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Gravitational-wave observations of binary neutron star mergers and their electromagnetic counter-
parts provide an independent measurement of the Hubble constant, H0, through the standard-sirens
approach. Current methods of determining H0, such as measurements from the early universe and
the local distance ladder, are in tension with one another. If gravitational waves are to break this
tension a thorough understanding of systematic uncertainties of gravitational-wave observations is
required. To accurately estimate the properties of gravitational-wave signals measured by LIGO and
Virgo, we need to understand the characteristics of the detectors noise. Non-gaussian transients in
the detector data and rapid changes in the instrument, known as non-stationary noise, can both
add a systematic uncertainty to inferred results. We investigate how non-stationary noise affects the
estimation of the luminosity distance of the source, and therefore of H0. Using a population of 100
simulated binary neutron star signals, we show that non-stationary noise can bias the estimation of
the luminosity distance by up to 6.8%. However, only ∼15% of binary neutron star signals would
be affected around their merger time with non-stationary noise at a similar level to that seen in the
first half of LIGO-Virgo’s third observing run. Comparing the expected bias to other systematic
uncertainties, we argue that non-stationary noise in the current generation of detectors will not
be a limiting factor in resolving the tension on H0 using standard sirens. Although, evaluating
non-stationarity in gravitational-wave data will be crucial to obtain accurate estimates of H0.

I. INTRODUCTION

Observations of binary neutron star (BNS) mergers
and their electromagnetic (EM) counterparts can probe
the expansion history of the universe [1, 2]. Gravitational
waves from compact binary coalescences (CBC) are stan-
dard sirens, which means that identical mergers always
have the same luminosity. Therefore, we can directly es-
timate the luminosity distance of their source. EM coun-
terparts, such as kilonovae or gamma-ray bursts, allow
astronomers to identify the host galaxies [3, 4] from which
we can measure the cosmological redshift. The relation-
ship between the luminosity distance of the source and
its redshift depends on cosmological parameters, and, for
late times, is dominated by the Hubble constant (H0).

Currently, measurements of the Cosmic Microwave
Background [5] are in tension with observations based
on the local distance ladder [6]; this tension has risen to
the 4.4σ level [6–8]. Being completely independent and a
self-calibrated measurement of H0, standard sirens could
have a crucial role in solving this tension. The first esti-
mation ofH0 from standard sirens [9] gave results broadly
consistent with other measurements found to date [10].
Multiple multimessenger detections (i.e. gravitational-
waves and EM detections) are required to improve the
accuracy; several studies predict a 1% H0 measurement
accuracy is achievable with O(100) detections [11–14].
This would break the tension on H0.

An accurate estimation of H0 will depend crucially on
the understanding of the systematic uncertainties in both
EM and gravitational-wave observations. One source of
systematic error related to the observation of the EM
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counterparts regards the peculiar velocity field of the host
galaxy [15–17]. The uncertainty on the peculiar velocity
is dominant only for extremely close events and is negli-
gible for most of the expected future detections. An ad-
ditional bias can arise from mis-modelling the kilonova
signal on the inclination [18]. Improved models of the
kilonova emission could reduce this uncertainty, however,
this will require significant theoretical progress [19]. Cur-
rently, the known dominant systematic uncertainty in the
standard sirens approach is due to the gravitational-wave
data. The main source is the detectors calibration, with
an uncertainty in the amplitude of the calibrated strain
below 2% in both LIGO [20, 21] and Virgo [22, 23] detec-
tors. This uncertainty should decrease in future observ-
ing runs, but, even at the current level, does not limit
the resolution of the H0 tension [24]. An unaccounted
source of systematic uncertainty could arise from mis-
modelling the noise in the gravitational-wave detectors
in the estimation of the luminosity distance. Indeed, the
most widely used inference codes for gravitational waves
– (LALInference [25], Bilby [26, 27], PyCBC Inference
[28] and RIFT [29]) – assume that the detector noise is
both stationary and Gaussian [30]. Gaussianity refers to
the distribution of the noise and means that the noise
can be completely characterised by a mean vector and
a covariance matrix. Stationary noise means that the
statistical properties of the noise do not vary in time.

