Learning to Solve Tasks with Exploring Prior Behaviours

Ruiqi Zhu!, Siyuan Li?, Tianhong Dai®, Chongjie Zhang?*, Oya Celiktutan®

Abstract— Demonstrations are widely used in Deep Rein-
forcement Learning (DRL) for facilitating solving tasks with
sparse rewards. However, the tasks in real-world scenarios can
often have varied initial conditions from the demonstration,
which would require additional prior behaviours. For example,
consider we are given the demonstration for the task of picking
up an object from an open drawer, but the drawer is closed in
the training. Without acquiring the prior behaviours of opening
the drawer, the robot is unlikely to solve the task. To address
this, in this paper we propose an Intrinsic Reward Driven
Example-based Control (IRDEC). Our method can endow
agents with the ability to explore and acquire the required prior
behaviours and then connect to the task-specific behaviours
in the demonstration to solve sparse-reward tasks without
requiring additional demonstration of the prior behaviours.
The performance of our method outperforms other baselines on
three navigation tasks and one robotic manipulation task with
sparse rewards. Codes are available at https://github.
com/Ricky-2Zhu/IRDEC.

I. INTRODUCTION

Deep reinforcement learning (DRL) has demonstrated
impressive performance in sequential decision-making prob-
lems, such as video games [1], [2], robotics manipulation
[3], [4], and autonomous driving [S]. However, for tasks with
sparse rewards, the lack of learning signals can hamper the
learning process. To address this, demonstrations are often
leveraged to facilitate the learning process.

In real-world applications, we can often encounter sit-
vations under which the initial conditions vary from the
demonstration, termed as the fask-specific behaviour demon-
stration in this paper, which therefore requires additional
prior behaviours to complete the tasks. Prior works re-
quire collecting additional demonstration of prior behaviours,
which have overlapped states with task-specific behaviour
demonstration to overcome the problem [6]. However, as
the initial conditions can be various, instead of collecting
the demonstration of prior behaviours, the robots should
be able to adapt to different initial conditions and leverage
the available task-specific behaviour demonstration to learn
the required prior behaviours. For example, consider we are
given the demonstration for the task of picking up the object
from a closed drawer, but in the training, there are obstacles
in the way. Therefore, the robots should be able to explore
and learn the essential prior behaviours of removing the

1 R. Zhu and O. Celiktutan are with the Department of Engineering,
King’s College London.

2'S. Li is with the School of Computer Science and Technology, Harbin
Institute of Technology.

3 T. Dai is with the Department of Computing Science, University of
Aberdeen.

4 C. Zhang is with the Institute for Interdisciplinary Information Sciences
(IIIS), Tsinghua University.

Task-specific behaviours

Scenario 1

Scenario 2

Fig. 1: Illustration of the problem definition. Scenario 1: the task
of placing the in-hand object into the tray. Scenario 2: the task
of placing the object, which is on the table, into the tray. task-
specific behaviour demonstration: the demonstration of placing
behaviours. Prior behaviours: the behaviours of grasping (top) and
lifting (bottom). Scenario 1 can be solved by mimicing the task-
specific behaviour demonstration while solving scenario 2 requires
the prior behaviours that are absent in the task-specific behaviour
demonstration. We attempt to solve scenario 2 given only the task-
specific behaviour demonstration without the demonstration of the
prior behaviours.

obstacles first and then conduct the task-specific behaviours
of picking up the object from a closed drawer to complete
the task.

In this paper, we aim to utilize task-specific behaviour
demonstrations to facilitate the learning of tasks with varied
initial conditions without requiring additional demonstration
of the prior behaviours. The absence of the prior behaviour
demonstration indicates that the agent needs to acquire the
essential prior behaviours to reach the demonstrated states
in the task-specific behaviour demonstration. For example,
as illustrated in Fig. 1, the task-specific behaviour is placing
the in-hand object into the tray. The agent is required to
learn the prior behaviours of grasping and lifting the object
from the table, and then mimic the demonstrated actions of
the task-specific behaviours to complete the pick-and-place
task.

