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ON REPRESENTING CONSONANCE STRUCTURES 

 

Abstract 

We consider the representation of consonance structures in music, and 

consider two families of examples. We thus derive pieces of music 

which are similar to existing ones, via generalized tunings. 

In the first family of examples, certain representations define 

interpretations of two part compositions, written on a stave. The 

relevant consonance structures are quivers, built from consonances 

between notes that are close in the score, as determined by a certain 

algorithm. We present some interpretations of Bach’s Invention No. 9 

in F minor. Special cases of our interpretations are certain tunings to 

equal temperament and just intonation. 

In the second family of examples, we represent consonance structures 

found in one part compositions written on the stave with contrapuntal 

pieces, with harmonics of notes in the one part composition 
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corresponding to motifs in the contrapuntal pieces. We present an 

example where the one part composition is the first twelve crotchets of 

the folk song ‘The False Bride’. 

1. Introduction 

Here, by a representation of a mathematical object, we mean merely a 

realization of that object in a second context. In our examples, this context 

will be musical. Often in the mathematical literature, a representation has a 

more specific definition, namely a functor from some category to a category 

of vector spaces. Some such representations appear in Section 2. 

Consider the piece of music consisting of three consecutive piano notes, 

the first of which is middle C, the second of which is the C above middle C, 

and the third of which is the C two octaves above middle C. We can think of 

this as a representation of the labelled quiver 

 

where the vertices of the quiver are represented by the notes of the piece, 

and the arrows are represented by certain consonances between the notes, 

namely octaves. We call the quiver a consonance structure. Thus the piece is 

a representation of a consonance structure. 

We can represent the above quiver in different ways, with vertices 

represented as musical elements and arrows represented by consonances. We 

can reorder the three notes of our piece, by playing them in reverse, for 

example. Or we can represent the arrows by perfect fifths instead of octaves: 

e.g., we can take the piece whose three consecutive notes are middle C, the 

G above middle C, and the D above that. To give another example, we can 

represent the vertices of the quiver with motifs and the arrows as octaves: we 

can take a piece that consists of three consecutive motifs, the first of which 

begins on middle C, the second of which is the same motif transposed up an 

octave, and the third of which is that motif transposed up an octave. 

In this article, we present two families of examples of musical pieces 

obtained by representing consonance structures in this way. Our motivation 
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is to derive pieces of music which are similar to existing ones, in a specified 

way. There is a long tradition of deriving music from existing music by 

similarity, for example by transposition, by retuning, by arrangement, by 

giving variations, cover versions, interpretations, pieces derived by machine 

learning (e.g., [4]), etc. Our approach is formal, and each example we give 

associates music to a single source piece, rather than to a large body of work. 

In the first family of examples, we represent consonance structures of 

two part compositions written on the stave. We associate quivers to musical 

scores of such two part compositions, where the quivers’ arrows correspond 

to certain consonances between notes that are close in the score, in a      

certain sense. We then represent these quivers in various ways, to create 

interpretations of the musical scores that may differ substantially from 

conventional interpretations played on a piano. Arrows in our quiver also 

correspond to consonances in the interpretation. We demonstrate this where 

the score is a certain Two Part Invention by Bach Z1. Sound files 

accompanying our examples are available in [11]. 

To give a flavour of the analysis required, let us describe a quiver 

associated to the ascending five note sequence in the C major scale, 

beginning at middle C and ending at the G above (for more details, see 

Example 4): 

 

Note that there is one vertex of our quiver for every note of our piece, 

and when an arrow pointing from vertex x to vertex x′  is labelled by an 

integer i, it takes a rise of i semitones to get from x to .x′  The intervals 

indexing arrows of our quiver are consonant intervals, in the sense that two 

notes which differ by such an interval share a common harmonic. For 

example C is 4 semitones below E so the interval relating them, in just 
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intonation, has a frequency ratio of ;
5

4
 this means the fifth harmonic of C 

has the same frequency as the fourth harmonic of E. It is not the case that 

every consonant interval corresponds to an arrow in our quiver. For example, 

the interval from C to G is a perfect fifth, which is consonant, being given  

by a frequency ratio of 
2

3
 in just intonation; however, there is no arrow 

connecting C and G in our quiver. 

The underlying graph of the quiver is a tree: there is a unique path 

between any two vertices in this graph. 

In our representation, we retune the harmonics of all our notes, as           

well as their frequencies, in a consistent way. The resulting notes have 

fundamental frequencies 

03
1

20
1

3
2
205

2
205

2
320 FFFFF ζζζζζζζζζ −−−−  

for some positive real numbers ,0F  ,2ζ  ,3ζ  .5ζ  We recover equal 

temperament as one of our tunings 

( ),2,2,2,2202 12

28

5
12

19

32
4

1

0 =ζ=ζ=ζ⋅=F  

and a certain form of just intonation as another example ( ,2,264 20 =ζ=F  

).5,3 53 =ζ=ζ  

In the second family of examples, we represent consonance structures 

found in one part compositions written on the stave as contrapuntal 

interpretations of the one part compositions, with harmonics of notes in      

the one part composition corresponding to motifs in the interpretation. We 

demonstrate this where the original one part composition is the first twelve 

crotchets of the folk song ‘The False Bride’ [9]. We consider a graph whose 

vertices are the notes in the C major scale between two Ds an octave apart, 

and whose edges are various consonances between these (see Figure 1; here 

we forget the orientation of the relevant quiver, and we relabel the edges 

from 0 to 11). This defines a consonance structure. We represent this 
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structure with its 12 edges represented by 12 motifs, and each vertex v 

represented in various ways as a contrapuntal piece with motifs taken from 

those corresponding to edges attached to v. The first 12 crotchets of the folk 

song ‘The False Bride’ belong to the C major scale between two Ds an 

octave apart. We associate to this a composition so that notes in the original 

correspond to short contrapuntal pieces in the interpretation, and harmony is 

given by the representation of the 12 motifs as above. These 12 motifs are 

taken from ‘The False Bride’ as well. The durations of the short contrapuntal 

pieces are a multiple of the durations of the corresponding notes of the 

original. 

