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Figure 1: We explore the task of discovering novel categories over time. Here we illustrate visual differences between the
same categories across different continents, where the continent colors represent four different incremental learning stages
from our new iNatIGCD dataset. Each box contains two instances of the same category, where the images are from different
geographical locations. We can see that the background and appearance can change dramatically across different locations.

Abstract

We explore the problem of Incremental Generalized Cat-
egory Discovery (IGCD). This is a challenging category-
incremental learning setting where the goal is to develop
models that can correctly categorize images from previ-
ously seen categories, in addition to discovering novel ones.
Learning is performed over a series of time steps where the
model obtains new labeled and unlabeled data, and dis-
cards old data, at each iteration. The difficulty of the prob-
lem is compounded in our generalized setting as the un-
labeled data can contain images from categories that may
or may not have been observed before. We present a new
method for IGCD which combines non-parametric catego-
rization with efficient image sampling to mitigate catas-
trophic forgetting. To quantify performance, we propose a
new benchmark dataset named iNatIGCD that is motivated
by a real-world fine-grained visual categorization task. In
our experiments we outperform existing related methods.

1. Introduction

The wealth and complexity of visual information poten-
tially observable by artificial systems deployed in the real
world vastly exceeds the comparative simplicity of our care-
fully curated benchmark vision datasets. To operate safely
and reliably in challenging environments, these systems
need to be able to correctly recognize previously learned
concepts, not confuse these known concepts with novel
ones, and be able to differentiate novel concepts so that
they can be grouped and efficiently learned. As humans,
we excel at this type of flexible learning in such dynamic
settings [1, 34], and it is clear that we need to endow our
artificial systems with similar desirable abilities.

In the context of visual categorization, there is a rich
body of work that has moved beyond the traditional su-
pervised setting into more open-ended learning paradigms.
For example, in semi-supervised learning, in addition to la-
beled data, during training we also have access to unlabeled
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Figure 2: Overview of our incremental generalized cate-
gory discovery setting. At each time step the model has ac-
cess to labeled and unlabeled data and must simultaneously
classify existing categories and discover new ones. As time
progress, all previous data is no longer directly available.

data depicting the same categories [65]. Other work has
attempted to address more complex settings such as deter-
mining if an image contains a previously observed, or in-
stead a novel category (i.e. open-set recognition) [51], or
learning to group images from novel categories (i.e. novel
category discovery) [20, 55]. Recently, a more realistic and
challenging setting termed Generalized Category Discovery
(GCD) has been proposed [9, 57]. Here, unlabeled images
can be from either previously seen or from novel categories
and the task is to develop a model that can both classify the
previously seen categories and also discover novel ones.

In this work, we go one step further by exploring
the generalized setting along the temporal, i.e. category-
incremental, dimension [54, 45]. We refer to this
as Incremental Generalized Category Discovery (IGCD).
Here, learning progress over a series of stages (representing
time steps), where at each stage we acquire a new set of un-
labeled data that contains images from categories that may,
or may not, have been previously observed (see Fig. 2). At
each stage, the goal when updating the model is to maintain
performance on the previously observed categories, while
also discovering novel ones. This must be achieved under
the constraint that at each new stage the labeled data from
earlier stages is no longer available for training.

A small number of recent works have started to investi-
gate category discovery in the context of incremental learn-
ing. For example, when only novel categories are present at
each subsequent stage in the case of [48, 27, 37] or in the
generalized setting in [62] where the unlabeled data at each
each stage contains both old and novel categories. How-
ever, in contrast to [62], in our IGCD setting we do not
make the simplifying assumption that the unlabeled data
at each stage contains all the categories from the previous
stages. More realistically, unlabeled data is not guaranteed
to contain all previously seen categories which makes the
task even harder for the incremental learner. We show that
combining a state-of-the-art GCD method with incremen-
tal learning techniques can work, but results in forgetting as
time progresses. We address these issues via a novel IGCD

method that combines a non-parametric classifier with a
density-based sampling mechanism that efficiently enables
the selection of informative examples for both classification
and past memorization.

Benchmarking in the incremental discovery setting to
date has largely been restricted to artificial category-based
splits of conventional image categorization datasets [32, 59,
31, 39]. To encourage future progress on IGCD, we also
present a new dataset called iNatIGCD. iNatIGCD more
faithfully simulates a real-world fine-grained incremental
learning setting. It is motivated by a real-world visual cate-
gorization use-case whereby the categories present at differ-
ent stages are selected using spatio-temporal metadata from
the community science platform iNaturalist [26]. As a re-
sult, iNatIGCD naturally includes challenges such as ap-
pearance shifts, in addition to both fine and coarse-grained
differences between old and novel categories present in im-
ages sourced from different geographical regions.

In summary, we present the following contributions:
(i) A new approach for IGCD that combines non-
parametric classification with efficient incremental learning
via density-based support set selection. (ii) iNatIGCD, a
new in-the-wild dataset for benchmarking IGCD that fea-
tures a multi-stage training split motivated by a real-world
fine-grained visual categorization use-case. (iii) A thorough
evaluation on IGCD where we outperform recent methods.

