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Abstract: Drones are an increasingly popular choice for wildlife surveys due to their versatility,
quick response capabilities, and ability to access remote areas while covering large regions. A novel
application presented here is to combine drone imagery with neural networks to assess mortality
within a bird colony. Since 2021, Highly Pathogenic Avian Influenza (HPAI) has caused significant
bird mortality in the UK, mainly affecting aquatic bird species. The world’s largest northern gannet
colony on Scotland’s Bass Rock experienced substantial losses in 2022 due to the outbreak. To assess
the impact, RGB imagery of Bass Rock was acquired in both 2022 and 2023 by deploying a drone
over the island for the first time. A deep learning neural network was subsequently applied to the
data to automatically detect and count live and dead gannets, providing population estimates for
both years. The model was trained on the 2022 dataset and achieved a mean average precision
(mAP) of 37%. Application of the model predicted 18,220 live and 3761 dead gannets for 2022,
consistent with NatureScot’s manual count of 21,277 live and 5035 dead gannets. For 2023, the model
predicted 48,455 live and 43 dead gannets, and the manual count carried out by the Scottish Seabird
Centre and UK Centre for Ecology and Hydrology (UKCEH) of the same area gave 51,428 live and
23 dead gannets. This marks a promising start to the colony’s recovery with a population increase
of 166% determined by the model. The results presented here are the first known application of
deep learning to detect dead birds from drone imagery, showcasing the methodology’s swift and
adaptable nature to not only provide ongoing monitoring of seabird colonies and other wildlife
species but also to conduct mortality assessments. As such, it could prove to be a valuable tool for
conservation purposes.

Keywords: drone; high-resolution imagery; remote sensing; photogrammetry; deep learning; neural
network; conservation; wildlife; gannets; avian influenza

1. Introduction

Drones, also known as Unmanned Aerial Vehicles (UAVs), are increasingly popular
for wildlife conservation due to their versatility, quick response capabilities, and ability to
access remote areas while covering large regions. Seabirds, nesting in vast and hard-to-
reach colonies, benefit greatly from drones, as they avoid disturbances caused by ground
surveys [1]. Their diverse applications include estimating deer populations [2], monitoring
whale health [3], and detecting the tracks of nesting turtles [4]. Technological advancements
have resulted in higher-resolution imagery and video, more sensitive detectors, longer bat-
tery life, and quieter motors, crucial for approaching wildlife without causing disturbance.
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The drones’ hovering capability also ensures clearer images by eliminating motion blur
from camera movement.

Since November 2021, a record number of cases of Highly Pathogenic Avian Influenza
H5N1 (HPAI) have been confirmed in the UK [5]. HPAI spreads through saliva, nasal
secretions, or droppings and has caused tens of thousands of bird deaths across 65 different
species, with a particular impact on aquatic bird populations [6]. One colony that suffered
a huge loss in its wake is that of the northern gannet, located on Scotland’s Bass Rock.

Scotland is home to 58% of the world’s northern gannets, Morus bassanus. Northern
gannets are large, colonially breeding seabirds. Their striking white and black plumage,
densely packed colonies, and long breeding season (March–October) make them a conspic-
uous feature of coastal systems. The largest individual colony can be found on Bass Rock,
located in the Firth of Forth off the East Lothian coastline ([7]; Figure 1). At the seasonal
peak, over 150,000 gannets can be found on Bass Rock, making it a Site of Specific Scientific
Interest (SSSI; [8]).

Figure 1. Left: Aerial view of the study site—Bass Rock (N 56◦6′, W 2◦36′). Image credit: UK Centre
for Ecology and Hydrology. Right: Delimited areas used for counting during the previous decadal
censuses. Image taken from Murray et al. (2014) [9].

Unfortunately, HPAI was detected on Bass Rock in mid-June 2022 and had a devastat-
ing effect on the northern gannet colony, resulting in both high adult mortality and breeding
failure. With HPAI now moving through seabird populations for the third year in a row
as of the end of 2023 [10], carrying out regular survey work will be of great importance.
These surveys will play a crucial role in monitoring disease progression and assessing the
recovery of decimated seabird colonies by conducting population counts. The advent of
drone technology promises to make a particular impact on how and when these surveys
are conducted, offering a quick and flexible solution.

1.1. Population Census

Gannets are relatively straightforward to count compared to many other species of
seabird due to their large size and regular nesting dispersion. The recommended time for
counting is June/July, during the middle of the breeding season. Approximately decadal
surveys of Bass Rock have been carried out since the mid-1990s using a small fixed-wing
plane and observer (or observers) taking aerial photos using film/digital cameras [7].
Results from these surveys have documented a sustained increase in population size as
indicated by the number of Apparently Occupied Sites (AOSs), defined as sites occupied by
one or two gannets irrespective of whether nest material is present ([7]; Table 1). However,
the methodology faces limitations in its logistics, including the need for a suitable aircraft
with an experienced pilot and a team of photographers on standby for good conditions. It
was also noted in Murray et al. [11] that the lack of standardisation in counting units used
between colonies across Scotland makes it difficult to produce an accurate total. The final
number typically involves combining the total AOSs from most colonies, with counts of
individual nests at others.
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Table 1. Counts of Apparently Occupied Sites (AOSs) for northern gannets on Bass Rock as published
by previous surveys: 2014, 2009 [9], 2004, 1994, and 1985 [11].