When children are shown the task-specific behaviour
demonstration and then put in a different initial condition,
they would intuitively explore the environment to return
to the demonstrated states, which are termed as familiar
states. Therefore, they can follow the demonstrated actions
to complete the tasks. Inspired by that, we propose an
intrinsic reward module to encourage the agents to explore,
while the exploration direction is biased towards the familiar

https://github.com/Ricky-Zhu/IRDEC
https://github.com/Ricky-Zhu/IRDEC

states for acquiring the required prior behaviours. Following
that, the agents follow the demonstrated actions to complete
the tasks, which is achieved with an adaptive behaviour
regularizer. The whole framework is trained in an end-to-
end manner and can be implemented with off-policy actor-
critic RL algorithms, such as soft actor-critic (SAC) [7]
and deep deterministic policy gradient (DDPG) [8]. Our
method was evaluated on challenging long-horizon sparse-
reward navigation [9] and robotic manipulation tasks [6].
The empirical results show that the proposed method can
enable the agent to leverage the task-specific behaviour
demonstration to learn the essential prior behaviours to solve
tasks with sparse rewards efficiently.

The main contributions of this paper are: (i) We propose an
Intrinsic Reward Driven Example-based Control (IRDEC)
learning framework, which enables the agents to acquire
prior behaviours and connects to the task-specific behaviours
adaptively given only the task-specific behaviour demonstra-
tion. (ii) We compare our method with several baselines on
challenging navigation and robotic manipulation tasks with
sparse rewards and our method achieves the best results.
(iii)) We carry out an ablation analysis to investigate the
importance of each component in our method and the results
show that both components, the intrinsic reward module and
the example-guided exploration, are necessary for effectively
learning the required prior behaviours.

II. RELATED WORK

Reinforcement Learning (RL) with Demonstration.
Demonstrations are usually utilized in RL methods to fa-
cilitate learning in complex environments or mitigate the
problem of sparse rewards. The utilization can often be
categorized into: (1) imitation learning in which supervised
learning is used to enforce the agent to mimic the demon-
strated actions [10] or a reward function is inferred from the
demonstration and the policy is trained to optimize it [11]—
[13]; (2) behaviour extraction in which temporal abstracted
behaviours are encoded from a large-scale offline dataset and
policy is trained to optimize the extrinsic reward function by
acting on the behaviour space to facilitate the exploration
[14], [15]; (3) the demonstration is used to initialize the RL
actor or regularize the RL actor during the training [16].
However, these works require that the demonstration contains
all the required behaviours for the target tasks. But in our
proposed method, only the task-specific behaviour demon-
stration is provided, while the essential prior behaviours are
acquired during the training by leveraging the familiar states.

Goal-conditioned RL. Goal-conditioned RL has demon-
strated competitive performance on tasks with sparse re-
wards. By augmenting the state with the goal sampled from
the behavioural goal space, the sparse rewards are relabelled
with the rewards computed via evaluating the Euclidean dis-
tance between the achieved goal and the sampled behaviour
goal [9], [17]. In our proposed method, the task-specific
behaviour demonstration contains the goal states of the
target tasks, which implicitly implies the goal information.
However, goal-conditioned RL requires a mapping function

Algorithm 1 Intrinsic Reward Driven Example-Based Con-

trol (IRDEC)

Input: task-specific behaviour demonstration D

1: Initialize: policy my, forward dynamics model fp,,,, inverse

dynamics model gg,, ,, state representation model ¢, , action
representation model @,, classifier C.,(s,a), intrinsic value
head Q,(s,a), online replay buffer B <+ @, regularization
weighting Areg <— Ao

2: for k=1, M do

3: Collect a new trajectory: B <— BU {7 ~ my}

4: Sample transitions MB = {s;,a;,75, s} from B

5. Update models within the intrinsic module with samples
MB using Eq. 5 '

6: Compute the intrinsic reward r; using Eq. 8

7. Replace the rewards r§ in MB with r; = 7§ + 1}

8: Optimize the intrinsic value head by minimizing the loss in
Eq. 9

9: Sample familiar states and corresponding demonstrated ac-
tions (s;,a;) from D

10: Optimize the classifier by minimizing the loss in Eq. 12

11: Update the policy using Eq. 17

12: end for

to transform the state space into goal space. In contrast,
our method does not require the mapping function and is
therefore more applicable.

Exploration with Intrinsic Reward. In environments
with sparse rewards, intrinsic reward is usually leveraged to
encourage the exploration of novel states before any extrinsic
rewards are obtained. A large body of works focuses on
using forward dynamic model prediction error as intrinsic
reward [18]-[20]. However, intrinsic reward generated in
this way can vanish with the agent being familiar with
the environment, and therefore the prediction error tends
to converge to zero [21], [22]. In [23], [24], a count-based
exploration bonus is used to incentivize the agent to explore.
However, the measure of the counts in large continuous
state spaces is non-trivial. Our method incorporates curiosity
intrinsic rewards, and impact intrinsic rewards, which do
not vanish as the training progresses to encourage the agent
to aggressively expand its explored state space so that the
familiar states can more easily be encountered.

