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Key points: 

 

⚫ The growing availability of extensive data from various sources, such as genomic databases, 

electronic health records, and drug databases, enables researchers to perform more 

comprehensive and systematic drug repurposing studies.  

⚫ Drug repurposing using genomic data gains popularity as a promising strategy to identify specific 

molecular targets implicated in diseases and obtain a deeper understanding of the underlying 

biological mechanisms. 

⚫ Mendelian randomization, multi-omic-based and network-based strategies are commonly applied 

in current drug repurposing studies with genotype data. 

⚫ Challenges may occur when integrating multi-class data sources, and future biological experiments 

and randomized clinical trials are warranted to verify the predicted drug effects on medical 

conditions. 
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Abstract: 

The process of drug development is expensive and time-consuming. In contrast, drug repurposing can 

be introduced to clinical practice more quickly and at a reduced cost. Over the last decade, there has 

been a significant expansion of large biobanks that link genomic data to electronic health record (EHR) 

data, public availability of various databases containing biological and clinical information, and rapid 

development of novel methodologies and algorithms in integrating different sources of data. This review 

aims to provide a thorough summary of different strategies that utilize genomic data to seek drug-

repositioning opportunities. We searched MEDLINE and EMBASE databases to identify eligible studies 

up until 1st May 2023, with a total of 102 studies finally included after two-step parallel screening. We 

summarized commonly used strategies for drug repurposing, including Mendelian randomization, multi-

omic-based and network-based studies, and illustrated each strategy with examples, as well as the 

data sources implemented. By leveraging existing knowledge and infrastructure to expedite the drug 

discovery process and reduce costs, drug repurposing potentially identifies new therapeutic uses for 

approved drugs in a more efficient and targeted manner. However, technical challenges when 

integrating different types of data and biased or incomplete understanding of drug interactions are 

important hindrances that cannot be disregarded in the pursuit of identifying novel therapeutic 

applications. This review offers an overview of drug repurposing methodologies, providing valuable 

insights and guiding future directions for advancing drug repurposing studies. 
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Introduction 

Traditionally, drug discovery has been guided by the development of single compound-based medicine. 

Despite the fact that the approach has yielded numerous successful therapeutics, it frequently comes 

with various challenges that can lead to unintended drug effects. For example, adverse drug events 

(ADEs) based on mechanisms may only be revealed during the later stages of clinical trials [1]. In 

addition, the high costs and slow procedures render these methods untenable, leading modern 

medicine to discard them as ineffective strategies [2, 3]. 

Drug repurposing is proposed to explore alternative indications and potential side effects for already-

licensed medications [4]. This approach offers apparent advantages as it is the utilization of existing 

medications for new therapetic purposes, which may lead to the discovery of novel applications and 

treatment options. In addition, by capitalizing on the extensive knowledge and safety profiles of already-

approved drugs, drug repurposing has the potential to address unmet medical needs with reduced time 

and costs compared to developing entirely new drugs [5].  

The wide-accessibility of multi-omics data, drug databases, and clinical information linked to electronic 

health records (EHRs) enables the implementation of drug repurposing [6]. Several strategies have 

been proposed to preform drug repurposing. First, Mendelian randomization (MR) can be employed to 

examine the causal relationship between phenotypes and genetically predicted drug effects by using 

single nucleotide polymorphisms (SNPs) within target genes as proxies [7]. Second, large-scale multi-

omics data derived from high-throughput technologies such as genome-wide association study (GWAS) 

[8], transcriptome wide association study (TWAS) [9], proteome-wide association study (PWAS) [10], 

metabolome-wide association study (MWAS) [11], can enhance our understanding of disease etiology 

and identify novel drug targets from the associated variants and genes, reducing the time required for 

drug screening. Moreover, due to the wide availability of dense EHRs linked to large biorepositories 

that contain human DNA samples, it is possible to perform powerful phenome-wide association studies 

(PheWAS) to estimate the proxied drug effects on thousands of phenotypes, thus identifying novel 

indications and adverse drug events [12]. Third, network-based drug repurposing approaches aim to 

integrate existing knowledge, enabling the identification of previously undiscovered mechanisms [13]. 