2. Related Work
Here we review existing work in semi-supervised learn-

ing and both standard and incremental category discovery.
Semi-Supervised Learning. Conventional semi-
supervised learning assumes that we have access to both
labeled and unlabeled data at training time [65, 11, 44].
Many works have been proposed to tackle this task
using pseudo-labeling [46], consistency regulariza-
tion [6, 53, 52, 33], density-based label propagation [35], or
non-parametric categorization [3]. It is typically assumed
that the unlabeled data contains instances from the same
categories that are present in the labeled set. Recent works
have extended semi-supervised learning by removing the
assumption that the categories in the unlabeled and labeled
sets are the same [50, 25, 61], but their focus is still on
the performance on the labeled categories and they do not
evaluate the clustering accuracy on the novel categories in
the unlabeled set.
Open-set and Open-world recognition. Open-set recog-
nition considers the case where novel classes can appear
during testing, and the model needs to reject those novel
classes [51, 18, 5]. Thus open-set recognition method
cannot be directly used for category discovery as them
only rejects the novel categories. Similarly, open-world
recognition methods deal with the novel categories by in-
crementally soliciting human labels for the novel cate-



gories [4, 7, 41, 42]. While in category discovery, we re-
quire the models to automatically discover the novel cate-
gories without the human-in-the-loop.
Category Discovery. In contrast to semi-supervised learn-
ing, Novel Category Discovery (NCD) [20] addresses an
alternative setting whereby there is no overlap between the
categories in the labeled and unlabeled sets. Here, the goal
is to automatically discover the novel categories in the un-
labeled data. This can be viewed as a semi-supervised clus-
tering problem [23, 24, 20].

Recently, Generalized Category Discovery (GCD), a
more realistic and challenging version of the discovery
problem has been proposed [9, 57]. In this setting, the
unlabeled data can consist of images from both seen and
unseen (i.e. novel) categories. Earlier works showed that
self-supervised pretraining can aid category discovery [19].
Starting from a backbone initialized using self-supervised
pretraining [12], ORCA [9] assumes the number of novel
categories is known and proposed a three-component loss
to train a deep classifier. The loss is comprised of a su-
pervised component, a pairwise loss that uses high con-
fident pseudo-labels to enforce that similar unlabeled in-
stances are grouped together, and a regularization term to
ensure that all instances are not assigned to the same cate-
gory. GCD [57] also make use of self-supervised pretrain-
ing using [10], but foregoes the need for pseudo-labels by
instead using a clustering-based approach. They perform a
contrastive finetuning step using image pairs from the same
category for the labeled data and augmented pairs for the
unlabeled data. Finally, they perform unsupervised cluster-
ing using k-means to assign unlabeled images to categories.

Building on GCD [57], SimGCD [60] investigated the
impact of different design choices on downstream perfor-
mance. Their final approach does not use an explicit clus-
tering step but instead makes use of learned category pro-
totypes inspired by self-distillation methods [2], resulting
in improved performance compared to GCD. MIB [14] em-
ploys a similar pretraining phase to GCD to train their fea-
ture extractor, in addition to a cross-entropy and conditional
entropy loss for the labeled and unlabeled data respectively.
We take inspiration from these methods, but explore a dif-
ferent setting of the discovery problem, that of IGCD.
Incremental Category Discovery. Category-incremental
learning is a learning setting whereby the number of cat-
egories in a dataset increases over time, e.g. over a set of
discrete learning stages. The challenge in the incremental
setting is that it is not possible to store all of the previously
observed training data from earlier stages during each sub-
sequent learning stage. Some of the difficulties that arise
from this setting include catastrophic forgetting [40, 30]
(i.e. a dramatic decrease in performance on old categories
as a result of training on new ones) and susceptibility to dis-
tributional shifts in the data. Multiple different approaches

have been explored in the literature to address this, includ-
ing storing past training examples in a replay buffer [47] or
storing distilled exemplars [45, 8]. Taxonomic variants of
the problem have also been explored [36, 13]. For a recent
survey on the topic we refer readers to [64].

Most relevant to our work are a recent set of approaches
that explore category discovery in the incremental/continu-
ous setting, e.g. [48, 27, 62, 37]. [48] proposed a one-stage
category-incremental setting termed class-iNCD. Here la-
beled data is initially available to learn a representation,
then discarded, and finally a set of unlabeled data contain-
ing only novel categories is provided. Their goal is to train
a model that performs well on both sets of categories. How-
ever, here there is no overlap between the categories in the
labeled and unlabeled sets. This setting has also been ex-
plored in [38], where their focus was only on the category
discovery performance. FRoST [48] retains feature proto-
types learned from labeled data which are replayed during
the discovery phase to prevent forgetting of the old cate-
gories. NCDwF [27] also explore the same setting and pro-
pose a method that uses pseudo-latent supervision, feature
distillation, and a mutual information-based regularizer to
maintain performance on the discarded labeled categories
and assist in discovering novel ones. In the MSc-iNCD set-
ting explored in [37], the model only obtains unlabeled data
at each time step which is assumed to come from previously
unseen (i.e. novel) categories.

