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Linking spontaneous and stimulated spine
dynamics
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Our brains continuously acquire and store memories through synaptic plasticity. However,

spontaneous synaptic changes can also occur and pose a challenge for maintaining stable

memories. Despite fluctuations in synapse size, recent studies have shown that key

population-level synaptic properties remain stable over time. This raises the question of how

local synaptic plasticity affects the global population-level synaptic size distribution and

whether individual synapses undergoing plasticity escape the stable distribution to encode

specific memories. To address this question, we (i) studied spontaneously evolving spines

and (ii) induced synaptic potentiation at selected sites while observing the spine distribution

pre- and post-stimulation. We designed a stochastic model to describe how the current size

of a synapse affects its future size under baseline and stimulation conditions and how these

local effects give rise to population-level synaptic shifts. Our study offers insights into how

seemingly spontaneous synaptic fluctuations and local plasticity both contribute to

population-level synaptic dynamics.
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Memory and learning are thought to rely on changes in
synaptic strength, characterized by the strengthening
and weakening of specific synaptic connections1–6.

Several studies have targeted the molecular mechanisms of
synaptic plasticity both on short time scales7 and on the time
scales of hours or even days8–10.

While synaptic plasticity is often directed at specific synaptic
sites, synapses can also be dynamic in the absence of directed
plasticity, and disentangling spontaneous from directed synaptic
changes can be challenging11. Synapses undergo significant size
changes over hours and days, most likely driven by spontaneous
dynamics of synaptic molecules12–18. Despite each synapse being
subject to potentially large fluctuations over time, average
population features show remarkable stability in time13,15,19–24.

Many experimentally reported synaptic size distributions are
asymmetric and exhibit a long right tail, which has been hypo-
thesized to be linked to optimality with respect to information
storage capacity, neuronal firing rates, and long-distance infor-
mation transfer25,26. While it is commonly assumed that these
distributions arise from the cumulative action of spines shrinking
and growing23,27, the interaction between activity-independent
and activity-dependent components is not fully understood24.

Additionally, modeling studies often make one essential
assumption: synapses retain their properties indefinitely when not
actively driven to change. This assumption is fundamental
because otherwise, spontaneously occurring changes would lead
to modifications in the network function or unlearning newly
acquired skills. However, the fact that synaptic changes are driven
by molecular processes that are inherently noisy (e.g., lateral
diffusion, active trafficking, endocytosis, and exocytosis17,28)
implies that such spontaneous changes are inevitable. Thus,
studying how fundamental characteristics of the synapse popu-
lations are retained (e.g., probability of release, total receptor
conductance, size, morphology, ultrastructure, composition) over
longer time scales is another crucial aspect of understanding
memory. This capacity of the synapses to retain their features is
known in the literature as synaptic tenacity11,29.

Models linking these findings to single spine dynamics using
various approaches already exist12,15,22,30,31. In this study, we
introduce a model that can reproduce both long-term potentia-
tion (LTP)-triggered spine changes and activity-independent
spine fluctuations within a common framework. It is hypothe-
sized that LTP impacts small spines more because they have more
room to grow32, while larger spines could represent stable long-
term memory storage33,34. Within the activity-independent con-
text, it has been shown that large spines vary more12,15,24.

Our model, which is inspired by the Kesten process and the
multiplicative dynamics of previous studies, allowed us to recreate
the experimental results relating to spontaneous spine fluctua-
tions while relying their log-normal nature. We also were able to
use our model to describe spines after LTP induction and report a
distinct increase in entropy (a measure of the capacity of a
dendrite to store information). Our results describing the spon-
taneous spine fluctuations are consistent with previously reported
effects such as the variance of the large spines, stable population

distribution, and the oscillatory behavior of the spines due to a
negative correlation between timesteps12,13,31 and can explain
how LTP signals impact the spontaneous spine distributions.

Results
We hypothesize that a baseline process that gives rise to the
spontaneous spine distribution (activity-independent spine plas-
ticity) is modified by plasticity induction such that both sponta-
neous and induced spine distributions can be described using the
same model with different model states. Therefore, before con-
sidering the stimulation effects, we wanted to understand the
model mechanisms needed to capture the activity-independent,
spontaneous spine fluctuations.

To this end, we imaged spines on apical oblique dendrites of
GFP-expressing CA1 pyramidal neurons in cultured hippocampal
organotypic slices. For one set of experiments, we quasi-
simultaneously potentiated a subset of spines using glutamate
uncaging to induce structural LTP (sLTP) (the activity-dependent
or stimulation set, see “Methods” and Supplementary Fig. 1). In
another independent set of experiments, the caged glutamate
molecule was omitted from the bath, and thus spines did not
undergo sLTP following laser illumination. This sham stimulation
dataset acted as our activity-independent set. For both cases, over
55 min (15 min pre-stimulation and 40 min post-stimulation), we
collected spine sizes across eight time points (at −15, −10, −5, 2,
10, 20, 30, 40 min, where the negative numbers refer to the pre-
stimulation) to study the spine dynamics. This data set consisted
of three baseline observations, followed by glutamate uncaging or
sham-uncaging, followed by another five time points. This
allowed us to directly observe the effects of the LTP induction on
spine populations and incorporate how the newly potentiated
synapses and their unstimulated neighbors evolve within a single
model. For information on the size of the datasets of this study,
see Table 1.

We estimated the synaptic strength at each time point by
measuring the size of the spine head32,35,36 since many synaptic
parameters correlate with head volume37,38. To this end, we
biolistically overexpressed GFP in single neurons and imaged
short stretches of dendrite over time. We show an example image,
including semi-automatically generated ROIs used for measuring
spine head size in Fig. 1a. We have highlighted a synapse with a
gray rectangle in Fig. 1a and depicted its different sizes at dif-
ferent time points in Fig. 1b to emphasize the variable dynamics
spines undergo. These recordings are performed in an imaging
solution containing tetrodotoxin (TTX), picrotoxin, and with
nominally 0 mM Mg2+. Under these conditions, in the absence of
neuronal spiking and experimentally imposed stimulation, spines
constantly fluctuate spontaneously in size over time.

