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A B S T R A C T   

The North Sea is an ecologically rich habitat for marine wildlife which has also been impacted by industrial 
developments and anthropogenic emissions of contaminants such as mercury. Marine mammals are particularly 
susceptible to mercury exposure, due to their trophic position, long lifespan, and dependence on (increasingly 
contaminated) aquatic prey species. To mitigate impact, marine mammals can detoxify methylmercury by 
binding it to selenium-containing biomolecules, creating insoluble mercury selenide granules. Here, liver, kid
ney, muscle, and brain samples from an adult male bottlenose dolphin (Tursiops truncatus) with known elevated 
mercury concentrations were analysed through scanning electron microscopy (SEM). Tiemannite (HgSe) deposits 
were identified in all organs, ranging from 400 nm to 5 μm in diameter, with particle size being organ-dependent. 
Although reported in other studies, this is the first time that the three-dimensional nature of tiemannite is 
captured in marine mammal tissue.   

1. Introduction 

Marine mammals are key species within their ecosystems, with 
complex environmental and social interactions (P. S. Ross, 2000). 
Although not all marine mammals share phylogeny, all species are well 
adapted to life in the aquatic realm and are dependent on a functioning 
ecosystem for survival (Moore, 2008), thus are considered sentinel 
species for aquatic ecosystem health (Aguirre & Tabor, 2004; Bossart, 
2011). However, due to their feeding ecology they are increasingly 
exposed to an elevated concentration of anthropogenic contaminants 
accumulated in prey species (P. S. Ross, 2000). Heavy metals are among 
the contaminants of concern for marine mammals (Frodello et al., 
2000), as they enter the ocean through various pathways, where they 
are then bioaccumulated by organisms and biomagnify through the 
foodweb (Jitar et al., 2015). One example for this is the naturally 
occurring heavy metal mercury, which speciates under environmental 
conditions and can be biologically methylated into the highly neurotoxic 
methylmercury (Gonzalez-Raymat et al., 2017; Hamdy & Noyes, 1975). 

Once ingested, it accumulates in tissues and organs over time due to its 
slow elimination rate (Kerper et al., 1992). In the body, methylmercury 
irreversibly binds to sulphydryl and organoseleno groups, leading to the 
denaturing of proteins and subcellular structures (Kageyama et al., 
1986; Ralston et al., 2012). Interestingly, marine mammals have 
developed a detoxification mechanism based on the essential trace 
element selenium, a component of various selenoproteins involved in e. 
g., reproduction, thyroid hormone metabolism, and oxidative stress 
protection (Sunde, 2012). In organs such as the liver, methylmercury is 
demethylated and bound to selenium to form inert and insoluble crys
talline mercury selenide (HgSe), otherwise known as tiemannite 
(Caurant et al., 1996; Wagemann et al., 1998). Although this process is 
known to occur, the factors governing the formation and size of crystals 
is not fully understood (Gajdosechova et al., 2016). However, both the 
exposure to methylmercury, and the depletion of selenium levels 
resulting from prolonged reliance on the detoxification mechanism, can 
lead to primary neurotoxic effects and other health impairments (Dietz 
et al., 2022; López-Berenguer et al., 2020). 
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One cetacean species of particular interest is the common bottlenose 
dolphin (Tursiops truncatus), due to their separation into inshore and 
offshore populations (Díaz López, 2019). Inshore/coastal populations 
are considered resident, and as such can be valuable indicators for the 
health of local ecosystems(Moore, 2008; P. S. Ross, 2000). Bottlenose 
dolphins are fully mature from around 7 years of age and live for up to 
50 years (Venn-Watson et al., 2011). They require a large volume of 
prey, due to their high metabolic rates and local/regional abundance 
(Greller et al., 2021). These characteristics make them particularly 
vulnerable to direct contact with coastal anthropogenic stressors (Díaz 
López, 2019; Pinn et al., 2018), and they are an Annex II European 
protected species (JNCC, 2018). 