III. BACKGROUND

The learning problem is formulated as a Markov Decision
Process (MDP) characterized by a tuple {S, A, T, R, p,v}
of state space, action space, transition probability mapping
from current state s and action a to the next state s’, reward
function, initial state distribution, and discount factor. In
each episode, the initial state sy € S is sampled from the
initial state distribution sg ~ p(sg), the agent chooses its
action a; € A according to the policy a; ~ 7(-|s¢), and
then the environment will generate the next state s;41 ~
T (-|st,a:) and the reward r = R (s, at, s¢41). The objective
of the agent is to maximize the sum of discounted rewards,
Ern [zgo wtrt}, where trajectory 7 is sampled from the
policy .

Example-based Control. Unlike the goal-conditioned RL,
which requires the mapping from the state space to the

goal space, example-based control provides another way of
reaching the goal over the future state distribution, defined
as Eq. 1 where s;4 is the future state. Given examples of
goal states, the actor policy is optimized to maximize the
probability of reaching these states [25], [26].

o0
P (seelse,ar) £ (1=7) D v P (sera = seilse, ar)
A=
ey

The probability as shown in Eq. 2 is defined over the future
state distribution.

pr(ert|se, ar) = Eprs,, ., o [P(Er4|504)] (2)

where ey is referred to as the event of reaching the example
states conditioned on the future state from time step t. In
our method, we leverage the classifier in [25] to estimate the
probability of reaching the demonstrated states in the task-
specific behaviour demonstration in the future. However, the
exploration introduced by maximizing the classifier values
could often encounter danger areas in tasks, which can result
in failure to solve the tasks. Please refer to Section IV for
further details.

Off-policy Actor-critic RL. Our method can be im-
plemented with off-policy actor-critic algorithms. In these
algorithms, the critic learns an off-policy estimate of the
value function for the current actor policy with the samples
collected from behavioural actor policies [27]. The value
function in our method estimates the weighted sum of the
future return of the extrinsic and intrinsic rewards and the
classifier values under the target actor policy. The actor
policy in turn is optimized to maximize the estimates using
the off-policy samples which are collected online.

IV. INTRINSIC REWARD DRIVEN EXAMPLE-BASED
CONTROL FRAMEWORK

The proposed method consists of two main components,
namely, a curiosity-impact driven intrinsic reward module
that encourages the agent to expand explored areas, and
example-guided exploration provided by a classifier that
predicts the probability of reaching familiar states in the
future. To reach the familiar states and connect the task-
specific behaviours, proper exploration over the state space
is essential. The exploration direction introduced by directly
maximizing the classifier values without the intrinsic reward
module can potentially encounter danger areas. The explo-
ration introduced by the intrinsic reward module without the
guidance provided by the classifier can cover less promising
areas related to the target tasks, which can be inefficient
and could hinder the agent from solving the tasks. By
expanding the explored areas towards the familiar states
with leveraging the guidance from the task-specific behaviour
demonstration, our proposed method can learn the essential
prior behaviours and connect them to the behaviours in the
task-specific behaviour demonstration for solving the target
tasks as illustrated in Fig. 2.

[Goal

Task-specific demonstration ‘

Exploration direction 1 | X

Exploration direction 2

Exploration direction 3

® Danger

Fig. 2: Mlustration of the proposed method. Exploration direction
1: the exploration direction introduced by the classifier. Exploration
direction 2: the exploration direction introduced by the intrinsic
reward module. Exploration direction 3: the exploration direction
introduced by our method.

A. Curiosity-Impact Driven Intrinsic Reward Module

Our intrinsic reward module combines curiosity intrinsic
rewards that encourage the agent to visit novel states [18] and
impact intrinsic rewards that incentivize the agents to explore
local states with large differences from current states, which
can help to reach critical stages during the exploration [28].
We train a forward and an inverse dynamics models to learn
the state representation ¢,(s) and the action representation
¢a(a). The forward dynamics model parameterized by 6., is
used to predict the representation of the next state ¢ (s:+1)
given the current state representation ¢,(s;) and action
representation ¢,(at). The loss for the forward dynamics
model is given in Eq. 3:

Lw(styat, sp41) = %erfu,(%(st)y¢a(at)) — ¢s(se41) 3
3)
The inverse dynamics model parameterized by 6;,, is
used to predict the action representation ¢,(a;) given the
consecutive state representations ¢(s¢) and ¢s(s¢41). The
loss for the inverse dynamics model is shown in Eq. 4. With
the inverse dynamics model, the adverse impact on state
representation learning, caused by the inherent noise of the
environment where transition might not be affected by the
agent’s actions, i.e. noisy TV [19], [23], can be mitigated by
retrieving the action leading to the transition.