Grow and Merge (GM) [62] was recently introduced and
applied to several different incremental discovery settings.
It performs two key phases at each learning stage. First in
the growing phases, it performs novelty detection to sepa-
rate novel from seen categories and then trains a dynamic
network to perform NCD. Then in the merging phases, it
combines the newly discovered categories with the previ-
ously know ones into a single model. Later, we compare to
GM and show superior performance.

With the exception of GM, who only perform one re-
lated experiment on CIFAR-100 [32], other existing meth-
ods assume that unlabeled data can only contain novel cate-
gories. In contrast, we explore the more challenging incre-
mental generalized setting where, at each stage, new data
can come from either previously seen or novel categories.
Unlike [62], in our setting, all previously seen categories
are not guaranteed to be present in each subsequent stage.
Benchmarking Category Discovery. There are several
common datasets used to evaluate category discovery meth-
ods. Earlier works [20, 19] typically use standard image
categorization datasets like CIFAR10/100 [32] and Ima-
geNet [49] by creating artificial splits for discovery evalua-
tion. [63] argue that more challenging fine-grained datasets
like CUB [59] are more suitable for evaluating discovery
performance as the labeled and unlabeled categories share
more visual similarity. Recently, the Semantic-Shift Bench-



mark (SSB) [58, 57] was proposed to better evaluate the
task of detecting semantic novelty. SSB uses the exist-
ing CUB [59], Stanford Cars [31], and FGVC-Aircraft [39]
datasets where the category splits are designed to have a
clear ‘axes of semantic variation’ as well as a coherent def-
inition of categories in the labeled and unlabeled sets.

Recent work in incremental discovery [48, 27, 62] eval-
uate performance using artificial data splits on CIFAR-
10/100 [48, 62, 27], TinyImageNet [48], ImageNet [27], or
the fine-grained SSB datasets [62]. However, these artifi-
cial data splits may not reflect the real-world performance
of IGCD methods. For example, it has been shown that
the category splits in the labeled dataset play an important
role NCD performance [16]. To address this gap, we intro-
duce a new ‘real-world’ data split derived from the pub-
licly available fine-grained iNaturalist species categoriza-
tion dataset [56]. We make it applicable to the incremental
setting by leveraging metadata, such as the date and location
of each observation. From this, we are able to better sim-
ulate real-world IGCD by creating data and category splits
that mimic those that naturally arise over multiple time steps
in the real-world. Note that the geographical domain shift
has also been studied in GeoNet [28], where the main task
is unsupervised domain adaptation. Besides the task dif-
ference, our iNatIGCD dataset also contains 10× more im-
ages, from more geographical locations, and fine-grained
concepts that are challenging for category discovery.

3. The iNatIGCD Benchmark
Here we outline iNatIGCD, our new benchmark for

IGCD. Our dataset is based on the large-scale fine-grained
iNat2021 visual categorization dataset [56], which contains
images from 10,000 different categories of plant and ani-
mal species sourced from the community science platform
iNaturalist [26]. Each of the images posted to iNaturalist
contains the precise capture date and time, along with the
geographical location as metadata [26]. This creates a natu-
ral stream of data over time that contains category distribu-
tion shifts between observations from around the globe as
the iNaturalist community grows across different regions.

iNatIGCD is motivated by the scenario where one can
develop an initial image classifier from the currently avail-
able labeled data, which only contains images and labels
captured before a certain time and is restricted to a certain
region (e.g. a specific continent). As time progresses, new
unlabeled data is obtained which can also include images
from other regions (e.g. a different continent). This sce-
nario is close to the real-world situation of the iNaturalist
platform where we have access to labeled image observa-
tions at a given time point, but we cannot easily obtain reli-
able labels for new observations that are shared each day as
labeling images takes time. We can view the existing collec-
tion of observations as the labeled dataset and the new ob-

Figure 3: A visualization of the location of the data in each
stage of our iNatIGCD dataset. We also report the number
of old and new categories for each of the stages.

servations, which can contain a combination of old and new
categories, as the unlabeled dataset. Similar to the common
assumption in continual learning [45, 8], all the previous
labeled data can be difficult, or even impossible, to store
during learning. Thus as time progresses, we assume that
we do not have access to all the past labeled data when re-
training/updating the model.

Our new IGCD benchmark is structured as follows: At
each time step, we have a labeled dataset and an unlabeled
one. Our goal is to correctly discover any novel categories
in the unlabeled dataset while also classifying examples be-
longing to known categories. When we progress to a new
time step, the labeled dataset from the previous step be-
comes unavailable. However, we now have a new labeled
dataset, which is actually the previous unlabeled dataset,
along with a new unlabeled dataset which is used for cat-
egory discovery. This simulates the real-world process as it
takes time for the iNaturalist community to reach a consen-
sus regarding which category is present in a newly uploaded
image. See Fig. 2 for an illustration of the process.
Dataset Construction. To generate our data splits, we
leverage metadata from the iNat2021 dataset [56]. We
first sort and group all the images according to the time
when they were captured. To make the data more evenly
distributed, we cluster them into four temporal stages:
2008-2016, 2017, 2018, and 2019. We further split the data
according to the location of the observation, only including
data from North America and Europe in the first stage and
then including Oceania, Asia, and finally Africa and South
America in the second, third, and fourth stages respectively.
This simulates the growth of the species recognition com-
munity on iNaturalist from continent to continent over time.