In August of 2020, a locally well-known adult male bottlenose dol
phin known as ‘Spike’ was found dead stranded on the Scottish coastline. 
It was estimated that he was at least 37 years old, as he was first 
observed in the North Sea in 1989, already being an adult at that time. 
He was part of a monitored bottlenose dolphin population from the 
Moray Firth Special Area of Conservation (NatureScot Moray Firth SAC). 
Spike was found in the River Tay, and his body was recovered by the 
Scottish Marine Animal Stranding Scheme (SMASS, part of the Univer
sity of Glasgow). As part of routine examination, brain, liver, kidney, 
and muscle tissue samples were collected and stored for assessment. 
Subsamples of these tissue samples were provided by SMASS, to deter
mine the heavy metal burden. As part of the analysis, tiemannite par
ticles were observed through scanning electron microscopy (SEM). 

2. Materials and method 

Bottlenose dolphin brain, muscle, kidney, and liver samples were 
provided by the Scottish Marine Animal Stranding Scheme (SMASS, part 
of the University of Glasgow, NatureScot Licence Nr. 187976), collected 
during a routine postmortem examination, following an internationally 
standardised protocol (ASCOBANS/ACCOBAMS, 2019). All samples 
were stored at − 20 ◦C at the SMASS freezer archive (University of 
Glasgow), the sub-samples were stored at − 80 ◦C until processing. After 
lyophilisation, samples were stored at − 20 ◦C. 

Glass vials and screw caps (30 ml volume) were soaked in a 5 % 
Nitric acid (HNO3, trace metal grade, 70%, CAS: 7697-37-2) solution 
overnight, rinsed thoroughly with deionised water and left to dry at 
60 ◦C. Between 5 and 10 g wet weight (ww) per sample were chopped 
into ~1 mm cubes before placing in the cleaned glass vials and covered 
with a piece of aluminium foil pierced ~15 times with a taxidermy 
needle. The samples were lyophilised in a Modulyo 4 K Freeze Dryer 
(Edwards High Vacuum International, Sussex, UK) for 55 h at − 50 ◦C. 
Samples were then ground in a ceramic pestle and mortar for 2 min. If a 
fine powder consistency was reached sooner, the grinding process was 
not continued. The samples were then stored in aluminium foil-wrapped 
glass vials. The sample grinding was conducted in line with accepted 
protocols for heavy metal analysis (Calderón et al., 2013). For SEM 
analysis, this was further the most suitable sample preparation. 

The SEM measurements were performed with a Zeiss GeminiSEM 
300 system (Zeiss, Oberkochen, Germany). Lyophilised and manually 
pulverised liver, kidney, muscle, and brain tissue samples were mounted 
on stainless steel specimen stubs using double sided tape, and carbon 
coated for surface investigations. Screening for particles was done with a 
working distance of ~10.5 mm, 15 kV electron high tension (EHT), and 
using the backscatter function. Elemental analysis was performed using 
an additional Aztec Energy energy-dispersive x-ray spectroscopy (EDS) 
analysis system with an XMax 80 detector (Oxford instruments, UK) 
with manufacturer provided software suite. High magnification images 
were taken at a working distance of ~7.7 mm, 5 kV EHT, and using the 
InLens function. The images shown below do not indicate that the 
grinding process has negatively impacted the size or shape of the 
tiemannite structures. However, we appreciate that future research 
would benefit from comparing different methods for tiemannite deter
mination, to ensure that sample preparation has no impact. 