 

Figure 1. The notes of the C major scale running from D to D, together with 

consonances labelled from 0 to 11. 

Above and below, by a consonance, we mean sonic material common to 

a pair of sounds, for example a common harmonic. In our representations,         

a consonance represents an edge of a graph, whose two vertices are 

represented by the sounds with common material. It is sometimes convenient 

to work instead with an orientation of such a graph, which is a quiver. 

2. Representing Consonance Structures in Two Part Compositions 

Suppose for each frequency ,R∈f  we have a note modelled on the 

sound of a string vibrating with frequency f, given by the function from R  to 
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R  sending t to ( ) = π5

1
.2sin

i
ifit  If we are given two such notes, whose 

fundamental frequencies f differ by a ratio of ,45  then these notes will be 

consonant, with the frequency of the fourth harmonic of one coinciding with 

the frequency of the fifth harmonic of the other. Let us tweak our fifth 

harmonic, so that our function from R  to R  indexed by f sends t to 

( )( ) = ζπ5

1
,2sin

i
itif  where ( ) ii =ζ  for 4,3,2,1=i  and ( ) .

5

24
5 =ζ  If 

we are given two notes whose fundamental frequencies f differ by a ratio of 

,45  then these notes will no longer be consonant in the above sense. 

Consequently, if we play a piece of music with a given set of fundamental 

frequencies with these tweaked functions, its consonances will not 

necessarily correspond to those associated to the same piece of music played 

with the original functions. 

Here we introduce a technique for adjusting harmonics away from their 

respective multiples of the fundamental, whilst preserving a significant 

portion of the consonance structure of a piece of music. Except in certain 

special cases, in which no pitch drift occurs (see Remark 1), we do not 

preserve all of the consonances of the piece, but only consonances that are 

close in the score, as specified by a certain algorithm. Preserving only these 

consonances allows for more exotic interpretations of our piece than 

restricting ourselves to the case of no pitch drift would. 

More precisely, we retune the second, third, fifth, and seventh harmonics 

of our notes, from frequencies that are approximately 12, 19, 28, 34 

semitones above the fundamental, to frequencies that are 7532 ,,, ζζζζ  

times the fundamental. We retune the fourth, sixth, eighth, ninth and         

tenth harmonics to frequencies that are 52
2
3

3
232

2
2 ,,,, ζζζζζζζ  times the 

fundamental. In case ,22 =ζ  ,33 =ζ  ,55 =ζ  77 =ζ  we recover our 

original piece, played in various forms of just intonation. 

So that the sounds we create are relatively simple, we restrict our 

attention to pieces of music in two parts. 
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Let M  denote the subgroup of ×
Q  generated by 2, 3, 5, 7. Consider the 

group homomorphism Z→M:m  sending 2, 3, 5, 7 to 12, 19, 28, 34, 

respectively. Suppose we have a fixed natural number n with .105 ≤≤ n  

We define g to be the restriction of m to { } { } ....,,2,1...,,2,1
1−⋅ nn  Let G  

denote the image of g. Suppose we have a fixed section s of g. 

Suppose we are given a two part composition on the stave, such as a 

Bach Two-Part Invention. We denote one of the parts 1 and the other part 2. 

We have a linear order of the notes of our composition, where notes are 

ordered by start time, and given two notes starting at the same time, we 

precede the note in part 2 by the note in part 1. We denote by N the number 

of notes of our composition. 

For ,1 Nyx ≤≤≤  define the sequence ( )yxS ,  of elements of 

{ }N...,,2,1  to be 

( ).1...,,3,2,1,...,,3,2,1 −−−+++ xxxyxxx  

We denote by ( ) Z∈yxi ,  the number of semitones required to ascend 

from the xth note to the yth note. 

We define a quiver Q whose vertices are given by the notes of our 

composition, and whose arrows are labelled with elements of .G  This is the 

consonance structure which, when represented, defines an interpretation of 

our two part composition. 

Our algorithm to define Q begins with a quiver with a single vertex, 

corresponding to the first note of the composition, and no arrows; it adds 

vertices and arrows successively. We run through elements y of { }N...,,2,1  

consecutively, in standard order. For a fixed y, we run through the elements 

x with yx ≤≤1  in reverse order. For a fixed x and y, we search through 

( )yxS ,  for vertices in our quiver to connect to x. If x already belongs to our 

quiver, we abandon our search through ( )yxS ,  straightaway. Otherwise, we 

run through the elements z of ( )yxS ,  in sequence. If ( ) G∈zxi ,  and z 
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belongs to our quiver, we add x to our quiver, draw an arrow from x to z, 

labelled with ( ),, zxi  and discontinue the search through ( )., yxS  

The underlying graph of Q is a tree, since our algorithm involves adding 

leaves successively. We will assume that the vertex set of Q is the set of all 

notes of our composition, although there do exist examples where this is not 

the case. 