Our new iNatIGCD dataset is summarized in Fig. 3.
It poses several unique challenges for category discovery
methods: (i) we have an order of magnitude more finer-
grained categories in each of the incremental stages com-
pared to existing datasets which will challenge the ability
of category discovery methods, (ii) at each stage, we have
more images that require categorization, which can give a



more reliable measure of the discovery performance of a
model, and (iii) the categories that appear in each stage are
based on the natural distribution of species rather than an
artificial split as in previous benchmarks.

4. Method
In this section we present a new approach targeting the

IGCD setting. At each stage t (i.e. time step), we have two
datasets to train the model on, Dt

lab and Dt
unlab. Our goal is

to learn a classifier that can correctly classify and discover
categories in Dt

lab and Dt
unlab, in addition to maintaining its

performance on the categories in the current stage when we
advance to later stages.

In the IGCD setting, it is assumed that it is not possi-
ble to store all the previously observed data. As a result,
the model must learn incrementally. A common incremen-
tal learning technique is to avail of the concept of exam-
ple replay [45, 8]. This involves saving a few examples of
each category and then ‘replaying’ them to the model during
training in later stages. However, there are challenges asso-
ciated with applying replay approaches in our IGCD set-
ting due to two primary issues: (i) we have novel categories
in the unlabeled dataset in IGCD, thus it is not straightfor-
ward to select examples for these novel categories as previ-
ous works typically assume full supervision, and (ii) SoTA
GCD methods use parametric classifiers [60, 17], which we
show in experiments can overfit to the few replay exam-
ples. We tackle these technical challenges by using a non-
parametric classifier combined with a density-based exam-
ple selection mechanism which we introduce below.

4.1. Problem Setting

Formally, we denote the labeled dataset at the initial
stage as D0

lab = {(x0
i ,y

0
i )}. This is used to train an

initial model to recognize the set of categories C0 =
{1, 2, . . . ,K0}. For incremental learning at a later stage t,
we have two datasets, a labeled dataset Dt

lab = {(xt
i,y

t
i)}

and an unlabeled dataset Dt
unlab = {xt

i}. We denote the
category sets in Dt

lab and Dt
unlab as Ct

lab and Ct
unlab. In

our generalized setting, Ct
lab and Ct

unlab can be different
and may only have partial overlap. When we progresses
to stage t+ 1, Dt

unlab will receive its labels which are used
as Dt+1

lab for the next stage. The goal is to learn a model
that can not only discover novel categories in the unlabeled
dataset Dt

unlab at stage t, but also maintain the ability to
recognize the categories in C0

lab, C1
lab, . . . , Ct

lab. Similar to
the category-incremental learning setting [45, 8], one main
added challenge of our case, compared to static GCD, is
that the model can exhibit catastrophic forgetting [47] on
the categories that are not present in Ct

lab and Ct
unlab.

Note, our setting is related, but different from the Mixed
Incremental (MI) one in [62]. In contrast to us, [62] assume
that only the unlabeled data Dt

unlab at stage t is available

for training the model. In our experiments, we also compare
models that are only trained with Dt

unlab. Furthermore, in
the MI setting, the category set Ct

unlab always includes all
previously seen categories. In our more difficult and realis-
tic setting, the category set at each time step may only have
partial overlap with the previous category sets.

4.2. Classifier Learning

For each input image xi, we use a neural network f to
extract its corresponding feature representation hi = f(xi).
From this, we use a non-parametric classifier g to assign the
image to a category probability vector pi = g(hi), where∑

c pi,c = 1. For f to learn an informative representation,
we adopt a supervised contrastive loss LSupCon from [29]
for learning from Dlab and use a self-supervised contrastive
loss LSelfCon from [12] for learning from Dunlab. These two
losses are combined via a balancing factor λrep,

Lrep = λrepLSupCon + (1− λrep)LSelfCon. (1)

We use a non-parametric Soft Nearest-neighbor (SNN)
classifier for g that computes the distribution over category
labels for an input image xi,

pi = SNN(hi,S, τ) =
NS∑
k=1

exp(hi · hl
k/τ)∑

hl
b∈S exp(hi · hl

b/τ)
yk.

(2)
S = {(hl

k,yk)} is a support set containing features of all
support samples hl

k and their corresponding one-hot labels
yk, NS = |S| is the number of support samples in S , and
KS is the number of categories in S. hi is the representa-
tion of xi from f , and τ is a temperature parameter control-
ling the sharpness of the prediction pi. The support sam-
ples are representative examples of each of the categories
and are used to softly assign a label to the input example hi

by averaging all the one-hot labels yk in S weighted by the
softmax similarity. For the labeled categories, we randomly
select the support examples. Later we discuss the selection
of support examples for the novel categories.

