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ABSTRACT

The coronavirus is always idealized as a spherical capsid with radially protruding spikes. However, histologically, in the tissues of infected
patients, capsids in cross section are elliptical, and only sometimes spherical [Neuman et al., “Supramolecular architecture of severe acute
respiratory syndrome coronavirus revealed by electron cryomicroscopy,” J Virol, 80, 7918 (2006)]. This capsid ellipticity implies that
coronaviruses are oblate or prolate or both. We call this diversity of shapes, pleomorphism. Recently, the rotational diffusivity of the
spherical coronavirus in suspension was calculated, from first principles, using general rigid bead-rod theory [Kanso et al., “Coronavirus
rotational diffusivity,” Phys Fluids 32, 113101 (2020)]. We did so by beading the spherical capsid and then also by replacing each of its bul-
bous spikes with a single bead. In this paper, we use energy minimization for the spreading of the spikes, charged identically, over the oblate
or prolate capsids. We use general rigid bead-rod theory to explore the role of such coronavirus cross-sectional ellipticity on its rotational dif-
fusivity, the transport property around which its cell attachment revolves. We learn that coronavirus ellipticity drastically decreases its rota-
tional diffusivity, be it oblate or prolate.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0094771

I. INTRODUCTION

The coronavirus is thought of as a spherical capsid with radially
protruding spikes. However, histologically, in the tissues of infected
patients, capsids in cross section are aspherical, roughly elliptical, and
only sometimes spherical. For instance, its capsid may be elliptical
when microtomed in preparation for microscopy (see all 35 panels of
Fig. 2 of Ref. 1, which we reproduce here in Fig. 1). This capsid elliptic-
ity implies that coronaviruses are oblate or prolate or both. We call
this diversity of shapes, pleomorphism. We know of no live micros-
copy of the coronavirus, in suspension or otherwise. We thus arrive at
our understanding of pleomorphism through the colored lenses of
electron microscopy, be it cryogenic fractography1 or particle staining
(Fig. 3. of Ref. 2). This is true whether the coronavirus capsid is axi-
symmetric or not. In cross section, as in microscopic imagery of
microtomed coronavirus-infected tissue, a suspension of spherical cap-
sids presents as circles, just circles. Further, when axisymmetric ellip-
soidal coronavirus is sectioned, normal to its major axis (prolate), or
to its minor axis (oblate), these cuts are also circular. Hence, in cross

section, a suspension of aspherical capsids presents as both circular
and acircular loops. More specifically, a suspension of ellipsoidal cap-
sids presents as both circles and ellipses. There is thus still much to be
learned experimentally about the shape of the coronavirus. This paper
is devoted to how its capsid shapes affect its transport properties.

General rigid bead-rod theory relies exclusively on macromolecu-
lar orientation to explain the rheological properties.3–7 This distin-
guishes general rigid bead-rod theory from its competing approaches,
which include reptation or disentanglement. We refer the reader to
Ref. 8 for the detailed derivation of the general rigid bead-rod theory,
and specifically, to Sec. III of Ref. 8. We define the characteristic
length, L, of our coronavirus bead-rod models as the separation of
nearest bead centers. Our general rigid bead-rod theory symbols,
dimensional and non-dimensional respectively, are listed in Tables I
and II, which follow those of the corresponding textbook treatments
(EXAMPLE 16.7-1 of Ref. 9 or EXAMPLE 13.6-1 of Ref. 10). We are
attracted to general rigid bead-rod theory first, for its flexibility. We
are attracted to general rigid bead-rod theory second, for the accuracy
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of its simplest special case, the rigid dumbbell, for which many rheo-
logical material functions are properly predicted [see romanettes
(i)–(xvi) of Sec. I of Ref. 11].

Recently, we calculated the rotational diffusivity of the spherical
coronavirus in suspension, from first principles, using general rigid
bead-rod theory.12–14 We did so by beading the spherical capsid and
then also by replacing each of its bulbous spikes with a single bead

(see Fig. 5 of Ref. 12). In this paper, we use energy minimization for
the spreading of the spikes, charged identically, over the oblate or pro-
late capsids (Sec. IV). We use general rigid bead-rod theory to explore
the role of such coronavirus cross-sectional ellipticity on its rotational
diffusivity, the transport property around which its cell attachment
revolves. We learn that coronavirus ellipticity decreases its rotational
diffusivity for both oblate and prolate capsids.

In the tradition of the transport sciences, we define the rotatory
diffusivity as (see Footnote 2 of p. 62 of Ref. 9)

Drot �
2kT
f
; (1)

which, for any axisymmetric macromolecule, from general rigid bead-
rod theory, gives

Drot �
12L2

�
Dr ; (2)

which has the dimensions of diffusivity and which is four times the
translational diffusivity

Drot � 4Dtr (3)

or

Dr �
�

3L2
Dtr : (4)

In this paper, we depart from said transport tradition of using the rota-
tory diffusivity, Drot, and frame our results in terms of the rotational
diffusivities,Dr , of pleomorphic coronavirus particles.

II. METHOD

In general rigid bead-rod theory, we construct macromolecules
from sets of beads whose positions, relative to one another, are fixed.
Our macromolecular bead-rod models of our pleomorphic coronavi-
rus particles are suspended in a Newtonian solvent. In this work, we
neglect interactions of the solvent velocity fields, be they between near-
est beads,15,16 or nearest macromolecules. With general rigid bead-rod
theory, we thus locate beads to sculpt an approximation of the pleo-
morphic coronavirus particle shapes. In this way, using general rigid

TABLE I. Dimensional variables. Legend:M—mass, L—length, and t—time.