One such example is machine learning that offers a method to assimilate information from various 

sources and identify novel disease subtypes and drug targets, and has enabled significant advances in 

the healthcare and pharmaceutical sectors [14]. For example, a variety of computational approaches 

including deep neural networks, ligand-based cheminformatics methods, and proteochemometrics 

models have been developed to identify new drug targets for cancer treatment [14]. 

As multi-class datasets and diverse advanced approaches/algorithms become available for drug 

repurposing analysis, there is a need to summarize commonly used strategies that integrate human 

genomic data with many other data sources and illustrate their strengths and limitations. Here, a 

systematic review was conducted to provide an overview of strategies or methodologies in drug 

repurposing, data sources implemented in each strategy, and challenges and recommendations for 

future drug repurposing studies. 

 

Methods 

Search strategy 

We systematically searched MEDLINE and EMBASE databases from inception to 1st May 2023, by 

using a comprehensive search strategy (see Supplementary Table 1 for search terms) to identify all 

published drug repurposing studies using genetic variants as predictors of drug effects. All identified 

publications underwent a two-step screening of title, abstract and full text to determine whether each 

individual study meet the inclusion criteria (LW, YL). For any discrepancies, the two authors conferred 

with a third author (LY) to make final decisions. 

https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/electronic-health-record
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/electronic-health-record
https://www.nature.com/articles/nrg.2015.36#Glos11
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Inclusion and exclusion criteria 

Studies that performed drug repurposing by using human genomic data, with or without other forms of 

omics data, biological and clinical information; and studies that introduced novel computational 

approaches and strategies to perform drug repurposing, were included in the review. We excluded (1) 

studies not aiming at exploring drug repurposing; (2) studies not integrating human genotypic data; (3) 

studies not in English; and (4) correspondence, conference abstracts, comments, survey and research 

experiments conducted in animal/human cell lines and animal models.  

Data extraction 

We then extracted the following variables from the included studies: publication date, the first author, 

study population, sample size, definition of phenotypes (based on EHR or derived from epidemiological 

surveys), predictors (genetic variants or drug-gene interaction), whether the researchers conducted 

replication analysis in an independent population or used other algorithms and software to perform drug 

repurposing, data sources implemented in drug repurposing analysis and key findings. Four 

investigators (LW, YL, DL and YZ) independently conducted and double-checked the data extraction. 

 

Results 

A total of 4,016 publications were identified from MEDLINE and EMBASE databases. After screening, 

102 publications were finally included (Figure 1). A summary of the main characteristics of the included 

studies can be found in Table 1. There are three main categories of currently existing drug repurposing 

strategies: MR (30.4%), multi-omic-based (14.7%) and network-based studies (54.9%). About half of 

the studies (49.0%) utilized data sources not from a specific population but used summary statistics 

from a public database such as the GWAS catalog. In terms of the sample size, 49 studies (48.0%) 

included more than 10,000 participants. Only a small fraction (10.8%) used EHR codes to delineate the 

phenotypes, while the majority (89.2%) relied on phenome definitions derived from epidemiological 

surveys. A total of 38 studies (37.3%) used genetic variants as predictors for the effects of drug 

treatments, while the remaining studies (62.7%) predicted the effects of approved drugs on novel 

medical indications based on drug-gene interactions. After identifying significant drug-disease 

associations, 18 studies (17.6%) replicated their findings in another independent population or through 

biological experiments or by using additional statistical approaches. 

Drug repurposing strategies and their strengths and limitations 

We grouped commonly-used drug repurposing approaches into three main categories: MR, multi-omic-

based and network-based. In brief, MR employs genetic variants as instruments to evaluate the causal 

effects of genetically proxied drug treatments on disease outcomes. The multi-omic-based strategy 

harnesses either single omics or the integration of multi-omic data (i.e., genome, transcriptome, 

proteome, and metabolome), to explore disease mechanisms, identify novel drug targets, and inform 

effective repurposing opportunities. The network-based strategy leverages complex biological networks 

that integrate variant, gene, protein, disease outcome and drug, to reveal novel relationships between 

drugs, diseases and molecular targets, enabling the identification of potential repurposing candidates 

with different levels of evidence and guiding precision medicine approaches. The difference between 

multi-omic-based and network-based strategies lies in the data sources used, where the network-based 

strategy integrates more comprehensive sources related not only to molecular patterns but also to drug 

and clinical information. MR was classified into a separate category due to its objective of assessing 

the evidence of causality between drug targets and disease outcomes.  