Year AOS Count

2014 75,259
2009 60,853
2004 48,098
1994 39,751
1985 21,589

Previous aerial surveys of the Bass Rock gannetry have required the manual counting
of AOSs on discrete images by at least two experienced individuals. The method involved
sub-dividing Bass Rock into distinct count sections based on the topography of the cliffs
(Figure 1) and marking off the AOSs as they are noted using basic photo editing software.
Obvious groups of birds with immature plumage that are clearly not breeding were not
counted. Even when counters are highly experienced and motivated, this method is
time-consuming and the criteria for identifying AOSs are subjective. Comparisons of
independent counts by different individuals highlight the potential for inter-observer
variation, which tends to be greater when the resolution of the images is poorer. More
generally, manual counts tend to become more prone to human error as the dataset and
colony size increase due to, e.g., tiredness, boredom of repetition, or distraction [12–14].
Thus, carrying out a complete, replicated manual count of a large seabird colony can take
days, or even weeks.

1.2. Drones and Deep Learning as the Solution

The combination of Bass Rock’s location and the unpredictable Scottish weather makes
drones a cost-effective, convenient, and efficient means of acquiring imagery compared
to fixed-wing plane surveys. As such, the HPAI outbreak provided an opportune time to
evaluate how drones could be used to provide a swifter and more standardised method for
assessing the population of northern gannets on Bass Rock.

For counting individuals, the logical replacement to performing it manually is to use
Artificial Neural Networks (ANNs) capable of supervised learning to automatically detect
gannets in an image. This increases counting speed and accuracy. ANNs consist of ‘node
layers’, where individual nodes acts like artificial neurons connecting to the next. Each
node has an associated weight, representing the importance of features in predicting the
presence of an object, and a threshold value, above which the node is ‘activated’ and data
are passed to the next layer for further learning. A ‘deep’ neural network consists of at
least four layers: an input layer, two or more hidden layers, and an output layer [15]. This
approach is commonly known as Deep Learning (DL).

Publications applying DL techniques to wildlife observations have only really ap-
peared in the past 5–7 years, mostly in response to the technology becoming easier to use by
non-technical specialists [16]. Since 2019, a growing number of studies have been published
showcasing how drone imagery and DL can be effectively used for bird population-related
research. These studies include estimating breeding numbers of West African terns [17], de-
tecting changes in Turkish migrating bird populations [18], and monitoring black-browed
albatrosses and southern rockhopper penguins on the Falkland Islands [19]. A paper by
Hong et al. [20] also focuses on comparing DL architectures for the detection of different
bird species in drone imagery.

Currently, only a few publications have utilised machine learning techniques to analyse
images of gannets specifically. Dujon et al. [21] conducted a proof-of-concept study using
a Convolutional Neural Network (CNN) on drone imagery of Australian gannets (Morus
serrator) to develop an algorithm capable of monitoring multiple species. More recently,
Kuru et al. [22] developed a platform to improve detection accuracy in offshore marine
wildlife surveys, training their system using images of northern gannets captured from a
manned aircraft.
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There is a notable absence in the literature regarding the development of a deep
learning model that can distinguish between living and dead birds. Only one publication
was found that explored the use of machine learning for detecting dead birds, focusing
on observing commercial poultry in a barn using night-vision cameras [23]. Furthermore,
no known publication has utilised deep learning specifically for monitoring bird colonies
after an HPAI outbreak. This knowledge gap highlights two critical areas that this study
aims to address: (a) using neural networks to detect and count dead birds within a colony
from drone imagery and (b) applying this methodology to assess the impact of HPAI by
comparing counts of individual birds from 2022 and 2023.

2. Materials and Methods

Figure 2 shows an example workflow for developing the deep learning model, and
Figure 3 shows the overall workflow for the project.

Figure 2. Basic workflow for a standard DL Convolutional Neural Network (CNN) training process.
Image taken from Akçay et al. [18].

Figure 3. Complete workflow for the research project, from data acquisition to final product.

2.1. Surveys and Data Preparation

The University of Edinburgh in collaboration with the Scottish Seabird Centre con-
ducted a photogrammetry survey of Bass Rock on 30 June 2022—at the peak of the HPAI
outbreak—and during the following breeding season on 27 June 2023 using a DJI Matrice
300 RTK drone. The flight parameters for both missions are shown in Table 2, and the
camera properties in Table 3.
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Table 2. DJI Matrice 300 RTK flight parameters for the 2022 and 2023 photogrammetry surveys of
Bass Rock.

Property 2022 2023

Camera Zenmuse L1 Zenmuse P1
Band RGB RGB

Flight height 100 m 105 m
Flight speed 4 ms−1 4 ms−1

Total flight time 18 min 15 min
GSD 3.22 cm 1.36 cm

Side lap 70% 70%
Forward overlap 80% 80%

Tracks flown E–W S–N
No. of missions 3 2

Nadir images acquired 102 135
Oblique images acquired 76 15

Table 3. Properties for the Zenmuse L1 and P1 cameras.