Name Unit Symbol

Angular frequency t�1 x
Augmented energy functional ML2=t2 bE
Bead friction coefficient M=t f
Capsid radius L rc
Complex viscosity M=Lt g�

Dielectric permittivity T4I2=ML3 �

Kinetic molecular energy per molecule ML2=t2 kT
Length of the spike of each peplomer L ‘

Minus the imaginary part of the complex viscosity M=Lt g00

Number of dumbbells per unit volume 1=L3 n
Point charge A s Q
Real part of the complex viscosity M=Lt g0

Relaxation time of rigid dumbbell t k0
Relaxation time of solution t k
Rotational diffusivity t�1 Dr

Rotatory diffusivity L2=t Drot

Shear rate amplitude t�1 _c0

Solvent viscosity M=Lt gs
Total electrostatic energy ML2=t2 E
Translational diffusivity L2=t Dtr

Virus radius L rv
Viscosity, zero-shear M=Lt g0
Zero-shear first normal stress difference M=L W1;0

TABLE II. Dimensionless variables and groups.

Name Symbol

Aspect ratio e � c
a� 1

Capsid sphere C

Coefficient in Eqs. (9) and (10) a
Coefficient in Eqs. (9) and (10)(9) b
Coefficient in Eqs. (9) and (10) �

Deborah number, oscillatory shear De � kx
Sphere S

Total number of beads N
Total number of capsid beads Nc

Total number of peplomers Np

Volume fraction U
Weissenberg number Wi � k_c0

FIG. 1. Cryo-electron micrographs of pleomorphic SARS-CoV virions (Fig 2 of Ref.
1) Reproduced with permission from Neuman et al., J. Virol. 80, 7918 (2006).
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bead-rod theory, we can model any virus macromolecular architecture
(see Fig. 9 of Ref. 11).

We use Eqs. (3)–(13) in Ref. 12 for the method of computing the
rotational diffusivity (see Footnote 2 of p. 62 of Ref. 9)

Dr �
1
6k

(5)

or [Eq. (23) of Ref. 12]

k0Dr ¼
�

72
; (6)

which we will use for our results below.

III. OSCILLATORY SHEAR FLOW

In this paper, we focus on small-amplitude oscillatory shear flow
(SAOS). For this flow field, for the molecular definition of small ampli-
tude, general rigid bead-rod theory yields [Eq. (32) of Ref. 12)

k_c0 � 1

�
ffiffiffi
2
p ; (7)

whose left side is the macromolecular Weissenberg number.
The polymer contributions to the complex viscosity17,18

g� � g0 � ig00 (8)

are [Eqs. (40) and (41) of Ref. 11]

g0 � gs
g0 � gs

¼ 1
2b=a�

þ 1
� ��1 1

2b=a�
þ 1

1þ kxð Þ2
� �

(9)

and

g00

g0 � gs
¼ 1

2b=a�
þ 1

� ��1 kx

1þ kxð Þ2
; (10)

where kx is the Deborah number. Equations (9) and (10) each capture
non-Newtonian behavior: (i) Eq. (9) captures the descent of g0 xð Þ and
(ii) Eq. (10) captures the ascent of g00 xð Þ from the origin. In this paper,
we plot the real and minus the imaginary parts of the shear stress
responses to small-amplitude oscillatory shear flow as functions of fre-
quency, following Ferry (Secs. 2.A.4–2.A.6 of Ref. 19) or Bird et al.
(Sec. 4.4 of Ref. 20):

As x! 0, for the polymer contribution to the zero-shear viscos-
ity, we get

g0 � gs
nkTk

¼ a�
2
þ b ¼ b 1þ 2b

a�

� �
2b
a�

� ��1
(11)

and for the zero-shear first normal stress difference coefficient

W1;0

k g0 � gsð Þ
¼ 2

1
2b=a�

þ 1
� ��1

; (12)

which we use in the table of Sec. V. below.

IV. MODELING OF ELLIPSOIDAL CORONAVIRUS

Coronavirus peplomers are charged identically and anchored
into a lipid bilayer, and are thus displaced by the repulsions of their
nearest neighbors. In this paper, we represent peplomers with single
beads. We then locate them by applying the energy minimization

scheme of Sec. IV. of Ref. 13 to singly beaded peplomers repelling one
another over ellipsoidal surfaces of the pleomorphic virus.

From the literature, we learn that if oblate, the coronavirus shape
range is [Figs. 1(a) and 2 of Ref. 1]

2
3
� c

a
� 4

5
; (13)

and if prolate [Figs. 1(a) and 2 of Ref. 1]

5
4
� c

a
� 3

2
: (14)

For this work, we therefore cover [Eqs. (13) plus (14)]

5
4
� c

a
� 4

5
; (15)

where, c is the ellipsoidal whole-particle length along the d3 molecular
axis, and a along the d1. By whole-particle, we mean capsid plus
peplomer. Specifically, for this paper, we straddle both ranges Eqs. (13)
and (14) with the following set of pleomorphic coronavirus aspect ratios

c
a
¼ 2

3
;
4
5
; 1;

5
4
;
3
2

� �
(16)

for which, after energy minimization, we construct the bead-rod mod-
els of Figures 2–6 (Multimedia views) for Nc ¼ 256 and Np ¼ 74. For
the Nc ¼ 256, we rely on the capsid beading study (see subsection
VIIA of Ref. 12). For the average number of peplomers, Np ¼ 74, we
rely on our previous literature review (see Table X of Ref. 12).

We next employ the framework developed by Chaurasia et al.21

(see also Chaurasia22) to find equilibrium solutions of a system con-
sisting of flexible structures, specifically charged elastic loops con-
strained to a sphere. We do so for identical point charges spreading
over the surfaces of oblate and prolate ellipsoids.