In summary, each strategy can markedly decrease the time and cost associated with drug discovery 

compared to traditional approaches, while also having their own strengths and limitations. For example, 

the most important advantage of MR lies in the assessment of causality involved in drug treatment, 

however, it would be less effective if the genetic instruments are difficult to identify or weakly associated 
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with the effect of drug treatment. The multi-omic-based strategy enables the identification of combined 

therapies by assessing how different drugs affect multiple molecular pathways simultaneously and 

promotes personalized medicine by considering individual molecular profiles. However, it can be 

challenging in terms of integrating data from multiple omic sources and the interpretation of the 

underlying pathogenic mechanisms. The network-based strategy analyzes how drugs interact with 

specific nodes in biological networks, which can uncover the underlying mechanisms for repurposed 

drugs and provide insights into their efficacies and potential side effects. However, if a drug can target 

multiple nodes in a network, this may result in lack of specificity, which potentially leads to off-target 

effects and adverse reactions. Researchers should select a suitable strategy according to the study’s 

purpose and the nature of data involved. Once a drug candidate has been predicted by the above drug 

repurposing approaches, biological experiments and clinical trials for further validation are still required. 

More details regarding the description, strengths and limitations for each strategy are summarized in 

Table 2. 

Data sources implemented in drug repurposing studies 

The most commonly used data source for MR analysis was the IEU Open GWAS database (formerly 

known as the MR-Base platform), which provides an extensive collection of summary statistics from 

diverse GWASs on various traits and diseases [15]. In regards to drug repurposing, researchers can 

upload genetic instruments (IVs) associated with the exposure that can be modified by the drug, and 

investigate their associations with an outcome of interest. 

Data sources implemented in multi-omic-based drug repurposing studies were mainly large-scale 

cohorts or GWAS consortia that contained at least one omics dataset from human samples. Taking UK 

Biobank as an example, in addition to extensive genomic data, this large-scale biomedical database 

also contains gene expression data derived from various tissues, including blood, adipose tissue, and 

brain samples; measurements of various proteins in biological samples; and metabolomic profiling that 

captures the small molecules present in biological samples, such as blood or urine [16]. There were 

also some databases that only focus on one type of omics. Some examples are the Genotype-Tissue 

Expression (GTEx) that contains genome-wide transcriptional expression profiles from 49 human 

tissues [17], and The Human Protein Atlas (HPA), which is a rich resource that creates a detailed map 

of human proteome by systematically profiling the expression patterns of proteins across different 

tissues and organs [18]. We summarized these databases and the sources they contain in Table 3. 

Databases employed in network-based strategies are not limited by the availability of population data, 

but also encompass information about drug information (i.e. target gene, chemical structure and action 

mechanism), clinical information (i.e. the association between genomic variation and human health 

outcome), biological mechanisms (i.e. protein-protein interaction networks and biological pathways). 

Particularly, The Drug Gene Interaction Database (DGIdb) is a comprehensive and widely-used 

resource that provides information on interactions between genes and drugs [19], based on which 

researchers can assess the druggability for a gene or protein. ClinicalTrial.gov serves as a registry and 

results database for a wide range of clinical trials, including interventional studies, observational studies, 

and expanded access programs, so that researchers can search for clinical trials that involve the use 

of specific drugs and gather insights into the efficacy, safety and off-label use of drugs for different 

indications or patient populations. The STRING database incorporates data on protein-protein 

interactions and integrates data from various external databases, such as drug-target databases, 

pathway databases, and disease databases, based on which researchers can uncover functional 

modules or pathways relevant to a disease and access additional information on drug-target 

associations and disease-related annotations, supporting the identification of potential drug repurposing 

candidates [20]. Detailed information about these databases are displayed in Table 4. We also 

summarized the main findings of the included studies in Supplementary Table 2. 