However, despite this variability, the distribution of spine sizes
(Fig. 1c) is remarkably stable over time. Its shape is right skewed
and exhibits a long right tail, in line with results reported pre-
viously across a variety of experimental studies15,24. Notably, we
observed that the mean of the spine population is also remarkably
stable, in contrast to the dynamics of the individual spines (see
inset of Fig. 1c). We note that the distributions of spine size

Table 1 Details of the activity-dependent and activity-independent experiments.

Experiment # of animals # of slices Total # of spines # of homosynaptic spines

Activity independent (no stimulation) 21 47 830 N/A
Activity dependent (7 spine stim.) 5 10 204 65
Activity dependent (15 spine stim.) 6 15 338 187

The table shows the number of animals, slices, and spines analyzed in each experimental condition, as well as the total number of spines and the number of homosynaptic spines (i.e., stimulated spines)
in response to the 7 or 15 spine stimulation experiments.
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changes (Fig. 1d and Supplementary Fig. 2) exhibit Gaussian
behavior with no significant difference between time points
(Kolmogorov–Smirnov (KS) test not significant except for the
change from +10 to +20 min, which is marked by an *). We can
also collect all these changes into one distribution and estimate
the sample mean, μ, and sample standard deviation, σ. The
resulting distribution and sample statistics are seen in Fig. 1e. The
spine size changes are robustly negatively correlated between
neighboring time steps (see darker red colors in Fig. 1f). This
effect is on the scale of 10s of minutes in our data, which is much
shorter than the day-long spine correlations (which also have
smaller values) reported by previous studies12,30. We note that
this correlation also persists over the entirety of our experiments,
as long as the timesteps immediately follow each other, e.g.,
computing the correlation of timestep 4–timestep 2 and timestep
6–timestep 4 (see Supplementary Fig. 3i). Finally, differently sized

spines exhibit different spine change distributions (see Fig. 1h)
(KS test performed between samples led to p values all under
0.05), which are all well-described by log-normal distributions
(black lines).

These experimentally observed results in our data lead us to the
following question: given the dynamics of the individual spines
(oscillatory, small vs big), how is the steady size distribution
maintained? We answer this question by introducing an abstract
stochastic model that includes the lowest number of model
parameters to maintain model tractability such that it captures
the following key features of our experimental data:

1. The temporal spine dynamics need to remain stable around
the distribution observed in the dataset (Fig. 1c). As a
consequence, the mean of the distribution needs to remain
stable through time (Fig. 1c—inset).

Fig. 1 Experimentally measured population dynamics of activity-independent spine turn-over. a An example of a GFP-expressing CA1 neuron whose
spine dynamics we analyze and model. b Example of spontaneous dynamics at the single spine level. The spine (marked by a gray rectangle in (a) exhibits
both growth and shrinkage in the observed time frame. c The spine sizes follow a temporally stable right-skewed distribution with a long tail. Each gray line
refers to a different snapshot distribution, which shows significant overlap. Inset: The mean size of the full spine population (red) is shown across time
along with the dynamics of selected spines (gray) at each time point, where the time points are at −15, −10, −5, 2, 10, 20, 30 and 40min. d Collective
distributions of the spine size changes (Δs) from time point to time point follow a Gaussian distribution. The black lines denote the corresponding Gaussian
fits. The * denotes the single distribution that is significantly different (p < 0.05 when tested with KS test). Another depiction of these changes, which
highlights the difference in the distribution is seen in Supplementary Fig. 2. e The collection of all spine changes across all time points follows a zero mean
Gaussian distribution and a standard deviation of ≈0.074. f Spine sizes display correlations across time, whereby the neighboring time points are
negatively correlated (negative off-diagonal values). g Correlation of two time points. h Evaluating spine size changes as a function of the spine size across
time points shows that small spines exhibit a narrow distribution of spine size changes while larger spines show larger variability, black lines represent the
corresponding log-normal (with no statistical difference seen between the dataset and a log-normal distribution) fits of the data.
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2. If we start at another distribution, e.g., a uniform or delta
distribution, the model should return to the original stable
distribution. This assumption does not arise directly from
the observed data but more from the fact that as neurons
grow and change, the initial spines could start small and
still end up at the distribution of (Fig. 1c), which is stable
over the timescales we consider (approximately 10 min).
Therefore, to retain biological realism, we will include this
feature.

3. The dynamics of spine changes and their distribution from
one time point to another should follow a Gaussian
distribution (Fig. 1d, e).

4. Time points immediately following each other should be
negatively correlated with each other (Fig. 1f, g). This
negative correlation suggests an oscillatory dynamic
component.

The Log-normal based model. To understand the necessary
noise profile driving spine size changes, we start with a more in-
depth observation of the experimental data. The overall

distribution of spine size changes over time appears to be
Gaussian (Fig. 1e), which may imply a model that is based on
Gaussian dynamics. However, when we attempted such a model,
we observed that there were fundamental problems that did not
reconcile with the experimental results (see “Methods” and
Supplementary Fig. 4). In fact, we note that the overall profile of
the spine size population is a skewed, log-normal-like profile
(Fig. 2a). Furthermore, when we consider the changes in spines
with different initial values separately, the distribution of changes
also exhibits a skewed profile (Fig. 1h). Moreover, we note that
these distributions differ from each other, suggesting that spines
belonging to different size intervals behave in a fundamentally
different way. Thus, we introduce a model with a noise profile, ηi,
which is sampled from a set of log-normal distributions to define
the dynamics of the spine size at time i, Vi, as

Viþ1 ¼ Vi þ ηi; ηi � LognormalðμlogðViÞ; σ log ðViÞ;�δ̂Þ; ð1Þ
where μlog and σlog are parameters that depend on the spine size
Vi and determine the shape of the log-normal sampling dis-
tribution and δ̂ is a shift parameter (see “Methods” for more

