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Epidemiology

Observational and genetic associations between
cardiorespiratory fitness and cancer: a UK Biobank and
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Rish K. Pai14, Mark P. Purdue1, Cornelia M. Ulrich15, Karl Smith-Byrne16, Bethany Van Guelpen17,18, The PRACTICAL consortium, CRUK,
BPC3, CAPS, PEGASUS* , Felix R. Day 2, Katrien Wijndaele2, Nicholas J. Wareham 2, Charles E. Matthews1, Steven C. Moore1,110 and
Soren Brage 2,110✉
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BACKGROUND: The association of fitness with cancer risk is not clear.
METHODS: We used Cox proportional hazards models to estimate hazard ratios (HRs) and 95% confidence intervals (CIs) for risk of
lung, colorectal, endometrial, breast, and prostate cancer in a subset of UK Biobank participants who completed a submaximal
fitness test in 2009-12 (N= 72,572). We also investigated relationships using two-sample Mendelian randomisation (MR), odds ratios
(ORs) were estimated using the inverse-variance weighted method.
RESULTS: After a median of 11 years of follow-up, 4290 cancers of interest were diagnosed. A 3.5 ml O2⋅min−1⋅kg−1 total-body
mass increase in fitness (equivalent to 1 metabolic equivalent of task (MET), approximately 0.5 standard deviation (SD)) was
associated with lower risks of endometrial (HR= 0.81, 95% CI: 0.73–0.89), colorectal (0.94, 0.90–0.99), and breast cancer (0.96,
0.92–0.99). In MR analyses, a 0.5 SD increase in genetically predicted O2⋅min−1⋅kg−1 fat-free mass was associated with a lower risk of
breast cancer (OR= 0.92, 95% CI: 0.86–0.98). After adjusting for adiposity, both the observational and genetic associations were
attenuated.
DISCUSSION: Higher fitness levels may reduce risks of endometrial, colorectal, and breast cancer, though relationships with
adiposity are complex and may mediate these relationships. Increasing fitness, including via changes in body composition, may be
an effective strategy for cancer prevention.

British Journal of Cancer (2024) 130:114–124; https://doi.org/10.1038/s41416-023-02489-3

INTRODUCTION
Until recently epidemiological studies have largely focused on the
role of physical activity behaviours with cancer risk [1]. Cardior-
espiratory fitness (referred to here as ‘fitness’) is distinct from
physical activity as it describes the capacity of the circulatory and
respiratory systems to supply oxygen to skeletal muscle during
prolonged physical activity [2, 3]. Fitness is generally objectively

measured and has a stronger genetic component than habitual
physical activity [2–4].
Higher fitness is associated with good cardiometabolic health,

including lower visceral adipose tissue, inflammation and insulin
sensitivity, and may, therefore, reduce the risk of cancer [5–8].
Previous studies report that people with higher fitness have lower
risks of all-cause mortality, cancer mortality and cardiovascular
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disease [5, 9–11], but the relationship between fitness and
incident cancers are less clear. Some studies have reported
inverse associations between fitness and lung and colorectal
cancers [12–17], while for prostate cancer associations have been
reported to be null or positive [13–15, 17–20]. Only one prior study
has investigated associations between fitness and female-specific
incident cancers, and did not find evidence of a relationship [14].
A limitation of observational epidemiological studies includes

the possibility of residual confounding and reverse causation.
Mendelian randomisation (MR) uses germline genetic variants as
proxies of biological traits to generate instrumental variables and
estimate their associations with disease risk. Because germline
genetic variants are fixed and randomly allocated at conception,
this technique may be less likely to be affected by biases and
confounding factors (such as preclinical disease and smoking
history). This is the first study to use MR to investigate fitness and
cancer risk.
We aimed to assess the associations of measured fitness and

risk of common cancers (lung, colon, rectal, endometrial, female
breast, and prostate cancer) using observational methods in the
UK Biobank. In secondary analyses, we used a two-sample MR
framework, using genetically predicted fitness, as an instrumental
variable derived from UK Biobank [21] and genetic case control
data from consortia for those same sites, plus pancreatic cancer
and renal cell carcinoma for which observational analyses in the
UK Biobank are underpowered. By integrating evidence from both
observational epidemiology and MR approaches, we aim to
strengthen the basis for causal inference [22].