Importantly, as our classifier is non-parametric, it is easy
to extend it so that it can classify more categories by sim-
ply adding additional examples from the new categories to
the support set. At test time, we just use the saved sup-
port examples to perform categorization for an input im-
age by assigning the labels via measuring the distance be-
tween the input image and support examples. The classifier
is trained with two cross-entropy losses Lce, and makes use
of an entropy-regularizer,

Ll =
1

|Bl|
∑
i∈Bl

Lce(y
l
i, p̂

l
i), (3)

Lu =
1

|Bu|
∑
i∈Bu

Lce(p̃
u
i , p̂

u
i )− ϵH(p), (4)
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Figure 4: Overview of our method. (1) Illustration of the density calculation process. We denote the density of each data point
by its size in the lower part. The density peaks, i.e. the data point whose density is higher than its neighbors, are illustrated
with a star. (2) During classifier learning we update representations and classifiers using the loss defined in Eq. (7). (3) The
incremental update procedure for stage t. When proceeding to stage t+ 1, the density peaks P are added to Rt+1 and S.

where Bl and Bu are batches of indices from the labeled
and unlabeled datasets, yl

i is the ground-truth label for the
example xl

i, and p̃u
i and p̂u

i are the predictions for two aug-
mented views of the same input example xu

i with different
temperatures. These two losses together form the loss func-
tion we use for classifier learning,

Lcls = λclsLl + (1− λcls)Lu, (5)

where λcls is a weighting factor. The entropy regularization
term, H(p) = −

∑
p log p, regularizes the mean predic-

tion p over a mini-batch which is computed as

p =
1

2|Bu|
∑
i∈Bu

(p̃u
i + p̂u

i ). (6)

This above entropy term has been adopted in previous
works in GCD [60] and semi-supervised learning [3] to cal-
ibrate predicted category distribution and to avoid empty
clusters, as observed in [57, 60]. The overall loss for train-
ing the model is

L = Lrep + Lcls. (7)

4.3. Support Sample Selection

Our SNN classifier function is similar to the one defined
in the semi-supervised approach of [3]. However, in its orig-
inal form, it cannot be used to learn from novel categories
from the unlabeled data if they do not already appear in the
labeled set. We extend this approach via a novel modifica-
tion to make it applicable to the generalized category dis-
covery setting. Specifically, for the potentially novel cate-
gories in the unlabeled dataset, we propose a new density-
based selection mechanism to select a subset of examples
from the unlabeled dataset and then pseudo-label them with
g to use them as support samples in S.

We start by estimating the density di of a sample xu
i

based on its k-nearest neighbors, such that

di =
1

K

K∑
j∈Nxu

i

hu
i · hu

j

∥hu
i ∥2∥hu

j ∥2
. (8)

Here we iterate through the top-K neighbors and average
the cosine similarities of the feature representations, where
Nxu

i
contains the indices of the K nearest neighbors of

xu
i . Intuitively, a larger density value di indicates that the

corresponding prediction for xu
i is a more reliable pseudo-

label as it indicates that xu
i is similar to its neighbors in

the learned representation space of f , see [35]. Inspired by
this, we propose a method for automatically selecting reli-
able samples from Dunlab using this density definition.

First, we select the density peaks from the dataset which
are the points whose density is higher than all other k-
nearest neighbors around it [35]. Specifically, the set of
density peaks can be defined as

P = {xu
i |∀k ∈ NK

xu
i
, di > dk}, (9)

where P is a set of selected images xi. Second, it is
not guaranteed that there is only one density peak per
class. To address this, we use an intersection-over-union
(IoU) score on the nearest neighbor set between two den-
sity peaks to measure their similarity. We then remove re-
dundant peaks using a similar procedure to non-maximum-
suppression [43].

Thus, for two density peaks xu
i and xu

j in P , we mea-
sure their similarity by calculating the IoU score of their
Kd nearest neighbor set NKd

xu
i

and NKd

xu
j

. If the IoU score is
higher than a threshold T , we only keep the peak with the
higher density value. The selected density peaks are used to
pseudo-label their close neighbors based on distance, and
then the density peaks and their closer neighbors are added
as support samples for novel categories to S . For the la-
beled categories, we select a number of support examples
from the labeled dataset using the same density selection



mechanism to serve as their support samples. This proce-
dure is outlined in detail in the supplementary material.

The benefit of our proposed method is that we automat-
ically have an estimate of the number of novel categories
in the unlabeled set based on the number of selected density
peaks. This is in contrast to previous methods for estimating
the number of categories which make use of the k-means
algorithm, e.g. [20, 57]. Our approach is more closely inte-
grated with the representation learning step and is also more
computationally efficient.

4.4. Incremental Update

Earlier we introduced our method for learning a classifier
that leverages non-parametric category assignments. Now
we discuss how to extend this model to the incremental set-
ting. To do this, we focus on learning between a pair of
stages, i.e. from stage t to t+ 1.

After training on Dt
lab and Dt

unlab with the objectives
defined in Sec. 4.2, we have a model that can classify the
labeled and unlabeled categories, Ct

lab and Ct
unlab. To han-

dle subsequent stages, we draw inspiration from the classic
category-incremental learning method iCaRL [45]. Specifi-
cally, we store a set of representative examples (xi,yi) to a
memory buffer Rt for replay to be used for training at later
stages. Note, this is not to be confused with the support set
S used by our non-parametric classifier defined earlier.