In reality, due to broadband sources of noise of in-
strumental or environmental origin, data from ground-
based detectors, such as LIGO and Virgo, are both non-
Gaussian and non stationary [31–34]. Non-Gaussianities
are generally noise transients (called glitches [35, 36])
that last on the order of a second. Non-stationary noise,
instead, can vary the detector sensitivity on the order of
tens of seconds affecting especially long duration signals.
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Noise transients are more obvious within gravitational-
wave data compared to non-stationary noise. As such,
analyses can be performed with noise transients either
subtracted or the frequency range of analyses restricted
to limit the impact of the noise transient (e.g. [37–39]).
It is not possible to employ these workaround techniques
with non-stationary noise as the noise tends to be more
subtle, harder to model and the noise usually impacts a
large frequency range.

The effect of mis-modelling the noise in the parame-
ter estimation of gravitational-wave signals can be esti-
mated analytically by assuming the linearised signal ap-
proximation (LSA) [40], where the template waveform
h(θ) is expanded as a linear function of the true signal
h0 across the expected uncertainties of the parameters
[41]. With this approximation and using an uninfor-
mative prior, the maximum likelihood of the parameters
averaged over non-stationary Gaussian noise realisations
is an unbiased estimator of the true source parameters,
which means that mis-modelling the noise does not af-
fect the posterior mode. Non-stationarity affects only
the uncertainty on the posteriors, which is mis-estimated
in particular for longer signals like BNS [41].

Although the LSA is a good baseline to understand the
effect of non-stationary noise in simple cases, it is imprac-
tical for real data, being valid just for high SNR signals.
As shown in [40], to correctly estimate the parameters
for low-SNR signals requires higher orders in the tem-
plate expansion. Moreover, the prior can not be easily
handled analytically for non-flat or non-Gaussian priors.
Including an informative prior can bias the estimation,
introducing noise dependent terms in the posterior mode.
As discussed in section III A, the luminosity distance is
generally estimated by adopting a uniform prior in Eu-
clidean volume, therefore mis-estimating the noise could
bias the luminosity distance posterior.

In conclusion, non-stationary noise could affect the es-
timation of the luminosity distance, and, consequently,
the number of detections necessary to reach a few percent
measurement of H0. More importantly, non-stationary
noise could bias the estimation of H0.

In this paper we investigate how non-stationary noise
affects the estimation of the luminosity distance of BNS
signals from gravitational-wave data, assuming the de-
tection of an electromagnetic counterpart. We use pub-
licly available LIGO and Virgo data from the first half of
the third observing run (O3a) [33, 42]. While previous
studies have investigated how to obtain more accurate
parameter estimation in non-stationarity data [43, 44],
fully accounting for non-stationarity in parameter esti-
mation is still computationally prohibitive. Therefore,
we aim to determine if this effort is necessary to solve
the Hubble tension.

The rest of the paper is organised as follows. Section
II describes the Bayesian approach which is widely used
to estimate the parameters of gravitational-wave signals
and how non-stationarity breaks its basic assumptions.
In section III we introduce our investigation on the effect

of non-stationary noise in the estimation of the luminos-
ity distance. We also present our results discussing the
possible consequences on the estimation of H0 through
gravitational-wave data. In section IV we summarise our
main results and conclude.