Liny(5t; at, $t41) = —10g(9e;,,, (9a(ar)|ds(st), ¢s(st+1))
“4)
Thus, the total loss for the intrinsic module can be written
as follows:

Licm = wa + Linv (5)

The curiosity intrinsic reward is defined in Eq. 6. A
larger curiosity intrinsic reward, namely a larger prediction
error, indicates the novel states being visited as the forward
dynamics model is unfamiliar with the transition.

rtcum‘osity _ erfw (ds(5¢), dalar)) — ds(sex1)]2 6)

However, as the training progresses, the curiosity intrinsic
rewards could vanish as the agent is being familiar with
the environment. Thus, the impact intrinsic rewards defined
as the squared Euclidean distance between consecutive state
representations, as shown in Eq. 7, are utilized to encourage
the agent to aggressively change its states to accelerate the
exploration.

impact __ ||¢s(5t+1) - (Z)S(St)”?
T = 2)
dm,
where d,, is the running average of the numerator for scaling
the bonus. The impact intrinsic rewards will not vanish as
the training progresses. Overall, the intrinsic reward can be
written as:

(7

Tz' — nr;:uriosity + (1 _ ,’,I)rzz;'rnpact7 (8)

where 7 > 0 is a scalar weighing the two types of intrinsic
rewards. Thus, the overall reward r; at step ¢ is defined as
the addition of intrinsic reward 7 and the sparse extrinsic
reward 7. A value head parameterized by ¢ is trained to
approximate the action value based on the overall reward.
We optimize the value head by minimizing the loss:

Lg = (re + VBayy~n QT (St41, art1) — QF (51, a1))%, 9)

where @7, is the target network of the value head Q7 for
stabilizing the training [1].

B. Example-guided Exploration

To learn the essential prior behaviours and connect them
to the task-specific behaviours, visiting the overlapped state
distribution of these behaviours are necessary [6]. Here we
encourage the agent to visit the familiar states in the task-
specific behaviour demonstration to construct such over-
lapped state distribution. To enable the agent to reach the
familiar states, we utilize the classifier in [25] to discriminate
between the state-action pairs which lead to reaching the
familiar states in the future or not. The positive state-action
pair is defined as the pair of familiar states sampled from
task-specific behaviour demonstration D and the action given
by the current policy conditioned on the sampled familiar
states. The negative state-action pairs are those sampled from
the online buffer B. Thus, the relation between the optimal
classifier and p™ (e |s¢, a;) can be written as:

P (s¢,a¢ler = 1)pleg = 1)

C,(st,a4) = .
Gt = s adecs = Dplers = D +p(s.a)
(10)
Thus, the objective to optimize can be derived as:
Cw(3t> a't)
3 =1 =— 11
(et |s¢, at) 1— Colse, ar) (11)

The loss for the classifier is shown as Eq. 12. In the equation,
CE& denotes the cross entropy loss.

E(G) :(1 - V)ESND,aNWHS)C“:(CM (87 a); ypos)

(12)
+ (]— + ’Vw)E(S,a,s/)NBCg(CW(S’ a); yneg)

The positive target y,,05 is 1, while the negative target 9p¢4
is computed as follows:

yw(s')
14+ ~yw(s')’
where the w(s) is computed as shown in Eq. 14. The detailed
derivation can be referred to [25].

Yneg = (13)

w(s) _ CW(S,’IT('|S))
1= C(s,m(]s))
C. Adaptive Behaviour Regularization

(14)

During the training, the agent should maintain the capacity
of executing task-specific behaviours after encountering the
familiar states, i.e., after grasping the object the robot needs
to know how to place the object into the tray by mimic-
ing the demonstrated actions in the task-specific behaviour
demonstration. Here, we utilized Eq. 15 as the regularization
loss to the update of the actor.