Different from iCaRL which selects examples using cat-
egory centroids, we use our proposed density selection
mechanism described in Sec. 4.3 to select the examples to
save to Rt. Thus at stage t+1, we concatenate the training
set Dt+1

lab with the memory buffer Rt and then optimize the
training objectives in Sec. 4.2. The memory buffer created
at stage t+1 is also concatenated with Rt to ensure that the
knowledge from all previous stages is maintained.

5. Experiments
5.1. Implementation Details

Model Training. We use a ResNet-18 [22] initialized using
MoCo [21] on ImageNet-1k as our feature extractor f . We
freeze its parameters up to the last residual block to prevent
the model from overfitting on the labeled data as in [19, 63].
We train for 100 epochs on the labeled data from the initial
stage D0

lab, and then train on each subsequent stage t with
Dt

lab and Dt
unlab for 40 epochs each. We provide additional

vision transformer [15] results and details of the training
settings in the supplementary material.
Evaluation Metrics. We use our iNatIGCD dataset to eval-
uate the performance of different IGCD methods, using two
different settings: (i) IGCD-l, where we assume the labels
of Dt

unlab will become available at the end of stage t and
thus can be used as Dt+1

lab , and (ii) IGCD-u, where we as-
sume no data is labeled in any of the incremental stages,

and at stage t only Dt
unlab is available to train the model.

We remove the supervised losses accordingly in IGCD-u.
For our experiments on iNatIGCD, we report the cluster-

ing accuracy for categories in Ct
lab and Ct

unlab at stage t as
‘Old’ and ‘New’, and ‘All’ as the performance on both. We
also report the accuracy on the categories in previous stages
0, 1, . . . , t−1 that do not appear in the current stage as ‘S-t’.
As in [62], we report maximum forgetting Mf , which is the
maximum difference between the clustering accuracy from
the stage 0 categories and any later stage t. We also report
final discovery Md, which is the final clustering accuracy
of the model on all the categories from all stages.

5.2. Results

Here we describe the results of relevant methods on
different IGCD benchmarks. We include comparisons to
GM [62], a recent IGCD method. We also compare to
FRoST [48] which is a one-stage method that can only
handle one incremental stage. We extend it to the multi-
stage setting by repeating the second discovery phase of
FRoST [48] for each new stage. We also compare to
SimGCD [60], a recent SoTA GCD method and apply it to
IGCD by rerunning it on the data from each new stage. To
enable it to maintain performance on previous categories,
we combine it with a memory buffer as in iCaRL [45]. Fi-
nally, to establish a performance upper bound on iNatIGCD,
we train a fully supervised model on all the data and labels
at each stage t (including all previous stages t − 1, . . . , 0).
Additional results are in the supplementary material.

5.2.1 iNatIGCD Results

IGCD-l Setting. We first present results for the incremen-
tal setting with labels in Tab. 1 and Fig. 5. Although the
non-incremental SimGCD [60] achieves comparable per-
formance at recognizing labeled categories (’Old’) and dis-
covering novel categories (’New’) at each stage, it fails to
maintain good performance on the categories it has seen be-
fore but that are not present in the current stage (see ‘S-0’
and ‘S-1’). Combining SimGCD with iCaRL [45] helps al-
leviate this forgetting problem, which we see as an increase
in ‘S-0’ and ‘S-1’ scores compared to SimGCD alone.
However, the performance on ‘Old’ categories, which have
labeled data during training, drops for SimGCD + iCaRL.
We argue that this is because SimGCD employs a paramet-
ric classifier, but iCaRL [45] performs non-parametric cat-
egorization at test time. We can see from the Stage-0 per-
formance of SimGCD + iCaRL that this mismatch between
training and testing results in a performance drop even in
the initial fully supervised scenario. In contrast, our SNN
classifier achieves a balance between preventing the cate-
gory information from previous stages from being forgotten
(‘S-0’ and ‘S-1’) as well as obtaining good performance on



Methods Stage-0 Stage-1 Stage-2 Stage-3 Overall

All All Old New All Old New S-0 All Old New S-1 S-0 Mf ↓ Md

Supervised upper-bound 42.3 62.8 68.7 59.8 65.8 71.5 62.3 48.2 68.5 72.5 64.3 58.4 49.7 - -

SimGCD [60] 42.3 24.1 35.8 10.5 25.6 36.8 18.4 2.5 22.4 36.7 16.4 5.4 1.3 41.0 24.5
SimGCD + iCaRL [45] 41.5 23.7 33.6 11.9 23.5 34.8 12.7 9.4 23.5 35.8 17.5 11.3 8.6 32.9 27.9
FRoST [48] 42.3 20.5 24.6 9.4 12.4 24.1 7.8 7.3 13.5 18.5 7.6 6.5 4.2 38.1 19.7
GM [62] 42.3 18.7 26.7 8.6 19.5 28.7 10.4 14.0 16.5 25.8 13.5 16.8 12.3 30.0 20.1