II. PARAMETER ESTIMATION IN
NON-STATIONARY NOISE

The output of a gravitational-wave interferometer is a
time series d(t) such that:

d(t) =

{
n(t) + h(t), if a signal is present,

n(t), otherwise,
(1)

where n(t) is the detector noise and h(t) is a
gravitational-wave signal. Gravitational-wave transient
searches identify signals by matched-filtering the data
with a number of templates which sample the wave-
form parameter space [45, 46]. Once the merger time
is identified, the posterior probability densities for the
source parameters are extracted using a Bayesian ap-
proach [47, 48]. This approach requires the computation
of the likelihood function, which represents the proba-
bility of observing data d assuming that the signal has
parameters θ. If the noise is Gaussian with zero mean,
the single detector likelihood takes the form [37, 49]

L = p(d|h(θ)) =
1

det(2πCn)
e−

1
2 r
†(f)C−1

n r(f) (2)

where the residual r(f) = d(f) − h(f, θ) is assumed
to have the same distribution as the noise. Cn =
〈n∗(f)n(f ′)〉 is the noise covariance matrix, where the an-
gle brackets denote averaging over different realisations
of the noise. We use the variables t and f to indicate
whether a quantity is in the time or frequency domain.
If the data are stationary the frequencies are completely
uncorrelated. In this case, 〈n∗(f)n(f ′)〉 is diagonal and is
fully described by the noise power spectral density (PSD)
Sn(f):

〈n∗(f)n(f ′)〉 =
T

2
Sn(|f |)δ(f − f ′) , (3)

where T is the duration of the analysed data. Com-
bining Equations (2) and (3) we obtain the likelihood
function typically used for gravitational-wave parameter
estimation [25]. This model is accurate for short seg-
ments of data from ground based interferometers. How-
ever, the assumption of stationary breaks down for pe-
riods of 64 seconds [50], a smaller window than what is
typically needed to analyse binary neutron star mergers.
Non-stationarity appears in Equation (2) as off-diagonal
terms in the covariance matrix [51]. Ref. [41] showed
that ignoring these terms would affect the width of the
posterior, with more evident effects when the signal is
longer in duration. Nevertheless, accounting for non-
stationarity would increase the computational cost from
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FIG. 1. PSD variation (vs) distribution in LIGO Livingston
based on data for O2 (blue), O3 (orange) and, estimated, O4
(green). The black curve shows the expected distribution in
Gaussian stationary noise based on O3 data. The vertical red
dashed line shows the limit over which we consider data to be
non-stationary.

O(N) to O(N2), where N2 is the number of elements
in the covariance matrix. This would be prohibitive in
particular for longer signals.

Even assuming a diagonal covariance matrix as a fair
approximation, non-stationary noise would bias the es-
timation of the noise spectrum. As a workaround, a
common approach is to compute the PSD “off-source”,
using data close to, but not containing, the detected sig-
nal. However, this approach has an intrinsic uncertainty
which could introduce new biases in the parameter esti-
mation [52]. Moreover it produces poor estimates of the
noise for long signals [53]. A better approach is to esti-
mate the noise spectrum “on-source” using parametrized
models [50, 54] and to marginalise over the noise estima-
tion uncertainty [55].

A. Non-stationary noise in LIGO and Virgo data

To obtain an accurate measurement of H0, the stan-
dard sirens method requires us to combine several multi-
messenger detections of binary neutron stars. We saw
that non-stationary noise can affect the parameter es-
timation for longer signals. Now we want to estimate
how many signals could be detected, on average, in non-
stationary data.

We identify non-stationary noise using the approach
described in Ref. [56]. This method relies on modelling
the relation between the noise spectrum computed over
a short stretch of data (typically 8 seconds) and a longer
segment of time (512 seconds) with a frequency indepen-
dent factor, vs, such that Sn(short) = vsSn(long). The
time series vs(t), also called PSD variation statistic, has
been proven effective to track non-stationarity in LIGO
and Virgo data during the third observing run (O3) [34].

The PSD variation at each time depends only on the
amplitude of the non-stationarity and is completely in-
dependent of the shape of the noise.