A. Kinematics

Let C be the ellipsoidal capsid with axes lengths a, b, and c. Let o
be the origin of a Cartesian coordinate system with an orthonormal

FIG. 2. General rigid bead-rod model of prolate coronavirus, Nc ¼ 256, Np ¼ 74,
and c=a ¼ 5=4. Multimedia view: https://doi.org/10.1063/5.0094771.1
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basis i; j; kf g, such that the center of C coincides with the origin o and
the axes of C are along the vectors i, j, and k, respectively. Let Np be
the number of single bead peplomers of identical spike length ‘
attached along the normal to the ellipsoid C at the point of contact.
The point of contact of the spike of the ith bead to C is defined by

xiiþ yijþ zik; (17)

where i¼ 1,2,…,N. Then, the quantities xi, yi, and zi must satisfy

x2i
a2
þ y2i
b2
þ z2i

c2
¼ 1: (18)

We assume that each peplomer spike is attached to the ellipsoidal cap-
sid C along the normal to C. The normal vector at the point of
contact xiiþ yijþ zik of the spike of the ith peplomer to C is given by

ni �
xi
a2

iþ yi
b2

jþ zi
c2

k ¼ 1: (19)

Thus, introducing a scalar quantity ti, i ¼ 1; 2;…;N , the position
vector ri of the ith bead is given by

ri � xiiþ yijþ zik þ tini; (20)

where, by using Eq. (19), Eq. (20) simplifies to

ri � xi 1þ ti
a2

� �
iþ yi 1þ ti

b2

� �
iþ zi 1þ ti

c2

� �
i; (21)

FIG. 3. General rigid bead-rod model of prolate coronavirus, Nc ¼ 256, Np ¼ 74,
and c=a ¼ 3=2. Multimedia view: https://doi.org/10.1063/5.0094771.2

FIG. 4. General rigid bead-rod model of spherical coronavirus, Nc ¼ 256,
Np ¼ 74, and c=a ¼ 1. Multimedia view: https://doi.org/10.1063/5.0094771.3

FIG. 5. General rigid bead-rod model of oblate coronavirus, Nc ¼ 256, Np ¼ 74,
and c=a ¼ 4=5. Multimedia view: https://doi.org/10.1063/5.0094771.4

FIG. 6. General rigid bead-rod model of oblate coronavirus, Nc ¼ 256, Np ¼ 74,
and c=a ¼ 2=3. Multimedia view: https://doi.org/10.1063/5.0094771.5
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where i ¼ 1; 2;…;N . We note from Eq. (21) that the length of the
spike of the ith peplomer is given by ri � xiiþ yijð

�� þzikÞj ¼ tinij j,
i ¼ 1; 2;…;N . For simplification, we assume that the length of the
spike of each peplomer is equal to ‘; thus, the quantities xi, yi, zi, and
ti and Eq. (19) of ni in tinij j2 ¼ ‘2 must satisfy

t2i
x2i
a4
þ y2i
b4
þ z2i

c4

� �
¼ ‘2; (22)

where i ¼ 1; 2;…;N . Thus, the position vector ri, defined by Eq. (21),
of the ith peplomer bead of a given spike length ‘ is entirely deter-
mined in terms of four scalar quantities xi, yi, zi, and ti satisfying Eqs.
(18) and (22). For an axisymmetric capsid, a ¼ b.

B. Energetics

Let each single bead peplomer be endowed with a point
charge Q. The total electrostatic energy of Np peplomers, constrained
to the ellipsoidal capsid C, is given by

E ¼ Q
4p�

XN
i¼1

XN
j¼1

1
ri � rjj j

; (23)

where � is dielectric permittivity and ri, defined in Eq. (21), is the posi-
tion vector of the ith peplomer.23

We have assumed that each bead is endowed with an identical
point chargeQ for simplification. Therefore, the beads repel each other
and would prefer to distribute themselves as far as possible from each
other to minimize the electrostatic energy E, defined in Eq. (23). Using
a constrained minimization approach, we find an equilibrium distribu-
tion of the beads, defined in Eq. (20), that locally minimizes the energy
in Eq. (23) while satisfying the kinematic constraints in Eqs. (18) and
(22), for given values of Np. Since the charge Q appears only as a pre-
factor in Eq. (23), its value plays no role in determining equilibrium
solutions. Dropping that prefactor, we define the augmented energy
functional

bE ri;Ki; kij ji¼1;…Np
¼
XNp

i¼1

XNp

j ¼ 1

j 6¼ i

1
ri � rjj j

þ 1
2

XNp

i¼1
Ki

x2i
a2
þ y2i
b2
þ z2i
c2
� 1

� �

þ 1
2

XNp

i¼1
Ki t2i

x2i
a4
þ y2i
b4
þ z2i
c4

� �
� ‘2

� �
; (24)

where using Eq. (21)

ri � rjj j ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xi 1þ ti

a2

� �
� xj 1þ

tj
a2

� �" #2

þ yi 1þ ti
b2

� �
� yj 1þ tj

b2

� �" #2

þ zi 1þ ti
c2

� �
� zj 1þ tj

c2

� �" #2

vuuuuuuuuuuuuut
; (25)

where Ki and ki are the Lagrange multipliers introduced to satisfy the
kinematic constraints in Eqs. (18) and (22). For finding the distribu-
tion of the beads locally minimizing the electrostatic energy E, defined

in Eq. (23), we differentiate the augmented energy functional, bE , with
scalar quantities xi, yi, zi, and ti, where i ¼ 1;…;Np, resulting in 4Np

equilibrium equations

XNp

j ¼ 1
j 6¼ i

ri � rjð Þ i 1þ ti
a2

� �
ri � rjj j3=2

� Kixi
a2
� kit2i xi

a4
¼ 0; (26)

