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Abstract

Although existing few-shot learning works yield promis-
ing results for in-domain queries, they still suffer from weak
cross-domain generalization. Limited support data requires
effective knowledge transfer, but domain-shift makes this
harder. Towards this emerging challenge, researchers im-
proved adaptation by introducing task-specific parameters,
which are directly optimized and estimated for each task.
However, adding a fixed number of additional parameters
fails to consider the diverse domain shifts between target
tasks and the source domain, limiting efficacy. In this paper,
we first observe the dependence of task-specific parameter
configuration on the target task. Abundant task-specific pa-
rameters may over-fit, and insufficient task-specific param-
eters may result in under-adaptation – but the optimal task-
specific configuration varies for different test tasks. Based
on these findings, we propose the Task-aware Adaptive Net-
work (TA2-Net), which is trained by reinforcement learning
to adaptively estimate the optimal task-specific parameter
configuration for each test task. It learns, for example, that
tasks with significant domain-shift usually have a larger
need for task-specific parameters for adaptation. We eval-
uate our model on Meta-dataset. Empirical results show
that our model outperforms existing state-of-the-art meth-
ods. Our code is available at https://github.com/
PRIS-CV/TA2-Net.

1. Introduction
Traditional deep learning models [42, 36, 12, 17] show

excellent generalization performance when training on a
large number of labeled samples. However, both abundant
samples and reliable annotations are not always available in
realistic applications, e.g., rare disease diagnosis, and fine-
grained recognition. Few-shot learning [32, 33, 23, 4, 10],
inspired by the fact that humans can quickly learn new
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Figure 1. (a) and (b) reveal the accuracy of varying test tasks
when inference was performed in different models, in which TA-
Modules are attached to each layer in the backbone network. (c)
and (d) show the accuracy when TA-Modules are attached to dif-
ferent layers in the backbone network. Four dashed boxes show
the backbone and several TA-Modules.

knowledge, aims to adapt the model to new classes by only
a few labeled samples for each one.

Recently, meta-learning-based few-shot learning meth-
ods have made great strides in the setting where the train
and test tasks are sampled from the same domain [49, 22].
However, more and more studies have demonstrated that
these existing works fail to generalize well to novel classes
that are heterogeneous with the source domain [45, 9, 14].
This limitation is attributable to the fact that most previous
few-shot learning models focus solely on how to quickly
adapt to a set of novel classes with only a few labeled sam-
ples per class but less effort has been made to understand
and address the domain shift problem between the target
(test) task and training domain. Recently, to address this
problem, a series of research referred to as cross-domain
few-shot learning are proposed [45, 14, 35, 3, 7, 20, 26, 6].

Generally, these existing methods address the domain
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shift problem by introducing a set of task-specific param-
eters to enable the feature extractor or classifier to adapt to
the feature distributions of new tasks. According to the pa-
rameter generation method, these methods can be loosely
divided into the following two main streams. One kind of
approach is to use an auxiliary network [35, 3, 43] to gener-
ate task-specific parameters. The auxiliary network is first
meta-trained with multiple tasks from the source domain,
and then it utilizes the support set to estimate task-specific
parameters for the target task. Other methods [21] directly
attach a set of task-specific parameters to the pre-trained
model on the source domain and then optimize them on a
few labeled samples of the target task to well generalize
the knowledge to new classes. Although cross-domain few-
shot learning performance has improved, the fixed number
of task-specific parameters may be too rigid to account for
diverse tasks, resulting in less generality.

In this paper, from the perspective of parameter size, we
studied the performance of test tasks when inference was
performed in models equipped with varying sizes of task-
specific parameters. Specifically, following the trend of in-
troducing directly optimizing task-specific parameters [21],
we designed several Task-specific Adapters (TA-Modules)
with increasing parameters, which are respectively attached
to the conv of pre-trained backbone network (e.g., ResNet-
18) to construct cross-domain models. As shown in Fig-
ure 1, the optimal task-specific parameters policy varies de-
pending on the target task. More specifically, for differ-
ent test tasks, the optimal task-specific parameters required
in different layers of the backbone network for effectively
adapting pre-learned knowledge to the target task’s feature
distribution differ. Abundant task-specific parameters may
over-fit on target tasks, whereas few task-specific parame-
ters will show the under-adaptation problem. In order to
effectively direct the feature extractor to adapt feature distri-
butions, we must carefully design task-specific parameters
in each layer for the target task.

Motivated by the findings, for improving the recognition
performance of cross-domain few-shot learning, we pro-
pose the Task-aware Adaptive Network (TA2-Net) to learn
the optimal task-specific parameters policy for target tasks
adaptively. As shown in Figure 2, our TA2-Net model con-
sists of an Action Generation Network (“Agent”) trained
by Reinforcement Learning to generate “actions” – adap-
tive Task-specific Adapter execution decisions aimed at the
target task, and an Adapted Network built on the “actions”
to infer the target task, meanwhile, which can be viewed
as the “Environment” to provide a “reward” for the Ac-
tion Generation Network. The TA2-Net can learn optimally
adapted network graphs aimed at the target task to transfer
pre-learned knowledge efficiently.