Lreg(S*va*) = —10g(ﬂ¢(a*|8*)), (15)

where (s*,a*) are the state-action pairs sampled from the
task-specific behaviour demonstration. However, the weight-
ing of the regularization in the actor update should vary in
different stages of the training. In the early stage of the
training, the agent focuses on exploring and reaching the
familiar states; therefore, the weighting should be relatively
small to avoid the adverse impact on the exploration of
familiar states. When the agent acquires the prior behaviours
to reach the familiar states, the agent should focus more
on exploiting the task-specific behaviour demonstration and
mimicing the demonstrated actions, where the weighting
should be relatively large. The similarity between the sam-
pled online collected states and familiar states increases as
the agent is more capable of reaching the familiar states.
Thus, we leverage a kernel density estimator fitted with the
familiar states in the task-specific behaviour demonstration to
estimate the similarity and therefore adjust the regularization
of loss weighting. However, as the range of estimation scores
is unknown, the effective way to adjust the weighting is
to compare the scores of consecutive sampled batches. The
weighting is computed as:

)\reg = Clip()\i—l + W X,)\mina)\maa:)
(16)

where the \;_; is the weighting value at update step i—1, and
m(b;) is the density estimation score of the sampled batch of
states at update step . r is the pre-defined rate. max(m(b))
and)\g are the recorded maximum estimation score and the
initial value of A,.,. Meanwhile, we clip the A..4 which is
out of the pre-defined range [Amin, Amaz)-

Overall, the parameters of the actor policy network can be
updated as follows:

Y =+ AV Eag,mmy 5~8[(C7 (815 a1) + Q7 (51, at))]

+ ArengE(s*7a*)~DLreg(s*, a*).
a7

—— IRDEC HESS+BC —— HER+BC —— SAC+BC —— GAIL
(a) Point Maze (b) Ant Maze (c) Ant FourRooms (d) Pick and Place
1.0 1.0 1.0
0.8 0.8 0.8 08
206 206 206 © 06
o (5] (5] (]
8 54 3 3
B04 B04 B 04 504
0.2 0.2 0.2 02
~W‘W.\,J~/“‘;
0.0 = A 0.0 0.0 AA. 0.0 At

00 02 04 06 08 10 12 14
Steps (million)

0.0 0.1 0.2 03 04 05
Steps (million)

00 02 04 06 08 10 12 14
Steps (million)

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Steps (million)

Fig. 3: Learning curves of the proposed method and baselines on all tasks. All the curves are smoothed equally for visual clarity.

(a) Point Maze

(b) Ant Maze

(d) Pick and Place

Fig. 4: Illustration of settings for all the tasks. (Top) Three naviga-
tion tasks: (a) Point Maze, (b) Ant Maze, and (c) Ant FourRooms.
The arrows represent the trajectories of the task-specific behaviour
demonstration. (Bottom) Pick and Place task. The sequence of the
three frames represents the task-specific behaviour demonstration
(placing behaviours).

V. EXPERIMENT

We aim to answer the following questions through our
experiments: (1) Can our proposed method effectively and
efficiently leverage the task-specific behaviour demonstration
to learn the essential prior behaviours and further develop
a complete policy for solving the target tasks with sparse
rewards? (2) How does our method compare to alternative
methods? (3) What is the importance of each component of
our method?

A. Experiment setup

We evaluate the proposed framework on three long-
horizon navigation tasks and one robotic manipulation task as
illustrated in Fig. 4. In our problem settings, we assume the
access to the task-specific behaviour demonstration D in the
form of state-action trajectories 7; = {(sg, ag, ..., 5., a7,) }-
In our experiments, the task-specific behaviour demonstra-
tion for each task contains 100 trajectories collected with
a sub-optimal policy. The trajectory lengths are around 150
and 25 for the navigation tasks and the robotic manipulation
task respectively.

Navigation Tasks. We evaluated our method on three sim-
ulated long-horizon navigation tasks with sparse rewards

based on Mujoco [29]. In these tasks, the agent should learn
to control the robot (point or ant) to navigate through the
maze to reach the goal as illustrated in Fig. 4 (a-c). For
the point robot, the observation space O € RS consists of
the positions and velocities of the mass centre, and action
space A € R2, For the ant robot, the observation space
O € R?? consists of the positions and velocities of its torso,
and action space A € RS. The extrinsic reward is given
as +1 when the robot reaches the goal and 0 otherwise.
The task-specific behaviour demonstration for each task is
illustrated as arrows in Fig. 4 (a-c). The agent is supposed
to learn the essential prior behaviours of navigating the robot
to the familiar states and then conduct the behaviours of the
task-specific behaviour demonstration to solve the tasks.