XNp

j ¼ 1
j 6¼ i

ri � rjð Þ j 1þ ti
b2

� �
ri � rjj j3=2

� Kiyi
b2
� kit2i yi

b4
¼ 0; (27)

XNp

j ¼ 1
j 6¼ i

ri � rjð Þ k 1þ ti
c2

� �
ri � rjj j3=2

� Kizi
c2
� kit2i zi

c4
¼ 0; (28)

and XNp

j ¼ 1
j 6¼ i

ri � rjð Þ ni
ri � rjj j3=2

� kiti
x2i
a4
þ y2i
b4
þ z2i

c4

� �
¼ 0; (29)

respectively, where ni and ri are defined by Eqs. (19) and (20). In total,
we solve 6Np equations, 4Np equilibrium equations in Eqs. (26)–(29),
and 2Np constraints in Eqs. (18) and (22), simultaneously to determine
6Np unknowns in xi, yi, zi, ti, ki, and Ki, where i ¼ 1;…;Np. We use
the Levenberg–Marquardt algorithm from the fsolve package of
MATLAB to solve the system of equations with 10�16 error tolerance.

General rigid bead-rod theory can be used either structure-by-
structure (see TABLES V–XIII of Ref. 11) or analytically (see TABLE
XV of Ref. 11). For large values of Np, such as Np ¼ 74, Eq. (23) is
applied numerically. Thus, the bead positions Ri, are not derived, but
rather we arrive at their floating-point approximations. Our explora-
tion of pleomorphism is thus structure-by-structure.

Our model, which has an ellipsoidal core, amounts to a modified
version of the Thomson problem,24 wherein one seeks to find a state
that distributes Np electrons over a unit sphere as evenly as possible,
with minimum electrostatic energy. Wales et al.,25,26 solved this
problem, providing solutions for a large set of values of Np. Our energy
minimization recovers accurately the results of Wales25,26 for the
Thomson solution (energy minimization over a spherical surface), as it
should (see Sec. VII. of Ref. 12). As far as we know, we are the first to
perform such an energy minimization over the surface of an ellipsoid.

V. RESULTS

Table III summarizes our results for the characteristics of ellipsoi-
dal coronavirus particles, be they oblate or prolate, arrived at from
general rigid bead-rod theory for Nc ¼ 256 and Np ¼ 74. Figure 7
maps columns 2 and 3 of Table III onto the I3 � I1 plane, showing the
balance of moments of each pleomorphic coronavirus bead-rod
model. The oblate ones lie above the diagonal, and the prolate, below.
The spherically symmetric coronavirus lies on the diagonal, near the
origin. Figure 8 shows that pleomorphism, be it oblate or prolate,
causes the real part of the complex viscosity, g0 xð Þ, to descend with fre-
quency. This is not seen for the spherical capsid (black horizontal line).
In other words, pleomorphism introduces non-Newtonian behavior.
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TABLE III. Ellipsoidal coronavirus particle characteristics from general rigid bead-rod theory with Nc ¼ 256 and Np ¼ 74.

Coronavirus
ellipsoid, c/a

I1
mL2

I2
mL2

I3
mL2 a b �

2b
a�

g0 � gs
nkTk

k
k0 k0Dr

W1;0

k g0 � gsð Þ

2
3

1:06� 106 1:06� 106 1:46� 106 5:66� 105 8:70� 10�2 5:66� 10�6 5:43� 10�2 1:69 2:12� 106 7:86� 10�8 2:10� 10�1

4
5

0:86� 106 0:86� 106 1:03� 106 4:45� 105 2:79� 10�2 7:10� 10�6 1:77� 10�2 1:61 1:69� 106 9:86� 10�8 6:94� 10�2
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Further, when compared with Fig. 10 of Ref. 12, Fig. 9 shows that pleo-
morphism, be it oblate or prolate, provokes an imaginary part to the
complex viscosity, g00 xð Þ. In other words, pleomorphism introduces
elasticity to coronavirus suspensions. From Fig. 8, we also learn that
when prolate coronavirus is compared to its oblate counterpart (where
one ellipticity is the reciprocal of the other), the prolate decreases g0 xð Þ
more than the oblate. Further, from Fig. 9, we learn that when prolate
coronavirus is compared to its oblate counterpart (where one ellipticity
is the reciprocal of the other), the oblate increases g00 xð Þ less than the
prolate. Finally, Fig. 8 shows the order of descent for g0 xð Þ to be

c
a
¼ 1;

4
5
;
5
4
;
2
3
;
3
2

� �
; (30)

and Fig. 9 shows the order of ascent for g00 xð Þ to be

c
a
¼ 3

2
;
2
3
;
5
4
;
4
5
; 1

� �
; (31)

which is the reverse of Eq. (30).
Figure 11 shows that pleomorphism, be it oblate or prolate,

causes the dimensionless rotational diffusivity to decrease. Further,
from Fig. 11 we learn that when prolate coronavirus is compared to its
oblate counterpart (where one ellipticity is the reciprocal of the other),
the oblate decreases the dimensionless rotational diffusivity more than
the prolate. Figure 10 recalls the canonical dimensionless rotational
diffusivity behavior of spherical coronavirus particles (Fig. 12 of Ref.
12 and Fig. 5 of Ref. 13). Comparing Fig. 10 to Fig. 11, we discover
that with the reported pleomorphisms [Eq. (15)], koDr lands about 3
orders of magnitude below the canonical rotational diffusivity of
spherical coronavirus. Finally, mindful of Fig. 11, Fig. 10 shows the
order of descent for koDr to be

FIG. 9. Effect of ellipticity on the dimensionless minus the imaginary part of the
complex viscosity, g00=g0 � gs, using Eq. (10), prolate c=a ¼ 3=2 (blue), prolate
c=a ¼ 5=4 (red), oblate c=a ¼ 2=3 (magenta), and oblate c=a ¼ 4=5 (green)
(Nc ¼ 256, Np ¼ 74, respectively, rows 1–4 of Table III).