In summary, our contributions are:
(i) We propose the Task-aware Adaptive Network (TA2-

Net), which can adaptively learn optimal task-specific pa-
rameters policy for each target task.

(ii) We evaluate our model on the Meta-dataset. Em-
pirical results show that our model obviously outperforms
existing state-of-the-art methods.

(iii) We further analyze parameter distribution and dis-
cover that domains with significant distribution shift (com-
pared with the source domain) usually have a larger demand
for task-specific parameters to effectively adapt pre-learned
knowledge. Furthermore, layers in deep blocks necessitate
more task-specific parameters than those in shallow blocks
for learning task-specific features.

2. Related Work
Cross-domain Few-shot Learning Existing cross-

domain few-shot learning methods can be coarsely grouped
into two categories: feature-selection-based methods and
adaptation-based methods.

Several feature-selection-based methods, including
SUR [7], URT [26], and URL [20], aim to achieve gen-
eralization by adaptively integrating feature representations
from multiple training domains. SUR [7] and URT [26]
rely on attention mechanisms to select appropriate domain-
specific representations for a given few-shot learning task.
While these methods have shown good performance, they
require multiple forward networks during inference time. In
contrast, Li et al. [20] proposed URL, an efficient method
that distills knowledge from multiple domain networks to
a single feature extractor. However, supervised training of
multiple domains can result in supervision collapse, leading
to the loss of information required for transfer to new tasks
or domains. To address this issue, Doersch et al. [6] pro-
posed using self-supervised learning to encourage the learn-
ing of general features from multiple training domains.

The goal of adaptation-based methods is to adapt a fea-
ture extractor and classifier learned from a source domain to
a target task through task-specific parameters. CNAPS [35]
employed an adaptation network to generate task-specific
parameters for each hidden layer of the feature extractor
and classifier to transfer knowledge. Simple CNAPS [3]
improved upon this approach by replacing the parametric
classifier with a Mahalanobis distance-based distance met-
ric, which increased classification accuracy while reducing
the number of parameters. Triantafillou et al.[43] proposed
the FLUTE, which learns domain-specific parameters using
FiLM layers called universal templates. Li et al.[21] have
demonstrated that attaching task-specific weights to a pre-
trained model and optimizing them from scratch directly on
a small support set can enable good generalization to the tar-
get task. However, the shifts of feature distribution between
different target tasks and the pre-learned domain vary, lead-
ing to the change of task-specific parameters demand. In
this paper, we focus on adaptively generating task-specific
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Figure 2. Task-aware Adaptive Network (TA2-Net). The “Agent” is the Action Generation Network, which predicts the “action” of Task-
specific Adapter execution and interacts with the “Environment” (Env, the Adapted Network) providing the “reward” for the Agent. “none”
represent that the model does not need the Task-specific Adapter to adapt feature.

graphs for each target task, to adapt the prior knowledge to
the target task well.

Reinforcement Learning Reinforcement learning [1, 8]
is primarily used to solve the sequence decision problem, in
which the reward value obtained from agent-environment
interaction is used as a feedback signal to continuously op-
timize agent strategies. There are three main approaches
to solving Reinforcement Learning (RL) problems: meth-
ods based on value functions [30, 46, 48], methods based
on policy search [41, 40], and the actor-critic approach [15,
39]. The deep reinforcement learning algorithm based on
value functions approximates the value function or action-
value function with a deep neural network and updates it
with the temporal difference (TD) learning or Q-learning
method. Among them, Deep Q-Network (DQN) [30] al-
gorithm is representative. Furthermore, a series of variants
have been proposed, including double DQN (DDQN) [46],
which optimizes the problem of overestimation about Q
value in the DQN algorithm, and Dueling DQN [48], which
improves DQN from the network structure and can estimate
Q function more accurately. Policy-based methods [41, 40]
directly search for an optimal policy without maintaining
a value function model. Parameters of the chosen pol-
icy are updated using either gradient-based or gradient-free
optimization to maximize the expected return. The actor-
critic approach [15] employs both value functions and pol-
icy search to trade-off the variance reduction of policy gra-
dients and bias introduction from value function methods,
in which the “actor” (policy) learns by using feedback from
the “critic” (value function) [1]. In this paper, we em-
ploy policy-gradient-based Reinforcement Learning to train

the Action Generation Network to adaptively generate opti-
mal actions – Task-specific Adapter execution decisions for
each target task.

3. Method
In this section, we describe the problem setting and in-

troduce our method.

3.1. Preliminary

Few-shot task Few-shot learning classification aims to
classify a large number of samples with only a small number
of labeled ones in each class. Labeled samples are generally
referred to as the support set S = {(xi, yi)}NS

i=1, while clas-
sified ones are known as the query set Q = {(xi)}

NQ

i=1. yi
is the label of the sample xi. A few-shot task is created by
combining the support and query sets.