Choose positive real numbers ,2ζ  ,3ζ  ,5ζ  .7ζ  These determine a 

homomorphism ζ  from M  to R  sending p to ,pζ  for .7,5,3,2=p  

Consider the double of Q, which is the quiver obtained from Q by adjoining 

a single reverse arrow from v′  to v for every arrow from v to v′  in Q. We 

label the arrows of the double of Q as follows: given an arrow in our quiver 

labelled by i, we label the corresponding arrow in our double quiver with 

( )( )isζ  and the corresponding reverse arrow with ( )( ) .
1−ζ is  

A path in the underlying graph of Q determines a path in the double of 

Q, and thus a real number, via the above representation: this real number is 

the product of the real numbers labelling the arrows in the path. Choose an 

initial frequency .0 R∈F  Every vertex v of our quiver is connected by a 

unique path in the underlying graph of Q from the first note of the 

composition, and thus multiplying the real number given by this path by 0F  

determines a frequency, which gives the frequency of v. 

To a frequency ,R∈f  we assign the function from R  to R  sending t 

to the sum ( )( ) = ζπn

i
itif

1
.2sin  We call ( )ifζ  the ith harmonic of this 

function. To a vertex v of our quiver, we have associated a frequency, and to 

a frequency, we have assigned a function. We call the resulting function ‘the 

function assigned to v’. 

By construction, an arrow in Q directed from 1v  to 2v  corresponds to at 

least one common harmonic of the functions assigned to 1v  and .2v  Indeed, 

if ( )( ) ,, 21 βα=vvis  for ,,1 n≤βα≤  then the frequencies of 1v  and 2v  
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differ by the factor ( ),βαζ  and the fact that ζ  is a group homomorphism 

implies that the αth harmonic of the function assigned to 1v  is equal to the 

βth harmonic of the function assigned to .2v  We obtain a piece by playing, 

for every vertex v, the function assigned to v, for the duration of the note 

associated to v in our score. This piece is a representation of the consonance 

structure Q, and an interpretation of the original two part composition. 

Remark 1. The kernel of m is generated by ,52,532 37144 −−− ⋅⋅⋅  and 

.7532 1122 −− ⋅⋅⋅  We denote the images of these elements under ζ  as ,1σ  

2σ  and .3σ  In case two notes of our score occupy the same position on the 

stave, their pitches in our interpretation differ by a frequency ratio r in the 

multiplicative group generated by ,1σ  2σ  and .3σ  In this case, we call r the 

pitch drift between the two notes of our interpretation. 

The cases where ,1σ  2σ  and 3σ  are all equal to 1 are special. In such a 

case, there is no pitch drift (i.e., each pitch drift ratio is equal to 1), and we 

have ,22
a=ζ  ,2 12

19

3

a

=ζ  ,2 12

28

5

a

=ζ  12

34

7 2

a

=ζ  for some .R∈a  The 

case 1=a  corresponds to the tuning of our piece to equal temperament. 

Remark 2. Strictly speaking, we do not need the double quiver of Q for 

our construction, since every path in the underlying graph of Q from a vertex 

to the first vertex is in fact a path in Q, as is visible by induction on the 

number of vertices. However, it makes sense to introduce the double of the 

quiver so that we have the following property: Suppose v and v′  are vertices 

of Q. Then the ratio of the frequency of v′  to the frequency of v is given by 

the real number associated to any path in the double of Q from v to .v′  

Remark 3. A quiver is a set of generators for a free category: the objects 

of the free category are given by the vertices of the quiver, and the 

generating arrows of the free category are given by the arrows of the quiver. 

Let us associate to our quiver Q the category ,QC  which is the free 

category associated to the double of Q, modulo the relations ,id=αβ  for α  
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and β  opposing arrows in our double quiver. Since the underlying graph of 

Q is a tree, the category QC  has a unique morphism from v to v′  for any pair 

of vertices v and v′  [5]. It is the free groupoid on our quiver Q. 

The data associated to our two part composition above encodes a linear 

representation of ,QC  which means a functor from that category to a 

category of vector spaces. This functor sends a vertex of Q to the real vector 

space ;R  it sends an arrow from v to w in Q, labelled by ,γ  to the scalar in 

( ) RRRR =~,Hom  given by ( )( );γζ s  and it sends the corresponding reverse 

arrow to the corresponding inverse element of ( ) .~, RRRR =Hom  

Actions of groupoids, or even groups, on musical spaces have been 

studied by other authors in different contexts, see [2] and the references 

therein, e.g., [6]. Quivers feature in an exploration of the relation between 

gestures and music by Mazzola and Andreatta [7]. Quiver representations 

have been extensively studied in algebra, e.g., see [3]. 

Example 4. Let .6=n  We run through our procedure to represent the 

ascending five note sequence in the C major scale, beginning at middle C 

and ending at the G above. 

By definition, G  is the set of differences between elements of 

{ }.31,28,24,19,12,0  We see 24284 −=  belongs to ,G  as well as 

28313 −=  and .19245 −=  However, 1 and 2 do not belong to .G  We 

have .5=N  

We first associate a labelled quiver to the five note sequence. Our 

algorithm begins with the first note of the ascending five note sequence, 

which belongs to our quiver: 

C 

When ,2,1=y  the algorithm produces no new vertices or arrows. When 

3=y  and ,3=x  the algorithm gives a new vertex and a new arrow, which 

is labelled by :4 G∈−  
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When 4=y  and ,4=x  the algorithm gives a new vertex and a new arrow, 

which is labelled −5: 

 

When 4=y  and ,2=x  the algorithm gives a new vertex and a new arrow, 

which is labelled 3: 

 

When 5=y  and ,5=x  the algorithm gives a new vertex and a new arrow, 

which is labelled −3: 

 

We next lift our intervals in G  to their corresponding frequency ratios in 

the set { } { } :6...,,2,1.6...,,2,1
1−
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We then represent our arrows via the group homomorphism :ζ  