FIG. 10. Dimensionless rotational diffusivity k0Dr from Eq. (6) vs peplomer popula-
tion Np (Nc ¼ 256). Spherical c=a ¼ 1.

FIG. 11. Dimensionless rotational diffusivity k0Dr from Eq. (6) vs peplomer popula-
tion Np (Nc ¼ 256). Prolate c=a ¼ 3=2 (blue), prolate c=a ¼ 5=4 (red), oblate
c=a ¼ 2=3 (magenta), and oblate c=a ¼ 4=5 (green).
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c
a
¼ 1;

3
2
;
5
4
;
4
5
;
2
3

� �
; (32)

which differs from both Eqs. (30) and (31), and is not monotonic.
From column 8 of Table III and Fig. 12, we find that (i) oblate

coronavirus pleomorphism increases the dimensionless zero-shear vis-
cosity, g0, and (ii) prolate coronavirus pleomorphism decreases the
dimensionless zero-shear viscosity. We also find, from column 11 of
Table III and Fig. 12, that coronavirus pleomorphism, be it oblate or
prolate, increases the zero-shear first normal stress coefficient, W1;0.

VI. CONCLUSION

Through the lens of general rigid bead-rod theory, we have
explored the role coronavirus cross-sectional ellipticity on its rota-
tional diffusivity, the transport property around which its cell attach-
ment revolves. We find that coronavirus pleomorphism, be it oblate
or prolate, injects into the complex viscosity (i) non-Newtonian
behavior, and (ii) elasticity (Figs. 8 and 9, respectively). We also learn
that when prolate coronavirus is compared to its oblate counterpart,
(i) the prolate decreases g0 xð Þ more than the oblate, and (ii) the
oblate increases g00 xð Þ less than the prolate. We find that (i) oblate
coronavirus pleomorphism increases the dimensionless zero-shear
viscosity, g0, and (ii) prolate coronavirus pleomorphism decreases the
dimensionless zero-shear viscosity (column 8 of Table III). We also
find that coronavirus pleomorphism, be it oblate or prolate, increases
the zero-shear first normal stress coefficient, W1;0 (column 11 of
Table III). We further find that rotational diffusivity decreases with
coronavirus pleomorphism, be it oblate or prolate, and specifically
that this descent is monotonic with the ratio of major to minor axis
lengths, c=a (see Sec. IVA).

In this paper, we explored coronavirus pleomorphism using sin-
gle beads to approximate the hydrodynamic resistance contributed by
its spikes. However, from previous work, we know that the bulbous

triangular equidimensional shape of the coronavirus spikes reduces
rotational diffusivity (see Figs. 2, 4, and 5 of Ref. 13). We leave the
important combination of coronavirus pleomorphism with spike tri-
angularity for another day.

Our previous work on the rotational diffusivity of coronavirus sus-
pensions has excluded interferences of Stokes flow velocity fields
between nearby spikes.12,13 We did so because no theory for incorporat-
ing hydrodynamic interactions in general rigid bead rod theory had
been advanced. However, such a method for incorporating hydrody-
namic interactions analytically has now been developed (Sec. III. of Ref.
27) and used (Sec. V. of Refs. 27 and 28). For the spherical capsid, this
problem has also recently been attacked by means of molecular dynam-
ics simulations.29 We leave the exploration of how spike hydrodynamic
interactions affect coronavirus rotational diffusivity for future work.

General rigid bead-rod theory can only be applied to suspensions
for whom the suspended particle structure is known. Thus, general rigid
bead-rod theory cannot be more accurate than our knowledge of this
structure. Of coronaviruses, B�arcena et al. wisely observed: “As a result
of their pleomorphic nature, our structural insight into the coronavirion
is still rudimentary, and it is based mainly on 2D electron microscopy.”
Table X of Ref. 12 summarizes what we know about the average values
of the physical characteristics of coronavirus particles, and specifically,
how we arrived at Np ¼ 74 to rely upon in this study. From this study,
we can see that a distribution of particle ellipticities will result in a corre-
sponding distribution of particle rotational diffusivities. The virus likeli-
hood of attaching, we would expect, will be determined by this
distribution. To handle such mixtures of different species, we can
rewrite Eqs. (9) and (10) for a dispersed system (see problem14C.2 of
Ref. 9, see also Sec. 26 of Ref. 30). We leave this for another day.

Though coronavirus pleomorphism is well-known, little is under-
stood about its causes. Peplomer repulsions, for instance, might them-
selves deform the capsid. So might flow. Coronavirus pleomorphism
may also reflect different asymmetrical arrangements of its capsid con-
tents.31 Our work is silent on these important considerations.

Pleomorphism causes the peplomer spacing to differ over the
oblate or prolate coronavirus surfaces. In as much as attachment
requires the alignment of an adjacent peplomer pair with its nominally
rectangular dimeric receptor, this pleomorphic peplomer spacing will
complicate Eq. (2) of Ref. 12 for the attachment probability. In other
words, the probability of finding a peplomer both (i) aligned with said
receptor and (ii) matching the dimeric spacing of said receptor differs
from place to place over the surface of a pleomorphic coronavirus.

The uninitiated may wonder why our bead-rod model employs
an empty capsid. After all, the capsid contents are what causes disease.
However, only the parts of the suspended particle resisted hydrody-
namically by the surrounding Newtonian fluid can contribute to the
resisted rotation and to the complex viscosity of the suspension. Thus,
the rotational diffusivity of an empty capsid does not differ from a
packed one. In general rigid bead-rod theory, only beads dragged
through solvent can contribute to the rheology. Pieces of the macro-
molecule that are shielded from the surrounding solvent, such as cap-
sid contents, are not to be counted in the general bead-rod model.