METHODS
UK Biobank study population
The UK Biobank study is a population-based prospective cohort study of
502,625 adults aged 40 to 69 years. A description of the study protocol is
available online [23]. Participants were registered with the UK National
Health Service and lived within 40 km of a UK Biobank assessment centre
in England, Wales, and Scotland. Baseline data were collected between
2006 and 2010. A repeat-measures substudy was conducted between 2012
and 2013.

UK Biobank cardiorespiratory fitness assessment
An individualised submaximal cycle ergometer test was implemented in
2009 and offered to 75,087 participants during baseline data collection,
17,109 participants during the repeat assessment study, and 2877
participants at both timepoints; 97,950 tests were offered in total. For
those participants who were offered a test at both timepoints, the earliest
fitness test completed by the participant was used to maximise follow-up
duration. Participant baseline data were collected on the same day as their
exercise test. The test was individualised to each participant’s exercise
capacity and risk level for engaging in exercise. Participants with lower
exercise capacity or higher risk for exercise-related complications were
offered a test with lower work rates, while those with higher exercise
capacity or lower risk were offered a test with higher work rates. A
description of the exercise test individualisation process and maximal
oxygen consumption (VO2 max; ml O2⋅min−1⋅kg−1) estimation process is
provided in Supplementary Methods; the test protocol is available online
[24]. VO2 max was estimated in two ways: scaled by total-body mass
(VO2maxtbm [3.5 ml O2⋅min−1⋅kg−1 total-body mass=1 MET]) and scaled by
fat-free mass (VO2maxffm) [25, 26]. VO2maxffm represents the ability of
skeletal muscle to use oxygen during maximal exercise, whereas
VO2maxtbm is more representative of aerobic performance capacity [27].

Genetic instrument for cardiorespiratory fitness. Full details of the fitness
genome-wide association study (GWAS) are available elsewhere [21]. In
brief, single nucleotide polymorphisms (SNPs) associated with fitness were
identified from a GWAS based on UK Biobank participants of European
ancestry who participated in the fitness test (N included= 69,416). Fitness
was estimated using the same framework method described above, scaled
by fat-free mass and using resting heart rate data from the full cohort,
excluding those taking beta-blockers (N included= 452,941) (P < 5 × 10−8

significance threshold).

The Radial plot method was used to select eligible resting heart-rate
associated genetic variants for fitness by removing heterogeneous outliers
for the genetic variants, of which 149 were also nominally significant in the
fitness GWAS (p < 0.05) [28]. The genetic instrument for fitness included 14
fitness and 149 fitness and resting heart rate variants with prioritisation
given to the variants identified in the fitness GWAS. In total, 160
independent (r² > 0.01) genetic variants were included in our instrument
for fitness [21].

Cancer ascertainment
Observational analysis. Cancer registration data were provided via record
linkage to national cancer and death registries, until the following
censoring dates: 31 July 2019 in England and Wales and 31 October
2015 in Scotland. Cancers occurring after the registry censoring dates were
identified using Hospital Episode Statistics (HES), until the following
censoring dates: 30 September 2021 in England, 31 July 2021 in Scotland
and 28 February 2018 in Wales (see Supplementary Methods for cancer site
definitions).
Of the 84,792 fitness tests analysed after preliminary exclusions (i.e.,

participant withdrawal of data, ‘high risk’ for exercise; see Supplementary
Fig. 1), we retained a preliminary analytic sample of 79,347 participants after
additionally excluding 3209 participants for missing data, 1017 due to test
data quality, 1219 withmissingweight, fat-free mass, or heart rate, and 44 for
whom fitness estimation could not be applied. We then excluded 5180
participants with prevalent cancer at baseline and 1551 participants
diagnosed with cancer within two years of follow-up. The final analytic
sample was 72,572 participants. Health and sociodemographic character-
istics were described across age-adjusted and sex-specific fitness tertiles [29].

Genetic cancer data. Risk estimates may be biased when instrumental
variables and outcomes are identified from the same sample [30]. We,
therefore, used independent GWAS data from international consortia. This
includes breast (including estrogen receptor (ER)+ and ER− subtypes)
[31, 32], prostate (including aggressive disease) [33], endometrial [34],
ovarian [35], lung (including for never smokers) [36], and colorectal cancer
(including colon, rectal, male colorectal and female colorectal, distal colon
and proximal colon) [37, 38]. We also included pancreatic cancer and renal
cell carcinoma [39–42]. Included sites and subtypes were chosen based on
data availability. Further information for the genetic case control studies is
available in Supplementary Table 1.