Feature 2022 2023

Model Zenmuse Z1 Zenmuse P1
Band RGB RGB

Resolution 20 MP 45 MP
Image size (3:2) 5472 × 3648 8192 × 5460

Physical focal length 8.8 mm 35 mm
Full frame focal length 24 mm 35 mm

Aperture f/4 f/4
ISO Auto Auto

Shutter (priority mode) 1/1000 1/1000
Exposure compensation −0.3 −0.7

Focus N/A Infinite

The metric of AOS was not used in this study, rather it aimed to seek out and count
individual gannets due to ecological considerations beyond the scope of this project’s aims.
Distinguishing between individual gannets requires good image resolution. In 2023, the
P1 camera with a higher resolution of 45 MP (compared to 20 MP of L1 used in 2022;
Table 3) significantly improved the ground sampling distance (GSD) to 1.36 cm (compared
to 3.22 cm for 2022 data). This led to a substantial enhancement in overall image quality. To
further improve the contrast of gannets against the rock, the exposure compensation for
the 2023 flight was slightly lowered to −0.7, aiming to reduce the saturation of white areas
of the gannets.

Balancing the need to separate individual birds in the imagery without disturbing
the colony involves a trade-off, with priority given to the welfare of the colony. Previous
studies have looked at the response of colonial birds in response to drone flights [24–26],
with the general result being that the careful selection of flight height both minimised
disturbance and prevented habituation to its presence. Any birds that did move in response
to the drone quickly regained composure with no ill-effect.

Many of the best practices presented in Edney et al. (2023) [27] were adopted to
help minimise the disturbance to the gannet colony, with on-site advice and guidance
provided by ecologists from the Scottish Seabird Centre during each trip to Bass Rock. For
example, the drone take-off/landing site was a marked helipad on the southern tip of the
island, away from the main breeding areas, and in such a location that the flight height
and parameters could be adjusted out at sea away from the majority of the colony before
being brought back in for the survey flight. During the 2022 survey, it was determined that
a flight altitude of around 100 m above the surface worked well, with minimal disturbance
to the gannets both on the ground and in the air. If a gannet did approach while in the air,
usually while close to the water’s edge as they were coming in/out for feeding, all drone
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movement would be immediately halted and the birds would swoop out of the way. Once
the path was clear again, the drone flight was continued.

The standard line-of-sight rules for drone flights were employed, which did mean that
some of the surface and cliff faces to the far north of the island could not be covered by
the surveys presented here. The 2022 data acquisition involved three individual ‘missions’
oriented E–W and stepped up to effectively contour up the slope of the island. Terrain
following was not employed, resulting in each mission flying at slightly different fixed
heights above the take-off point. In contrast, for the 2023 survey, a flight height of 105 m
was used with automated terrain following based on OS 5 m DTM data. This was flown in
a single mission oriented S–N, with some additional hand-flown oblique shots from the
south end of the island. In both datasets, coordinates were measured using an RTK method,
and no ground control points were utilised.

An orthomosaic for both the 2022 and 2023 datasets was generated by passing geo-
referenced RGB oblique and nadir drone imagery into Agisoft Metashape [28]). There were
176 images in total for the 2022 dataset (102 nadir and 76 oblique) and 150 images for the
2023 dataset (135 nadir, 22 oblique). These orthomosaics were then divided into smaller
image tiles for training and validating the deep learning model before its application to the
complete dataset (Figures 4 and 5).

The division was accomplished using ArcGIS Pro’s ‘Split Raster’ function within the
Image Analyst toolbox [29], with a tile size of 200 × 200 pixels for the 2022 dataset, chosen
to make the birds appear large enough for labelling without appearing too ‘fuzzy’ (Figure 6,
Top Left). Due to the higher resolution of the camera used to acquire the dataset, the
gannets appeared much larger in terms of pixel size on the 2023 imagery when split into
200 × 200 pixel tiles, compared to the 2022 imagery (Figure 6, Top Right). This resulted
in an issue when attempting to run the model on the 2023 data, as it failed to recognise
the gannets for what they were. Therefore, the tile size was varied through trial and error
until the relative size of the gannet on the tile roughly matched that of the 2022 tiles, which
turned out to be around 500 × 500 pixels (Figure 6, Bottom right).

Figure 4. Example of the tiling process with the 2022 dataset. The entire orthomosaic is split into
individual tiles measuring 200 × 200 pixels using the ArcGIS ‘Split Raster’ function. Each 200 × 200 pixel
tile (highlighted in red here) equates to 6.4 m on the ground.
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Figure 5. Example of the tiling process with the 2023 dataset. The entire orthomosaic is split
into individual tiles measuring 500 × 500 pixels using the ArcGIS ‘Split Raster’ function. Each
500 × 500 tile (highlighted in red here) equates to 6.8 m on the ground.

Figure 6. Top Left and Bottom Left: 2022 image tile, 200 × 200 pixels; Top Right: 2023 image tile,
200 × 200 pixels; Bottom Right: 2023 image tile, 500 × 500 pixels.