 

The corresponding labelled double quiver is: 

 

By tracing paths in our double quiver from the vertex C, with its 

corresponding base frequency ,0F  we associate the following five 

frequencies to the five vertices of our quiver: 

( ) ( ) ( ) ( ) ,,,, 0
1

3
2

20
11

5
2
20

1
3

2
2

11
5320 FFFF

−−−−−−−− ζζζζζζζζζ  

( ) ( ) 0
11

5
2
2

1
5

1
3

1
2 F

−−−−− ζζζζζ  

or in other words: 

.03
1

20
1

3
2
205

2
205

2
320 FFFFF ζζζζζζζζζ −−−−  
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This sequence of frequencies defines our interpretation of the ascending five 

note sequence in the C major scale, beginning at C and ending at G. If we set 

,5,3,2,264 5320 =ζ=ζ=ζ=F  then our sequence of five frequencies is 

.264
2

3
264

3

4
264

4

5
264

9

10
264 ⋅⋅⋅⋅  

If we play notes of these frequencies in sequence, then we recover our 

original five note sequence, played in a form of just intonation. 

If we set ,22024

1

0 ⋅=F  ,22 =ζ  ,212

19

3 =ζ  ,212

28

5 =ζ  then our 

sequence of five frequencies is 

.22022202220222022202 12

10

12

8

12

7

12

5

12

3

⋅⋅⋅⋅⋅  

If we play notes of these frequencies in sequence, then we recover our 

original five note sequence, played in equal temperament. 

Example 5. Let .5=n  Consider Bach’s Two Part Invention No. 9. The 

associated quiver has 559 vertices. Let us describe the arrows between the 

first ten vertices: 

 

Here, the top line corresponds to the first part of the piece, and the 

bottom line corresponds to the second part of the piece. Time moves from 

left to right. The letter indexing a vertex indicates its pitch class whilst             

the corresponding number in brackets indicates the position in the set 

{ }559...,,3,2,1  that it occupies. 
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Beyond the first ten notes, the quiver is simpler, in the sense that every 

vertex is consonant with some vertex preceding it. Let us say two notes v and 

v′  are G -differing if their pitches differ by an element of G  when measured 

in semitones. Then the yth step in our algorithm merely involves connecting 

yx =  to the closest preceding G -differing element z with an arrow; since 

,xz <  this arrow points in the same direction as .<  

 

An example of this pattern is already visible in the ten vertex quiver 

above, in case .10=y  The tenth note of the piece, an ,♭A  has closest 

preceding G -differing element given by the ninth note of the piece, an F. 

The 10=y  step of our algorithm consists of attaching the tenth vertex, and 

a labelled arrow from that vertex to the ninth vertex. 

The 49th note of the piece is a C, like the first note of the piece. If we 

follow our procedure, then we find that the frequency ratio of the 49th note 

to the first is .1
5

4
3

4
21

−− ζζζ=σ  The ratio 1σ  determines the pitch drift from 

the first note to the 49th note of our interpretation. Note that 11 =σ  implies 

a consonance between the first note and the 49th note of our interpretation. 

More specifically, in case there is no pitch drift throughout the piece, we 

have 121 =σ=σ  and so ,22
a=ζ  ,2 12

19

3

a

=ζ  ,2 12

28

5

a

=ζ  for some 

.R∈a  In this case, every interval of i semitones in our score, ,G∈i  is 

represented by the frequency ratio ,212

ai

 and corresponds to a consonance in 

our interpretation. 

If we specify ,22 =ζ  ,33 =ζ  ,55 =ζ  then we have a form of just 

intonation. Then pitch drift occurs through the piece so that, in some cases, 

two notes occupy the same point on the stave but are represented by different 
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frequencies. Some other tunings with this feature are outlined in an article by 

Stange et al. [8]. Restricting ourselves to tunings such that two notes 

occupying the same point on the stave are represented by the same 

frequency, a number of forms of just intonation are described in Benson’s 

book [1]. 

Our remaining examples are all interpretations of Bach’s Invention No. 

9. In the sound files that accompany the paper [11], the durations of 

semiquavers are 0.1s, 0.3s, 0.3s, 0.2s, 0.1s, 0.7s, 0.4s, 0.5s, 0.3s, and 0.3s, 

respectively. 

Example 6. We take 6=n  and set .5280 =F  Only the first six 

harmonics are involved here, so the real numbers 7ζ  and 3σ  are not 

relevant. We take ,22
a=ζ  ,2 12

19

3

a

=ζ  ,2 12

28

5

a

=ζ  where .2.1=a  Then 

121 =σ=σ  and we have no pitch drift. 

Example 7. Let 8,5=n  and .5280 =F  We take ( ) =ζζζζ 7532 ,,,  

( ).7,5,3,2  These are forms of just intonation, and we have ,
80

81
1 =σ  

,
125

128
2 =σ  .