In Gaussian and stationary noise, the PSD variation
statistic is well modelled by a Gaussian distribution with
mean 1 and variance dependent on the bandwidth of the
detector, as shown by the black curve in Figure 1 based
on O3 data. As shown in Figure 1, non-stationarity ap-
pears as a tail of high vs values. For simplicity, here we
consider vs > 1.2 as an indicator of non-stationarity in
the data. With this approximation we analyse LIGO and
Virgo data. We found that the fraction of non-stationary
data in the LIGO detectors almost doubles between the
second observing run (O2) and O3a. During O3a ∼2%
of LIGO Hanford and LIGO Livingston data and ∼1% of
Virgo data are non-stationary. Randomly placing 10,000
signals of 128 seconds in duration in the data, we found
that 15% of the signals would lie in non-stationary noise
in at least one detector for 10 or more seconds around
the merger time. Therefore, an average of more than 1
in 7 BNS detections could have been affected by non-
stationary noise during O3a.

Assuming the fraction of non-stationary data to be lin-
early dependent with the sensitivity of the detectors we
predict the levels of non-stationarity in LIGO Livingston
for the next two observing runs [57]. The assumption
is consistent with the rate of non-stationarity observed
in LIGO data from the first three observing runs. We
predict that on average 4% and 9% of data will be non-
stationary respectively for O4 and O5. Figure 1 shows
the measured distribution of the PSD variation of LIGO
Livingston for O2, O3a and the estimation for O4. For
O4, we assume an average BNS range of 180 Mpc. Sim-
ilar values can be predicted for LIGO Hanford, showing
that considering non-stationarity will be increasingly im-
portant in the future.

III. ESTIMATING THE EFFECT OF
NON-STATIONARY NOISE

In order to investigate the effect of non-stationary noise
in the estimation of the luminosity distance we add a
population of 467 simulated binary neutron stars to O3a
LIGO and Virgo data. We target 28 separate periods
of non stationary data in LIGO Livingston, with vary-
ing duration between 25 and 200 seconds. In the se-
lected segments, we require the data in LIGO Hanford
and Virgo to be stationary. In fact, coincident periods
of non-stationarity are rare for ground-based detectors,
representing less then 2% of the total non-stationarity
time. In future observing runs we expect more periods
of coincident non-stationarity due to the larger fraction
of non-stationary data; although it is unlikely this will
represent the dominant scenario.

From the simulated signals we randomly select 100
signals with network signal-to-noise ratio (SNR) greater
than 12 and we perform a Bayesian analysis to esti-
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FIG. 2. Time-frequency spectrogram of stationary (left) and non-stationary data (right) measured by LIGO Livingston during
the LIGO and Virgo third observing run.

mate the luminosity distance. We choose this detec-
tion threshold in order to analyse signals which are
confidently detected by search pipelines even in non-
stationary noise. This choice is also consistent with
similar analyses [24, 58]. Finally, we compare the re-
sults of an equivalent analysis made over stationary noise
close in time (but not overlapping) with the targeted
non-stationarity segments. The detectors sensitivity to
gravitational-wave signals varies considerably during O3a
due to adjustments in the configuration of the interferom-
eters. Considering adjacent times reduces the possibility
of any variation which could affect our investigation.

We targeted moderate non-stationary noise with a
PSD variation value between 1.2-3, which constitutes
80% of all non-stationarity. Higher values generally in-
dicate extreme non-stationarity or very short bursts of
excess power [34, 59, 60] that are likely to be identified
and removed before performing the parameter estima-
tion analysis. Figure 2 shows two time-frequency spec-
trograms of LIGO Livingston data for one targeted time
and its adjacent closest period of stationary noise. Non-
stationarity appears as power excess of unknown origin
distributed around 50 Hz.