Statistical analysis
Observational analysis. Cox regression models with age as the underlying
timescale were used to estimate hazard ratios (HRs) and 95% confidence
intervals (CIs) per 3.5 ml⋅O2⋅min−1⋅kg−1 total-body mass and 5.0 ml⋅O2⋅-
min−1⋅kg−1 fat-free mass for risk of cancer diagnosis. Models were
adjusted for possible confounding factors and for female reproductive
cancers (breast, endometrial and ovarian cancers) we additionally adjusted
for reproductive factors (see Supplementary Methods). Multivariate
imputation by chained equations was used to impute missing covariate
values.
Adiposity may partially mediate and confound the relationship between

fitness and cancer risk (Supplementary Fig. 2). Therefore, we evaluated the
role of adiposity in fitness-to-cancer associations both with and without
adjustment for either BMI (for models with VO2max scaled by total-body
mass) or fat mass (for models with VO2max scaled by fat-free mass).
We have shown previously that repeat assessments of the UK Biobank

fitness test will elicit moderately stable fitness estimates (regression
dilution ratio= 0.79, standard error= 0.01) [43]. This source of measure-
ment error will influence the strength of observed health associations.
Therefore, in a sensitivity analysis, we also provide regression dilution
calibrated estimates of fitness-to-cancer associations using established
statistical techniques [44]. The shape of dose-response relationships
between fitness and risk of cancer diagnosis was investigated using cubic
spline regression models. Each model used two knots placed at the 33rd
and 67th percentile of the fitness distribution. Reference values were set to
the mean fitness value for each specific analysis (see Supplementary Figs. 3
and 4).

Sensitivity analysis: Subgroup analyses for colorectal cancer were
examined by sex, and associations for fitness and lung cancer were re-
examined after restricting the analysis to never-smokers only. Subgroups
were chosen a priori on the basis of data availability and previous evidence
for heterogeneity in the associations [1]. We also included a minimally
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Table 1. Participant characteristics by age-adjusted and sex-specific cardiorespiratory fitness (VO2max per kg total-body mass) tertiles.

Women Men

Lower fitness Mid fitness Higher fitness Lower fitness Mid fitness Higher fitness

N 12,791 12,790 12,786 11,404 11,402 11,399

Age (y) 57 ± 8 57 ± 8 57 ± 8 58 ± 8 58 ± 8 58 ± 8

Height (m) 1.63 ± 0.06 1.63 ± 0.06 1.63 ± 0.06 1.76 ± 0.07 1.76 ± 0.07 1.76 ± 0.07

Total body mass (kg) 79.6 ± 14.8 69.5 ± 10.0 62.6 ± 8.2 94.4 ± 14.2 84.6 ± 10.6 77.3 ± 9.8

Fat-free mass (kg) 46.5 ± 5.4 44.0 ± 4.2 42.6 ± 3.9 66.9 ± 7.8 63.2 ± 6.9 60.6 ± 6.5

BMI (kg⋅m−2) 30.1 ± 5.3 26.2 ± 3.5 23.5 ± 2.8 30.3 ± 4.1 27.3 ± 2.9 25.1 ± 2.7

VO2maxtbm(ml⋅min−1⋅kg−1) 19.7 ± 3.2 25.1 ± 1.9 31.4 ± 4.7 26.0 ± 2.9 31.7 ± 2.0 38.4 ± 4.2

VO2maxffm (ml⋅min−1⋅kg−1) 33.4 ± 5.8 39.5 ± 3.8 45.8 ± 6.2 36.5 ± 4.0 42.4 ± 3.1 48.8 ± 4.8

Red meat consumption 0.8 ± 0.5 0.8 ± 0.5 0.7 ± 0.5 1.1 ± 0.6 1.0 ± 0.6 0.9 ± 0.6

Fish consumption

Never 10.7% (1363) 9.1% (1161) 8.3% (1060) 11.8% (1343) 11.1% (1265) 8.8% (1006)

At most 1 per week 33.0% (4226) 32.2% (4114) 31.4% (4013) 36.4% (4148) 33.9% (3868) 32.3% (3687)