 

Discussion 
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In this study, we systematically reviewed drug repurposing studies incorporating the use of human 

genomic data. Three main categories of methodologies were commonly applied in eligible studies, 

including MR, multi-omic-based and network-based. We summarized strategies commonly used and 

data sources implemented for each category. In addition, strengths, challenges and potential insights 

for drug repurposing investigations are discussed. 

The application of MR in drug repurposing involves leveraging genetic variants associated with a 

specific drug target to assess the potential therapeutic effects of modulating that target [21-51]. For 

example, Zhao JV et al. selected genetic variants as IVs for antihypertensive drugs. These variants 

were i) robustly associated with systolic blood pressure (SBP) at P < 5 × 10−8; ii) were independent from 

other variants with a pairwise linkage disequilibrium (LD) r2 < 0.01 based on the European reference 

panel from the 1,000 Genomes Project; and iii) were located within 200 kb around the target gene. They 

concluded that genetically proxied ACE inhibition, exerted a protective effect on diabetes [41]. An 

additional strategy of employing the MR approach for drug repurposing is to generate genetically 

proxied drug effects through protein quantitative trait loci (pQTLs), which are associated with the protein 

abundance of the target genes. For instance, Fang S et al. utilized PCSK9 cis-eQTL and cis-pQTL as 

IVs, and demonstrated that genetically predicted PCSK9 inhibition was associated with a reduced 

prostate cancer risk [46]. The fundamental concept behind drug repurposing using MR strategy is that 

if the target of an existing drug exerts a causal impact on an outcome in a manner consistent with the 

drug’s pharmacological effect, then this compound may hold therapeutically potential for the disease. 

Multi-omic-based strategies aim to integrate omics data from diverse sources, such as genome, 

transcriptome, proteome, metabolome, and phenome to uncover disease mechanisms and identify 

potential drug repurposing candidates. This type of research commonly starts with large-scale omics 

association analyses to identify significant variants and genes for a specific disease, followed by drug-

gene interaction, protein-protein interaction (PPI), enrichment analysis, and biological experiments, to 

decipher disease etiology and yield insights into drug repurposing [52-66]. Chen F et al. carried out a 

large-scale trans-ancestry TWAS of tobacco use phenotypes followed by enrichment analysis that 

assessed the enrichment of drug target pathways within TWAS signals, and identified potential drugs 

such as dextromethorphan (a drug used for cough), galantamine (a drug used for cognitive deficits), 

and muscle relaxants for treating smoking addiction [63]. Similarly, Khunsriraksakul C et al. conducted 

both GWAS and TWAS analyses for systemic lupus erythematosus (SLE) and then performed drug 

repurposing analysis by integrating both TWAS-identified SLE associated susceptibility genes and the 

expression profiles of drugs derived from the Connectivity Map (CMap) database. The underlying 

hypothesis of this approach is based on the idea that if a drug induces an expression profile contrasting 

with that of a disease, it may qualify as a candidate for repurposing. As a result, they successfully 

identified clinically informative drug classes including glucocorticoid receptor agonist, histone 

deacetylase (HDAC) inhibitor, mTOR inhibitor, and topoisomerase inhibitor for SLE treatment [65]. 

PheWAS that integrates genome and phenome data serves as an alternative way to seek drug 

repositioning opportunities [67]. The rationale of this strategy is to evaluate the associations of a genetic 

variant, or most recently, a combination of variants affecting the function of a drug target gene, with a 

diverse array of phenotypes. Diogo D et al. conducted a PheWAS analysis to examine the relationships 

between 19 candidate drug targets and 1,683 binary endpoints, and found that genetically anticipated 

inhibition of PNPLA3 and MDA5 could be a viable consideration for the treatment of liver and 

autoimmune diseases, respectively [54].  