A. Simulations

We simulate a population of non-spinning binary neu-
tron stars with detector-frame chirp massMdet [61] uni-
formly distributed between 1.7 and 1.9 M� and a mass
ratio between 0.75− 1. We distribute mergers uniformly
in Euclidean volume, extracting the signals from a prior
in luminosity distance π(dL) ∝ d2L [62, 63] between 20
and 400 Mpc. This approximation is appropriate to
describe the observed population of BNS in the lumi-
nosity range considered [27]. To reduce the computa-
tional cost we neglect tidal effects; tidal parameters do

not contribute to the waveform amplitude and are not
correlated with the luminosity distance. The choice of
non-spinning injection is justified by the expected low
number of events with high spins (e.g. [64]). Moreover,
none of the BNS signals detected so far by the LIGO
and Virgo Collaborations were consistent with high spins
(e.g. [65]). We generate the signals using the waveform
model IMRPhenomPv2 [66, 67] with a low frequency cut
off of 20 Hz. This model has a low computational cost
and provides a good approximation for a BNS system if
the tidal effects are neglected. We fix the sky position of
the signals to the optimal location for our targeted de-
tector, i.e. on the zenith for LIGO Livingston. With this
choice each signal has the highest SNR in the detector
which presents non-stationary noise, therefore the effect
of non-stationarity on the detection is maximised.

We injected the signals in individual stretches of data
and we separate the merger times between simulations
by 4 seconds. This is to avoid correlation between the
estimations [68–70]. We calculate the PSD using the
off-source approach as described in Ref [46], using the
Welch method for 1024 seconds of data. Despite being
sub-optimal compared to the “on-source” method, this
approach is much faster for longer signals and is there-
fore preferable for population studies. We then use Bilby
with the Dynesty sampler [71] to estimate the parameters
of the injections. For each signal, we analyse 128 seconds
of data using IMRPhenomPv2 model in its reduced order
quadrature approximation to reduce the computational
cost [72, 73]. We use priors consistent with the gener-
ated population of signals. Assuming the EM counter-
part would allow us to uniquely identify the host galaxy,
we fix the sky location to the injected value. While this
is an optimistic scenario, this assumption drastically im-
proves the accuracy in the estimation of the luminosity
distance, helping to isolate and highlight the effect of
non-stationarity. We assume the EM counterpart does
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FIG. 3. Luminosity distance posteriors for 6 simulated sig-
nals added in stationary (blue) and non-stationary noise (or-
ange). Each posterior is centred around the true value of the
simulated signal. The dashed lines show the quartiles of the
distributions.

not provide any information on the binary inclination
angle.

B. Bias in luminosity distance

We first present the luminosity distance posterior dis-
tributions for a representative sample of the simulated
signals. In Figure 3 we compare distributions obtained
for identical signals detected in stationary and non-
stationary noise. The effects of non-stationarity appear
to vary for different signals. While signals labelled as 1
and 5 appear to be over-constrained in non-stationary
noise, the main effect on simulations 2, 3 and 4 is a shift
towards smaller luminosity distance values. Considering
signals detected in both stationary and non-stationary,
we found that the median distance is reduced on average
by 1.4%. Similarly, the 25th and the 75th percentiles of
the estimated luminosity distance distribution are shifted

FIG. 4. Results of 100 injections recovered in stationary
and non-stationary noise. The grey regions cover the cumula-
tive 1,2 and 3 σ confidence intervals accounting for sampling
errors. The blue lines represent the cumulative fraction of
real luminosity distances found within this confidence inter-
val (C.I.). Luminosity distance p-values for stationary and
non-stationary noise are displayed in parentheses in the plot
legend. The luminosity distance p-value for stationary noise,
is 0.759, consistent with the p-value being drawn from a uni-
form distribution.

on average by 1.1% and 1.5%, suggesting non-stationarity
might cause a rigid shift of the luminosity distance poste-
riors. Note that only 80% of signals are detected in both
stationary and non-stationary noise. The remaining de-
tections vary between the two sets. Considering all the
signals, we found the median of the luminosity distance
posteriors to be lower than the correspondent true value
for 58% of the signals in non-stationary noise, in contrast
with the 47% for signals in stationary noise. These differ-
ences indicate the possible presence of systematics in the
estimations in non-stationary noise. However, directly
comparing the posterior distributions obtained with and
without non-stationary noise for each event is not suffi-
cient to identify systematic biases. In fact, different re-
alisations of stationary Gaussian noise might also cause
the inferred parameters to vary.