Cross-domain few-shot learning Compared with tradi-
tional few-shot learning, cross-domain few-shot learning is
more challenging, since not only the labeled samples in the
target task Dt are few, but also the distribution of the target
domain and the base domain Db may be highly heteroge-
neous. Therefore, we must strike a balance between model
capacity and the reliability of the adaptation while avoiding
over-fitting to the few labeled samples or under-adaptation
for the target task.

3.2. Task-aware Adaptive Network (TA2-Net)

Inspired by the observations that varying tasks require
variant task-specific parameters for effective adaptation,
we design the TA2-Net adaptively learning the optimally
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adapted network graph for each target task. As shown in
Figure 2, the TA2-Net consists of Action Generation Net-
work and Adapted Network. To directly optimize the Ac-
tion Generation Network to generate optimal task-specific
parameters for the Adapted Network, we cast the model in
Reinforcement Learning. In particular, Action Generation
Network can be viewed as an “Agent” that interacts with
the ‘Environment” (Adapted Network). The Action Gener-
ation Network will result in the “actions” that are the predic-
tion of Task-specific Adapter execution for the target task.
Based on the generated “actions”, we can build the unique
Adapted Network, which will provide a “reward” for the
agent – we denote this reward by r. We will introduce the
Action Generation Network, Adapted Network, and their
optimization process.

3.2.1 Action Generation Network

Our focus in the Action Generation Network is to generate
adaptive Task-specific Adapter execution decisions for each
layer of the Adapted Network aimed at the target task. As
shown in Figure 2, the Gate Network is integrated into each
layer of the feature encoder fϕ(·) pre-trained by the seen
domain to generate the discrete probability for K kinds of
Task-specific Adapters. Concretely, the discrete probability
in l-th layer can be formulated as

{
zil
}K
i=1

. Let hl−1 ∈
RNS×C×W×H denotes the the input feature of l-th feature
encoder. In the Gate Network, the input feature is first fed to
the Global Average Pooling (GAP) to compress the spatial
dimension. Formally, the output ul−1 can be achieved as

ul−1 = GAP (hl−1) , (1)

where ul−1 can be written as ul−1 =[
u1
l−1,u

2
l−1, · · · ,u

NS

l−1

]
. ui

l−1 represents the channel-
level feature embedding of support sample i and
ui
l−1 ∈ RC . Then, let vl−1 =

[
v1
l−1,v

2
l−1, · · · ,vN

l−1

]
denotes the class prototypes in the target task, where vn

l−1

refers to the class center of class n and N denotes the
number of classes in the target task. Formally, the class
center for class n can be obtained by computing the mean
vector of all embedded features in the class as

vn
l−1 =

1

|Sn|
∑
i∈Sn

ui
l−1, (2)

where Sn denotes the set of examples labeled with class n.
The output vl−1 is a collection of all class descriptors with
statistics that express the entire target task. To capture the
dependencies between features, we add a simple non-linear
function of two fully-connected layers coupled with a ReLU
activation function. The output of this operation is a vector
containing unnormalized scores for executing the K kinds

of Task-specific Adapters.

z̄l = W2
l σ

(
W1

l vl−1

)
, (3)

where z̄l ∈ RK . σ refers to the ReLU activation function.
W1

l ∈ Rd×C , W2
l ∈ RK×d and d is the dimension of the

hidden layer. We can write z̄l as z̄l =
[
z̄1l , z̄

2
l , · · · , z̄Kl

]
.

Then, the Gate outputs a distribution over the l-th Task-
specific Adapter execution decisions zl using the Softmax
function

zl = softmax(z̄l), (4)

where zl =
[
z1l , z

2
l , · · · , zKl

]
. zkl denotes the possibility of

selecting k-th Task-specific Adapter in the l-th layer. And
z = [z1, z2, · · · , zL], L is the number of layers in the
backbone.

Training The generation of Task-specific Adapter ex-
ecution decisions is cast as the Reinforcement Learning
problem. The Action Generation Network aims to decide
the most appropriate Task-specific Adapters for conduct-
ing few-shot learning on the current tasks. We utilize the
predicted result of the Adapted Network constructed based
on the current “actions” as the rewards for optimizing the
Action Generation Network. Inspired by the self-critical
sequence training approach [34], the goal of training is to
minimize the negative expected reward

L(θ) = −(r(zs)− r(zm)) log(zs), (5)

where θ is the parameters of the Gate Network. θ ={
W1

l ,W
2
l

}
and l ∈ {1, 2, · · · , L}. zs = [zs1, ..., z

s
L] and

zsl is the possibility of action randomly sampled from the
K actions – Task-specific Adapters, at the layer l. r(zs)
is the reward obtained by the Adapted Network, which
is constructed by the actions with zs discrete possibility.
zm = [zm1 , ..., z

m
L ], and

zml = argmax (zl). (6)

where argmax(·) returns the possibility of action equipped
with maximum probability over the output distribution zl of
the Gate in l-th layer. r(zm) again is the reference reward
obtained in Adapted Network equipped with actions with
zm discrete possibility. Accordingly, TA modules from the
model that return a higher reward than zm will be “pushed
up”, or increased in probability, while TA modules that re-
sult in a lower reward will be suppressed.