In this paper, we just considered axisymmetric pleomorphism,
both oblate and prolate. We know of no characterization, microscopic
or otherwise, detailed enough to distinguish oblate from prolate, or for
that matter, asymmetric from axisymmetric. Moreover, we still know
of no rheological characterization of the coronavirus suspension. We

FIG. 12. Dimensionless zero-shear viscosity, g0, and zero-shear first normal stress
difference coefficient, W1;0 from Eqs. (11) and (13), respectively, vs ellipticity.
Spherical c=a ¼ 1 (black), Prolate c=a ¼ 3=2 (blue), prolate c=a ¼ 5=4 (red),
oblate c=a ¼ 2=3 (magenta), and oblate c=a ¼ 4=5 (green).
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consider these experimental measurements to be crucial next steps for
those equipped to handle live coronavirus.

Our general rigid bead-rod theory relies entirely on orientation to
explain the polymer contribution to the viscosity and elasticity of poly-
meric liquids. Our theory is not to be confused with the competing
theory, for suspensions of ellipsoids of revolution, which yields, for the
real and minus the imaginary parts of the complex viscosity [after Eq.
(11) of Ref. 34)

g0 � gs
g0 � gs

¼

5
2
þ 26
147

e2 þ 3
5

e2

1þ k2x2

5
2
þ 571
735

e2
; (33)

g00

g0 � gs
¼

3
5

e2kx

1þ k2x2

5
2
þ 571
735

e2
; (34)

where

g0 � gs ¼ gsU
5
2
þ 571
735

e2
� �

; (35)

and where

e � c
a
� 1; (36)

where c=a is the capsid aspect ratio. Equations (33)–(36) are thus for
suspensions of otherwise featureless ellipsoids (spikeless), be they pro-
late or oblate, arrived at elegantly through the competing ellipsoid sus-
pension orientation theory. Unlike general rigid bead-rod theory,
however, ellipsoid suspension orientation is silent on the relation
between k and the shapes and sizes of the suspended objects.

We have restricted this work to small-amplitude, namely, where
Eq. (7) obtains. For large-amplitude oscillatory shear flow, where Eq.
(7) does not obtain, we bridge to the corotational Jeffreys fluid,

following the method of Sec. X of Ref. 11. We leave this intriguing
problem to future work.

Whereas much prior work on fluid physics related to the virus
has attacked transmission,32,33 this paper focuses on the ab initio cal-
culation of coronavirus transport properties. Specifically, we have
determined the rotational diffusivity, the property governing the parti-
cle alignment for cell attachment (see Sec. I of Ref. 12). Although our
work is mainly curiosity driven, it may deepen our understanding of
drug, vaccine, and cellular infection mechanisms.

One might prefer to add other comparisons with experiment,
and specifically with relevant complex viscosity vs coronavirus obser-
vations. However, we know of no experimental measurements on
coronavirus suspensions. In other words, to our knowledge, the trans-
port properties explored in this paper have yet to be explored in the
laboratory.

Under the microscope, we see agglomeration of coronavirus par-
ticles, mechanically interlocked by interdigitation of the bulbous spikes
[see Fig. 1(d) of Ref. 35]. The charge repulsion of the interdigitating
spikes will, of course, rearrange the spikes. By rearrange, we mean
spreading near the interdigitation, and crowding elsewhere. Figure 13
(Multimedia view) shows our general rigid bead-rod model of an
interdigitated cluster of coronaviruses. We leave the energy minimiza-
tion for interdigitated clusters, and the calculation of the coronavirus
cluster rotational diffusivity for another day.

ACKNOWLEDGMENTS

This research was undertaken, in part, thanks to support from
the Canada Research Chairs program of the Government of Canada
for the Natural Sciences and Engineering Research Council of
Canada (NSERC) Tier 1 Canada Research Chair in Rheology. This
research was also undertaken, in part, thanks to support from the
Discovery Grant program of the Natural Sciences and Engineering
Research Council of Canada (NSERC) (A. J. Giacomin), Vanier
Canada Graduate Scholarship (M. A. Kanso), and the Mitacs

FIG. 13. Cryo-electron tomography of pleo-
morphic septocluster of interdigitated corona-
virus (left) [Left panel of Fig. 1(d) of Ref. 35]
vs our general rigid bead-rod pleomorphic
model of same (right). Left panel reproduced
with permission from B.W. Neuman, G. Kiss,
G., A.H. Kunding, D. Bhella, M.F. Baksh, S.
Connelly, B. Droese, J.P. Klaus, S. Makino,
S.G. Sawicki, S.G. Siddell, “A structural anal-
ysis of M protein in coronavirus assembly
and morphology,” J. Struct. Biol. 174(1),
11–22 (2011). Copyright 2011 Elsevier.
Multimedia view: https://doi.org/10.1063/
5.0094771.6

Physics of Fluids ARTICLE scitation.org/journal/phf

Phys. Fluids 34, 063101 (2022); doi: 10.1063/5.0094771 34, 063101-9

Published under an exclusive license by AIP Publishing

https://doi.org/10.1063/5.0094771.6
https://doi.org/10.1063/5.0094771.6
https://scitation.org/journal/phf


Research Training Award (A. J. Giacomin and M. A. Kanso). A. J.
Giacomin is indebted to the Faculty of Applied Science and
Engineering of Queen’s University at Kingston for its support
through a Research Initiation Grant (RIG). V. Chaurasia and E.
Fried gratefully acknowledge support from the Okinawa Institute of
Science and Technology Graduate University with subsidy funding
from the Cabinet Office, Government of Japan.