35

36
3 =σ  

Example 8. Let .5=n  Only the first five harmonics are involved here, 

so the real numbers 7ζ  and 3σ  are not relevant. The gradual pitch drift from 

the C at the beginning of the piece to the C in the second bar from the end is 

given by the factor ,2
2

8
1σσ  so in choosing 32, ζζ  and ,5ζ  steps are taken to 

make this factor fairly close to 1, to avoid the composition becoming 

inaudible to a large extent. Here we choose natural numbers for the ,spζ          

to create similarities with the harmonic series. Our two examples are 

( ) ( ) ( ).4,3,2,10,5,3,, 532 =ζζζ  We take .132,5280 =F  

Example 9. Let .5=n  Our three examples are ( ) =ζζζ 532 ,,  

( ),1047,1031,2  .3,2,
2

3
,5,

8

27
,

4

9














  We take .528,264,1680 =F  
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Note that in these examples, we select some natural numbers for 32, ζζ  

and 5ζ  to create partial similarities with the harmonic series. Approximate 

relations between short words in the spζ  and rational numbers with small 

numerator and denominator also occur, such as ,562
10

31 3
2

≈⋅





 −  ⋅








3

4

9
 

,1
8

27
2

=







−
 .15

4

9 1
2

≈⋅





 −  These are audible as recognizable intervals in 

the music. For example, if we look at the interval between the first two   

notes in the first part of our piece, from ( )1C  to ( ),3♭B  we see in our 

interpretation it is given by a frequency ratio of .2
3

3
2

−ζζ  In case 

( ) ( ),1047,1031,2,, 532 =ζζζ  this frequency ratio is ,65
10

31
2

2
3 ≈






⋅

−
 

and therefore approximates the familiar interval of a minor third. 

Example 10. We end this section with two examples where none of the 

spζ  are natural numbers. We take 5=n  and set 

( ) .
10

105
,

10

63
,

10

42
,

2

31
,

2

15
,

16

63
,, 532 














=ζζζ  

Then .1056,2640 =F  

3. Some Background 

Our second family of representations of consonance structures possesses 

components which are contrapuntal pieces constructed from a family of 

motifs. 

Our constructions are based on the following observation, made 

previously: suppose we are given a set of musical phrases that contains a 

phrase of a single note, is closed under concatenation, and is closed under 

the action of a set of similarity transformations, that send phrases to similar 

phrases; we can then form such a composition by starting with the note, 
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applying a sequence of similarity transformations to obtain a sequence          

of notes, concatenating these to form a phrase, applying a sequence of 

similarity transformations to obtain a sequence of phrases, concatenating 

these to form a longer phrase, etc. [10]. We call a composition generated in 

this way a similarity concatenation composition. 

The scales of motifs we use are generalizations of scales of so-called 

quasi-notes. We recall some of the relevant definitions [12]. 

A note on a stringed instrument has a fundamental frequency f, and a set 

of overtones, whose frequencies are 2f, 3f, 4f, etc. [1]. The first five of these 

overtones are approximately 12, 19, 24, 28, 31 semitones above the original 

frequency f. In imitation of this situation, we define further scales indexed by 

Z  [10]. In each scale, for every point on the stave, we define a quasi-note, 

consisting of a fundamental, sounding together with a number of overtones 

of the same amplitude and duration. The fundamental is a pure tone whose 

frequency is given by the relevant point on the stave, whilst each overtone is 

a pure tone whose frequency is given by the fundamental frequency, raised 

by a certain number of semitones. The fundamental, and the overtones are 

called the partials of the quasi-note. 

Formally speaking, let .,, +∈ Rfda  Let Iχ  denote the indicator 

function of an interval .R⊂I  For a function RR →η :  of bounded 

support, we call the infimum of the support of η  the start of ,η  and we call 

the supremum of the support of η  the end of .η  If RR →η′η :,  and the 

end of η  is equal to the start of ,η′  then we call η′+η  the concatenation of 

η  and .η′  We define a pure tone of amplitude a, duration d, and frequency f, 

to be given by a function from R  to R  sending t to ( ) ( ),2sin, φ+π+χ fta doo  

for some ., R∈φo  

Points on the stave are given by frequencies, with the A above middle         

C corresponding to 440Hz, and the operation of raising by a semitone 
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corresponding to multiplication by .212

1

 Points on the stave are also given by 

integers, with middle C corresponding to 0, and the operation of raising by a 

semitone corresponding to addition of 1. 

Fix .+∈ Ra  We define a chromatic combination of duration d to be 

given by a function from R  to R  sending t to 

( ) ( ) =+χ φ+π
p

j jjdoo tfa
1, ,2sin  

for some ,, R∈φ jo  and frequencies jf  given by points on the stave, 

....,,1 pj =  

Take a set of strictly increasing maps .:...,,, 21 ZZ →psss  Let 

pjj ...,,1, =ζ  be maps from Z  to the set of pure tones of duration d, 

amplitude a, and start o, such that ( )xjζ  has frequency determined by the 

point on the stave given by ( ),xs j  for .Z∈x  Let ζ  be the map from Z  to 

the set of chromatic combinations that sends x to ( ) = ζp

j j x
1

.  We call ( )xζ  

the xth quasi-note of duration d and start o. We call ( )x1ζ  the xth 

fundamental, we call ( ) ( )xx pζζ ...,,2  the overtones, and we call 

( ) ( )xx pζζ ...,,1  the partials of the xth quasi-note of duration d and start o, 

for .Z∈x  For fixed ,+∈ Rd  and ,Z∈x  we abuse terminology and call 

the class of xth quasi-notes of duration d and start o, as o runs through 

elements of ,R  the xth quasi-note of duration d; we call the class of xth 

quasi-notes of duration d, as d runs through elements of ,+R  the xth quasi-

note, etc. This abuse of terminology is consistent with standard musical 

terminology for notes, which may or may not have a well defined start, 

duration, timbre, etc. 

In this way, we have a set Q of quasi-notes, indexed by elements x of .Z  

Our collection Q is given equivalently by a set of subsets pΩΩΩ ...,,, 21  
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Z⊆  that are unbounded from above and below, with elements 

....,,11 pp Ω∈ωΩ∈ω  Indeed, such data emerges when we write =Ω j  

( )Zjs  and ( ),0jj s=ω  for ....,,2,1 pi =  

Suppose .vu Ω⊇Ω  Then the vth partial of a quasi-note q is equal to the 

uth partial of a second quasi-note .q′  We write ( ) ,, qqt vu ′=  and thus define 

a transformation vut ,  of Q. We denote by Φ  the collection of such 

transformations. 