Pick and Place Task. To evaluate our method on robotic
manipulation tasks, we utilized the Pick and Place environ-
ment in [6]. The simulated environment consists of a 6-DoF
Widow X robot in front of a tray. The robot is supposed
to learn how to control its arm to grasp the object from
the table and place it in the tray. The observation space
O € R includes the state of the end-effector and the
gripper. The action space A € RS, includes the Cartesian
coordinate changes, orientation changes of the end-effectors,
and the gripper open degree. In the task, the agent needs to
learn how to grasp, lift the object, and place the object in
the tray. The extrinsic reward is +1, when the objective is
placed in the tray and otherwise 0. For this task, the task-
specific behaviour demonstration consists of the trajectories
of controlling the robot to place the in-hand object into the
tray as illustrated in Fig. 4 (d). The robot needs to learn
the essential prior behaviours of grasping and lifting the
object from the table and connect them to the task-specific
behaviour to solve the task.

Baselines. We compare our method with: (1) HER+BC [17],
a goal-conditioned method that utilizes a goal relabelling
method to augment sufficient positive samples in goal-
conditional tasks, while applying behaviour cloning loss to
regularize the actor update with the task-specific behaviour
demonstration. (2) HESS+BC [9], a goal-conditioned hierar-
chical method which utilized the high-level policy to assign
sub-goal for the low-level policy to facilitate exploration,
which has demonstrated competitive performance in long-
horizon tasks with sparse rewards. Meanwhile, behaviour
cloning loss is applied to regularize the actor update with

—— IRDEC ~——— wilo classifier —— w/o intrinsic module
(a) Point Maze (b) Ant Maze (c) Ant FourRooms (d) Pick and Place

1.0 e 1.0 S amatan s 1.0

0.8 08 08 08
206 206 206 006
j53 (5] (5] (]
o Q Q 153
Q Q Q Q
B04 B04 Ao04 704

0.2 0.2 0.2 0.2

0.0 0.0 00 A 0.0 b

0.0 0.1 0.2 0.3 04 0.5 00 02 04 06 08 10 12 14 0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 00 02 04 06 08 10 12 14
Steps (million) Steps (million) Steps (million) Steps (million)
Fig. 5: Ablation studies of our proposed method.
IRDEC w/o classifier w/o intrinsic module navigation tasks and it fails in the Pick and Place task

10K 100K 150K

10K 500K

1200K

Fig. 6: Visulization of explored areas. 1K points are sampled
uniformly from the online buffer to represent the explored areas.
Top: the explored areas after training steps of 10K, 100K, and 150K
for the Ant Maze task. Bottom: the explored areas after training
steps of 10K, 500K, and 1200K for the Ant FourRooms task.

the task-specific behaviour demonstration. (3) SAC+BC [7],
which trains the agent with SAC while applying behaviour
cloning loss to regularize the actor update with the task-
specific behaviour demonstration. (4) GAIL [11], an imi-
tation learning method which attempts to match the state
distribution between the training data and the demonstration.
The hyperparameters used in these baseline methods were
adopted from the original papers.

B. Experimental results

During the training, we evaluated the performance every
10K training steps with 10 episodes and recorded the average
test returns. For each task, we trained our method and base-
lines with 5 different seeds and reported the results in Fig. 3.
As shown in the figure, the proposed method outperforms
all the baselines in all tasks. The outperformance is more
significant in the Ant FourRooms task and the Pick and
Place task as the exploration problems are harder. Without an
effective incentive for expanding explored area, the sampled
behavioural goals of HER+BC are insufficient with respect
to diversity, which accounts for its poor performance in these
long-horizon tasks [30]. By leveraging the hierarchical struc-
ture, HESS+BC assigns informative behavioural subgoals
to encourage the low-level policy to visit promising areas
for solving the tasks. However, it presents less efficiency
compared to our proposed method in all the long-horizon

as the subgoal representation is not well learned in the
robotic manipulation task. SAC+BC performs poorly in all
tasks except for the Point Maze task as the action space
and observation space are relatively low-dimensional so the
entropy term in the actor update is sufficient for addressing
the exploration problem. GAIL failed in all tasks because
the policy cannot generate the training data that matches the
demonstration.