AUTHOR DECLARATIONS
Conflict of Interest

The authors have no conflicts to disclose.

DATA AVAILABILITY

The data that support the findings of this study are available
from the corresponding author upon reasonable request.

REFERENCES
1B. W. Neuman, B. D. Adair, C. Yoshioka, J. D. Quispe, G. Orca, P. Kuhn, R. A.
Milligan, M. Yeager, and M. J. Buchmeier, “Supramolecular architecture of
severe acute respiratory syndrome coronavirus revealed by electron cry-
omicroscopy,” J. Virol. 80(16), 7918 (2006).

2N. Zhu, D. Zhang, W. Wang, X. Li, B. Yang, J. Song, X. Zhao, B. Huang, W.
Shi, R. Lu, P. Niu, F. Zhan et al., “A novel coronavirus from patients with
pneumonia In China, 2019,” N Engl. J. Med. 382(8), 727–733 (2020).

3M. A. Kanso, “Polymeric liquid behavior in oscillatory shear flow,” M.S. thesis
(Queen’s University, Kingston, Canada, 2019).

4M. A. Kanso and A. J. Giacomin, “van Gurp-Palmen relations for long-chain
branching from general rigid bead-rod theory,” Phys. Fluids 32(3), 033101
(2020); Erratum: In Eq. (44) “I3 > I1” should be “I3 < I1.” Editor’s pick.

5M. A. Kanso, A. J. Giacomin, and C. Saengow, “Large-amplitude oscillatory
shear flow loops for long-chain branching from general rigid bead-rod theory,”
Phys. Fluids 32(5), 053102 (2020).

6M. A. Kanso, A. J. Giacomin, C. Saengow, and J. H. Piette, “Diblock copolymer
architecture and complex viscosity,” Int. J. Mod. Phys. B 34, 2040110 (2020).

7D. Singhal, M. A. Kanso, S. J. Coombs, and A. J. Giacomin, “Complex viscosity
of poly[n]catenanes and olympiadanes,” Phys. Fluids 34(3), 033112 (2022).

8O. Hassager, “Kinetic theory and rheology of bead-rod models for macromo-
lecular solutions. II. Linear unsteady flow properties,” J. Chem. Phys. 60(10),
4001–4008 (1974); Erratum: in Eq. (2) of “1=2” should be “�1=2” and “�”
should be “�.”

9R. B. Bird, C. F. Curtiss, R. C. Armstrong, and O. Hassager, Dynamics of
Polymeric Liquids 2nd ed. (John Wiley & Sons, Inc., New York, 1987), Vol. 2;
Errata: On p. 409 of the first printing, the nþmð Þ! in the denominator should
be n�mð Þ!; In Table 16.4–1, under L entry “length of rod” should be “bead
center to center length of a rigid dumbbell”; In Fig. 14.1–2 caption, “Multibead
rods of length L” should be “Multibead rods of length Lþ d.”

10R. B. Bird, O. Hassager, R. C. Armstrong, and C. F. Curtiss, Dynamics of
Polymeric Liquids, 1st ed. (John Wiley and Sons, Inc., New York, 1977), Vol. 2.

11M. A. Kanso, A. J. Giacomin, C. Saengow, and J. H. Piette, “Macromolecular
architecture and complex viscosity,” Phys. Fluids 31(8), 087107 (2019); Editor’s
pick. Errata: Ganged in Ref. 8 of Ref. 13.

12M. A. Kanso, J. H. Piette, J. A. Hanna, and A. J. Giacomin, “Coronavirus
rotational diffusivity,” Phys. Fluids 32(11), 113101 (2020). Feature article.
Cover article.

13M. A. Kanso, V. Chaurasia, E. Fried, and A. J. Giacomin, “Peplomer bulb shape
and coronavirus rotational diffusivity,” Phys. Fluids 33(3), 033115 (2021).

14A. J. Giacomin and M. A. Kanso, “General rigid bead-rod macromolecular the-
ory,” in Recent Advances in Rheology: Theory, Biorheology, Suspension and
Interfacial Rheology, edited by D. De Kee and A. Ramachandran (AIP
Publishing, Melville, 2022), Chap. II, pp. 2-1–2-32.

15W. E. Stewart and J. P. Sørensen, “Hydrodynamic interaction effects in rigid
dumbbell suspensions. II. Computations for steady shear flow,” Trans. Soc.
Rheol. 16(1), 1–13 (1972).

16J. H. Piette, L. M. Jbara, C. Saengow, and A. J. Giacomin, “Exact coefficients for
rigid dumbbell suspensions for steady shear flow material function expansions,”
Phys. Fluids 31(2), 021212 (2019); Erratum: Above Eq. (83), “one other” should
be “one other use.”

17R. B. Bird and A. J. Giacomin, “Who conceived the complex viscosity?,” Rheol.
Acta 51(6), 481–486 (2012).

18A. J. Giacomin and R. B. Bird, “Erratum: Official nomenclature of The Society
of Rheology,” J. Rheol. 55(4), 921–923 (2011).

19J. D. Ferry, Viscoelastic Properties of Polymers, 3rd ed. (Wiley, New York,
1980).

20R. B. Bird, R. C. Armstrong, and O. Hassager, Dynamics of Polymeric Liquids,
1st ed. (Wiley, New York, 1977), Vol. 1.

21V. Chaurasia, Y.-C. Chen, and E. Fried, “Interacting charged elastic loops on a
sphere,” J. Mech. Phys. Solids 134, 103771 (2020).

22V. Chaurasia, “Variational formulation of charged curves confined to a sphere,”
Ph.D. thesis (University of Houston, Houston, 2018).