2 or more per week 55.6% (7116) 58.1% (7431) 60.0% (7674) 50.8% (5794) 54.4% (6202) 58.3% (6646)

Missing 0.7% (86) 0.7% (84) 0.3% (39) 1.0% (119) 0.6% (67) 0.5% (60)

Fruit & vegetable consumption

Never 17.4% (2232) 15.4% (1974) 12.8% (1639) 24.9% (2834) 23.8% (2713) 19.3% (2199)

At most 1 per week 29.0% (3707) 28.5% (3643) 26.2% (3355) 33.5% (3816) 32.1% (3663) 31.8% (3626)

2 or more per week 53.2% (6804) 55.9% (7144) 60.8% (7772) 41.2% (4697) 43.8% (4998) 48.7% (5549)

Missing 0.4% (48) 0.2% (29) 0.2% (20) 0.5% (57) 0.2% (28) 0.2% (25)

Salt addition to meals

Never/rarely 58.0% (7418) 58.3% (7455) 59.0% (7547) 52.8% (6022) 56.1% (6395) 60.2% (6864)

Sometimes 26.9% (3443) 27.4% (3510) 27.3% (3489) 29.3% (3343) 27.9% (3186) 25.7% (2930)

Usually/always 14.8% (1892) 14.1% (1800) 13.6% (1733) 17.5% (1994) 15.8% (1806) 13.9% (1588)

Missing 0.3% (38) 0.2% (25) 0.1% (17) 0.4% (45) 0.1% (15) 0.1% (17)

Alcohol consumption

Never or previous 11.3% (1439) 8.2% (1055) 6.4% (812) 6.9% (785) 5.7% (648) 5.3% (599)

At most 2 per week 59.5% (7615) 52.8% (6755) 47.1% (6021) 46.4% (5286) 41.6% (4743) 39.0% (4442)

3 or more per week 28.9% (3697) 38.7% (4947) 46.4% (5930) 46.3% (5282) 52.5% (5990) 55.6% (6340)

Missing 0.3% (40) 0.3% (33) 0.2% (23) 0.4% (51) 0.2% (21) 0.2% (18)

Smoking status

Never 63.7% (8147) 61.5% (7869) 59.7% (7635) 48.3% (5511) 51.5% (5869) 55.5% (6326)

Previous 29.0% (3704) 31.2% (3987) 32.6% (4173) 40.6% (4625) 38.2% (4357) 34.4% (3917)

Current 6.7% (858) 6.9% (879) 7.3% (932) 10.3% (1180) 9.8% (1121) 9.7% (1105)

Missing 0.6% (82) 0.4% (55) 0.4% (46) 0.8% (88) 0.5% (55) 0.4% (51)

Townsend deprivation index −1.0 ± 3.0 −1.4 ± 2.8 −1.5 ± 2.8 −1.0 ± 3.1 −1.4 ± 2.9 −1.5 ± 2.9

Education

No qualification 14.4% (1841) 11.0% (1413) 8.3% (1059) 14.8% (1684) 12.1% (1378) 9.4% (1072)

Any other qualification 53.8% (6885) 51.4% (6577) 46.3% (5925) 52.0% (5929) 48.9% (5579) 42.6% (4857)

Degree level or above 30.4% (3887) 36.6% (4678) 44.8% (5724) 31.7% (3618) 38.0% (4336) 47.3% (5391)

Missing 1.4% (178) 1.0% (122) 0.6% (78) 1.5% (173) 1.0% (109) 0.7% (79)

Employment

Unemployed 9.9% (1265) 7.9% (1011) 8.3% (1061) 7.9% (903) 5.7% (651) 4.9% (557)

Employed 52.8% (6752) 55.9% (7147) 57.5% (7355) 56.7% (6467) 60.3% (6873) 61.3% (6992)

Retired 36.6% (4684) 35.7% (4572) 33.8% (4320) 34.5% (3939) 33.4% (3813) 33.3% (3794)

Missing 0.7% (90) 0.5% (60) 0.4% (50) 0.8% (95) 0.6% (65) 0.5% (56)

Race

Asian or Asian British 3.3% (425) 2.4% (303) 1.6% (201) 3.5% (400) 3.6% (413) 2.4% (269)

Black or Black British 5.2% (670) 2.2% (281) 0.9% (117) 3.5% (398) 2.2% (254) 1.2% (138)

Mixed 1.0% (126) 0.9% (112) 0.9% (117) 0.7% (78) 0.7% (75) 0.7% (80)

Other 1.9% (243) 1.9% (240) 1.8% (234) 1.6% (180) 1.5% (174) 1.6% (180)
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adjusted model to investigate the influence of mediators and/or
confounders.