To verify if the observed distortions could be explained
as random variations of the noise, we compare the lu-
minosity distance posteriors computing the normalised
cumulative fraction of true luminosity distances which
lie within a measured confidence interval [74]. This ap-
proach is commonly used to identify biases in the infer-
ence on gravitational-wave sources [27, 28, 75–78].

Figure 4 shows the results for 100 injections in station-
ary and non-stationary noise. This is generally referred
to as a P-P plot. If the inference is unbiased the fraction
of events in a particular confidence interval is drawn from
a uniform distribution. Hence, the expected cumulative
distribution would lie on the diagonal of the plot with
some scatter due to Poisson error. The shaded regions
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FIG. 5. Results for 100 BNS injections in simulated Gaussian noise. The top plots show the variation of the luminosity
distance p-value as a function of the bias introduced in the luminosity distance posterior samples. For each level of bias,
we calculate the Kolmogorov-Smirnov p-value for 100 posteriors randomly selected from our sample of signals. The blue line
represents the median luminosity distance p-value from 50 different random samplings. The blue area delimits the 5th and
the 95th percentiles of the p-value distribution. The red dashed line shows the p-value measured for events in non-stationary
noise. In the bottom plots we show how the bias distorts the cumulative fraction of injected luminosity distances found within
the confidence interval in two particular cases: for ∆dL = 0.047 (Left) and σb = 0.25 (Right). These values correspond to
the intersections between the blue and red lines in the upper plot, i.e. the median biases associated with the non-stationary
p-values.

delimit the expected 1, 2 and 3-sigma error given the
number of events. For signals injected in non-stationary
noise the cumulative distribution is systematically below
the diagonal, exceeding the 2-sigma error for confidence
intervals between 0.6 and 0.8.

We test the consistency between the measured curves
and the diagonal line using the Kolmogorov-Smirnov
(KS) statistic. For unbiased parameter estimations the
two-tailed p-value is uniformly distributed between 0 and
1. Therefore, a p-value < 0.05 will occur once in 20
times. For the curves in Figure 4 the resulting p-values
are 0.759 and 0.070 for stationary and non-stationary

noise respectively. A smaller p-value indicates that the
measured curve is unlikely to be randomly extracted from
the assumed distribution if the sampler is unbiased. In
particular, there is just a 7% chance to obtain a more ex-
treme curve than the one measured from events in non-
stationary noise. As shown in Table I, we obtained higher
p-values when increasing the cut in SNR, showing that
the distortion is reduced for louder signals. However,
even for louder signals the PP-plot presents similarities
with Figure 4.

The inconsistencies in the observed p-values can be in-
terpreted as a systematic bias in the estimated luminos-
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SNR cut 12 13 14

stationary 0.759 0.535 0.468
non-stationary 0.070 0.161 0.368

TABLE I. Luminosity distance p-values for stationary and
non-stationary noise as a function of the SNR cut imposed.

ity distance in non-stationary noise. Power excess in the
data can increase the matched-filter SNR of the detec-
tion, decreasing the estimated luminosity distance. How-
ever, a lower p-value can also arise from over-constraining
the posterior. If the posterior is over-constrained we
would see a larger fraction of events in a lower confi-
dence intervals and smaller fraction for higher intervals.
This distortion with respect to the predicted curve would
lower the p-value.