Fig. 2 Utilizing the spine size dependencies to define the log-normal models. Red crosses denote when the plotted model violates experimental
observations, while green ticks indicate agreement with experimental data. a Fitting of different distributions to the spine size distribution, with k-values
from the Kolmogorov–Smirnov test that show the best fit. The log-normal distribution best fits the spine size distribution. b Sample means and standard
deviations of activity-independent plasticity for different subsets of spines can be used to obtain a linear fit between spine size and mean and standard
deviation of their future size changes. Here the error bars represent the 95% confidence interval of the statistics after bootstrapping. c Simulations using
the linear fits from b do not result in a stable distribution. E.g., evolution refers to one example simulation of spine sizes. The inset represents the simulated
mean, which decreases significantly. d The correlation obtained from one example step of the best fits log-normal simulations. The value of the slope is
≈0.1, which is smaller than the correlations required. e Altered linear fits are used to achieve modeling goals. f Distribution obtained from the simulation
when the altered linear fits of the sample mean and standard deviation are used. The stability of the distribution is achieved as well as that of the mean
(inset). g The correlation obtained from one example step of the altered fits log-normal simulations. The value of the slope is ≈0.1, which is smaller than
the correlations required. h The distribution obtained from using the best linear fits (b) for the LN-OU (Eq. (4)). Significant stability is observed (the inset
represents the mean of the simulations). i Simulated activity-independent plasticity of the interpolated LN-OU model, showing clear Gaussian properties.
j The correlation of the LN-OU process demonstrates a significantly more negative correlation in line with the desired model goals.
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detail). To determine the dependence of μlog and σlog on the size of
the spine Vi we assume, following observations seen in Yasumatsu
et al.12,15,24, that there exist two linear functions fμ and fσ that
map spine sizes onto the corresponding log-normal change
parameters. However, rather than finding the linear functions
that are optimal for all spines which (i) becomes computationally
expensive, (ii) can lead to overfitting, or (iii) leads to difficulty
inferring the underlying distribution due to insufficient data, we
simplify the above model by binning spines in equal-size bins and
then evaluating the sample means and standard deviations of
those bins. This provides exactly the linear functions fμ and fσ
which allows us to estimate the sample means and deviations for
all spine sizes (denoted by ⋅ s), i.e.,

μsðVÞ ¼ f μðVÞ ð2Þ

σsðVÞ ¼ f σðVÞ; ð3Þ
These values can be used to estimate the parameters of the
underlying normal distribution, which can then be transformed
into the parameters to define that log-normal distribution (μlog
and σlog) using Eqs. (12) and (13) and that we use to generate our
noise profile. We note that previous work (including that of
Hazan and Ziv24) found linear relations between the spine size
squared and the variance and mean. We saw that such fits were
equally effective as the fits presented here, and lead to similar
results (see Supplementary Fig. 5). The fits for fμ and fσ can be
seen in Fig. 2b and lead to the following interesting results: (i)
small spines have a positive mean change and have smaller
standard deviation, so they tend to grow but are less variable and
(ii) large spines have a negative mean change and larger standard
deviation, so they tend to shrink and are more variable. We can
use these insights to generate the first model, which we call the
Best fit LN Model (LN for Log-normal) in Fig. 2, and study the
properties of arising size dynamics (Fig. 2c, d). The generated
results, reported in Fig. 2c, do not recreate the desired experi-
mental characteristics, i.e., the mean of the simulated distribu-
tions (inset of the same figure) decreases, and the negative
correlation is too small (compare Fig. 2d and Fig. 1g).

We notice, however, one crucial fact: by slightly altering the
“best” linear fits of the means and standard deviations (raising the
mean and lowering the standard deviation—see Fig. 2e), we
obtain a new model (Alt. Fit LN Model) and excellent agreement
with the experimental size distribution (Fig. 2f), still, however,
underestimating significantly the correlation between subsequent
changes (Fig. 2g). We can alleviate this by implementing the
negative momentum term (see Eq. (9) in the “Methods”) and
using the altered fits (see Supplementary Fig. 3a, b, where we
replicate the size distribution and the negative correlation).
Despite the excellent agreement with the experimental results, we
found it necessary to use the manually tuned fits for obtaining the
mean and the standard deviation. As such, when implementing
the Alt. Fit LN model, we were not using the optimal fits shown in
Fig. 2b. We assume that the discrepancy in using the optimal fits
is not due to any noise arising from the experimental set-up but,
instead, because we are missing a crucial facet which the “altered”
fits are accounting for. These observations lead us to introduce
two key modifications in model (1):

1. to recover the negative correlation between subsequent size
changes, we introduce the negative momentum term (also
introduced in the “Methods” section (Eq. (9)) and
Supplementary Fig. 4d, e);

2. by noticing that the manual changes applied to the fits are
equal across all spine bins (Fig. 2e), we propose that an
additional global drift term can recover the experimentally
reported dynamics of the spine while allowing the

differential analysis of spine dynamics in different size
groups. Therefore, we also add a global OU drift term
(referred to as Drift below).

The parameters of our final model, referred to as the Log-
normal–Ornstein–Uhlenbeck model, or LN-OU model,

Viþ1 ¼ Vi þ LognormalðμlogðViÞ; σ logðViÞ;�δ̂Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Long� term stochasticity

� ~θðVi � ~μÞ|fflfflfflfflfflffl{zfflfflfflfflfflffl}
Drift

� θðVi � Vi�1Þ|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
Negativemomentum

ð4Þ
are fitted to achieve the best match to the experimental data. The
resulting simulation is illustrated in Fig. 2h–j and indicates that
we correctly reproduced all the experimental data we started out
with in Fig. 1. Both the size distribution and the collective size
change distributions are captured accurately and maintain a
correct degree of negative correlation between subsequent size
changes.