Network-based drug repurposing usually involves modeling a wide range of information including 

variants, genes, proteins, diseases/traits and drugs, enabling the incorporation of diverse dimensions 

from various data sources. The types of biological networks used for drug repositioning include gene-

based analysis, functional annotation, pathway enrichment analysis, protein-protein interaction and 

drug-gene interaction networks [68-123]. A dominant advantage of integrating multi-class biological 

networks lies in the reduction of noise, and thus enhancing biological relevance. Recently, Thomas D 

et al. performed GO, KEGG pathway analysis, and PPI network analysis to detect significant hub genes 

related to persistent hyperplastic primary vitreous (PHPV), followed by drug-gene interactions to 
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evaluate potential PHPV drug candidates. As a result, 14 potential genes, four major pathways, seven 

drug gene targets, and 26 candidate drugs were observed to provide insights into the identification of 

novel therapeutic targets for the clincial treatment of PHPV [100]. Besides, Adikusuma W et al. 

proposed prioritized risk genes for Atopic Dermatitis (AD) by employing in silico pipelines guiding 

bioinformatics analysis with six functional annotations (missense mutations, cis-eQTL, a molecular 

pathway analysis, PPI, genetic overlap with a knockout mouse phenotype, primary immunodeficiencies), 

and then expanded them according to the molecular interactions to identify potential drug targets. The 

results revealed 27 AD risk genes, which could be further mapped to 53 existing drugs [95]. It is worth 

noting that advanced algorithms such as machine learning show significant potential to expedite the 

process of drug discovery or repositioning, given their capacity of integrating wide-ranged sources of 

data, thereby achieving higher power in discovering and predicting complex drug-gene and drug-

disease associations [124]. Mountjoy E et al. developed a machine learning pipeline to prioritize likely 

causal signals within GWAS-identified loci. Moreover, they found that the gene-disease associations 

exhibited significantly enrichment for established pairs of drug targets and medical indications with an 

OR of 8.1 (95% confidence interval = 5.7, 11.5) across clinical trial phases 4, indicating that incorporate 

novel genetic discoveries from GWAS and post-GWAS studies provide potential therapeutic targets, 

and ultimately improve success in drug development [125]. 

Current drug repurposing methodologies have several strengths and limitations. Given the availability 

of large-scale human genomic data, especially GWAS, it is possible to generate genetically predicted 

drug effects and genetically predicted disease predisposition, facilitating the translation of preclinical 

discoveries into clinical practice. However, GWAS has been criticized for small effect sizes of most risk 

variants, limiting the variance of drug effects elucidated by the selected genetic instruments. Another 

concern is that the frequency of genetic variants varies among different ethnic groups, which may lead 

to different drug efficacy due to off-target effect. Since the majority of GWASs and functional annotation 

databases were performed in white populations, whether the candidates could be repurposed for non-

white populations require further investigation. By integrating with other omics data (i.e. expression 

profile) or preparing a curated network of information, researchers can attain a more thorough 

comprehension of the molecular pathways that underlie diseases and the drug actions. Besides, this 

may unveil new interactions between drugs and disease-related molecules or pathways, expanding the 

repertoire of potential drug repurposing candidates. However, integrating data from different platforms 

or technologies can be tedious and challenging, and might require a higher degree of data mining and 

statistical analysis. Therefore, more advanced algorithms or computational tools should be developed 

to handle the data effectively. Finally, investigation of drug effects through further laboratory 

experiments along with clinical trials in diverse populations should be undertaken to confirm the 

effectiveness and safety of repurposed drugs. 

Conclusions 

Drug repurposing based on the wealth of genetic information serves as an effective approach to identify 

novel and promising medical applications for existing drugs. In this review, we discussed different 

strategies to prioritize drug candidates, the data sources used in each strategy, and strengths and 

limitations for drug repurposing investigations. Future directions for drug repurposing studies 

encompass several key areas. The analysis of different types of data sources will lead to a better 

understanding of disease mechanisms. In addition, the development of advanced algorithms that 

incorporate artificial intelligence approaches could enhance drug repurposing pipelines. Finally, the 

exploration of drug-drug interactions and synergistic effects for combination therapies, as well as the 

establishment of collaborative networks and data sharing platforms could accelerate discoveries and 

enable the clinical translation of repurposing candidates.
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Table 1. Main characteristics of eligible studies. 