4. A Family of Contrapuntal Compositions 

In this section, we construct contrapuntal similarity concatenation 

compositions from a family of motifs. This is similar to a previous approach 

[12]. 

Suppose we have fixed a set Q of quasi-notes, as in Section 3. Let us 

assume that ....,,21 pΩΩ⊇Ω  

For a natural number n, set { }....,,1 nn =  We define an n-motif m to be 

a map { }∅→α ∪Zn:  and a map 0: ≥→β Qn  such that 

( ) =
=β

n

i
i

1
.1  

We have a correspondence between motifs and sequences of notes 

defined as follows: Take R∈d  with .0>d  Suppose m is an n-motif as 

defined above. Consider the sequence given by ( )( ) ,...,,1,1 nii =αζ  played 

consecutively with duration ( ),idβ  where ( )∅ζ  is taken to be silence. The 

resulting sequence of notes has total duration d. 

We define a cyclic motif to be a finite subset of ,ZQ  together with a 

map ζ  from that subset to { }.∅∪Z  If we write the elements of our subset 

as ,21 fγ<<γ<γ ⋯  with 10 γ≤  and ,1<γ f  then we have an associated 

1+f -motif m defined as follows: the corresponding map α  sends i to 
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( )1−γζ i  for ,12 +≤≤ fi  and sends 1 to ( ),fγζ  whilst the corresponding 

map β  sends i to 1−γ−γ ii  for ,2 fi ≤≤  sends 1 to ,1γ  and sends 1+f  to 

.1 fγ−  We have an action ∗  of ZZ e  on ,ZQ  where ZZ ey ∈  acts as 

addition of .
e

y
 Thus, in our notation, y sends ZQ∈q  to .ZQ∈∗ qy  

This action extends to an action ∗  of ZZ e  on subsets of .ZQ  This action 

extends to an action of ZZ e  on cyclic motifs as follows: Let Cζ  denote the 

map defining the cyclic motif C. Also, Cy∗ζ  defines the map that sends 

sy ∗  to ( ).sCζ  

Suppose l is a natural number with .lp ≤  Suppose lnn ...,,1  are       

natural numbers. Write ,1 ZZZZ leeA ××= ⋯  also ,lSB =  ,Z=C  and 

.+= RD  We have an action of ZZZZ lA ee ××= ⋯1E  on A by left 

multiplication. We have an action of lB S=E  on B by left multiplication. 

We have an action of the monoid CE  generated by Φ  on C. We have an 

action of += RDE  on D by left multiplication. 

Let jm  be a cyclic motif, for ....,,1 lj =  We describe a scale S indexed 

by elements ( )dcba ,,,  of .DCBA ×××  Let c correspond to the p-tuple 

of pure tones of duration d indexed by ( ( ) ( ))....,,1 cscs p  For ,...,,1 pj =  

we have ( ) ( )jj cscs 1=  for some jc  since ....,,21 pΩΩ⊇Ω  For 

,...,,1 pj =  we have a cyclic motif given by ( ) ( ).jbjb ma ∗  Let 

( ) { }∅→α ∪Zjbj n:  and ( ) Q→β jbj n:  be the data determining the 

associated n-motif. Consider the sequence jσ  of ( )jbn  pure tones given by 

points on the stave ( ( )),1 ics jj α+  played consecutively, with duration 

( ),id jβ  for ( )....,,1 jbni =  Here, if ( ) ∅=α ij  we interpret the pure tone 

given by ( ( ))ics jj α+1  as silence. The element of S indexed by ( )dcba ,,,  
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consists of the sequences pσσ ...,,1  played simultaneously, with the same 

start. The duration of the scale element is d. 

Here, by a scale, we mean a set of sounds, together with a partial 

ordering. We order S by ( ) ( )dcbadcba ′′′′≤ ,,,,,,  if ,,, ccbbaa ′≤′=′=  

and .dd ′=  

We describe similarity concatenation compositions with scale S. 

Suppose w, wγγ ...,,1  are natural numbers. For ,...,,1 wi =  we take 

maps .: DBAiit EEE ×Φ××→γ  We insist that ( )1it  is equal to the 

identity, for ,...,,1 wi =  but that ( )ξit  is different from the identity, for 

iγ=ξ ...,,2  and ....,,1 wi =  

For ,...,,1 wi =  we define maps ,: DCBAiiu EEEE ×××→γ  by 

( ) ( ) ( ) ( ).11 iiii tttu ⋯−ξξ=ξ  

Let us fix an element ( ) ,,,, DCBAdcbaq ×××∈=  where      

.1Ω∈c  Our contrapuntal similarity concatenation composition is obtained 

by concatenating the elements of S corresponding to the elements 

( )wξξ ...,,1  of ,21 wγ××γ×γ ⋯  ordered lexicographically. The scale 

element corresponding to ( )wξξ ...,,1  is given by ( ) ( ) ( ) .2211 quuu ww ξξξ ⋯  

Example 11. We describe a short example, based on the ascending five 

note sequence in C major, from middle C to the G above. We set ,1=d  also 

,2== pl  also ,421 == ee  and let 21 Ω=Ω  denote the C major scale. 

Suppose 1ω  is given by the F below middle C, and 2ω  is given by middle C. 