In summary, we have introduced a combination of two simple
log-normal models that satisfy all our modeling requirements (see
Fig. 2e–j for conditions 1, 3, and 4 and Supplementary Fig. 3e–h
for condition 2). Constructed with the linear relations between
spine size and mean and standard deviation of subsequent
changes in mind, the model satisfies all modeling conditions we
had set ourselves. Furthermore, this model introduces a slow-time
scale (long-term stochasticity and drift) as well as a fast-time scale
(negative momentum) that allows us to gain insight into the
underlying processes of activity-dependent plasticity. For plau-
sible links to biological mechanisms, see the Supplementary
Material where we discuss possible links to actin dynamics39,40

and geometric brownian motion41. Finally, this model is simple to
implement and provides insights into the process that possibly
underlies activity-independent plasticity.

How LTP alters the spine size distribution. Previously, all spines
along the imaged dendritic branch were combined into one set, as
there was no obvious manner to differentiate them (apart from
their initial size). However, as we deliberately elicited plasticity by
uncaging glutamate at a group of spines, we can now introduce
two distinct spine sets: those that have been stimulated (homo-
synaptic, i.e., those synaptic targets which have specifically been
targeted for sLTP) and those that are left untouched (hetero-
synaptic, i.e., spines on the same dendritic stretch that are not
directly potentiated). We emphasize that the heterosynaptic
spines, which were not targeted by the laser for glutamate
uncaging despite sharing the same dendritic branch as the
homosynaptic spines, are distinct from the spines from the pre-
vious sham stimulation spines, which were targeted by the laser,
but due to the omission of glutamate did not undergo potentia-
tion. We restrict the heterosynaptic spines to be within 4 μm of
the stimulation sites and treat them as one distinct group. Finally,
to have a sufficient number of homosynaptic spines we chose to
stimulate 15 distinct spines sharing the same dendritic branch.
Before we apply the previously defined log-normal model to this
data set, we will need to understand the effects of stimulation on
activity-independent spine turnover.

Beginning with the collective spine distribution Fig. 3a, we note
that the pre-stimulation (red) and post-stimulation (blue)
stationary distributions are significantly different. This is also
reflected in the set of time point means (top inset). This implies
that the spine dynamics before and after stimulation can be
classified as activity-independent plasticity around the respective
stable distribution but that the act of spine stimulation acts
instantaneously (at our time resolution) shifting the distribution
of spine sizes. To quantify the distributional change further, we
measured the amount of information or “uncertainty” within the
given spine size distributions42. Hereby, we use Shannon entropy,

COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-023-05303-1 ARTICLE

COMMUNICATIONS BIOLOGY |           (2023) 6:930 | https://doi.org/10.1038/s42003-023-05303-1 | www.nature.com/commsbio 5

www.nature.com/commsbio
www.nature.com/commsbio


which quantifies how many bits a distribution has and is defined
by

HðXÞ :¼ � ∑
x2X

pðxÞ log pðxÞ ¼ E½� log pðXÞ� ð5Þ
where X defines the full set of possible sizes and p(x) is the
normalized distribution of different spine sizes. We calculate the
information capacity of the spine size distributions before and
after stimulation. We note that the lower inset of Fig. 3a shows a
significant increase in the potential information-retaining capa-
city of the neuron due to the stimulation. In contrast, Fig. 3b
shows that the heterosynaptic spine (<4 μm) size distributions
and sample means do not show any significant shift during
stimulation. The entropy does increase, albeit not significantly.

The changes from time point to time point of both the
homosynaptic (Fig. 3c) and heterosynaptic spines (Fig. 3e) mirror
those of the activity-independent plasticity (Gaussian distribu-
tions). For Fig. 3c, we see that stimulation protocol (depicted in
teal) induces a significant shift in the location of the change
distribution (see Fig. 3d, which depicts the mean change) but no
significant change in the shape. In contrast, the heterosynaptic
spines do not exhibit a significant difference in shape or location

from the other time points (see Fig. 3f). Furthermore, when
considering the averages of the changes at each time point
(vertical black lines in the 3D plot and dynamic plots immediately
below), we see that the stimulation time point for the
homosynaptic spines is significantly elevated over the other time
points. This elevation supports the “shift” event we observed in
Fig. 3a. We also note no significant difference between all other
time points. Given that we assume that the pre-stimulation time
points are akin to activity-independent plasticity (i.e., there is no
knowledge that a stimulation event is about to occur), we can
then assume that the distribution of the spine changes after
stimulation is also defined by activity-independent plasticity. The
heterosynaptic spines do not demonstrate such an elevation, and
so we assume that, for the most part, these spines undergo
activity-independent plasticity.

We next divided the population of spines according to their
sizes in bins of 0.15 μm2, which can be seen in Fig. 3g
(homosynaptic spines) and Fig. 3i (heterosynaptic spines). As
we assume that all non-stimulation time points represent activity-
independent plasticity, we collect these into one and plot these
changes in spine size in the left figures. The figures on the right