3.2.2 Adapted Network

As shown in Figure 2, the network architecture of the
Adapted Network consists of a series of residual blocks,
which are formed by the Adaptive Module (AM) followed
by the BN layer and ReLU function. In the Adaptive Mod-
ule, a 3×3 conv is paralleled with the Task-specific Adapter,
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Algorithm 1 Task-aware Adaptive Learning
1: Train the backbone network fϕ(·) on the source do-

main;
2: Build Action Generation Network Mact on the back-

bone network; Initialization the parameters θ of Gate
Networks;

3: while training do
4: Random sample task Ti in the source domain; Ti =

S
⋃
Q, S = {(xi, yi)}NS

i=1, Q = {(xi)}
NQ

i=1;
5: z = fϕ,θ (x), x ∈ S, z = [z1, z2, · · · , zL];
6: zs = [Sample(z1), · · · , Sample(zL)]; zm =

[argmax(z1), · · · , argmax(zL)];
7: Build Adapted Network M1

adapt, M
2
adapt based on

the backbone network according to actions zs, zm

respectively;
8: Initialization ψ, π in M1

adapt and M2
adapt;

9: Optimize ψ, π over S based on Ladapt(ψ, π) =
1
NS

∑
(x,y)∈S l(fϕ,ψ,π(x), y);

10: Predict over Q; r(zs) = N1
adapt/NQ, r(zm) =

N2
adapt/NQ ;

11: Optimize the parameters θ of Mact based on L(θ) =
−(r(zs)− r(zm)) log(zs);

12: end while
Output: Action Generation Network Mact

which is the action predicted by the corresponding Gate
Network of the Action Generation Network.

Let fϕl
(·) denote the 3 × 3 conv in the l-th Adaptive

Module, which is pre-trained by the seen domain. With
hl−1 ∈ RNS×C×W×H as the input feature of l-th Adap-
tive Module, the output is hl = fϕl

(hl−1) when no Task-
specific Adapter is selected according to the decision gen-
erated by the Action Generation Network, that is the fea-
ture does not need adaptation. When the k-th Task-specific
Adapter is chosen, which is constructed by paralleling k
task-specific layers in our design, the feature learned by the
Task-specific Adapter will be combined with the feature ex-
tracted from the 3× 3 conv as

hl = fϕl
(hl−1) +

1

k

k∑
i=1

fψi
l
(hl−1) , (7)

where fψi
l
(·) denotes the i-th task-specific layer in the Task-

specific Adapter, which is 1× 1 conv in the experiments.
Training Upon the generated “actions” with the dis-

crete possibility zs and zm in the Action Generation Net-
work, we will construct two Adapted Networks M1

adapt and
M2
adapt. In training, the Adapted Networks are trained with

the cross-entropy loss over the support samples:

Ladapt(ψ, π) =
1

NS

∑
(x,y)∈S

l(fϕ,ψ,π(x), y), (8)

where fψ,π(·) denotes the output softmax probability vector
of the linear classifier with parameters π, in which dimen-
sionality equals the number of categories in the support set
S. Then, the reward for the agent is achieved by predicting
the Adapted Network over the query samples Q:

r(zs) =
N1
adapt

NQ
and r(zm) =

N2
adapt

NQ
. (9)

where N1
adapt and N2

adapt denote the number of query sam-
ples correctly predicted by Adapted Networks M1

adapt and
M2
adapt respectively. We show the Task-aware Adaptive

Learning pseudo code in Algorithm 1.

3.2.3 Testing

Note that the support samples of testing will first go through
the Action Generation Network to generate optimal Task-
specific Adapter executions for the target task, which are
the action with maximum probability. And then, based on
the executions, the Adapted Network will be built and fine-
tuned over the support set. Finally, the query samples will
be predicted by the Adapted Network.

4. Experiments
In this part, we first introduce the experimental setup and

then compare our method with the state-of-the-art methods.
Furthermore, we provide a series of analyses of our method.

4.1. Experimental setup

Dataset. Meta-Dataset [44] is the standard bench-
mark for evaluating the performance of few-shot clas-
sification. It consists of 13 image datasets: ILSVRC
2012 [36], Omniglot [18], FGVC-Aircraft [29], CUB-200-
2011 [47], Describable Textures [5], Quick Draw [11],
FGVCx Fungi [38], VGG Flower [31], Traffic Signs [13],
MSCOCO [24], MNIST [19], CIFAR-10 [16], and CIFAR-
100 [16]. For all datasets in the experiments, we used the
standard split procedure as [44].