Once generated, some of the tiles were deemed to be unsuitable for use in training the
model: although they are usually aligned automatically by the software, the large area of
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water in the Bass Rock imagery means that it is more difficult to detect enough tie points
to be able to correctly perform the ortho-rectification. This results in severe distortion
and missing data, shown as black patches in the final orthomosaic around the rock–water
boundaries. Good data clearly showed live and dead birds, nests, and man-made structures.
Removing the bad tiles left 1481 tiles for the 2022 data and 1126 tiles for the 2023 data.

2.2. Developing the Deep Learning Model

The model was set up and trained using the 2022 dataset.

2.2.1. Model Architecture

The chosen DL architecture was a Faster R-CNN MobileNetv3-Large FPN, down-
loaded from the Pytorch website [30], which is a combination of both the Faster R-CNN
and MobileNet architectures. The reason for the choice was down to the GPU capabilities
of the available machines. A Faster R-CNN network is a two-stage detector made up of a
feature extractor, a region proposal generator, and a bounding box classifier and is known
to have superior performance and accuracy compared to one-stage detectors such as YOLO
and RetinaNet, especially when detecting small objects [20]. An attempt was made to run
the model using a ResNet50 backbone, but it was too large for the available GPU. Instead,
MobileNet offered a streamlined architecture and lightweight deep neural network that is
less intensive to run and has already been shown to be an effective base network for object
detection [31]. Pre-trained weights were applied to the model from the standard Microsoft
COCO dataset (Common Objects in Context; [32]), a large-scale dataset with 1.5 million
labelled object instances across 80 categories for object detection.

2.2.2. Creating the Training Data

In order to train the model to recognise the gannets, a representative dataset was
required where each individual is classified as dead or alive. In total, 530 of the accept-
able 200 × 200 image tiles were passed through the open source web app VGG Image
Annotator ([33]; Figure 7) and manually labelled as dead, alive, or flying by drawing a
bounding box (also known as a ‘region of interest’, RoI) around each bird and choosing
which classification to assign to it. This accounts for approximately 35% of the dataset.
This number was chosen because a balance must be sought between having an adequate
amount of training data while also leaving enough unseen tiles for the validation process.

Figure 7. Example of using the open source software VGG Image Annotator to classify gannets as
either ‘Dead’ (e.g., box 3), ‘Alive’ (e.g., box 2), or ‘Flying’ (e.g., box 1). Nests and man-made structures
are also visible.

Live and dead gannets exhibit distinct shapes: live gannets appear more ‘tucked in’
and elliptical, while dead gannets tend to have their wings and neck splayed out, providing
a useful distinction for classification. To avoid misclassifying flying birds as ‘dead’ due
to their spread wings, a separate class was added for flying birds (Figure 8). Flying birds
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appear larger in pixel size on the imagery, as they are closer to the drone camera, and it was
expected that this information would help the model differentiate between the two classes.

Figure 8. 200 × 200 pixel image tiles showing examples of the three classes of gannet; Left: live
gannets on the ground appear elliptical in shape; Middle: dead gannets have their neck and wings
splayed; Right: flying gannets appear larger with their wings evenly spread out.

Out of the 530 annotated tiles, 4496 were labelled as ‘Alive’, 1477 as ‘Dead’, and 313 as
‘Flying’. The annotated tile data were saved in a CSV file and read into the Python script.
Rows without labels were removed, and the tile names, bounding box coordinates, and
gannet status (Dead, Alive, Flying) were stored in a new file for the training process. For the
model, ‘Dead’ were classified as 1, ‘Alive’ as 2, and ‘Flying’ as 3, with class 0 automatically
assigned as a ‘background’ class.

2.2.3. Hyperparameters

There are several different hyperparameters that can be fine-tuned by the user when
training the model, which are set before training begins. The values applied to this model
are listed in Table 4. The final trained model was saved as a loadable file so that it could be
easily applied to unseen datasets.

Table 4. Hyperparameters fine-tuned for use in the model.

Hyperparameter Value Description

Train-test split ratio 0.1 10% of the labelled training data held back by the model for validation.
477 out of 530 used for training, 53 for validation.

Batch size 32 Training dataset split into small batches of images so model can more effi-
ciently calculate error and update weights accordingly.

Learning rate 0.001 Step size determining how fast or slow model converges to optimal weights.
Chosen rate is low enough to allow network to converge within a reasonable
timescale [34].

Momentum 0.9 Prevents the optimisation process from becoming stuck in a local minimum
and missing the global minimum as a result. Default value.

Weight decay 0.0005 Factor applied after each update to prevent weights from growing too large
and creating problems with over-fitting and model complexity. Default value.

No. of epochs 15 The number of times that the learning algorithm will work through the entire
training dataset and update weights accordingly [35]. Can vary each time
model is run.

Confidence threshold 0.2 A score above which a prediction is accepted or rejected by the model. Value
chosen through trial and error.