To investigate these two scenarios and quantify the
bias, we repeat our analysis adding 800 signals in sim-
ulated Gaussian stationary noise. For consistency with
the analysis in real data we require a network SNR>12,
which yields a final sample of 153 signals. For each signal
we then artificially bias the estimated luminosity distance
posterior dL by shifting the distribution by a constant
value ∆dL, such that:

dL,biased = dL −∆dL × dL,inj (4)

where dL,inj is the injected luminosity distance. We cal-
culate the K-S p-value randomly selecting 100 signals
from our sample. To consider variations in the estimated
p-value due to selection effects, we repeat the calculation
for 50 different random samples of signals. Finally, we
investigate the relation between the p-value and the bias
repeating this procedure for increasing values of ∆dL,
re-estimating the p-value for each iteration.

We perform a similar test to understand the effect of
over-constraining the posterior. In this case we uniformly
shrink the distribution around the median luminosity dis-
tance. This modification has the effect to reduce the sam-
ples standard deviation of the luminosity distance distri-
bution σ(dL) by a factor σb for each signal. For example,
a σb = 0.1 refers to a 10% reduction of the standard de-
viation of the luminosity distance distribution for each
signal.

The top plots of Figure 5 show the evolution of the lu-
minosity distance p-value as a function of the bias intro-
duced in the posteriors for the two cases. The blue line
represents the median p-values. for each level of bias.
The blue area enclose all values between the 5th and
the 95th percentiles. The relation between the p-value
and the bias is monotonic, with lower p-values indicating
greater biases. Indeed, greater distortions of the poste-
rior distribution makes the assumption that the sampler
is unbiased more unlikely. From these plots we can infer
the bias associated with the p-value observed for events
in non-stationary noise, which is indicated in Figure 5
with a red dashed line. The measured p-value is con-
sistent with a 4.7+2.1

−1.7% systematic under-estimation of

the measured luminosity distance or a 25+6
−5% reduction

in the dispersion of the posteriors distribution. In the
bottom plots of Figure 5 we show how these two biases
distort the P-P plots. Reducing the samples variance
(right plot) induces an “S-shape” in the cumulative frac-
tion of injections found in each confidence interval, in-
creasing it for lower confidence intervals and decreasing
it for higher levels. Instead, reducing the mean of the pos-
teriors (left plot) systematically decreases the cumulative
fraction of real luminosity distances in each confidence in-
terval. Qualitatively comparing these plots with Figure
4, we can conclude that the measured dominant effect of
non-stationary noise is a systematic under-estimation of
the luminosity distance.

C. Considerations on the estimation of H0

In principle, a 4.7% systematic under-estimation of
the luminosity distance of the source combined with the
other expected systematic uncertainties could dramati-
cally affect the accuracy of the estimation of H0 using
standard sirens. Despite this inaccuracy, standard sirens
would still help to break the H0 tension. Let us con-
sider the worst case, in which the systematics due to
non-stationarity and calibration simply add up. Con-
sidering a 1% calibration error, this would correspond
to a 5.7% systematic under-estimation of the luminos-
ity distance, i.e. we would infer 5.7% higher values
of H0. Assuming the early universe estimation of H0

(67.4±0.5 km s−1 Mpc−1 [5]) to be correct, we would ob-
tain H0 = 71.2±0.7 km s−1 Mpc−1, in which we assumed
our estimation to be Gaussian distributed with a 1% er-
ror. In this case, the effect of non-stationary noise would
make the standard sirens estimation to fall between the
early universe measurement and the local distance lad-
der estimation of H0 (74.03 ± 1.42 km s−1 Mpc−1 [6]).
Therefore, none of the two hypothesis would be confi-
dently excluded. In the worst case presented in Figure 5,
i.e. a 6.8% under-estimation of the luminosity distance,
the standard sirens method could also favour the wrong
hypothesis.