Ours 41.8 25.6 34.6 14.5 25.7 35.0 21.5 16.4 22.8 35.9 17.8 16.4 14.2 27.6 28.4

Table 1: Results on iNatIGCD in the IGCD-l setting (i.e. where labels are available at the end of each stage). Higher numbers
are better, with the exception of Mf where lower is better.
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Figure 5: The category discovery performance (measured by ‘All’ class clustering accuracy) and the forgetting (measured
by accuracy on stage-0 classes) at each stage of the training. We can see that our proposed method obtains strong discovery
performance, similar to SimGCD [60], and at the same time exhibits less forgetting.

the categories it is currently trained on (‘Old’ and ‘New’).
Compared to GM [62], which is designed to tackle dis-

covery and forgetting simultaneously, our proposed method
shows a clear advantage, with improved discovery perfor-
mance (see Md) and reduced forgetting (see Mf ). We also
outperform the recent FRoST [48] method. Notably, we al-
ways perform best on the novel categories at each stage (see
‘New’). We speculate that this is likely because GM [62]
and FRoST [48] employ a pair-wise objective for learning
to cluster novel categories. However in iNatIGCD, the num-
ber of categories is high, thus there will be far more negative
pairs than positive ones to train their methods, resulting in
degraded performance.
IGCD-u Setting. In Tab. 2 we present results for the incre-
mental setting where Dt

lab is not available at each stage t.
Thus we report performance on ‘New’ categories in Dt

unlab

at each stage t to evaluate a model’s ability to discover new
categories. We also report the performance on S-0, S-1,
and S-2 to evaluate the forgetting of previously learned cate-
gories. Due to the lack of supervision from Dt

lab, the perfor-
mance of all models is reduced, yet our proposed approach
achieves superior results in almost all cases.

5.2.2 Mixed Incremental Results

In Tab. 3 we present results on the Mixed Incremental (MI)
scenario proposed in [62]. At each incremental stage t, the

model is trained on a dataset Dt
unlab of unlabeled examples

which contains both novel categories and the categories the
model has already learned before. The goal is to classify
both novel and seen categories at the same time. The differ-
ence between MI and our IGCD-u setting is that in MI it is
assumed that at each stage there are always instances from
the previous stage’s categories in the unlabeled images.

GM [62] only report results for the MI setting on CIFAR-
100. For fairness, we re-train their model using the same
hyper-parameters as ours and observe improved perfor-
mance for their method compared to their paper. We also
present additional results on CUB [59]. We include com-
parisons to the strong GCD baseline SimGCD [60], which
cannot learn incrementally, and our incremental extension
of their method. We observe that SimGCD [60] exhibits
catastrophic forgetting, but adding iCaRL [45] can allevi-
ate this issue. Our proposed method achieves better perfor-
mance than GM [62], with the exception of the Mf perfor-
mance on the smaller CIFAR-100 dataset.

5.2.3 Ablations

Estimating the Number of Novel Categories. One of the
unique challenges in GCD is the task of estimating the num-
ber of novel categories in the unlabeled data. [57] described
a baseline that uses semi-supervised k-means to estimate
it. GM [62] adopted this method to estimate the number at



Methods Stage-0 Stage-1 Stage-2 Stage-3 Overall

All New S-0 New S-1 S-0 New S-2 S-1 S-0 Mf ↓ Md

Supervised upper-bound 42.3 59.8 48.7 62.3 63.9 49.6 64.3 64.3 64.1 52.4 - -

SimGCD [60] 42.3 8.4 5.1 12.6 2.3 0.1 11.8 4.2 1.2 0.0 42.2 2.5
SimGCD + iCaRL [45] 41.5 10.5 16.7 13.4 8.4 11.2 14.5 10.2 7.1 10.2 31.3 12.4
FRoST [48] 42.3 6.7 12.3 9.2 7.4 9.3 10.0 8.4 7.1 5.1 37.2 7.3
GM [62] 42.3 8.6 18.4 13.8 9.1 15.5 10.7 11.0 8.2 13.0 29.3 10.5

Ours 41.8 12.7 22.1 15.4 10.7 14.3 16.1 11.2 9.1 13.1 28.7 14.1

Table 2: Results on iNatIGCD in the IGCD-u setting (i.e. where labeled data is not provided during the incremental stages).
Higher numbers are better, with the exception of Mf where lower is better.

Methods CIFAR-100 CUB
Mf ↓ Md ↑ Mf ↓ Md ↑

SimGCD [60] 58.7 28.3 63.5 27.4
SimGCD + iCaRL [45] 9.4 29.4 10.7 28.3
GM [62] 3.6 30.6 6.8 26.7

Ours 4.0 31.2 6.7 29.4

Table 3: Results on the MI setting introduced in [62].

each incremental stage before training their classifier. Our
proposed density selection method can also be seen as a way
of estimating the number of categories based on the number
of density peaks. In Tab. 4, we demonstrate that our method
is capable of providing a more accurate estimate compared
to GM, without requiring their expensive k-means step.
Note, the ground truth class count for iNatGCD-l in Tab. 4
indicates the number of all categories including ‘Old’ and
‘New’, thus it is different from the counts in Fig. 3.