The optimal number of epochs for training the model was determined by assessing
the loss function, which is an indicator of how good the model is at predicting the expected
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outcome, by observing the training loss and validation loss. Training loss is a metric used
to evaluate model fitting on the training dataset (calculated by summing the errors on each
individual image for each batch), while validation loss assesses model performance on
the validation dataset (calculated by summing the errors on each individual image at the
end of each epoch; [36]). The goal is to reach the lowest validation loss value to reduce
overfitting. By plotting loss against training epochs, it is possible to determine if the model
needs further fine-tuning to prevent under-fitting or over-fitting of the model. An optimal
fit occurs when both training and validation loss decrease and stabilise at around the same
epoch. In this model’s case, this occurred at epoch 15.

A section of code was added to automatically stop the training process when the
validation loss reached a minimum value. If a lower value was not reached within 15 epochs,
the process was terminated and the trained model at that minimum value was saved. This
process is known as ‘early stopping’. The epoch at which the minimum was reached varied
slightly each time the training process was executed (unless seeds are set), as it depends
on which validation images the model utilises and other sources of randomness hidden in
the model’s ‘black box’. Despite this, the minimum validation loss was always reached at
approximately 4.2–4.7.

2.3. Validating the Model

To validate the model and see if it was working as expected, the remaining 53 of the
530 labelled image tiles were fed in and the output printed onto the screen.

2.3.1. Visualising Model Predictions

A function was created to draw coloured boxes around the gannets to highlight
predictions made by the model for each validation tile. The red boxes indicate dead, blue
boxes indicate alive, and yellow boxes indicate flying. A second function was used to
draw pink boxes around birds manually labelled in VGG Image Annotator, known as the
‘ground-truth’ data. The goal was for all coloured boxes to lie on top of the pink boxes,
indicating a correct prediction made by the model (Figure 9).

Figure 9. 200 × 200 pixel image tile showing example of ground-truth bounding boxes overlaid by
predicted bounding boxes for each given class. Pink = ground truth, red = dead (class 1), blue = alive
(class 2), yellow = flying (class 3). Any other background is class 0.
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2.3.2. Model Performance Metrics
Positive and Negative Predictions

For object detection, it is important to determine the accuracy of both the resultant clas-
sifications and the position of the predicted bounding boxes compared to the ground truth.
For the detections performed by the model, the resulting image tiles showed a combination
of true positives, false positives, and false negatives—see Table 5 for definitions.

Table 5. Definitions for object detection.

Detection Acronym Definition

True Positive TP Prediction made that matches ground truth
False Positive FP Prediction made that does not match ground truth

False Negative FN Prediction not made where ground truth exists

True Negative TN Neither ground truth nor prediction exists
(ignored for object detection)

There are three different occurrences of FPs in the resultant images:

• Incorrect prediction made by the model, e.g., mistaking a rock for a bird (Figure 10).
• Correct prediction of a bird by the model that was missed in the original labelling due

to human error (Figure 11).
• Prediction made by the model, but the wrong classification given compared to

ground truth.

The FN occurrences were far fewer and mostly occurred where two gannets were
nesting close together, making it difficult for the model to tell them apart (Figure 12).

Figure 10. 200 × 200 pixel image tile showing examples of FP predictions made by the model that are
rocks or other natural features, indicated by the yellow arrows.
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Figure 11. 200 × 200 pixel image tile showing examples of FP predictions made by the model that
are real birds missed out of the ground truth, indicated by the yellow arrows. The arrows point to
red/blue bounding boxes that do not have a pink ground-truth bounding box underneath.

Figure 12. 200 × 200 pixel image tile showing examples of FN predictions made by the model,
indicated by the yellow arrows. The arrows point to pink ground-truth bounding boxes that do not
have an overlaying predicted red/blue bounding box.

Mean Average Precision (mAP)

An attempt was made to manually verify the predicted count and determine the
accuracy of the model predictions compared to ground-truth data. Accuracy is usually
calculated as the percentage of correct predictions out of all calculated predictions, given as:

Accuracy =
TP + TN

TP + FP + TN + FN
(1)
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However, this format is not reliable when analysing ‘class imbalanced’ data, where
the number of bounding boxes provided for each class is different, as the output places
a higher weight on learning those classes with more instances than those with less [37].
Instead, the mean Average Precision (mAP) is considered a better metric.

The mAP is a single value ranging from 0 to 1 that represents overall detection accuracy
for an image (1 = 100% accuracy). The TorchMetrics function MeanAveragePrecision()
(TorchMetrics, 2014) automatically calculates and utilises precision, recall, and AP based
on the provided IoU threshold of 0.5, predicted bounding boxes/labels, and ground-truth
bounding boxes/labels. As such, the mAP was calculated as 0.37 (37% accuracy), marking
the final step in the model validation process. This aligns with the reported validation mAP
of 32.8% for this model architecture, trained on the original COCO dataset by the PyTorch
model developers [38].

Reproducibility

To ensure reproducibility, three functions were added to the code to control sources
of randomness that arise with each execution. This was performed by setting seed values.
However, Pytorch states that complete reproducibility is not guaranteed across releases,
commits, or platforms and that results may not be reproducible between CPU and GPU
executions even when using identical seeds [39].