Implementation details. In the experiments, we con-
sidered two training settings: multi-domain learning and
single-domain setting. In the multi-domain setting, the first
eight datasets (ILSVRC 2012, Omniglot, Aircraft, CUB-
200-2011, Textures, Quick Draw, Fungi, and VGG Flower)
of the Meta-dataset are used to train the feature extractor.
We followed the method in [20] to obtain the pre-trained
model. And in the single-domain setting, only the ILSVRC
2012 dataset participated in the training of the feature ex-
tractor. As in [20], we adopted the ResNet-18 as the back-
bone no matter in the multi-domain setting or the single-
domain setting. In the training, the TA2-Net is trained using
the Adam optimizer. The hyper-parameters K are set as
K = 3. We also provide the ablation study in Section 4.4.
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Table 1. Comparison to state-of-the-art methods in the multi-domain setting. Mean accuracy, 95% confidence interval are reported. The
best results are marked in bold.

Test Dataset CNAPS [35]
Simple

CNAPS [3]

Transductive

CNAPS [2]
SUR [7] URT [26] FLUTE [43] tri-M [27] URL [20] TSA [21] Ours

ImageNet 50.8± 1.1 58.4± 1.1 57.9± 1.1 56.2± 1.0 56.8± 1.1 58.6± 1.0 51.8± 1.1 58.8± 1.1 59.5± 1.0 59.6± 1.0

Omniglot 91.7± 0.5 91.6± 0.6 94.3± 0.4 94.1± 0.4 94.2± 0.4 92.0± 0.6 93.2± 0.5 94.5± 0.4 94.9± 0.4 95.5± 0.4

Aircraft 83.7± 0.6 82.0± 0.7 84.7± 0.5 85.5± 0.5 85.8± 0.5 82.8± 0.7 87.2± 0.5 89.4± 0.4 89.9± 0.4 90.5± 0.4

Birds 73.6± 0.9 74.8± 0.9 78.8± 0.7 71.0± 1.0 76.2± 0.8 75.3± 0.8 79.2± 0.8 80.7± 0.8 81.1± 0.8 81.4± 0.8

Textures 59.5± 0.7 68.8± 0.9 66.2± 0.8 71.0± 0.8 71.6± 0.7 71.2± 0.8 68.8± 0.8 77.2± 0.7 77.5± 0.7 77.4± 0.7

Quick Draw 74.7± 0.8 76.5± 0.8 77.9± 0.6 81.8± 0.6 82.4± 0.6 77.3± 0.7 79.5± 0.7 82.5± 0.6 81.7± 0.6 82.5± 0.6

Fungi 50.2± 1.1 46.6± 1.0 48.9± 1.2 64.3± 0.9 64.0± 1.0 48.5± 1.0 58.1± 1.1 68.1± 0.9 66.3± 0.8 66.3± 0.9

VGG Flower 88.9± 0.5 90.5± 0.5 92.3± 0.4 82.9± 0.8 87.9± 0.6 90.5± 0.5 91.6± 0.6 92.0± 0.5 92.2± 0.5 92.6± 0.4

Traffic Sign 56.5± 1.1 57.2± 1.0 59.7± 1.1 51.0± 1.1 48.2± 1.1 63.0± 1.0 58.4± 1.1 63.3± 1.1 82.8± 1.0 87.4± 0.8

MSCOCO 39.4± 1.0 48.9± 1.1 42.5± 1.1 52.0± 1.1 51.5± 1.1 52.8± 1.1 50.0± 1.0 57.3± 1.0 57.6± 1.0 57.9± 0.9

MNIST − 94.6± 0.4 94.7± 0.3 94.3± 0.4 90.6± 0.5 96.2± 0.3 95.6± 0.5 94.7± 0.4 96.7± 0.4 97.0± 0.4

CIFAR-10 − 74.9± 0.7 73.6± 0.7 66.5± 0.9 67.0± 0.8 75.4± 0.8 78.6± 0.7 74.2± 0.8 82.9± 0.7 82.1± 0.8

CIFAR-100 − 61.3± 1.1 61.8± 1.0 56.9± 1.1 57.3± 1.0 62.0± 1.0 67.1± 1.0 63.5± 1.0 70.4± 0.9 70.9± 0.9

Average Seen 71.6 73.7 75.1 75.9 77.4 74.5 76.2 80.4 80.4 80.7

Average Unseen − 67.4 66.5 64.1 62.9 69.9 69.9 70.6 78.1 79.1

Average All − 71.2 71.8 71.4 71.8 72.7 73.8 76.6 79.5 80.1

Average Rank − 7.6 6.2 7.2 6.5 5.8 5.5 3.2 2.2 1.2

4.2. Comparison to state-of-the-art methods

Following the experiment set in [21], we sampled tasks
with varying numbers of ways and shots in the inference
and conducted experiments in the multi-domain setting and
single-domain setting.