We define ( ).1,0,,0 idq =  

Let 1m  denote the cyclic motif given by the subset 








4

3
,

2

1
,

4

1
,0  of 

,ZQ  and the map which sends 0 to 
4

1
,0  to 

2

1
,4  to 2, and 

4

3
 to 4. Let 2m  
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denote the cyclic motif given by the subset 








2

1
,

8

3
,

4

1
,

8

1
,0  of ,ZQ  and 

the map which sends 0 to 
8

1
,0  to 

4

1
,1  to 

8

3
,2  to 3, and 

2

1
 to 4. 

Suppose 1=w  and .21 =γ  Also, suppose ( ) idt =11  and ( ) =21t  

(( ) ( ) ).1,,21,3,2 1,2t  The short contrapuntal piece consists of two 

consecutive scale elements, namely, the two bars depicted below: 

 

We see the motif 1m  first in the lower part, and then repeated, with a 

cycle, in the upper part. We see the motif 2m  first in the upper part, and then 

repeated, at the same pitch, with a cycle, in the lower part. The first notes of 

the first bar are 1ω  and .2ω  

5. Interpretation of ‘The False Bride’ 

Suppose we have a one part composition, whose notes are taken from a 

scale V. Form a graph whose vertices are the elements of V, and whose edges 

are certain consonances between elements of V. For example, for our piece, 

we take the first twelve crotchets of ‘The False Bride’ [9], and we consider 

consonances as in Figure 1. We represent this consonance structure with a 

motif for each edge, and a family of contrapuntal similarity concatenation 

compositions built from such motifs for each vertex, one for each note of the 

one part composition representing that vertex. The motifs used to build 

similarity concatenation compositions at a given vertex are those associated 

to the edges attached to that vertex. 

We proceed to use such a representation to create a contrapuntal 

interpretation of the first twelve crotchets of ‘The False Bride’. 
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We associate the twelve pitch classes with ,12ZZ  so that 0 corresponds 

to C, and addition of 1 corresponds to a rise in a semitone. In this way, the C 

major scale corresponds to the elements { }.51127 ≤≤−|+ ii Z  To each 

pitch class Z127 += ip  in the major scale, we associate a subset ( ) =ω p  

{ ( ) }44127 ≤≤−|++ kki Z  of ,12ZZ  whose preimage under the quotient 

map ZZZ 12→  is a subset ( ) .Z⊂Ω p  For every pitch class p of ‘The 

False Bride’, the subset ( )pω  contains the pitch class G, and the set ( )pΩ  is 

the image of an increasing map ( ) ZZ →:ps  that sends 0 to the G below 

the note an octave below middle C. 

The elements of the scale of C major all belong to ( ).122 Z+Ω  We 

consider the first twelve crotchets of ‘The False Bride’, which we identify 

with elements of ZZ 12  so that the first crotchet corresponds to 0, the 

second crotchet to 1, etc. We associate a cyclic motif ( )im  to ZZ 12∈i  as 

follows: Consider the notes to be found in the crotchets corresponding to 

,1, +ii  2+i  as defining a sequence of elements of ( )Z122 +Ω  together 

with durations, and thus via ( ) 1
122

−+ Zs  a sequence of elements of Z  

together with durations, and if we scale the durations by ,
3

1
 we obtain a 

corresponding cyclic motif ( ).in  We define ( )im  to be the cyclic motif given 

by ( ) =ζ im  ( ) ( )( ).0inim ζ−ζ  Upon labelling the edges of our consonance 

structure with elements of ZZ 12  as in Figure 1, we have a motif associated 

to each edge of our consonance structure. 

We next proceed to associate contrapuntal similarity concatenation 

compositions to the notes of the first twelve crotchets of ‘The False       

Bride’. We call a similarity concatenation composition corresponding to a             

given note a section of the piece. The quasi-note that begins a section 

corresponding to a vertex v in our consonance structure has harmonics with 

pitch classes that are given by the pitch classes of the harmonics associated 
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to the edges attached to v. Notes of ‘The False Bride’ of duration d are 

interpreted as sections of duration 6d. 

Throughout .
2

3
,0,,0 






= idq  

Example 12. Section 1 (D). ( )Z122 +Ω=Ωi  for ,3,2,1=i  

( ) ( ) ( )( ) ( ),10,3,20,0,0 321 −−=sss  

( ) ( ) ( ) ( )( ),0,1,2,, 321 mmmmmm =  

2=w  and ( ) ( ),3,2, 21 =γγ  

( ) (( ) ( ) ),1,,32,0,1,02 3,22 tt −=  ( ) (( ) ( ) ),1,,21,1,0,03 1,22 tt −=  

( ) (( ) ( ) ).1,,321,1,1,12 2,11 tt −−−=  

Section 2 (G). ( )Z127 +Ω=Ωi  for ,4,3,2,1=i  

( ) ( ) ( ) ( )( ) ( ),10,1,2,70,0,0,0 4321 −−=ssss  

( ) ( ) ( ) ( ) ( )( ),0,3,4,5,,, 4321 mmmmmmmm =  

2=w  and ( ) ( ),3,3, 21 =γγ  

( ) (( ) ( ) ),1,,43,0,0,1,12 2,12 tt −−=  ( ) (( ) ( ) ),1,,32,1,1,0,03 3,22 tt −−=  