23J. Nocedal and M. L. Overton, “Projected Hessian updating algorithms for non-
linearly constrained optimization,” SIAM J. Numer. Anal. 22(5), 821–850
(1985).

24J. J. Thomson, “XXIV. On the structure of the atom: An investigation of the
stability and periods of oscillation of a number of corpuscles arranged at equal
intervals around the circumference of a circle; with application of the results to
the theory of atomic structure,” London, Edinburgh, Dublin Philos. Mag. J. Sci.
7(39), 237–265 (1904).

25D. J. Wales and S. Ulker, “Structure and dynamics of spherical crystals charac-
terized for the Thomson problem,” Phys. Rev. B 74(21), 212101 (2006).

26D. J. Wales, H. McKay, and E. L. Altschuler, “Defect motifs for spherical top-
ologies,” Phys. Rev. B 79(22), 224115 (2009).

27M. C. Pak, K.-I. Kim, M. A. Kanso, and A. J. Giacomin, “General rigid bead-
rod theory with hydrodynamic interaction for polymer viscoelasticity,” Phys.
Fluids 34(2), 023106 (2022).

28M. A. Kanso, M. C. Pak, K.-I. Kim, S. J. Coombs, and A. J. Giacomin,
“Hydrodynamic interaction and complex viscosity of multi-bead rods,” Phys.
Fluids 34(4), 043102 (2022). Editor’s pick.

29N. Moreno, D. Moreno-Chaparro, F. B. Usabiaga, and M. Ellero,
“Hydrodynamics of spike proteins dictate a transport-affinity competition for
SARS-CoV-2 and other enveloped viruses,” bioRxiv (2022).

30R. B. Bird, H. R. Warner, and D. C. Evans, “Kinetic theory and rheology of
dumbbell suspensions with Brownian motion,” Fortschr. Hochpolym.-Forsch.
8, 1–90 (1971).

31P. J. de Pablo and I. A. T. Schaap, “Atomic force microscopy of viruses,” in
Physical Virology, edited by U. F. Greber (Springer, Cham, 2019) Chap. VIII,
pp. 159–179.

32T. Dbouk and D. Drikakis, “On coughing and airborne droplet transmission to
humans,” Phys. Fluids 32(5), 053310 (2020).

33H. Wang, Z. Li, X. Zhang, L. Zhu, Y. Liu, and S. Wang, “The motion of respira-
tory droplets produced by coughing,” Phys. Fluids 32(12), 125102 (2020).

34L. G. Leal and E. J. Hinch, “The rheology of a suspension of nearly spherical
particles subject to Brownian rotations,” J. Fluid Mech. 55(4), 745–765 (1972).

35B. W. Neuman, G. Kiss, G., A. H. Kunding, D. Bhella, M. F. Baksh, S.
Connelly, B. Droese, J. P. Klaus, S. Makino, S. G. Sawicki, and S. G. Siddell, “A
structural analysis of M protein in coronavirus assembly and morphology,” J.
Struct. Biol. 174(1), 11–22 (2011).

Physics of Fluids ARTICLE scitation.org/journal/phf

Phys. Fluids 34, 063101 (2022); doi: 10.1063/5.0094771 34, 063101-10

Published under an exclusive license by AIP Publishing

https://doi.org/10.1128/JVI.00645-06
https://doi.org/10.1056/NEJMoa2001017
https://doi.org/10.1063/5.0004513
https://doi.org/10.1063/5.0009752
https://doi.org/10.1142/S0217979220401104
https://doi.org/10.1063/5.0087283
https://doi.org/10.1063/1.1680850
https://doi.org/10.1063/1.5111763
https://doi.org/10.1063/5.0031875
https://doi.org/10.1063/5.0048626
https://doi.org/10.1122/1.549275
https://doi.org/10.1122/1.549275
https://doi.org/10.1063/1.5050247
https://doi.org/10.1007/s00397-012-0621-2
https://doi.org/10.1007/s00397-012-0621-2
https://doi.org/10.1122/1.3586815
https://doi.org/10.1016/j.jmps.2019.103771
https://doi.org/10.1137/0722050
https://doi.org/10.1080/14786440409463107
https://doi.org/10.1103/PhysRevB.74.212101
https://doi.org/10.1103/PhysRevB.79.224115
https://doi.org/10.1063/5.0079900
https://doi.org/10.1063/5.0079900
https://doi.org/10.1063/5.0087737
https://doi.org/10.1063/5.0087737
https://doi.org/10.1007/3-540-05483-9_9
https://doi.org/10.1063/5.0011960
https://doi.org/10.1063/5.0033849
https://doi.org/10.1017/S0022112072002125
https://doi.org/10.1016/j.jsb.2010.11.021
https://doi.org/10.1016/j.jsb.2010.11.021
https://scitation.org/journal/phf

	s1
	d1
	d2
	d3
	d4
	s2
	t1
	t2
	f1
	d5
	d6
	s3
	d7
	d8
	d9
	d10
	d11
	d12
	s4
	d13
	d14
	d15
	d16
	s4A
	f2
	d17
	d18
	d19
	d20
	d21
	f3
	f4
	f5
	f6
	d22
	s4B
	d23
	d24
	d25
	d26
	d27
	d28
	d29
	s5
	t3
	f7
	f8
	d30
	d31
	d32
	f9
	f10
	f11
	s6
	f12
	d33
	d34
	d35
	d36
	l
	c1
	c2
	c3
	c4
	c5
	c6
	c7
	c8
	c9
	c10
	c11
	c12
	c13
	c14
	c15
	c16
	c17
	c18
	c19
	c20
	c21
	c22
	c23
	c24
	c25
	c26
	c27
	c28
	c29
	c30
	c31
	c32
	c33
	c34
	c35