Characteristics Number of studies (%) 

Strategy  

MR 31 (30.4) 

Multi-omic-based 15 (14.7) 

Network-based 56 (54.9) 

Sample size  

Very large (≥10000 subjects) 49 (48.0) 

Large (1000-9999 subjects) 1 (1.0) 

Small (<1000 subjects) 2 (2.0) 

NA a 50 (49.0) 

Phenotyping  

EHR-based 11 (10.8) 

Epidemiology-based 91 (89.2) 

Predictor  

Use SNP as a proxy 38 (37.3) 

Drug-gene interaction b 64 (62.7) 

Replication analysis  

Yes 18 (17.6) 

Another independent population 11 (10.8) 

In vitro or in vivo experiments 6 (5.9) 

Other algorithm/software 1 (1.0) 

No 84 (82.4) 

MR, Mendelian randomization; EHR, electronic health record. 

a These studies performed drug repurposing by using publicly available multi-class sources 

regarding human omic data, drug and disease information, not in a specific population. 

b Studies in this category first identified susceptibility genes, and then referred to drug 

information from publicly available databases to evaluate the druggability of the identified 

markers or to explore potential repurposed indications for existing drugs based on the shared 

similarity. 
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Table 2. Description, strengths and limitations for each drug repurposing strategy. 

Strategy Description Strengths Limitations Reference 

Mendelian 

Randomisa

tion (MR) 

Utilize genetic variants as 

instrumental variables to assess 

causal relationships between 

potential therapeutic targets and 

outcomes 

1. Causality assessment: MR can provide 

evidence of a causal relationship between a 

drug target and a specific outcome, thus 

helping prioritize potential drug candidates 

with a higher likelihood of success; 

2. Reduced bias: MR can help mitigate 

certain biases as genetic variants are 

typically randomly assigned at birth and are 

not influenced by confounding factors; 

3. Efficiency and cost-effectiveness: drug 

repurposing through MR can be efficient and 

cost-effective as it allows to focus on drugs 

that are already approved or in late-stage 

development. 

1. Valid instruments: MR relies on the 

availability of valid genetic instruments 

strongly associated with the effect of drug 

treatment, which may not be readily available 

or may be difficult to identify; 

2. Limited applicability: MR is most effective 

when studying drug effects that can be 

proxied with strong genetic components, such 

as cholesterol levels or blood pressure, and 

may be less useful for those with weak and 

complex genetic determinants; 

3. Data availability: MR requires access to 

large-scale genetic and phenotypic data, 

which may not always be readily accessible or 

may be limited for certain populations or 

diseases. 

21-51 

Multi-omic-

based 

Harness the integration of 

diverse omics data, such as 

genomics, transcriptomics, 

proteomics, and metabolomics, 

1. Comprehensive insights: by analyzing 

multi-omic data, a more comprehensive view 

of the underlying pathogenic mechanisms 

can be provided, thus leading to the 

1. Data quality and availability: the quality and 

availability of omic data can vary widely, 

depending on the disease and the specific 

52-66 
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to comprehensively explore 

disease mechanisms, identify 

novel drug targets, and inform 

effective repurposing 

opportunities 

identification of novel drug targets and 

pathways that might not be apparent when 

considering single omic data; 

2. Identification of combination therapy: 

multi-omic data can be used to identify 

synergistic drug combinations by assessing 

how different drugs affect multiple molecular 

pathways simultaneously; 

3. Personalized medicine: multi-omic 

approaches can enable personalized 

medicine by considering individual genetic 

variations and gene expression profiles, 

which can lead to the development of tailored 

treatment strategies for patients with different 

molecular profiles. 

omics type. Incomplete or low-quality data can 

lead to unreliable predictions; 

2. Data integration challenges: harmonizing 

and integrating data from multiple omics 

sources and different platforms can be 

challenging and may require specialized 

computational tools and expertise; 

3. Biological complexity: biological systems 

are highly complex, and the underlying 

molecular mechanisms is incomplete. This 

can hinder the effectiveness of multi-omic-

based drug repurposing as the data may not 

capture all relevant factors. 