CIFAR-100 MI # Classes (t = 1) t = 2 t = 3

Ground truth 10 10 10
GM [62] 14 13 13
Ours 13 10 12

iNatIGCD-l # Classes (t = 1) t = 2 t = 3

Ground truth 972 3,040 4,324
GM [62] 857 2,563 3,854
Ours 886 2,857 4,085

Table 4: Estimation of the number of novel categories in the
unlabeled data at each stage.

Impact of the Selection Method for R. Compared to the
centroid selection in iCaRL [45], our method uses the con-
cept of density peaks to select the examples to save in the
replay buffer R. In Tab. 5 we compare centroid selection
and our proposed density-based selection. We observe that
our method achieves superior performance.
Impact of the Size of S. One of the key factors influenc-
ing the performance of our SNN classifier is the size of S.
In Tab. 6, we study the influence of this hyper-parameter
by varying the number of examples per category (NS /KS ).
When only using one example per category, our model ex-

Methods CIFAR-100 iNatIGCD-l
Mf ↓ Md ↑ Mf ↓ Md ↑

Ours w/ iCaRL [45] 3.4 30.7 28.3 27.1
Ours 4.0 31.2 27.6 28.4

Table 5: Impact of the replay buffer selection method.

hibits forgetting and inferior discovery performance. In-
creasing the number of examples per category increases the
performance, until it starts to plateau after five examples per
category. To reduce the cost of saving too many examples
to S, we set NS /KS to five in our experiments.

NS / KS CIFAR-100 iNatIGCD-l
Mf ↓ Md ↑ Mf ↓ Md ↑

1 20.4 16.7 39.6 15.7
3 8.5 25.7 31.2 20.5
5 4.0 31.2 27.6 28.4
7 4.1 32.0 27.0 28.6

10 3.1 33.2 25.1 29.5

Table 6: Impact of the size of the support set S.

6. Conclusion

We explored the problem of incremental generalized cat-
egory discovery (IGCD). To do this, we constructed a new
dataset, iNatIGCD, motivated by a real-world fine-grained
visual discovery task and used it to benchmark the perfor-
mance of recent category discovery methods. Through our
experiments, we showed that our new approach which com-
bines non-parametric categorization with a density-based
sample selection technique is superior to existing methods.
While promising, our results show that the IGCD problem,
especially in our large-scale fine-grained setting, remains
challenging for existing methods. We hope that our work
opens the door to future progress on this task.
Acknowledgements. We thank the iNaturalist community
for their data collection efforts.
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Alexandre Reiffers-Masson, Joachim Flocon-Cholet, and
Sandrine Vaton. Novel class discovery: an introduction and
key concepts. arXiv:2302.12028, 2023. 2

[56] Grant Van Horn, Elijah Cole, Sara Beery, Kimberly Wilber,
Serge Belongie, and Oisin Mac Aodha. Benchmarking rep-
resentation learning for natural world image collections. In
CVPR, 2021. 4

[57] Sagar Vaze, Kai Han, Andrea Vedaldi, and Andrew Zisser-
man. Generalized category discovery. In CVPR, 2022. 2, 3,
4, 6, 7, 8

[58] Sagar Vaze, Kai Han, Andrea Vedaldi, and Andrew Zisser-
man. Open-set recognition: a good closed-set classifier is all
you need? In ICLR, 2022. 4

[59] C. Wah, S. Branson, P. Welinder, P. Perona, and S. Belongie.
Caltech-ucsd birds 200. Technical Report CNS-TR-2011-
001, California Institute of Technology, 2011. 2, 3, 4, 8

[60] Xin Wen, Bingchen Zhao, and Xiaojuan Qi. Parametric
classification for generalized category discovery: A baseline
study. In ICCV, 2023. 3, 5, 6, 7, 8, 9

[61] Qing Yu, Daiki Ikami, Go Irie, and Kiyoharu Aizawa. Multi-
task curriculum framework for open-set semi-supervised
learning. In ECCV, 2020. 2

[62] Xinwei Zhang, Jianwen Jiang, Yutong Feng, Zhi-Fan Wu,
Xibin Zhao, Hai Wan, Mingqian Tang, Rong Jin, and Yue
Gao. Grow and merge: A unified framework for continuous
categories discovery. In NeurIPS, 2022. 2, 3, 4, 5, 7, 8, 9

[63] Bingchen Zhao and Kai Han. Novel visual category discov-
ery with dual ranking statistics and mutual knowledge distil-
lation. In NeurIPS, 2021. 3, 7

[64] Da-Wei Zhou, Qi-Wei Wang, Zhi-Hong Qi, Han-Jia Ye, De-
Chuan Zhan, and Ziwei Liu. Deep class-incremental learn-
ing: A survey. arXiv:2302.03648, 2023. 3

[65] Xiaojin Jerry Zhu. Semi-supervised learning literature sur-
vey. University of Wisconsin-Madison Department of Com-
puter Sciences, 2005. 2