3. Results and discussion 

The imaging presented here was conducted as part of a pilot study for 
various heavy metals in marine mammal organ samples collected since 
2015 along the Scottish coastline. The data obtained from the metal 
analysis is preliminary and thus not presented here in detail. However, 
the SEM images obtained here are, as far as we are aware, the first of 
their kind and should thus be published as stand-alone communication. 
The mean total mercury concentrations measured in the above-stated 
samples ranges from 2 mg/kg wet weight (ww) in blubber samples to 
more than 500 mg/kg ww in liver samples, with similar organ- 
dependent trends observed in selenium measurements (2–240 mg/kg 
ww). The following water contents were computed after lyophilisation: 
82 % in the brain, 78 % in the kidney, 73 % in muscle, and 69 % in the 
liver. 

Considering the spectra information (SI 1-SI 4), the observed parti
cles were identified as tiemannite, a mineral containing mercury and 
selenium. Tiemannite was observed in all analysed organs (Fig. 1). The 
particles ranged between 400 nm and 5 μm in size, with smaller particles 
observed in brain and muscle samples, and larger ones in the liver and 
kidney. All tiemannite particles were embedded within the tissue ma
trix, but the shape differed between the organs. In the liver, large multi- 
nodular particles were observed (Fig. 1 A, B), to a lesser extent in the 
kidney (Fig. 1 E, F). Tiemannite in muscle (Fig. 1 C, D) and brain (Fig. 1 
G, H) samples was markedly smaller, and less nodular, in comparison to 
the particles in the liver and kidney. 

Fig. 2 is a close-up of tiemannite in the liver, providing a more 
detailed view of the multi-nodular shape of the particle. As the particles 
observed in the remaining tissue types were partially covered by resid
ual tissue fibres no clear images comparable to Fig. 2 could be obtained. 
The particle visible in the figure is approximately 1400 nm, although 
other tiemannite particles in the liver were up to 5 μm in size. 

The calculation of the mercury-selenium ratio has been accepted as a 
determinant for the detoxification of methylmercury in marine mam
mals (Cáceres-Saez et al., 2013; Capelli et al., 2008; Endo et al., 2006; 
Sakamoto et al., 2015; Yang et al., 2007). This is based on the knowledge 
that selenium, under normal circumstances, would undergo homeostatic 
regulation and show no accumulation. This approach, however, has the 
potential to overestimate the protective function of selenium by 
assuming a bonding ratio of 1:1 for mercury to selenium (Gajdosechova 
et al., 2016). Thus, a shift towards more accurate determination of an
alyte presence has been suggested, such as measuring the presence of 
tiemannite itself. Martoja & Viale (1977) were one of the first to measure 
tiemannite in liver samples of various odontocete species, ranging from 
1 to 5 μm in diameter, irregularly shaped, within the connective tissue of 
the portal vessels. Similar findings were made in further studies (Nigro, 
1994; Nigro & Leonzio, 1996) which, although produced at lower 
magnifications, are in line with present observations. 

Although the presence of tiemannite has been measured in marine 
animals for many decades, the mechanisms underlying its formation 
remain less clear. A study of long-finned pilot whales (Globicephala 
melas) determined that tiemannite nanoparticles formed in the liver and 
brain attached to selenium-rich structures acting as a point for nucle
ation, thus leading to the granular structure formation of larger 
tiemannite nodes (Gajdosechova et al., 2016). They hypothesised that 
the Se-protein P formed the backbone of these aggregates, being one of 
the most common selenoproteins in plasma (Yoneda & Suzuki, 1997). A 
study conducted on mercury detoxification in human hepatic cell lines 
determined that tiemannite granules formed and accumulated exclu
sively in intracellular lysosomal-like structures through aggregation of 
smaller primary particles with a diameter of 5–10 nm (Tanaka et al., 
2021). It was further observed that the acidic conditions in lysosomes 
facilitated the precipitation of soluble Hg–Se complexes. They reported a 
positive correlation between the number of primary tiemannite particle 
formed and the concurrent mercury and selenium exposure. Tanaka 
et al. (2021) also showed that extracellular tiemannite nanoparticles 
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were taken up by endocytosis but stored in different organelles, thus 
differing from biogenic tiemannite particle accumulation patterns. 
Moreover, an excretion of tiemannite particles was noted in the study, 
further indicating that transport between formation site and other 

tissues is possible. Whilst this does not conclusively answer whether the 
observed large tiemannite particles in the present study are in fact ag
gregates of primary particles, it strongly supports the hypothesis. 
Further research, however, is required to conclusively determine such 