Fig. 3 Stimulation of spines leads to a distinct shift of the spine size distribution that is mainly driven by growing small spines. a, b Homosynaptic and
heterosynaptic spine size distribution at different time points, with red and blue referring to pre-stimulation and post-stimulation, respectively. Sample
mean and entropy are shown. * and n.s. refer to p < 0.05 and p > 0.05 of a two-sided t test comparing pre- and post-stimulation. c The collective change
dynamics of all homosynaptic spine sizes follow a Gaussian distribution. Teal represents the spine size change directly after the stimulation. d The mean of
spine change from time point to time point computed for all homosynaptic spines together. A one-way ANOVA test reveals that only the stimulation time
point is significantly different. All other time points are not significantly different from activity-independent fluctuations. e Distribution dynamics of
heterosynaptic spines time point to time point follows a Gaussian distribution. f Temporal change in the mean of spine changes in the heterosynaptic
spines. A one-way ANOVA test reveals lack of statistical differences across time. g Splitting up the size changes in homosynaptic spines according to their
initial size reveals a large difference in activity-independent plasticity distributions. The left figure represents all the time points without stimulation, and the
right is the single time point immediately after stimulation. The associated black lines represent log-normal fits to the data. h A comparison between the
log-normal fits for the size buckets reveal the effects that the stimulation has on the different spine sizes of the homosynaptic spines. Red refers to the non-
stimulated time point, and the teal to the stimulated ones. The p value in the figure refers to a KS test performed on the data in (g) to verify whether the
samples come from different distributions. i, j Same procedure as g, h but for the heterosynaptic spines.
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only show the time point immediately post-stimulation. We note
that these all are approximated by log-normal distributions (fits
in black) (cf. Fig. 1h). We can also compare the distributions of
each bin (Fig. 3h, j—homosynaptic and heterosynaptic spines,
respectively). The inset p values refer to a KS test between the two
data sets. Differences were significant for homosynaptic spines
only under 0.5 μm2, and for the heterosynaptic spines, only under
0.35 μm2. This suggests, in line with results seen in Matsuzaki
et al.32, that small spines are proportionally more affected by the
glutamate uncaging event and play a more important role during
the acquisition of new memories. In contrast, larger spines are
more stable and do not change significantly from the baseline
activity-independent plasticity. Finally, we observe that the
stimulated spine change distribution is narrower for the small
(<0.35 μm2) heterosynaptic spines (Fig. 3j, teal vs red). This
narrowing appears skewed to the right, such that the decrease in
activity-independent fluctuations could be preferentially asso-
ciated with the shrinkage of the small spines. In contrast to the
stimulated small spines that undergo growth, neighboring small
spines experience the stimulation only peripherally. In such a
case, the components that induce growth may not reach levels
sufficient to actually cause growth while they may be present at
levels that could still counter (or compete with) activity-
independent shrinkage.

The LN-OU model applied to stimulated spines. To apply our
model to the stimulation scenario, we need to determine the new
linear dependencies on spine size and log-normal statistics that
arise. As a first step, we analyze the sample means and standard
deviations for the homosynaptic (Fig. 4a) and heterosynaptic
spines (Fig. 4b) while omitting the stimulation snapshot. We note
that the resulting model agrees well with the previous fits (in
gray), confirming our observation that the pre-stimulation base-
line model applies.

We next study the stimulation snapshot and observe that the
model fits for the heterosynaptic spines in Fig. 4c reveal only a
slight deviation in the smallest spines from the activity-
independent baseline. Therefore, for simplicity, we consider that
the heterosynaptic spines undergo activity-independent baseline
dynamics at all time points. For the homosynaptic spines in
Fig. 4d, a different behavior emerges. We see that the standard
deviation is tilted upwards, meaning that the resulting log-normal
distribution has increased its standard deviation and that the
spines became more variable during stimulation. We note that
this increase follows intuitively for the following reasons; as the
spines are rapidly enlarged by the potentiation protocol, their
variance will also be increased because (i) they have grown
beyond the normal size of activity-independent plasticity and (ii)
they are now large spines, which have been demonstrated to have
larger variance compared to small spines. This increase in the
standard deviation is only observed in the medium-sized bins and
not for the small or large spines. This could be explained by the
fact that the medium spines, which are able to grow to be the size
of large spines, now exhibit the characteristics of those large
spines, including an increased variance. Additionally, in this
current study, medium-sized spines were preferentially chosen for
stimulation, as previous studies have shown that this population
are most labile in terms of potentiation (for example Matsuzaki
et al.32). It is possible that had we chosen to selectively target
groups of large mushroom spines, or alternatively filopodia, that
the outcome could be different. Finally, the mean spine change
exhibits a distinct linear trend, i.e., the smaller the spine, the
larger the mean increment compared to the fit from the activity-
independent plasticity.

To understand which parameters of the model need to be
altered to replicate the stimulation time point for the homo-
synaptic spines (Fig. 3a), we will alter each component, long-term
stochasticity and drift, of the log-normal model, individually.
Additionally, we assume that the negative momentum term is a
term that is inherent to activity-independent plasticity, i.e., it
occurs as a stabilization mechanism and counters the previous
stochastic change. As stimulation is a directed activity, negative
momentum would hinder the growth of spines after stimulation
by promoting shrinkage and imply that the previous stochastic
activity-independent plasticity directly affects the subsequent
activity-dependent change. Consequently, we choose to deactivate
this term in the model during the stimulation step to avoid this
scenario. However, future studies could consider including this or
a generalized negative momentum term and study its role for the
resulting synaptic size distribution.

First, we changed the long-term stochasticity component of
the model by using the linear fits for the stimulation time point
(Fig. 4e). The fast component of the stimulation is reproduced;
however, by keeping the drift constant, we slowly return to the
original distribution. This is not what we observe in our
experiment with the stimulation of 15 spines (Fig. 3a). We note
that we do observe the decay back to baseline for a separate case
in which only seven spines were stimulated (Supplementary
Fig. 6a). From this, we can assume that the sustained LTP
response is linked to the higher drift term and implies that the
long-term stochasticity component replicates the immediate
potentiation while the drift portion leads to the sustained effect.
Further evidence for this assumption can be seen in Fig. 4f,
where only the drift term is altered at all points after
stimulation, and the linear fits are taken from the activity-
independent plasticity. The change in the mean and distribu-
tion is slower and does not include instantaneous potentiation.
Previously, the long-term stochasticity and drift components
were active on similar time scales. For the stimulation we see
that the long-term stochasticity enacts instantaneous changes to
the structure of the spines over the timescale we considered,
while the drift towards the new steady state occurs afterwards
on a longer time scale.

Finally, we alter both components by changing linear fits at the
time point post-stimulation and the drift parameter μ after
stimulation. Fig. 4g demonstrates that we reproduce a distinct set
of stable distributions before and after stimulation on the
required timescales (cf. Fig. 3a). Thus, the LN-OU model
reproduces the experimental results of both types of plasticity.
To achieve the jump in distributions seen in the simulations, the
full linear fits seen in Fig. 4d were used for the long-term
stochasticity. Furthermore, given the observation that small
spines are most affected by stimulation, we examined the effect
of only changing the parameters of the smallest spines in the
model (Fig. 4h). We, therefore, only increased the sample mean of
the spines with an initial area of <0.35 μm2 during the stimulation
and treated the stochastic component of all other spines as if they
were undergoing activity-independent plasticity. The drift para-
meters were applied as above, as they affect all spines equally. In
other words, we were altering the slow component of all spines
but only altering the fast potentiating component of the smallest
spines. With this change, we can reproduce the experimental
results with no noticeable difference from when we used the full
linear fits (compare Fig. 4h and Fig. 4g).