( ) (( ) ( ) ),1,,4321,1,1,1,12 4,31 tt −−−−=  

( ) (( ) ( ) ).1,,4321,1,1,1,13 1,21 tt −−−−=  

Section 3 (A). ( )Z129 +Ω=Ωi  for ,4,3,2,1=i  

( ) ( ) ( ) ( )( ) ( ),15,8,3,90,0,0,0 4321 −−−=ssss  

( ) ( ) ( ) ( ) ( )( ),2,8,6,7,,, 4321 mmmmmmmm =  

1=w  and ,31 =γ  

( ) (( ) ),1,,,0,0,1,12 4,31 tIdt −−=  ( ) (( ) ).1,,,0,1,1,03 4,31 tIdt −−=  
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Section 4 (G). ( )Z127 +Ω=Ωi  for ,4,3,2,1=i  

( ) ( ) ( ) ( )( ) ( ),10,5,1,20,0,0,0 4321 −−−=ssss  

( ) ( ) ( ) ( ) ( )( ),4,5,3,0,,, 4321 mmmmmmmm =  

2=w  and ( ) ( ),3,2, 21 =γγ  

( ) (( ) ( ) ),1,,4321,1,1,0,02 3,22 tt −−=  

( ) (( ) ( ) ),1,,4321,0,0,1,13 3,42 tt −−=  

( ) (( ) ( ) ( ) ).1,,4321,0,1,0,12 2,11 tt −−=  

Section 5 (F). ( )Z125 +Ω=Ωi  for ,2,1=i  

( ) ( )( ) ( ),15,120,0 21 −−=ss  

( ) ( ) ( )( ),7,9, 21 mmmm =  

2=w  and ( ) ( ),3,2, 21 =γγ  

( ) (( ) ( ) ),1,,21,0,12 2,12 tt −=  ( ) (( ) ( ) ),1,,21,1,03 2,12 tt −=  

( ) (( ) ).1,,,1,12 1,21 tIdt −−=  

Section 6 (E). ( )Z124 +Ω=Ωi  for ,3,2,1=i  

( ) ( ) ( )( ) ( ),4,11,160,0,0 321 =sss  

( ) ( ) ( ) ( )( ),10,11,8,, 321 mmmmmm =  

2=w  and ( ) ( ),3,2, 21 =γγ  

( ) (( ) ( ) ),1,,321,0,0,12 1,22 tt −=  ( ) (( ) ( ) ),1,,321,0,1,03 3,22 tt −=  

( ) (( ) ).1,,,0,1,12 3,21 tIdt −−=  

Section 7 (D). ( )Z122 +Ω=Ωi  for ,3,2,1=i  

( ) ( ) ( )( ) ( ),15,10,20,0,0 321 −−=sss  
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( ) ( ) ( ) ( )( ),1,2,0,, 321 mmmmmm =  

2=w  and ( ) ( ),3,2, 21 =γγ  

( ) (( ) ( ) ),1,,32,0,0,12 2,12 tt −=  ( ) (( ) ( ) ),1,,21,0,1,03 2,32 tt −=  

( ) (( ) ( ) ).1,,321,0,1,12 3,21 tt −−=  

Section 8 (G). ( )Z127 +Ω=Ωi  for ,4,3,2,1=i  

( ) ( ) ( ) ( )( ) ( ),13,10,5,20,0,0,0 4321 −−−=ssss  

( ) ( ) ( ) ( ) ( )( ),3,0,5,4,,, 4321 mmmmmmmm =  

2=w  and ( ) ( ),4,3, 21 =γγ  

( ) (( ) ( ) ),1,,21,0,0,0,12 4,32 tt −=  

( ) (( ) ( ) ),1,,43,0,0,1,03 4,32 tt −=  

( ) (( ) ( ) ( ) ),1,,4321,1,1,0,04 2,32 tt −−=  

( ) (( ) ( ) ( ) ),1,,4231,0,0,0,12 2,11 tt −=  

( ) (( ) ( ) ( ) ).1,,4231,0,0,1,03 2,31 tt −=  

Section 9 (A). ( )Z129 +Ω=Ωi  for ,4,3,2,1=i  

( ) ( ) ( ) ( )( ) ( ),15,3,4,90,0,0,0 4321 −−=ssss  

( ) ( ) ( ) ( ) ( )( ),6,2,8,7,,, 4321 mmmmmmmm =  

1=w  and ,21 =γ  

( ) (( ) ( ) ).1,,21,0,0,1,12 3,21 tt −−=  

Section 10 (B). ( )Z1211 +Ω=Ωi  for ,2,1=i  

( ) ( )( ) ( ),13,10,0 21 −−=ss  

( ) ( ) ( )( ),3,11, 21 mmmm =  
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1=w  and ,21 =γ  

( ) (( ) ).,,0,0,0,02 2,11 tIdt =  

Section 11 (C). ( )Z120 +Ω=Ωi  for ,3,2,1=i  

( ) ( ) ( )( ) ( ),0,4,70,0,0 321 =sss  

( ) ( ) ( ) ( )( ),9,10,5,, 321 mmmmmm =  

1=w  and ,21 =γ  

( ) (( ) ( ) ).1,,32,1,1,02 3,21 tt −−=  

Section 12 (D). ( )Z122 +Ω=Ωi  for ,3,2,1=i  

( ) ( ) ( )( ) ( ),10,3,20,0,0 321 −−=sss  

( ) ( ) ( ) ( )( ),4,6,1,, 321 mmmmmm =  

2=w  and ( ) ( ),4,3, 21 =γγ  

( ) (( ) ),1,,,0,0,12 3,22 tIdt −=  ( ) (( ) ),1,,,0,1,03 2,12 tIdt −=  

( ) (( ) ),1,,,1,0,04 1,32 tIdt −=  ( ) (( ) ( ) ),1,,321,0,0,12 3,21 tt −=  

( ) (( ) ( ) ).1,,321,0,1,03 3,21 tt −=  
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