However, our results represent an upper limit in the
shift of the luminosity distance due to non-stationary
noise, with the measured p-value likely to be a result of
various effects. Moreover, to reach the precision of a few
percent required to solve the current tension on the esti-
mation of H0 it may be necessary to combine at least ∼50
standard sirens [13]. Of them, just a fraction will be af-
fected by non-stationary noise, hence the error on the es-
timation will be reduced. On the other hand, the number
of standard sirens required to attain the necessary pre-
cision may be reduced by additional EM constraints on
e.g., source orientation, as with GW170817 [79, 80], and
this could further compound any present bias. Therefore,
assessing the level of non-stationarity for individual BNS
detections will be important in confidently presenting es-
timates of H0 free from significant bias.
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Other methods to estimate H0 which rely on shorter
signals like binary black holes will also be important to
improve the accuracy on H0 [81–84]. These approaches
require shorter periods of data, therefore the effect of
non-stationary noise will be less important.

IV. SUMMARY AND CONCLUSIONS

In this paper we have investigated whether the pres-
ence of non-stationarity in LIGO and Virgo data intro-
duces a new source of systematic error in the estimation
of the Hubble constant through the standard sirens ap-
proach. The problem is particularly important for longer
duration signals such as BNS, for which longer periods of
data are required, making the parameter estimation more
vulnerable to fluctuations in the detector noise. Indeed,
we found that during O3a non-stationarity accounts for
2% of the overall LIGO data. By placing simulated BNS
signals of 128 seconds in length throughout O3a data,
we find that 1 in 7 BNS signals merger times could have
fallen in non-stationary noise. More importantly, this
fraction is predicted to increase, with non-stationarity
that will reach an estimated 4% and 9% of the overall
data for O4 and O5 respectively.

We explore the issue of non-stationarity and how it
affects the estimation of the luminosity distance of the
source, by adding simulated BNS signals in stationary
and non-stationary data from O3a. We compare the lu-
minosity distance posteriors obtained in the two cases
calculating the cumulative fraction of true luminosity dis-
tances which lie within a measured confidence interval.
We employ the Kolmogorov-Smirnov test to estimate the
consistency of the results with the theoretical predic-
tions. We found a lower p-value (0.070) for events in
non-stationary noise, showing that the null hypothesis of
an unbiased estimation is unlikely. In order to under-
stand the magnitude of the misestimation, we artificially
bias the posteriors of BNS signals estimated in simulated
Gaussian and stationary noise. We found that the mea-
sured p-value for non-stationary noise is consistent with a
systematic under-estimation of the measured luminosity
distance by up to 6.8%.

The estimated bias in the luminosity distance is an
upper limit and does not automatically translate to an
expected systematic error in the estimation of H0. First,
just a fraction of the BNS-like gravitational-wave detec-
tions will be measured in non-stationary noise. It is esti-
mated that O(100) joint gravitational-wave and EM de-
tections are needed in order to infer H0 to an accuracy of
1%. Therefore the combination of these O(100) signals,
of which ∼ 15% may be affected by non-stationarity, is

unlikely to have a large effect on the accuracy of H0.
Moreover, binary black holes detections are expected to
give an important contribution to improve the accuracy
of H0 [85]. The duration of these signals is on the order
of seconds, making the effect of non-stationary noise less
important. Therefore, despite non-stationarity in LIGO
and Virgo data will affect the standard sirens estima-
tion of H0, we do not expect it to be a limiting factor
in resolving the tension on H0 using data from second
generation (2G) detectors. However, until gravitational-
wave inference methods fully account for non-stationary
noise, assessing the level of non-stationarity in the data,
in particular for louder signals, will be crucial to exclude
biases in the H0 estimation.

The next generation (3G) of gravitational-wave detec-
tors, such as the Einstein Telescope [86, 87] and Cos-
mic Explorer [88, 89], with their increased sensitivity
at lower frequencies, will detect much longer duration
gravitational-wave signals than current 2G detectors.
Non-stationarity will still be an issue in these detectors,
although we can not estimate, just yet, whether it will
be at similar levels or worse than what we see in the 2G
detectors. Either way, non-stationarity will have to be
considered in the interpretation of long duration signals
in 3G detectors to ensure this form of noise does not
impact key scientific conclusions.
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