Mendelian randomisation
The MR estimation for fitness and cancer was conducted using the inverse-
variance weighted (IVW) method [45]. We additionally calculated the I2GX
statistic to assess measurement error in SNP-exposure associations [33],
the F-statistic to examine the strength of the genetic instrument [46],
Cochran’s Q statistic for heterogeneity between the MR estimates for each
SNP [47], and PhenoScanner was used to assess pleiotropy of the genetic
instruments [48]. As sensitivity analyses, we used the MR residual sum and
outlier (MR-PRESSO) to investigate the role of SNP outliers [49]. To assess
pleiotropy, we used the weighted median and contamination mixture
methods [50].
To explore relationships between body fat and fitness, we conducted a

bi-directional MR of genetically predicted fitness on fat mass and vice versa
using our genetic instrument for fitness and an instrument for total fat
mass based on a GWAS of UK Biobank participants (N= 330,762
participants of European ancestry), derived from bioelectrical impedance
measurements at study baseline [51]. We also conducted multivariable MR
(MVMR) analyses to assess the effect of fitness on cancer risk, after
accounting for genetically predicted fat mass and height [45].

Statistical software
Observational analyses were performed using Stata version 16.1 (Stata
Corporation, College Station, TX, USA). MR analyses were performed using
the TwoSampleMR and MendelianRandomisation R packages [52, 53] and
figures were plotted in R version 3.6.3. All tests of significance were two-
sided, and P < 0.05 were considered statistically significant. Results are
presented in accordance with the STROBE checklist [54].

RESULTS
Observational analysis
After a median of 11 years of follow-up, 1586 prostate cancers,
1093 breast cancers, 811 colorectal cancers, 480 lung cancers, 184
endometrial cancers, and 136 ovarian cancers were diagnosed.
Participant characteristics by age-adjusted and sex-specific fitness
tertiles are provided in Table 1 for fitness scaled by total-body
mass and Supplementary Table 2 for fitness scaled by fat-free
mass. Fitness was higher in men compared to women, and those
in the middle and higher fitness tertiles had better measures of

adiposity, socioeconomic status, and cardiometabolic health than
those in the lower fitness tertile.
Observational analysis results are summarised in Fig. 1. In

analyses without BMI adjustment, each 3.5 ml O2⋅min−1⋅kg−1

total-body mass increase (equivalent to 1 metabolic equivalent of
task [MET]) in fitness was associated with a 19% reduction in
endometrial cancer, 6% reduction in colorectal cancer, and 4%
reduction in breast cancer. After BMI adjustment, associations
were attenuated but remained directionally consistent. Where
associations were detected, relationships generally appeared to be
linear but with uncertainty for some cancers at the tails of the
fitness distribution (Supplementary Figs. 3 and 4). When fitness
was expressed per kg fat-free mass, associations with cancers were
not significant. Results adjusted for regression dilution are shown
in Supplementary Fig. 5.
There was evidence of heterogeneity in the associations of

fitness and colorectal cancers by sex; the relationship was inverse
for men and null for women (Fig. 2 and Supplementary Fig. 4).
Minimally adjusted models are available from Supplementary
Table 3.

Mendelian randomisation analyses
Higher levels of genetically predicted fitness were associated with
a lower risk of breast cancer (OR per 5.0 ml O2⋅min−1⋅kg−1 fat-free
mass= 0.92, 95% CI: 0.86–0.98; P= 0.02), including ER+ (0.91,
0.84–0.99; P= 0.02) and ER- (0.88, 0.80–0.97; P= 0.01) subtypes,
but was not significantly associated with any other cancer site
(Fig. 3). There was also no evidence of an association with
colorectal cancer after stratification by sex and site (Supplemen-
tary Tables 4 and 5). There was significant heterogeneity in the MR
estimates for the SNPs for each cancer site (Cochran’s Q P < 0.05),
except for associations with lung cancer for never smokers
(P= 0.13), aggressive prostate cancer (P= 0.17) and renal cancer
(P= 0.09).
In MR sensitivity analyses, the relationships between fitness and

breast cancer were directionally consistent in comparison with the
primary MR analysis (Supplementary Table 6). There was evidence
of an inverse association between fitness and lung cancer using
the weighted median method (0.85, 0.74–0.98; P= 0.02) and a
positive association with pancreatic cancer using the