The model was run three times on the 2022 dataset with three seed values set:
torch.manual_seed(0), np.random.seed(0), and random_state = 1. The first two are set to
minimise pseudo-randomness, while the latter ensures the same train-test split is used (i.e.,
the same 477 images are used for training and the same 53 images are used for validation).
The results are listed in Table 6. While there is still some variation to be seen, it is not as
large a difference as before the seed values were set, which could result in a difference of
over 1000 live birds. Given the relatively poor contrast between rocks and birds in the 2022
dataset, this variation is deemed to be of an acceptable level.

Table 6. Result of 3 model runs on the 2022 dataset to assess reproducibility when seed values are set.

Run 1 Run 2 Run 3 Average

Epoch 13 16 21 -
Validation data—Live 582 560 552 565
Validation data—Dead 182 189 188 186
Validation data—Flying 38 37 37 37
mAP 0.38 0.37 0.37 0.37

Final count—Live 19,895 19,254 19,033 19,394
Final count—Dead 3775 4284 4243 4100
Final count—Flying 813 825 812 817

3. Results
3.1. 2022 Dataset
3.1.1. Orthomosaic

An orthomosaic covering the full extent of Bass Rock was generated from 2022 drone
imagery and immediately shows the impact of the HPAI outbreak—namely large swathes
of bare ground where gannets previously would have been nesting (Figure 13). Remains
of man-made structures are also visible, including the lighthouse, chapel, walled garden,
foghorn, and walkways.
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Figure 13. Full orthomosaic generated from the 2022 RGB imagery.

3.1.2. 2022 Predicted Count

Since any FP predictions would end up included in the automatic count, the ‘true’
count was estimated. The FPs and FNs occurring for all three classes were manually
counted in the 53 validation images using DotDotGoose, a free open-source tool to assist
with manually counting objects in images ([40]) A percentage change to apply to the entire
dataset was then calculated by comparing the model count to the true count (TPs + FNs +
misclassified FPs). The results are shown in Table 7.

Table 7. Validating the predicted counts for the 2022 dataset. Model Count = counts predicted by
model; FP(−) = FP predictions that were not birds (e.g., rocks); TP = TP predictions; FP(+) = misclas-
sified FP predictions (e.g., predicted dead but actually alive); FN = FN predictions; True Count = total
of TP, FP(+), and FN; % Change = difference between Model Count and True Count.

Alive Dead Flying

Model Count 552 188 37
FP (−) 117 45 1
TP 435 143 36
FP (+) 70 12 2
FN 25 10 4

True Count 530 165 42
% Change −3.99 −12.23 +13.51

The fully trained and validated model was then run on the entire 2022 dataset con-
sisting of 1481 image tiles. Table 8 shows the results of the predicted count for each of the
three classes for the entire dataset.
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Table 8. Predicted counts for each class for the complete 2022 dataset.

Classification Model Count % Adjustment Adjusted Count

Alive 18,977 −3.99 18,220
Dead 4285 −12.23 3761
Flying 808 +13.51 917

3.1.3. Model vs. Manual Count

A manual count carried out by Glen Tyler at NatureScot predicted 21,277 live and
5053 dead gannets [5], resulting in a 10% difference for combined live and flying gannets
and 26% for dead gannets compared to the adjusted model predictions of 19,028 live
(18,220 alive + 808 flying) and 4285 dead. The variation is likely due to the subjective nature
of counting, along with challenges such as poor image quality, low colour contrast, and
distorted imagery around rock edges, making accurate classifications and counts difficult.

3.2. 2023 Dataset
3.2.1. Orthomosaic

An orthomosaic covering the full extent of Bass Rock was generated from 2023 drone
imagery (Figure 14). There are signs of initial population recovery, namely a higher density
of gannets now occupying what was previously bare ground in Figure 13. However, it is
still significantly below 2020 levels. The 2023 dataset showcased a marked increase in data
quality thanks to the P1 camera, with individual gannets now more defined and feather
colouration visible.

Figure 14. Full orthomosaic generated from the 2023 RGB imagery.
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3.2.2. 2023 Predicted Count

The saved, fully trained model from Section 2.2 was loaded and applied to all 1126 of
the 500 × 500 pixel image tiles created in Section 2.1. Examples of the predictions are shown
in Figures 15–17.

Figure 15. 500 × 500 pixel image tile showing examples of live model predictions (blue) from the
2023 dataset. Gannets clearly detected against rocky background.

Figure 16. 500 × 500 pixel image tile showing examples of potential TP dead (left, red) and FP dead
model predictions (right, red) from the 2023 dataset.
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Figure 17. 500 × 500 pixel image tile showing examples of flying model predictions (yellow) from
the 2023 dataset. Two gannets in flight clearly highlighted in contrast to live gannets on the ground.

Since the image quality is much greater than that of the 2022 dataset, the error on the
predicted counts was re-estimated. A total of 165 of the predicted image tiles were saved
and manually checked in DotDotGoose for FPs and FNs, and the appropriate adjustments
to the counts were made (Table 9).

Table 9. Validating the predicted counts for the 2022 dataset. Model Count = counts predicted by
model; FP(−) = FP predictions that were not birds (e.g., rocks); TP = TP predictions; FP(+) = misclas-
sified FP predictions (e.g., predicted dead but actually alive); FN = FN predictions; True Count = total
of TP, FP(+), and FN; % Change = difference between Model Count and True Count.