We also calculated the Shannon entropy of the simulated
distributions42–44. The result of this calculation can be seen in
Fig. 4i. In all cases, we significantly increase the information
encoding capabilities of the synaptic weight distribution after
stimulation. However, only changing the long-term stochasticity

COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-023-05303-1 ARTICLE

COMMUNICATIONS BIOLOGY |           (2023) 6:930 | https://doi.org/10.1038/s42003-023-05303-1 | www.nature.com/commsbio 7

www.nature.com/commsbio
www.nature.com/commsbio


(i.e. the short-time effect of the stimulation) leads to a smaller
increase in entropy which could then conceivably decay back to
pre-stimulation levels after the observed time period. The other
alterations to the model to emulate the stimulation event have
markedly higher entropy values (akin to those observed
experimentally). Notably, there is no significant difference in
the entropy of the fully altered and small spine models. We
conclude that any model that aims to reproduce the population
dynamics of spine sizes can focus on the smallest spines to
simplify the simulation process while still achieving good results,
at least over the time scales considered in this study.

Discussion
In the present study, we considered experimentally recorded
population dynamics of both stimulated and unstimulated spines
sharing the same dendrite. Inspired by previous work12,15,24, we
have introduced a model framework incorporating the dynamics
for spontaneous and plasticity-driven spine changes we measured
in our data. Specifically, we observed a stable right-skewed dis-
tribution of spine sizes in which the dynamics of small and large
spines seemingly follow different computational rules.

We built a model operating at the level of synaptic populations
that can be represented by a single stochastic differential equation

Fig. 4 The Log-normal–Ornstein–Uhlenbeck (LN-OU) model can reproduce homosynaptic spines dynamics even if only small spines are altered. The
figure shows how the model can reproduce the dynamics of homosynaptic spines by changing the behavior of small spines only. The red crosses denote
when the model violates experimental observation, and the green tick denotes agreement with the data. a–d Subsets of homo- and heterosynaptic spines
were split according to size, and linear fits were carried out for the sample mean and standard deviation of the spine activity. Here the error bars represent
the 95% confidence interval of the statistics after bootstrapping. a–c Fit of the non-stimulation snapshot of the homosynaptic spine and all snapshots of the
heterosynaptic spines show good agreement with the activity-independent plasticity fits (gray). d Stimulation snapshot of the homosynaptic spine shows a
difference in the fit for smaller spines. e Model simulation dynamics pre- and post-stimulation. The immediate growth is observed but not sustained when
only changing the stochastic portion. f Simulation results when the long-time stochasticity was kept the same as the model in Fig. 2e, and only ~μ was
changed to reflect a new stable point. g Represents the simulation results when the two previous changes are implemented in tandem, mirroring the
sustained LTP seen in Fig. 3a. h A simpler change in the stimulation model is introduced, where ~μ is changed as in the previous figures while the long-time
stochasticity are only shifted for the spines <0.35 μm2 in size. i The Shannon entropy of the simulated distributions is calculated and compared to the
experimental value. The stimulation event adds significant information in all cases, and there is no significant difference when the fast change is only
applied to small spines. Center lines of the whisker-plots refer to the median simulated entropy and whiskers to the inter-quartile range. * and n.s. refer to
p < 0.05 and p > 0.05 of a two-sided t test comparing each of the different datasets with each other.
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and refrained from modeling detailed molecular principles, such
as those reported in Shomar et al.45 or Bonilla-Quintana et al.30

following the historic footsteps of previous abstract
models12,15,22. Taking this high-level view, we gained insights
into activity-independent plasticity and incorporated different
time scales. Previous studies (e.g., refs. 12,15,24,45) have offered a
rich set of stochastic modeling options to describe specific indi-
vidual effects present in the spine dynamics. In accordance with
previous literature, we followed the ergodic hypothesis for our
modeling. However, due to the 55-min recording window in our
data set, we could not test ergodicity directly or show that each
spine explores the full phase space (see Supplementary Fig. 3c, d).

Our model incorporates a fast and a slow mechanism that both
have implications for the synaptic stability of a neuron. The fast
spine changes that are anti-correlated with previous size changes
may prevent a winner-take-all system by differentiating between
small and large spines. Enforcing that large spines shrink on
average guarantees that spine size remains bounded and is in line
with the long tail of the spine size distribution. Additionally, in
our experiments we observed that small spines preferentially
showed a positive size change (Fig. 3h), and therefore they could
act as points of information acquisition during plasticity induc-
tion. In contrast, large spines did not change their dynamics
significantly after the stimulation, such that the large spines could
help maintain the stability of previous state. In the absence of
direct plasticity cues, we observed that large spines were more
variable and, on average, prone to shrinkage. Large spines, with
their intricate structural complexity, require a larger number of
proteins, membrane traffic, and actin filaments to support their
maintenance, leading to a higher energy cost. This would justify
favoring size reduction for large spines in line with an energy-
efficient (homeostatic) system that degrades preferentially large
spines (older memories that became obsolete) to optimize storage
and energy in the brain. We note that our results do not explain
how a small subset of spines (e.g., large spines representing
selected memories) can be preserved over timescales of days or
months (for a brief discussion on how longer timescales could be
incorporated in the model, see the numerical methods section).