Table 1. continued

Women Men

Lower fitness Mid fitness Higher fitness Lower fitness Mid fitness Higher fitness

White 87.8% (11,235) 92.1% (11784) 94.3% (12,062) 89.9% (10,251) 91.3% (10,415) 93.6% (10,673)

Missing 0.7% (92) 0.5% (70) 0.4% (55) 0.9% (97) 0.6% (71) 0.5% (59)

Hypertension

Not hypertensive 39.9% (5109) 56.2% (7193) 67.6% (8647) 26.2% (2987) 41.3% (4707) 55.4% (6316)

Hypertensive 60.1% (7682) 43.8% (5597) 32.4% (4139) 73.8% (8417) 58.7% (6695) 44.6% (5083)

Diabetes

Not diabetic 93.3% (11,940) 97.3% (12,446) 98.6% (12,603) 87.5% (9980) 94.7% (10,801) 97.1% (11,067)

Diabetic 6.3% (805) 2.5% (316) 1.3% (167) 12.1% (1376) 5.1% (586) 2.8% (316)

Missing 0.4% (46) 0.2% (28) 0.1% (16) 0.4% (48) 0.1% (15) 0.1% (16)

Colorectal cancer 1.0% (133) 0.9% (112) 0.8% (98) 1.5% (169) 1.5% (173) 1.1% (126)

Colon 0.8% (103) 0.7% (93) 0.6% (74) 1.0% (119) 1.1% (122) 0.8% (87)

Rectal 0.4% (45) 0.3% (35) 0.3% (41) 0.7% (85) 0.7% (78) 0.6% (64)

Lung cancer 0.6% (77) 0.6% (71) 0.6% (82) 0.9% (103) 0.7% (76) 0.6% (71)

Breast cancer 3.2% (410) 2.8% (352) 2.6% (331)

Endometrial cancer 0.7% (93) 0.4% (54) 0.3% (37)

Ovarian cancer 0.3% (44) 0.3% (36) 0.4% (56)

Prostate cancer 4.2% (481) 5.1% (579) 4.6% (526)
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contamination mixture method (1.09, 1.03–1.14; P= 0.03) (Sup-
plementary Table 6). Radial plots also did not indicate any strong
influence of outliers on the MR results (Supplementary Fig. 6). The
likelihood of bias due to weak instruments was low (F-statistic > 10
for all SNPs). There was evidence of moderate levels of
measurement error (I2GX= 0.52–0.65), indicating reduced relia-
bility of Egger results, therefore we do not include Egger estimates
[55]. Using PhenoScanner, 742 traits were linked to SNPs for
fitness (P < 5 × 10−8), particularly pulse rate (Supplementary Fig. 7).
The bi-directional MR analysis indicated that genetically

instrumented fat mass had a strong inverse association with
fitness (OR per 0.5 SD increase= 0.61, 0.52–0.71; P < 0.001), but a
weaker inverse relationship of fitness with fat mass (OR per 5 ml
O2⋅min−1⋅kg−1 fat-free mass= 0.96, 0.92–1.01; P= 0.08). In MVMR
analyses, associations with breast cancer were attenuated after
adjustment for fat mass and height. While associations with lung
cancer became statistically significant (0.90, 0.84–0.96; P= 0.002),
although remained null for never smokers (Table 2).