Alive Dead Flying

Model Count 5308 177 53
FP (−) 103 174 1
TP 5205 3 52
FP (+) 122 2 18
FN 510 0 6

True Count 5837 5 76
% Change +9.06 −97.16 +43.40

The model was then run on the entire 2023 dataset, and the predicted counts were
adjusted accordingly (Table 10).

Table 10. Predicted counts for each class for the complete 2023 dataset.

Classification Model Count % Adjustment Adjusted Count

Alive 44,433 +9.06 48,455
Dead 1510 −97.16 43
Flying 339 +43.40 486
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3.2.3. Model vs. Manual Count

Comparison of Tables 8 and 10 shows that there is an estimated increase in the number
of live gannets for the assessed areas of 166% (2.5 times larger) from 2022 to 2023—a positive
sign for its recovery. Three independent manual counts of individuals were carried out
using DotDotGoose [40] by the UKCEH and the Scottish Seabird Centre. An average was
taken for the three counters to provide a final value of 51,428 live birds (not including those
in flight), marking a 6% difference between the model count and the manual count. Very
few birds were classed as dead, with a mean of 23.

4. Discussion

The project aimed to utilise a deep learning neural network to automate the detection
and counting of northern gannets in drone imagery of Bass Rock from 2022 and 2023. The
analysis covered nine of the counting areas marked out in Figure 1 (1, 2, 3, 8 + 9, 10, 11,
12, 13) and part of one more (7). The areas in Figure 1 not assessed here (4, 5, 6) are those
that could not be covered by the drone due to line-of-sight restrictions. These areas relate
to sheer cliff faces where the gannets are known to nest. In 2014, when coverage of the
colony was complete, these missing areas contained 15.4% of the population [9]. In this
way, the results presented here do not offer a complete census of the entirety of the Bass
Rock gannetry.

When applied to the 2022 dataset, the DL model predicted 18,220 live and 3761 dead
gannets, which closely aligns with NatureScot’s manual count of 21,277 live and 5035 dead
gannets [5]. Subsequently, the model was applied to the 2023 dataset and predicted
48,455 live and only 43 dead gannets. In terms of the number of gannets associated with
Bass Rock in 2023, these results show a substantial increase of 166% compared to the same
areas imaged in 2022. The manual count for 2023 provided a number of 51,428 live gannets.
If we assume the manual count to be the ‘ground truth’, then the model performed with
around 95% accuracy compared to counting manually.

To enhance the comparability of the estimated count provided in this study with
previous Bass Rock censuses, it would be advantageous for future research to investigate
the model’s capability or adaptability to estimate Apparently Occupied Sites (AOSs), a
metric conventionally employed previously. Deriving AOSs from an individual live bird
count necessitates a context-dependent conversion factor, with anticipated variations across
colonies, years, and different seasonal periods. Therefore, this study also serves as an initial
effort towards developing an automated count of AOSs.

4.1. Limitations
4.1.1. Labelling and Classification

The model output relies heavily on training data quality, and poor class representation
can result from an inadequate amount of labelling or incorrect bird classification—the
result of a subjective process. To mitigate this, it is recommended to agree with experienced
counters on what represents live or dead birds in imagery and to ensure that similar
numbers of labelled examples are made for each class—though the model does account for
‘class imbalance’ to some extent through calculation of the mAP.

In the 2023 dataset, the model predicted 1510 dead gannets, with 97% estimated to
be FPs. After discussion, it was decided that some of the remaining 3% were probably
also alive, and some were likely to really be dead (Figure 18). It was also apparent that
many of the FN predictions in both datasets occurred when two gannets were sat very
close together, e.g., on a nest, which the model could not easily separate.

It is important to note that from an aerial perspective, the posture of a dead gannet can
appear very similar to one that is ‘displaying’, which presents uncertainty for this particular
classification. As such, if a rapid and accurate assessment of mortality is required, then it is
vital to try to improve the identifying criteria to distinguish between dead and displaying
gannets through more rigorous ground truthing in conjunction with behavioural experts.
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Figure 18. 500 × 500 pixel image tiles showing examples of dead predictions made by the model
(Left, red boxes), and the potential TP dead prediction (Right, red circle).

Due to the increased resolution of the P1 camera, it might be worth re-training the
model using the higher-quality 2023 dataset to see if gannets close together could be better
resolved as separate individuals. However, it should be noted that while models trained
on ‘worse’ data will run well on better quality data, the reverse is not true. For example,
an attempt was made to run the model on historical Bass Rock survey data from 2014, but
the poorer quality, motion blur, and viewing angle meant that it did not work effectively
enough to be of any use.

The model should ideally be trained using hundreds of images to increase classification
representation, but the sizes of the datasets used here were limiting. A way to solve this
would be to implement ‘data augmentation’, which artificially increases the size and
robustness of the training dataset by making adjustments to copies of the labelled images
by, e.g., rotating, resizing, flipping, or changing the brightness [41].