Network-

based 

Leverages complex biological 

networks to uncover relationships 

between drugs, diseases, and 

molecular targets, enabling the 

identification of potential 

repurposing candidates and 

1. Comprehensive insights: network-based 

drug repurposing considers the complex 

interactions between genes, proteins, and 

pathways involved in diseases. This allows 

for the identification of drugs that target 

multiple components of a disease network, 

1. Data quality and availability: the quality and 

availability of biological network data can vary, 

and incomplete network representations can 

lead to unreliable predictions; 

2. Biological complexity: biological networks 

are complex and dynamic, making it 

challenging to model and analyze all relevant 

68-123 
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guiding precision medicine 

approaches 

potentially leading to more effective 

treatments; 

2. Identification of combination therapy: 

network-based approaches can identify 

synergistic drug combinations by assessing 

how different drugs affect various nodes in a 

network; 

3. Mechanism of action: by analyzing how 

drugs interact with specific nodes in 

biological networks, network-based methods 

can uncover the mechanism of action of 

repurposed drugs and provide insights into 

the drug's efficacy and potential side effects. 

interactions accurately. For less understood or 

rare diseases, network-based drug 

repurposing may be less effective; 

3. Lack of specificity: network-based 

approaches may identify drugs that target 

multiple nodes in a network, potentially 

leading to off-target effects and adverse 

reactions. 
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Table 3. Data sources used to perform multi-omic-based drug repurposing. 

Data source Genome 
Transcriptom

e 
Proteome Metabolome Phenome Reference 

23andMe +    + (26, 54) 

BioVU +    + (55, 58, 62, 80) 

China Kadoorie 

Biobank 
+    + (52) 

CMap  +    

(61, 64, 65, 72, 85, 86, 

91, 94, 96, 101, 102, 

118, 120) 

eQTLGen 

Consortium 
+ +    (28, 44, 60, 97) 

FinnGen +    + (29, 39) 

GTEx + +    

(28, 44, 48, 56, 87, 90, 

97, 104, 108, 109, 117, 

118, 121) 

Human Protein Atlas  + +   (87) 

LifeGen +   + + (28) 

Million Veteran 

Program 
     (36) 

PheWAS catalog     + 
(83, 86, 105, 110, 111, 

112) 



 20 

Taiwan Biobank      (113) 

TCGA + + +   (69, 120) 

UK Biobank + + + + + 
(24, 25, 28, 29, 30, 34, 

40, 54, 61) 
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Table 4. Data sources used to perform network-based drug repurposing. 

Data source Drug target gene 
Drug chemical 

structure 

Drug action 

mechanism 
Biological pathway Clinical end point Reference 

ChEMBL + +   + 
(38, 44, 48, 56, 66, 

104, 112) 

ClinicalTrials.gov     + 
(85, 94, 95, 102, 104, 

107, 113, 118) 

ClinVar     + (86) 

DGIdb +     

(56, 60, 64, 66, 83, 84, 

88, 92, 99, 100, 103, 

110, 111) 

DrugBank + + +  + 

(24, 35, 38, 60, 61, 63, 

66, 68, 69, 70, 73, 77, 

80, 82, 83, 86, 87, 90, 

92, 94, 95, 96, 102, 

104, 105, 107, 111, 

113, 115, 118) 

Drug Repurposing 

Hub 
+ +   + (82) 

GO    +  
(28, 75, 87, 88, 90, 92, 

94, 99, 100, 103, 107) 

KEGG    +  

(57, 73, 75, 82, 87, 88, 

92, 100, 103, 107, 

111) 

Open Targets 

Database 
+     (28, 61, 87, 92, 109) 

Pharmaprojects  + +  + (71, 81) 

PharmGKB +   + + (70, 73, 74, 98, 104) 

PubChem  + +   (56, 61, 102) 

Reactome    +  (28, 57, 87, 88, 92) 

STRING    +  
(57, 60, 61, 83, 92, 94, 

95, 100, 103, 107, 110, 
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112, 113, 118, 121, 

122) 

Target Central 

Resource 

Database 

+  +   (93) 

Therapeutic Target 

Database 
+   + + 

(70, 73, 83, 92, 94, 95, 

96, 98, 102, 104, 107) 
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Figure 1. Flow chart of the study selection process of the systematic literature review. 

 