Multi-domain setting. Here, the results of our method
on 13 datasets of the Meta-Dataset are compared with the
state-of-the-art methods. We also report average accuracy
over seen domains, and unseen domains, as well as the aver-
age rank as in [21]. From the results in Table 1, our method
obtains state-of-the-art results on 10 out of 13 datasets and
achieves the best average accuracy on seen and unseen do-
mains. It is worth noting that our method obtains signifi-
cantly better average results than the second-best approach
on the unseen datasets (+1.0%). The unseen datasets are
heterogeneous with respect to the training domain, with a
significant domain gap between them. In contrast to adopt-
ing the fixed number of task-specific parameters for all
target tasks, e.g. CNAPS, Simple CNAPS, FLUTE, and
TSA, the TA2-Net can adaptively learn the optimal task-
specific parameter policies for unseen target tasks to effi-
ciently transfer the pre-trained knowledge to the target fea-
ture distribution.

Single-domain setting. We also evaluate our method in
the single-domain setting, which is more challenging due
to optimizing the Action Generation Network only on the
ImageNet dataset. Results are shown in Table 2. First,
compared with other single-domain training methods, our

method achieves significant superiority. For example, TA2-
Net outperforms the most competing method (TSA [21])
by +2.9%, +0.8%, +1.6%, and +1% on Omniglot, Quick
Draw, Traffic Signs and MNIST, respectively. Second, it
is worth noting that, for the average accuracy on the un-
seen datasets, ours outperforms the second-best approach
with a clear margin (+3.1%). And we clearly observe that
TA2-Net achieves competitive accuracy on the ImageNet,
compared with the best performance. Despite being trained
on just one dataset, the Action Generation Network exhibits
good generalization, producing the optimal task-specific pa-
rameter policies for the unseen domain in an excellently
adaptive manner.

4.3. Further Analysis

Varying-way Five-shot setting. The number of support
samples (‘shot’) in the standard Meta-Dataset evaluation
setting is variable and can range up to 100. In this section,
we evaluate our method in the 5-shot setting which is more
challenging due to fewer labeled samples and can better re-
flect the progressiveness of the model. Table 3 shows the re-
sults compared with other state-of-the-art methods. As can
be seen, ours achieves better average accuracy on both seen
and unseen domains. More specifically, our method outper-
forms other methods on the vast majority of domains (8 out
of 13) and obtains the best average rank. Furthermore, the
average accuracy on unseen datasets is 1.2% higher than the
second-best method.
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Table 2. Comparison to state-of-the-art methods in the single-domain set-
ting. Mean accuracy, 95% confidence interval are reported. The best results
are marked in bold.

Test Dataset ProtoNet [44]
fo-Proto

-MAML [44]

ALFA+fo-Proto

-MAML [44]
BOHB [37] FLUTE [43] TSA [21] Ours

ImageNet 50.5± 1.1 49.5± 1.1 52.8± 1.1 51.9± 1.1 46.9± 1.1 59.5± 1.1 59.3± 1.1

Omniglot 60.0± 1.4 63.4± 1.3 61.9± 1.5 67.6± 1.2 61.6± 1.4 78.2± 1.2 81.1± 1.1

Aircraft 53.1± 1.0 56.0± 1.0 63.4± 1.1 54.1± 0.9 48.5± 1.0 72.2± 1.0 72.6± 0.9

Birds 68.8± 1.0 68.7± 1.0 69.8± 1.1 70.7± 0.9 47.9± 1.0 74.9± 0.9 75.1± 0.9

Textures 66.6± 0.8 66.5± 0.8 70.8± 0.9 68.3± 0.8 63.8± 0.8 77.3± 0.7 76.8± 0.8

Quick Draw 49.0± 1.1 51.5± 1.0 59.2± 1.2 50.3± 1.0 57.5± 1.0 67.6± 0.9 68.4± 0.9

Fungi 39.7± 1.1 40.0± 1.1 41.5± 1.2 41.4± 1.1 31.8± 1.0 44.7± 1.0 45.3± 1.0

VGG Flower 85.3± 0.8 87.2± 0.7 86.0± 0.8 87.3± 0.6 80.1± 0.9 90.9± 0.6 91.0± 0.6

Traffic Sign 47.1± 1.1 48.8± 1.1 60.8± 1.3 51.8± 1.0 46.5± 1.1 82.5± 0.8 84.1± 0.7

MSCOCO 41.0± 1.1 43.7± 1.1 48.1± 1.1 48.0± 1.0 41.4± 1.0 59.0± 1.0 58.0± 1.0

MNIST − − − − 80.8± 0.8 93.9± 0.6 94.9± 0.5

CIFAR-10 − − − − 65.4± 0.8 82.1± 0.7 82.0± 0.7

CIFAR-100 − − − − 52.7± 1.1 70.7± 0.9 70.8± 0.9

Average Seen 50.5 49.5 52.8 51.9 46.9 59.5 59.3

Average Unseen 56.7 58.4 62.4 60.0 53.2 71.9 75.0

Average All 56.1 57.5 61.4 59.2 52.6 70.7 73.8

Average Rank 5.9 5.2 3.4 4.1 5.6 1.7 1.3

Table 3. Results for Varying-Way Five-Shot setting. Mean
accuracy, 95% confidence interval are reported. The best re-
sults are marked in bold.