Our model builds on and extends several modeling studies
addressing the differences in the dynamics of small and large
spines. An early study by Yasumatsu et al.12 split small and large
spines into different categories based on manual group assign-
ment to model activity-independent plasticity. Our work pro-
poses a plausible mechanism for activity-independent plasticity
that avoids such rigid categories. Another study by Loewenstein
et al.15 found that the temporal changes in spine size could be
approximated by a model incorporating two timescales by using
multiplicative dynamics and Ornstein-Uhlenbeck processes,
consistent with the fast and slow components of our model. A
different model by Statman et al.22,24 used the Kesten process
to describe synaptic remodeling dynamics. Shomar et al.45

introduced a molecular model that explained how size fluctua-
tions and distributional shapes can emerge from stochastic
assimilation and removal of synaptic molecules at synaptic sites.
Finally, Bonilla-Quintana et al.30,31 used actin dynamics to model
rapid, spontaneous shape fluctuations of dendritic spines, pre-
dicting that these polymerization dynamics self-organize into a
critical state that generates negative correlations in spine
dynamics on short time scales.

Additionally, a vital aspect of our study is the consideration of
both stimulation and activity-independent plasticity in a single
experimental paradigm and single mathematical model. Previous
imaging studies have either limited glutamate-uncaging to single
spines32,46, or small clusters of spines47,48 and did not monitor
population-level changes in synaptic sizes. Others monitored
multiple spines while applying global chemicals to induce

plasticity, e.g., ref. 49. Here, we could confirm one of the results of
Matsuzaki et al.32 that small spines are the prime targets for
growth and, therefore, may be the substrates for the acquisition of
new memories and, consequently, that large spines are likely to be
the reservoirs for long-term memories33,34,50. Model justifications
for distinct dynamics in small and large spines has been discussed
in Shouval51 that proposed a mechanism based on clusters of
interacting receptors in the synaptic membrane, Bell et al.52 who
considered a reaction-diffusion model of calcium dynamics and
Jozsa et al.53 that showed that discrete, stochastic reactions and
macroscopic reactions could be exploited for size-dependent
regulation. Interestingly, we observed that the distribution of
spine sizes was different post compared to pre-stimulation. In
contrast, we saw that the changes in spine size (δV), when viewed
as a population across all time points (longer than 2 min away
from plasticity induction), were indistinguishable from activity-
independent, spontaneous changes.

Thus, our model provides a common stochastic framework
that helps understand spine plasticity operating spontaneously
after stimulation. Finally, we considered the entropy and infor-
mation content of the synaptic populations. Entropy is a measure
of disorder in a system and can be measured by observing the
diversity of synaptic sizes in a neural network. Higher entropy
implies a more disordered system that allows for more diverse
information encoding capabilities. Following LTP stimulation, we
observed an increase in the range of synaptic sizes and, thus, a
larger set of possible states consistent with higher entropy. This
higher entropy could facilitate learning by enabling the network
to differentially encode a wider range of inputs. Secondly, entropy
can also reflect the stability and robustness of synaptic connec-
tions. A higher entropy, reflected by a more diverse distribution
of synaptic strengths, could make a network less sensitive to
changes in individual synapses. This increased ability to buffer
against noise or disruptions, such as the loss or weakening of
specific synapses, helps promote the overall robustness of the
network.

Our study provides not only a common framework for
understanding spontaneous versus evoked dynamics across
spines but also helps establish a unified view of various features
related to spontaneous spine dynamics that align with prior
reports obtained in different experimental preparations. Since
spontaneous spine dynamics is often studied across both
in vivo and in vitro preparations, slices, hippocampal or
organotypic cultures, and across different brain regions con-
firming or differentiating these reports within a common
model framework is an ongoing challenge. While our experi-
ments are conducted in slices, e.g., ref. 24 has taken advantage
of primary culture models to image spines over hours to days
while monitoring fluorescently tagged PSD components.
Similarly, Yasumatsu et al.12 worked in hippocampal slices and
employed different blockers to silence neuronal activity while
observing several spine dynamics features compatible with our
model and data. Other studies, such as Loewenstein et al.15,
imaged dendritic spines in vivo in the auditory cortex, mea-
suring populations of spines over days to weeks. During ima-
ging sessions, the mice were lightly anesthetized, but activity at
these synapses evolved spontaneously between sessions, lead-
ing to synaptic strength changes. Interestingly, despite these
differences in experimental preparations, many reported fea-
tures align with our experimental data, including the right-
skewed spine distributions and size-dependent statistics con-
sistent with our model.

In summary, our study established a link between activity-
independent spontaneous spine dynamics and directed synaptic
plasticity. Within this modeling framework, we were able to unite
new and previously reported synaptic features such as stable
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distribution of spine sizes,12,15,22, higher variability of larger
spines vs. small spines12,13,15,24, the oscillatory behavior of the
spines12,30 and incorporate into the same model plasticity-
induced dynamics. This framework can open avenues for inter-
preting specific experimentally reported synaptic changes relative
to spontaneous activity and help constrain plasticity models
operating at the circuit level.

Methods
Preparation of organotypic hippocampal slice culture. Orga-
notypic hippocampal slices were prepared as previously
reported Stoppini et al.54. Briefly, the brains of postnatal day
6–7 Wistar rat pups (Nihon SLC) were removed, the hippo-
campi dissected out, and 350-μm-thick transverse slices were
cut using a McIlwain tissue chopper (Mickle Laboratory Engi-
neering Co. sLTD. and Cavey Laboratory Engineering Co.
sLTD.). These slices were then placed on cell culture inserts
(0.4 mm pore size, Merck Millipore) in a 6-well plate filled with
culture media containing 50% Minimum Essential Medium
(MEM, Thermo Fisher Scientific), 23% EBSS, 25% horse serum
(from Thermo Fisher Scientific), and 36 mM glucose. The slices
were maintained at 35∘C and 5% CO2 and used for experiments
between DIV16-18.

The slices were perfused with 1–2 ml/min of artificial
cerebrospinal fluid (aCSF) containing (in mM) 125 NaCl, 2.5
KCl, 26 NaHCO3, 1.25 NaH2PO4, 20 glucose, 2 CaCl2, and 4 mM
MNI-glutamate (Tocris). The aCSF was continually bubbled with
95% O2, and 5% CO2 and experiments were carried out at room
temperature. All animal experiments were approved by the
RIKEN Animal Experiments Committee and performed in
accordance with the RIKEN rules and guidelines. Animal
Experiment Plan Approval no. W2021-2-015(3).