DISCUSSION
This study used both observational and MR methods to examine
the relationship between cardiorespiratory fitness and incident

cancer risk, providing the first evidence that higher fitness levels
may reduce risks of breast cancer. In observational analysis only,
we report additional inverse associations between VO2max scaled
to total body mass and risks of colorectal and endometrial cancer.
However, associations with all three cancer sites were attenuated
after accounting for adiposity. Observational associations between
cancer and VO2max scaled to fat-free mass were not statistically
significant.
Previous observational analyses have reported inverse associa-

tions between fitness and colorectal and lung cancer. We did not
observe an association with lung cancer and the inverse
association between VO2max scaled to total body mass and
colorectal cancer was attenuated after accounting for BMI [12–15].
Our results may differ from these previous studies due to
differences in population sampling, fitness assessment, and fitness
estimation approaches. For example, cycle ergometer-based
fitness estimates may differ from treadmill-based estimates due
to differences in load bearing and motion artefact [15, 18, 20]. The
UK Biobank fitness test was also relatively light intensity, which
enabled more participants to be assessed. Thus, our analysis likely
characterises a wider variety of lower-fitness individuals than
previous studies which used more strenuous tests. Previous
estimates using UK Biobank data had shorter duration of follow-up
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Fig. 1 Associations of cardiorespiratory respiratory fitness and incident cancer risk without and with body fat adjustment. HRs and 95%
CIs estimated using Cox regression models adjusted for age, sex, self-reported racial/ethnic group, Townsend index of deprivation, education,
employment status, smoking status, alcohol consumption, red and processed meat consumption, fish consumption, fruit and vegetable
consumption, salt consumption, diabetes status, hypertension, medication use (beta blockers, calcium channel blockers, ACE inhibitors,
diuretics, bronchodilators, lipid-lowering agents, iron deficiency agents, non-steroidal anti-inflammatory drugs, metformin). Female
reproductive cancers (breast, endometrial, and ovarian) were additionally adjusted for age at menarche, age at menopause, parity, hormone
replacement therapy usage, and oral contraceptives. Associations with and without adjustment for either continuous BMI (for models with
VO2max scaled by total-body mass) or fat mass (for models with VO2max scaled by fat-free mass). ACE Angiotensin-converting enzyme, BMI
body mass index, CI confidence interval, HR hazard ratio.

E.L. Watts et al.

118

British Journal of Cancer (2024) 130:114 – 124



(median 5 years) and used fewer exercise test data, which will
reduce the precision of risk estimates.
Previous MR studies based on up to five SNPs have reported

inverse associations between genetically predicted physical activity
levels and risks of breast, colorectal and aggressive prostate cancer
[56, 57]. However, current estimates suggest that GWAS significant
polymorphisms explain a very limited proportion of phenotypic
physical activity (e.g., 0.06% for overall physical activity) [58]. The
small number of SNPs increase the influence of possibly invalid

variants within the instrument, and the instrument has a bidirec-
tional association with BMI [58]. Fitness is a trait that reflects both
input from genetics and physical activity behaviours. The genetic
instrument for fitness used in the present study likely encompasses
both past and current levels as well as the capacity to participate in
physical activity [2, 3]. This instrument explains 1.2% of the variation
in observed fitness levels, increasing the reliability of risk estimates.
Future work examining the relative importance of the different
constituents of genetic fitness may help to clarify whether the null
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Fig. 2 Sex-stratified associations of cardiorespiratory respiratory fitness and incident cancer risk without and with body fat adjustment.
HRs and 95% CIs estimated using Cox regression models adjusted for age, sex, self-reported racial/ethnic group, Townsend index of deprivation,
education, employment status, smoking status, alcohol consumption, red and processed meat consumption, fish consumption, fruit and
vegetable consumption, salt consumption, diabetes status, hypertension, medication use (beta blockers, calcium channel blockers, ACE
inhibitors, diuretics, bronchodilators, lipid-lowering agents, iron deficiency agents, non-steroidal anti-inflammatory drugs, metformin).
Associations with and without adjustment for either continuous BMI (for models with VO2max scaled by total-body mass) or fat mass (for
models with VO2max scaled by fat-free mass). ACE Angiotensin-converting enzyme, BMI body mass index, CI confidence interval, HR hazard ratio.
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relationships that we report for fitness on colorectal and aggressive
prostate cancer risk are indicative of the greater relative importance
of physical activity behaviours or are partially reflective of the
methodological limitations discussed above.
The role of adiposity in fitness is complex and not fully