Fig. 1. Tiemannite (HgSe) particles in liver (A, B), muscle (C, D), kidney (E, F), and brain (G, H) samples of a North Sea bottlenose dolphin. A, C, E, and G: Electron 
backscatter mode. B, D, F, and H: SEM mode (spectra can be found in SI 1 - SI 4). Error bars: 1 μm (A–F), 400 nm (G, H). Images were acquired on a Zeiss GeminiSEM 
300 system. 
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mechanisms. 
Tiemannite has been observed in Kupffer cells, indicating that crys

tals produced in other tissues could accumulate in the liver by Kupffer 
cells through the blood stream (Lailson-Brito et al., 2012), thus sup
porting the assumption that methylmercury detoxification takes place in 
multiple organs (Aschner & Aschner, 1990; Bridges & Zalups, 2010; 
Gajdosechova et al., 2016). Previous research determined that associa
tion between sulphur and mercury could be related to the binding of 
mercury in Kupffer cells, should a selenium deficiency have occurred 
(Marumoto et al., 2022). We believe, however, that the sulphur peaks in 
the EDS spectra are an artifact of the automated identification, resulting 
from the overall of the M and K peaks of mercury and sulphur, respec
tively (see e.g., Fellowes et al., (2011)). Other works, such as Lancaster 
et al., (2022) and Gajdosechova et al. (2016), have used additional 
analysis techniques to confirm the Hg:Se equimolarity of the observed 
particles. The present findings also determined the presence of 
tiemannite in all examined organs. To the best of our knowledge, the 
here presented SEM images are the first to show the three-dimensional 
macroscopic structure of naturally in vivo formed tiemannite in marine 
mammals. SEM offers a unique visualisation opportunity for acquiring 
good quality images and spectra of tiemannite in chemically unpro
cessed samples. Previous work examined HgSe and other metal nano
particles in sea bird tissue, using formic acid to rapidly digest tissue. 
Initial findings indicated that treatment had no effect on the overall 
structure of the particles (El Hanafi et al., 2023). However, differences in 
aggregation density of primary particles were visible in published fig
ures, leading to the conclusion that although SEM imaging can be 
considered stochastic at best, it offers the only solution to visualising 
naturally precipitated tiemannite through sample processing without 
chemical reagents. It must further be noted that the present findings are 
an initial assessment of subsampled tissue sections of a single in
dividuals. Further research is required, before statements can be made, 
regarding the detoxification potential of different organs. 

4. Conclusion 

To the best of our knowledge, the here presented SEM images are the 
first to show the three-dimensional structure of tiemannite in marine 
mammal tissue. Although the presence of these crystals and their role in 
mercury detoxification has been discussed since the late 1970s, their 
macroscopic structure has so far not been elucidated. The here presented 
images lead to questions about the development of large tiemannite 
structures (local formation versus aggregation) and how mechanical 
tissue damage may play a role in aging marine mammals as hypoth
esised by others. By addressing the question of what factors govern the 
formation and size of tiemannite particles, insights could be gained into 

the detoxification potential of different organs, as well as assessing 
whether tiemannite accumulates homogenously within each organ. The 
here presented short communications on SEM imaging to determine 
tiemannite in bottlenose dolphin tissue samples thus proves a vital 
starting point for more focussed efforts in addressing the mercury 
exposure and accumulation in marine mammals. Future research would 
benefit from including SEM imaging techniques with quantification 
methods for determining mercury speciation, e.g., through mercury and 
selenium concentrations obtained from mass spectrometry. 
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