Early morning, and evening’, with just under 26% of
homes exhibiting this archetype on average. The ‘All daytime’ arche-
type, and the archetypes representing a single peak at some point during
the day, are all approximately equally common: 12-14% of homes
exhibit each of them, on average. The prevalence of a few of the ar-
chetypes varies substantially over the period, most notably ‘All day-
time’, with a standard deviation of over 12 percentage points, and which
occurs in over 56% of households on its most prevalent day, more than
four times as many as the average over the period. ‘Early morning, and
evening’ also has a high maximum prevalence, at 44% of households.
This variability in the prevalence of the gas demand archetypes is
returned to in section 5.2.2.

5.1.3. Decomposition of average daily demand profiles

Fig. 4 plots the average daily energy demand profile of the full
sample of households for 1 September 2020 to 31 August 2022. This is
decomposed to show how the different energy demand archetypes
combine together to generate this average profile. In essence, this stacks
the individual demand archetypes from Fig. 3 multiplied by their mean
prevalence across the sample from Table 1.

The figure reveals how for both fuels, the average daily energy de-
mand from all the homes in the sample is the result of energy demand
archetypes that each appear quite different from that average. For
example, two archetypes, ‘Late afternoon’ and ‘Evening’, do much to
create the high peak in evening demand for both fuels.

In the case of electricity, the ‘Midday trough’ archetype contributes
much to increasing overnight demand. It contributes over a third of total
nighttime demand after midnight, despite only 8% of homes on average
exhibiting this profile. Similarly, it accounts for much of the midday dip
that is observed in the full sample. The ‘Midday peak’ archetype,
conversely, substantially reduces the size of the dip in average demand
that there would otherwise be during the middle of the day.

For gas demand, most overnight demand is due to homes in the
‘Midday trough’ archetype, despite less than 4% of homes fitting that
profile on average. The ‘All daytime’ archetype contributes a large
proportion of total daytime demand, while the ‘Midday peak’ archetype
contributes to smoothing the trough in demand in the middle of the day.

5.1.4. Relationship between electricity and gas archetypes

It might be expected that a home's electricity demand archetype on a
given day is correlated with its gas demand archetype: patterns of oc-
cupancy and sleep, for example, can be expected to influence both. We
therefore tested for relationships between electricity and gas daily de-
mand archetypes, using a chi-squared test of independence. We tested
for relationships separately for the winter 2021-22 and the summer
2022 periods defined earlier. This allowed us to investigate relationships
in different weather and seasonal conditions.

In both periods, the tests indicated that the occurrence of the ar-
chetypes was highly statistically significantly correlated. However, re-
siduals indicated that this was entirely due to a strong relationship
between the fuels in the occurrence of the Flat archetype. As a confir-
mation, rerunning the chi squared tests with the Flat archetype omitted
from the contingency table yielded non-significant results for both
winter 2021-22 and summer 2022, i.e. apart from the Flat archetype, no
statistically significant relationships were found between homes' elec-
tricity and gas demand archetypes on a given day.

5.2. Variation in the prevalence of daily demand archetypes with time-
variant factors

5.2.1. Chronological variation

The prevalence of each demand archetype over time is plotted in
Fig. 5 (for electricity) and Fig. 6 (for gas). These show the percentage of
households exhibiting each daily demand archetype each day from
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Fig. 4. Stacked area plots indicating how different archetypes contribute to the overall daily profiles seen for electricity and gas demand across the full sample,

averaged for 1 September 2020 to 31 August 2022.

September 2019 to August 2022. (Note that due to the timing of
participant recruitment waves, sample sizes are small until February
2020, reaching about 75% of the full sample by May 2020, so compar-
isons of prevalence before and after approximately mid-2020 should be
treated with caution). Patterns of change in the prevalence of certain
archetypes can be discerned. For example, for electricity, the ‘Midday
peak’ and ‘Evening’ archetypes show consistent differences in their
prevalence between weekdays and weekends (visible as frequent and
regular spikes and dips in the figure). This weekly rhythm is consistent
with changing weekday and weekend patterns of occupancy and time
use, and hence timing of energy using activities, likely driven by stan-
dard daytime Monday-Friday work and school patterns.

Seasonal variation can be readily seen for both fuels in the preva-
lence of the ‘All daytime’ archetype, among others. In the case of gas, the
primary space-heating fuel for most homes in Great Britain, this is highly
influenced by external temperature, which accounts for much of the day-
to-day fluctuation apparent in the figure (see section 5.2.2 for more
analysis of this relationship).

One-off events, notably Christmas Day (25th December), commonly
observed in Great Britain, can be seen in the form of spikes or dips in the
prevalence of several archetypes on that day each year, notably the

10

electricity ‘Midday peak’, ‘Late afternoon’ and ‘Evening’ archetypes. We
speculated that this was driven by the use of electric ovens to cook
Christmas dinners, traditionally prepared for consumption as a midday
meal, with a concomitant reduction in cooking for an evening meal
(evening is the most common time for eating a hot meal in the majority
of UK homes on most other days). We reproduced the plots omitting
households that self-reported having electric ovens (as part of the initial
recruitment survey), and found the spikes in prevalence in the ‘Midday
peak’ archetype to be almost absent, while the dips in the ‘Late after-
noon’ and ‘Evening’ archetypes were smaller (plots not presented here
for space purposes). Also visible around Christmas Day each year in
Fig. 5 and Fig. 6 is a spike in the prevalence of the ‘Flat’ archetype, likely
from people staying with relatives or friends for a day or two, leaving
their homes unoccupied (note also that the prevalence of the ‘Flat’
archetype is not substantially affected by omitting homes with electric
ovens, which is what would be expected if the spikes around Christmas
Day are due to an increase in unoccupied homes).