C. Ablation analysis

To understand the role and importance of each component
in our method, we conducted an ablation analysis on the
curiosity-impact driven intrinsic reward module and the
example-guided exploration separately. We compare IRDEC,
IRDEC without the intrinsic reward module, and IRDEC
without the classifier. As shown in Fig. 5, our method without
the intrinsic reward module failed in all the tasks while our
method without the classifier can solve the Point Maze and
the Ant Maze tasks but failed in the hard Ant FourRooms and
Pick and Place tasks. To understand the underlying causes,
we visualize the explored areas for the tasks of the Ant Maze
and the Ant FourRooms as shown in Fig. 6. We sampled 1K
points from the online buffer to represent the explored areas
after specific training steps. IRDEC without the intrinsic
reward module failed both tasks, as the exploration attempts
to pass through the wall directly towards the familiar states.
And in robotic manipulation tasks, Pick and Place, the "wall”
could be the unachievable robot configurations due to the
singularity. For the Ant Maze task, IRDEC and IRDEC
without the classifier can expand their explored areas towards
the goal while IRDEC is slightly more efficient as the
exploration direction is biased towards familiar states. For the
Ant FourRooms task, only IRDEC succeed in reaching the
goal. IRDEC without the classifier lacks guidance towards
the goal and therefore the exploration directions are random.
When the state spaces are large, the random exploration
direactions could lead the failure in passing the critical
points, such as the narrow doors connecting each room
in Ant FourRooms. Moreover, as the training progresses,
the curiosity intrinsic reward part in the intrinsic reward
module vanishes, which makes the exploration harder. The
ablation analysis demonstrates that IRDEC can effectively
leverage the familiar states in the task-specific behaviour
demonstration to bias the exploration direction introduced

by the intrinsic reward module for learning the required
prior behaviours and connecting them to the task-specific
behaviour to solve the tasks.

VI. CONCLUSION

In this paper, we present IRDEC, a method that incor-
porates an intrinsic reward module to proactively expand
explored areas while biasing the exploration towards fa-
miliar states in the task-specific behaviour demonstration,
for endowing the agent with the capabilities to adapt to
initial conditions that are unseen from the demonstration.
Our proposed method shows its capability of automatically
learning the essential prior behaviours and connecting them
to the behaviours in the task-specific behaviour demonstra-
tion for solving long-horizon tasks with sparse rewards. With
our method, agents can adapt to tasks with varied initial
conditions from the task-specific behaviour demonstration
without requiring additional demonstration of the required
prior behaviours. Additionally, the empirical results show
the efficiency and viability of IRDEC compared to all the
baselines. An exciting direction for future work would be
applying the method to high-dimensional pixel-based control.

VII. ACKNOWLEDGEMENT

The work of Ruigi Zhu has been supported by the King’s
China Scholarship Council (K-CSC) PhD Scholarship pro-
gramme.

REFERENCES

[1] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski,
et al., “Human-level control through deep reinforcement learning,”
Nature, vol. 518, no. 7540, pp. 529-533, 2015.

[2] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van
Den Driessche, J. Schrittwieser, I. Antonoglou, V. Panneershelvam,
M. Lanctot, et al., “Mastering the game of go with deep neural
networks and tree search,” Nature, vol. 529, no. 7587, pp. 484-489,
2016.

[3] A. Singh, L. Yang, K. Hartikainen, C. Finn, and S. Levine, “End-
to-end robotic reinforcement learning without reward engineering,” in
Robotics: Science and Systems, 2019.

[4] R. Zhu, D. Zhang, and B. Lo, “Deep reinforcement learning
based semi-autonomous control for robotic surgery,” arXiv preprint
arXiv:2204.05433, 2022.

[51 B. R. Kiran, I. Sobh, V. Talpaert, P. Mannion, A. A. Al Sallab, S. Yo-
gamani, and P. Pérez, “Deep reinforcement learning for autonomous
driving: A survey,” IEEE Transactions on Intelligent Transportation
Systems, 2021.

[6] A. Singh, A. Yu, J. Yang, J. Zhang, A. Kumar, and S. Levine, “Cog:
Connecting new skills to past experience with offline reinforcement
learning,” arXiv preprint arXiv:2010.14500, 2020.

[7]1 T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine, “Soft actor-critic: Off-
policy maximum entropy deep reinforcement learning with a stochastic
actor,” in International Conference on Machine Learning, 2018, pp.
1861-1870.

[8] T.P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Sil-
ver, and D. Wierstra, “Continuous control with deep reinforcement
learning.” in International Conference on Learning Representations,
2016.

[9] S.Li,J.Zhang, J. Wang, Y. Yu, and C. Zhang, “Active hierarchical ex-

ploration with stable subgoal representation learning,” in International

Conference on Learning Representations, 2022.

S. Ross, G. Gordon, and D. Bagnell, “A reduction of imitation learning

and structured prediction to no-regret online learning,” in International

Conference on Artificial Intelligence and Statistics, 2011, pp. 627-635.