understood. Higher adiposity is associated with impaired physical
performance, relating reducedmuscle oxygen uptake, lower cardiac
efficiency, neuromuscular dysfunction, and increased cancer risk
[59–63]. Higher levels of physical activity are important for weight
maintenance and increasing fitness, and higher fitness may reduce
some of the harmful cardiometabolic effects of obesity [64].
Differences between the associations of fitness and cancer by
scaling are likely driven by the different components of fitness, as
VO2maxtbm has a strong inverse correlation with body size and
adiposity [27]. However, the complex interplay of adiposity, fitness
and cancer might mean that accounting for adiposity for models of
cardiorespiratory fitness could lead to an over-adjustment of risk

estimates, but these relationships are difficult to disentangle.
Relationships between fitness and all-cause, cancer, and cardiovas-
cular mortality outcomes has stronger evidence for independence
of associations with adiposity [10, 64–66]. Future work with longer
durations of follow-up will improve power to investigate whether
there are differential risk associations by BMI classification.
These analyses have several strengths. This study is the first to

use genetically instrumented fitness to evaluate possible causal
relationships between fitness and cancer risk. The UK Biobank is
the largest sample currently available with measured cardior-
espiratory fitness, maximising power to assess associations across
a broad range of cancer sites, the majority of which have not been
previously investigated. Our independently validated novel frame-
work to estimate fitness harmonised the UK Biobank test protocols
and calibrated these data to a maximal exercise test to estimate
VO2max. This estimation framework also incorporated multiple
heart rate measurements to reduce measurement error, with high
temporal agreement (regression dilution ratio=0.79) over approxi-
mately a 2.8 year period for greater precision in risk estimates [43].
Further, the baseline assessment collected data across a wide
range of lifestyle, medical and anthropometric factors, enabling
thorough adjustment for possible confounders.
Our study has limitations. This analysis is not a randomised

controlled trial and therefore we are not able to fully assess causality.
In MR analysis we cannot exclude the possibility of genetic
confounding or horizontal pleiotropy [67]. The genetic instrument
for VO2maxtbm was not available for comparison with our observa-
tional analysis. The genetic instrument also included resting heart rate
information; therefore, our results may be partially driven by genetic
associations with resting heart rate. Given the strong a priori evidence
and mechanistic plausibility of associations between fitness and
cancer risk we have not included correction for multiple testing
[18–20], however, we cannot exclude the possibility of chance
findings. The UK Biobank participants are predominantly of White
European ancestry and are healthier than the underlying sampling
population, therefore risk estimates may not be generalisable to
some other populations, including “high-risk” participants who did
not undergo the fitness assessment. The fitness test was also
submaximal, which may increase measurement error, and previous
studies have noted larger magnitudes of associations with health
outcomes using maximal fitness tests [11, 15].
In summary, we provide evidence that higher fitness levels may

reduce risks of endometrial, colorectal, and breast cancer. The role
of adiposity in mediating the relationship between fitness and
cancer risk is not fully understood, and further research is needed
to explore this complex relationship. Aiming to increase fitness,
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Fig. 3 Associations of genetically predicted cardiorespiratory respiratory fitness and cancer risk. Associations were estimated using the
inverse variance weighted method. CI confidence interval, ER estrogen receptor, OR odds ratio.

Table 2. Genetic associations of cardiorespiratory respiratory fitness
and cancer risk after accounting for fat mass and height.

Cancer site OR per 5.0ml O2⋅min−1⋅kg−1

fat-free mass (95% CI)
P-value

Colorectal 1.03 (0.97, 1.10) 0.29

Colon 1.00 (0.94, 1.07) 0.94

Rectal 1.04 (0.96, 1.13) 0.31

Lung 0.90 (0.84, 0.96) 0.002

Never smokers 0.98 (0.82, 1.17) 0.83

Breast 0.98 (0.93, 1.03) 0.39

ER − 0.95 (0.89, 1.02) 0.14

ER + 0.97 (0.92, 1.03) 0.36

Endometrial 0.97 (0.89, 1.06) 0.24

Ovarian 1.00 (0.92, 1.08) 0.99

Prostate 1.01 (0.95, 1.08) 0.66

Aggressive 1.01 (0.93, 1.10) 0.80

Renal cell
carcinoma

0.86 (0.73, 1.01) 0.07

Pancreatic 1.04 (0.92, 1.17) 0.54

Risk estimates based on multivariable Mendelian randomisation. Risk
estimates p < 0.05 are in bold.
CI confidence interval, ER estrogen receptor, OR odds ratio.
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including via changes in body composition, may be an effective
strategy to reduce risk of some cancer sites.
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