There are also some changes in archetype prevalence in the plot that
appear consistent with impacts of COVID-19 restrictions, particularly
around the start of the first lockdown, from 23 March 2020. For elec-
tricity, there is a reduction in the prevalence of the ‘Early morning, and
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Fig. 5. Line graph of the prevalence of the electricity demand archetypes each day from 1 September 2019 to 31 August 2022

n homes = 2140-12020 (varies by data point)

evening’ and the ‘Evening’ archetypes on weekdays around the start of
the first lockdown, and an increase in the prevalence of the ‘All daytime’
and ‘Midday peak’ archetypes, particularly on weekdays, which could
be indicative of increased daytime occupancy. The ‘Flat’ archetype also
increases for a period in the electricity data, possibly as some people
opted to move out and stay with others temporarily. For the gas data, the
‘Mid-morning’ archetype becomes relatively more common on week-
days compared to weekends. Other changes around the time, such as in
the prevalence of the ‘All daytime’ archetype for gas, are likely the result
of changes in external temperature and associated space heating de-
mand. The changes in many cases seem quite subtle, so the impacts of
COVID-19 restrictions are investigated with additional analyses in sec-
tion 5.2.3 below.

5.2.2. Variation in gas archetype prevalence with external temperature
Here we investigate the relationship between the prevalence of daily

demand archetypes and external temperature. As gas is the primary

central heating fuel in Great Britain, the analysis focuses on gas

archetypes only, and on the subsample of homes from the SERL Obser-
vatory dataset that self-reported having gas central heating systems.

Fig. 7 shows scatter plots of the relationships between the prevalence
of each gas daily demand archetype and mean external temperature.
Each point represents the prevalence of the given archetype on a single
day across the sample of homes with gas central heating, for the two
years 1 July 2020 to 30 June 2022.° Complete years of data were
preferred for the current analysis, as external temperature follows
annual cycles. Colour coding distinguishes weekdays from weekends, to
reveal the interaction between temperature and this driver of
occupancy.

All the archetypes show a clear relationship between their preva-
lence across the sample on a given day and mean external temperature
that day. The prevalence of the ‘All daytime’ archetype in particular is

5 Although the smart meter data in the dataset runs until August 2022, June
2022 is the last month in the dataset that also has weather data.
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Fig. 6. Line graph of the prevalence of the gas demand archetypes each day from 1 September 2019 to 31 August 2022

n homes = 1660-8930 (varies by data point).

strongly inversely correlated with external temperature up until about
14 °C is reached. Below 0 °C, the prevalence exceeds half of the sample
on some days, while it drops close to zero from around 14 °C and above.
This is an archetype that is consistent with the central heating being on
throughout the waking hours of the day (e.g. because it is programmed
to maintain either a comfortable indoor temperature or a lower set-back
temperature), a pattern that would be expected to be found in more
households as temperature decreases.

The ‘Early morning, and evening’ archetype also shows a strong
relationship with external temperature, although this time a curvilinear
one. This is consistent with heating being used intermittently in the
shoulder seasons (spring and autumn), where heating is only required
for part of the day in order to maintain comfortable indoor tempera-
tures. At lower temperatures, this pattern gives way to the ‘All daytime’
archetype, while at higher temperatures it gives way to other arche-
types. The interaction with occupancy is clear in this plot — during the
week, when more homes are unoccupied during the day, the ‘Early
morning, and evening’ archetype is more common than it is on

12

weekends. The ‘All daytime’ archetype is on average more common at
weekends than on weekdays at any given temperature, most likely as
more homes are occupied through the day, although the pattern is less
strong than for the ‘Early morning, and evening’ archetype.

The remaining archetypes, except ‘Midday trough’, become more
common as temperature increases — each would be consistent with a
single period of heating, either in the morning or the evening, at external
temperatures when less heating is required to maintain a comfortable
indoor temperature. The consistently higher prevalence of the ‘Mid
morning’ and, in particular, ‘Midday peak’ archetypes on weekends
compared to weekdays is again consistent with higher daytime occu-
pancy across the sample on weekends.

5.2.3. System shocks: The case of COVID-19

The changes in the prevalence of demand archetypes over time
presented earlier in Fig. 5 suggest that there were changes related to the
COVID-19 pandemic, at least around the period of the first lockdown,
from 23 March 2020. However, as discussed above, the changing sample
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Fig. 7. Scatter plot of the relationship between daily demand archetype prevalence against mean external temperature, for gas, for homes with gas central heating,
for 1 July 2020 to 30 June 2022. Each point indicates the prevalence of the archetype across the selected homes for one day.

n homes = 6720-8480 (varies by data point).

numbers over that period add a confounding factor to the observations.
Here, we refine the analytical tools to attempt