J. Ho and S. Ermon, “Generative adversarial imitation learning,”

Advances in Neural Information Processing Systems, vol. 29, 2016.

[10]

[11]

[12]

[13]

[14]

[15]

[16]

(17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

(30]

Y. Li, J. Song, and S. Ermon, “Infogail: Interpretable imitation
learning from visual demonstrations,” Advances in Neural Information
Processing Systems, vol. 30, 2017.

K. Zakka, A. Zeng, P. Florence, J. Tompson, J. Bohg, and D. Dwibedi,
“Xirl: Cross-embodiment inverse reinforcement learning,” in Confer-
ence on Robot Learning, 2022, pp. 537-546.

K. Pertsch, Y. Lee, Y. Wu, and J. J. Lim, “Demonstration-guided
reinforcement learning with learned skills,” in Conference on Robot
Learning, 2021.

A. Singh, H. Liu, G. Zhou, A. Yu, N. Rhinehart, and S. Levine,
“Parrot: Data-driven behavioral priors for reinforcement learning,” in
International Conference on Learning Representations, 2021.

A. Rajeswaran, V. Kumar, A. Gupta, G. Vezzani, J. Schulman,
E. Todorov, and S. Levine, “Learning complex dexterous manipulation
with deep reinforcement learning and demonstrations,” in Robotics:
Science and Systems, 2017.

M. Andrychowicz, F. Wolski, A. Ray, J. Schneider, R. Fong, P. Welin-
der, B. McGrew, J. Tobin, O. Pieter Abbeel, and W. Zaremba, “Hind-
sight experience replay,” Advances in Neural Information Processing
Systems, vol. 30, 2017.

D. Pathak, P. Agrawal, A. A. Efros, and T. Darrell, “Curiosity-driven
exploration by self-supervised prediction,” in International Conference
on Machine Learning, 2017, pp. 2778-2787.

Y. Burda, H. Edwards, A. Storkey, and O. Klimov, “Exploration by
random network distillation,” in International Conference on Learning
Representations, 2019.

T. Nguyen, T. M. Luu, T. Vu, and C. D. Yoo, “Sample-efficient rein-
forcement learning representation learning with curiosity contrastive
forward dynamics model,” in IEEE/RSJ International Conference on
Intelligent Robots and Systems, 2021, pp. 3471-3477.

A. P. Badia, P. Sprechmann, A. Vitvitskyi, D. Guo, B. Piot, S. Kaptur-
owski, O. Tieleman, M. Arjovsky, A. Pritzel, A. Bolt, and C. Blundell,
“Never give up: Learning directed exploration strategies,” in Interna-
tional Conference on Learning Representations, 2020.

R. Raileanu and T. Rocktidschel, “Ride: Rewarding impact-driven
exploration for procedurally-generated environments,” in International
Conference on Learning Representations, 2020.

G. Ostrovski, M. G. Bellemare, A. Oord, and R. Munos, “Count-based
exploration with neural density models,” in International Conference
on Machine Learning, 2017, pp. 2721-2730.

M. Seurin, F. Strub, P. Preux, and O. Pietquin, “Don’t do what doesn’t
matter: Intrinsic motivation with action usefulness,” in Internationnal
Joint Conference on Artificial Intelligence, 2021.

B. Eysenbach, S. Levine, and R. R. Salakhutdinov, “Replacing rewards
with examples: Example-based policy search via recursive classifica-
tion,” Advances in Neural Information Processing Systems, vol. 34,
2021.

B. Eysenbach, R. Salakhutdinov, and S. Levine, “C-learning: Learning
to achieve goals via recursive classification,” in International Confer-
ence on Learning Representations, 2021.

T. Degris, M. White, and R. S. Sutton, “Off-policy actor-critic,” in
International Conference on Machine Learning, 2012.

T. Zhang, H. Xu, X. Wang, Y. Wu, K. Keutzer, J. E. Gonzalez,
and Y. Tian, “Bebold: Exploration beyond the boundary of explored
regions,” arXiv preprint arXiv:2012.08621, 2020.

E. Todorov, T. Erez, and Y. Tassa, “Mujoco: A physics engine
for model-based control,” in IEEE/RSJ International Conference on
Intelligent Robots and Systems, 2012, pp. 5026-5033.

S. Pitis, H. Chan, S. Zhao, B. Stadie, and J. Ba, “Maximum entropy
gain exploration for long horizon multi-goal reinforcement learning,”
in International Conference on Machine Learning, 2020, pp. 7750—
7761.