Test Dataset
Simple

CNAPS [3]
SUR [7] URT [26] URL [20] TSA [21] Ours

ImageNet 47.2± 1.0 46.7± 1.0 48.6± 1.0 49.4± 1.0 48.3± 1.0 49.3± 1.0

Omniglot 95.1± 0.3 95.8± 0.3 96.0± 0.3 96.0± 0.3 96.8± 0.3 96.6± 0.2

Aircraft 74.6± 0.6 82.1± 0.6 81.2± 0.6 84.8± 0.5 85.5± 0.5 85.9± 0.4

Birds 69.6± 0.7 62.8± 0.9 71.2± 0.7 76.0± 0.6 76.6± 0.6 77.3± 0.6

Textures 57.5± 0.7 60.2± 0.7 65.2± 0.7 69.1± 0.6 68.3± 0.7 68.3± 0.6

Quick Draw 70.9± 0.6 79.0± 0.5 79.2± 0.5 78.2± 0.5 77.9± 0.6 78.5± 0.5

Fungi 50.3± 1.0 66.5± 0.8 66.9± 0.9 70.0± 0.8 70.4± 0.8 70.3± 0.8

VGG Flower 86.5± 0.4 76.9± 0.6 82.4± 0.5 89.3± 0.4 89.5± 0.4 90.0± 0.4

Traffic Sign 55.2± 0.8 44.9± 0.9 45.1± 0.9 57.5± 0.8 72.3± 0.6 76.7± 0.5

MSCOCO 49.2± 0.8 48.1± 0.9 52.3± 0.9 56.1± 0.8 56.0± 0.8 56.0± 0.8

MNIST 88.9± 0.4 90.1± 0.4 86.5± 0.5 89.7± 0.4 92.5± 0.4 93.3± 0.3

CIFAR-10 66.1± 0.7 50.3± 1.0 61.4± 0.7 66.0± 0.7 72.0± 0.7 73.1± 0.7

CIFAR-100 53.8± 0.9 46.4± 0.9 52.5± 0.9 57.0± 0.9 64.1± 0.8 64.1± 0.8

Average Seen 69.0 71.2 73.8 76.6 76.7 77.0

Average Unseen 62.6 56.0 59.6 65.2 71.4 72.6

Average All 66.5 65.4 68.3 72.2 74.6 75.3

Average Rank 5.2 5 4.1 2.8 2.2 1.5

   Deeper
   Wider (Ours)

CIFAR-10

CIFAR-100

ImageNet

OmniglotAircraft

Birds

Textures

Quick Draw

Fungi

VGG FlowerTraffic Sign

MSCOCO

MNIST

40%

60%

90%
100%

Figure 3. Performance of widening or deepening the Task-specific
Adapter (TA) in the multi-domain setting. The axes indicate the
accuracy of methods on a particular dataset. Each color corre-
sponds to a different method.

Wider or deeper in the Task-specific Adapter (TA)?
To explore the method for improving the adaptation of
the model, we increase the parameters of the Task-specific
Adapter (TA) in wide or depth respectively. Specifically,
two types of TAs are designed: (a) 1 × 1 Conv in parallel,
(b) 1×1 Conv in series. As shown in Figure 3, increasing the
width of the TA allows the model to achieve better perfor-
mance than deepening. In particular, among the 13 datasets,
5 datasets (Traffic Signs, MSCOCO, MNIST, CIFAR-10,
and CIFAR-100) unseen in the training obviously benefited
more from widening the Task-specific Adapter (TA). All of
the above indicates that the best way to improve adaptability
is to increase the width of the Task-specific Adapter (TA).

Effectiveness of adaptive learning. In this section, we
attempt to provide a more in-depth discussion of the ef-
ficacy of fixed networks as well as the proposed adaptive
learned network. Figure 4 depicts the performance over the
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Figure 4. Effectiveness of adaptive learning.

Meta-dataset in the multi-domain and single-domain set-
ting, with Model-1/2/3 constructed by attaching Module-
1/2/3 respectively as shown in Figure 1 to the backbone. It
can be observed that, in comparison to the backbone net-
work, the average accuracy of seen domains in both the
multi-domain and single-domain settings decreased when
using the fixed Task-specific Adapter to adaptation, but our
method performed better. Furthermore, average accuracy
on unseen domains has consistently improved overall in the
fixed Task-specific Adapter and can be improved further
through adaptive learning. This discovery inspires us to rec-
ognize that simply designing a fixed Task-specific Adapter
does not work and forces us to recognize the necessity of
adaptively learning optimal task-specific parameters policy
for each target task.