4.1.2. Model Performance

The mAP acquired on the 2022 dataset of 37% is in line with the value of 32.8% expected
from using Pytorch’s pre-trained Faster R-CNN MobileNetv3-Large FPN architecture. As
mentioned in Section 2.2.1, the model was ‘downgraded’ from the suggested ResNet50 due
to the available GPU. Had that been used, then the mAP would have increased to around
46.7% [38]. Pre-training the model with a dataset other than MS COCO may also help with
increasing the mAP, as COCO mostly consists of images taken at a regular/side-on viewing
angle, whereas the data used here are top-down.

Implementing a different DL architecture and running on a larger GPU could offer
improvements in terms of computational efficiency and prediction accuracy. On top of this,
pre-training on a different dataset than MS COCO may also offer an improvement.

4.2. Outcomes
4.2.1. Population Counts

In the 2022 dataset, the model and manual counts differed by 10% for live birds and
26% for dead birds. This discrepancy might be due to the lower quality of the imagery,
making it challenging to make the same subjective classifications. The 2022 adjustment
values in Table 8 are much lower than those calculated for the 2023 data in Table 10, as the
model performs better on data with known features used during training, such as pixel
size, noise, brightness, and contrast. Similar to Hayes et al. [19], this study also found that
FPs were the most common prediction errors by the model.

In the 2023 dataset, the model significantly overestimated dead birds and underesti-
mated flying birds, potentially because of the P1 camera’s higher resolution, which can
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sometimes misinterpret the shape of a live bird on the ground. For example, after visiting
Bass Rock in person, it was noted that live gannets stand up and fan their wings out when
defending their space, which can be misinterpreted as being a ‘dead’ shape when viewed
from above. The expertise of the Scottish Seabird Centre was important in identifying
likely TP predictions for dead gannets, which is a crucial factor to get right during an HPAI
outbreak scenario.

Image overlap during stitching of the orthomosaic could lead to the same bird being
counted multiple times, particularly with flying birds. Flying gannets were often missed as
FNs rather than being misclassified. Occasionally, the model also picked up herring gulls,
but there were not enough instances to determine if it was a sporadic prediction accident
or if a larger number of them would require separate classification.

4.2.2. Deep Learning Model

The Faster R-CNN MobileNetv3-Large FPN architecture provided a streamlined
system for quick performance on both GPU and CPU (Section 4.2.3). Another study,
published online, also uses the Faster R-CNN MobileNetv3-Large FPN model for bird
species detection using Pytorch and DL. However, it uses regular ‘side-on’ images of birds
and is applied to species recognition only, not counting [42].

The DL model performed well and achieved 37% accuracy, though some manual
verification is still required to fine-tune this. This performance aligns with Hong et al. [20],
where they also used a Faster R-CNN DL model to detect birds from drone imagery at a
100 m flight height. Despite using a larger dataset and ResNet backbone, with the birds on
arguably less complex terrain, the results here share similar positive aspects of speed and
accuracy. A similar issue of sensitivity to the bounding box pixel size was noted in their
study, which was addressed in this work by resizing the 2023 image tiles.

Although Hong et al. [20] conclude that they are currently gathering aerial imagery
of dead birds to develop a more robust model, there is currently nothing in the literature
where this has previously been done. This makes the study presented here one of the first
to do so.

4.2.3. Time Efficiency

One of the main aims was to see if it were possible to significantly reduce the time
required to acquire a population estimate. The results of this are described in Table 11.

Table 11. Description of how the DL model reduces time requirements.

Action Time (GPU) Time (CPU) Description

Training 10 min N/A Training model on 477 labelled im-
age tiles. Not recommended on
CPU due to computational power
required to run.

Validation <1 min <1 min Validating training data with 53 la-
belled image tiles.

Implementation <2 min <25 min Running trained model on entire
2022/2023 dataset.

Using the saved trained model, obtaining an initial predicted total count takes less than
2 min. Data preparation for the model, including generating the orthomosaic and image
tiles, is also relatively quick, at about 1 h. Compared to the current manual methodology [9],
this approach significantly saves time and provides an instantaneous overview of the
colony’s well-being. If needed, manual verification can still be performed using the saved
imagery containing the model predictions.

Similarly, Kellenberger et al. [17] reported that their CNN model for detecting terns
and gulls reduced analysis time from a few days to a few hours, with the prediction stage
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only taking a few minutes. However, they did not utilise early stopping and ran the
model for 75 epochs, visually ensuring convergence, which increased training time to over
3 h. This study demonstrates that implementing early stopping can greatly minimise the
required run time.

5. Conclusions

The combination of drone-based remote sensing and deep learning provides a swift
and adaptable method for accurately monitoring the northern gannet population on Bass
Rock. This methodology improves upon the labour-intensive manual counts based on
aerial digital photography first used by Murray et al. [7], representing the first advancement
of the survey process in almost 15 years.

The results presented here are the first known application of deep learning to detect
dead birds from drone imagery with the specific aim of quantifying the impact of HPAI on
a bird colony. The model’s potential extends to other gannet colonies in the UK and, with
some re-training, could be adapted to detect other bird species, making it a valuable tool
for conservation purposes.
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