Effectiveness of Reinforcement Learning. Our TA2-
Net model adopts the Reinforcement Learning algorithm
combined with Episodic Training to adaptively learn opti-
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Figure 5. (a): The Line chart shows the mean and standard deviation of TA parameters adaptively learned by the TA2-Net in target tasks
sampled in different datasets. And the box plot shows the 25% quantiles of the MMD in different datasets while the notches indicate the
median. (b) and (c): TA parameters distribution in different blocks of the task-aware adapted network for the Fungi and CIFAR-10 dataset.
Sub-bars in the block denote different layers within the Block.

mal task-specific parameters policy for target tasks. To ex-
plore the effectiveness of Reinforcement Learning, we de-
signed the Simple TA2-Net trained by Episodic Training,
which only includes the Adapted Network attaching a Gate
Network in each layer for generating “decisions” – Cho-
sen the Task-specific Adapter. As shown in Table 4, the
TA2-Net optimized with the Reinforcement Learning out-
performs the Simple TA2-Net, which shows that Reinforce-
ment Learning can better learn the TA decisions for target
tasks.

Parameters distribution. This is an intuitive guess that
the greater the difference (domain shift) between the source
domain and the target domain features, the greater the de-
mand for TA parameters. In this section, we first observe
the relationship between the TA parameters and the domain
shift. As widely used in previous works [28, 25], we adopt
the Maximum Mean Discrepancy (MMD) to quantify the
domain shift between the target task features and the source
domain features extracted by the pre-trained backbone (in
the multi-domain setting). The larger MMD indicates a
larger domain shift between the test task and the source do-
main. As shown in Figure 5 (a), the Line chart and box
plot shows the TA parameters and MMD distribution in dif-
ferent datasets, respectively. We can find that MMD for
each dataset has a narrow distribution. And, on the whole,
datasets with significant MMD have a larger demand for the
TA parameters. Furthermore, linear regression and Pearson
correlation analysis revealed that MMD is positively cor-
related with TA parameters, with the Pearson correlation
coefficient R = 0.9186. It is attributed to the greater het-
erogeneity, more task-specific parameters are required to ef-
fectively adapt pre-learned knowledge to the feature distri-
bution of target tasks. We further explore the TA parame-
ters distribution in different layers of the task-aware adapted
network learned by our proposed TA2-Net. As shown in
Figure 5 (b) and (c), layers in the deep blocks have more
task-specific parameters for learning the task-specific fea-

Table 4. Effectiveness of Reinforcement Learning in the multi-
domain setting.

Model
Reinforcement

Learning
Seen

Domain
Unseen
Domain

All

Simple TA2-Net % 75.5 67.9 72.6

TA2-Net " 77.0 72.6 75.3

Table 5. Mean accuracy (%) for different number of layers K in
the Task-specific Adapter.

K = 1 K = 2 K = 3 K = 4

Seen Domain 75.4 75.2 75.3 75.1

Unseen Domain 66.6 70.3 70.5 68.2

All 72.0 73.3 73.5 72.5

tures than those in the shallow blocks as demonstrated by
both Fungi and CIFAR-10, which may be because the shal-
low layer contains more general information while the deep
layer contains more domain-specific information [50].

4.4. Ablation Study

Maximum width K of the Task-specific Adapter.
Here, we discuss the maximum width K of the Task-
specific Adapter, which represents the upper bound of the
task-specific parameters. Experiments are conducted on the
Meta-dataset in the varying-way five-shot setting. Table 5
shows the performances of K ∈ [1, 2, 3, 4]. We can observe
that, as K increases, the average classification accuracy on
seen domains lightly decreases. For unseen domains, the
average classification accuracy increases at first and then
decreases as K increases, with K = 3 producing the best
results. Compared with seen domains, unseen domains are
heterogeneous with the source domain and require more
task-specific parameters to transfer the pre-learned knowl-
edge. The average performance becomes poorer when us-
ing K = 4, which may be due to too much TA, the model
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overfitting, or the search space of the model structure ex-
panding, increasing the optimization difficulty of reinforce-
ment learning. Considering the performance of various tar-
get tasks and the calculating costs, all experiments in this
paper adopt K = 3.

5. Conclusion
In this paper, for studying cross-domain few-shot learn-

ing problems, we explored the performance of test tasks
when inference was performed in models equipped with
a variant number of task-specific parameters. The explo-
ration revealed that target tasks require variant task-specific
parameters for outstanding adaptation. Motivated by this,
we proposed a Task-aware Adaptive Network (TA2-Net),
which can adaptively learn optimal task-specific parameters
policy for each target task for exhaustively improving the
recognition performance of cross-domain few-shot learn-
ing. By conducting extensive experiments, we proved that
our TA2-Net could achieve the best results on Meta-dataset.
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