Transfection and imaging of CA1 pyramidal neurons. Orga-
notypic slices were transfected with a Helios gene gun, and
used for experiments 48–96 h later. For structural plasticity
experiments, gold particles coated with a plasmid encoding
EGFP were used. 50 μg of EGFP plasmid was coated onto
20–30 mg of 1.6 μm gold particles. The neurons were imaged at
910 nm on a Zeiss 780 microscope, and all data was analyzed
offline.

Dendritic spine imaging and glutamate photolysis. Neurons
were selected for imaging if their gross morphology appeared
healthy. Single dendrites were selected visually for imaging and
stimulation. Dendrites were imaged for a brief period of time by
collecting a series of Z stacks of the dendritic arbor at a resolution
of 512 × 512 and 4 × digital zoom, with 4× averaging, resulting in
a final image size of 33.7 μm. The Z step between each image in
the stack was 0.5 μm. For the induction of plasticity, spines on the
dendrites were stimulated by applying a train of 60 pulses of laser
light (4 ms each) using custom-written software, and uncaging
glutamate at a distance of 0.5 μm from the spine head. Medium-
sized spines with a clear spine head within the field of view were
preferentially targeted for stimulation. A 2-photon laser source
(720 nm) was used for photolysis of MNI-glutamate, and the
stimulation was repeated at a rate of 1 Hz. For groups of
homosynaptic spines, laser pulses were delivered in a quasi-
simultaneous fashion, in which the first spine receives a pulse of
glutamate (4 ms) which is followed by a short delay (<3 ms) as the
system moves the laser to the next spine. This is repeated for all
spines in the stimulated cluster and repeated at 1 Hz. For sham-
stimulation experiments, MNI-glutamate was omitted from
the aCSF.

Size of the data set. See Table 1.

Image analysis. To obtain the areas of the individual spines,
which can be seen as a proxy for the strength of that
synapse55,56, were generated by using the area of an octagon-
ally shaped ROI surrounding the spine head. The algorithm for
the generation of this octagon is part of an in-house python
code57. Briefly, the spine ROI was generated by using a semi-
automatic in-house python package that took advantage of the
inherent structures of the spines. The manual interaction
involves a simple clicking on the interior of the spines while the
ROI and subsequent measurement are performed auto-
matically. Temporal shifting was corrected by using a phase
cross-correlation algorithm implemented in SciPy58. Synapses
that were partially obscured by the dendrite or overlapped with
other spines were omitted from the analysis. All images shown
and used for analysis are maximum-intensity projections of the
3D stacks.

Statistical definitions. Throughout this manuscript, we used the
absolute change in spine areas, which is defined as follows:

ΔVi ¼ Vi � Vi�1 ð6Þ
Error bars represent standard error of the mean, and significance
was set at p= 0.05 (two-sided studentized bootstrap). To com-
pare distributions against each other, the populations were taken
(in the case where these samples were very large, randomly
subsampled), and a KS test was performed. Single asterisks
indicate p < 0.05. Fits of probability distribution functions were
performed using SciPy. Correlations report the Pearson product-
moment correlation coefficients. Unless reported otherwise, error
bars in line plots refer to the standard error and in box-and-
whisker plots refer to the inter-quartile range.

Building a Gaussian model. We start by considering the Gaus-
sian distribution of the experimentally observed spine changes in
Fig. 1d, e. Thus, a purely Gaussian model for the spine changes
appears as a natural first choice. This model has the form:

Viþ1 ¼ Vi þ ηi ð7Þ
where ηi � N ðμ; σÞ and Vi is the size of a spine at time point i.
While this model is simple and captures the experimentally
observed statistics of spine changes, it exhibits an inherent
incompatibility with other experimental results. Since a Gaussian
distribution is naturally unbounded, this model permits infinitely
large (negative and positive) spine size values.

Historically, the lack of bounds in a Gaussian distribution has
been addressed via the introduction of bounding walls Wl,Wr,
e.g., ref. 12: at each time step, the value Vi+1 is reset to be within
the range [Wl,Wr], where Wl <Wr. This can be achieved, for
example, by using either a bounce-back mechanism (i.e. a change
in the opposite direction) or imposing no change, i.e., Vi+1=Vi.
To investigate whether the introduction of walls can allow us to
move forward with the Gaussian model, we implemented two
walls (Wl and Wr) which we set to equal the fifth percentile and
the largest experimentally observed spine size, respectively. The
resulting model simulations (using Eq. (7)) are seen in
Supplementary Fig. 4a, where the dashed lines represent the
walls. Despite a good agreement with the collective spine
distribution, three conceptual issues rule out this model:

1. The left wall enforces a build-up of smaller sizes that leads
to the desired asymmetry but also leads to a complete drop-
off in spines smaller than this size (Supplementary Fig. 4a).

2. Spines are free to grow until they reach the right wall value,
causing an overall increase in the population mean and a
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biologically implausible growth at the right tail of the size
distribution (Supplementary Fig. 4a, b).

3. The negative correlation between subsequent size changes is
lost due to the memory-less additive Gaussian noise
(Supplementary Fig. 4c).

Therefore, we will modify our model further to include a
negative temporal correlation and achieve a biologically plausible
spine size distribution. To this end, we will replace the purely
diffusive process with an Ornstein–Uhlenbeck process. This
approach was previously also used in Loewenstein et al.15 to
model activity-independent plasticity in a framework with
multiplicative noise. Here we will be applying it in an additive
manner:

Viþ1 ¼ Vi þ θ ð�μ� ViÞ þ ηi ð8Þ
where θ; �μ are the drift terms and ηi is as above. We observe that
this process, characterized by the deterministic drift towards the
long-term average �μ, can reproduce the experimental mean-
reverting behavior if θ is large enough. However, if we choose θ to
be too large, all the spine sizes will eventually stabilize in a narrow
neighborhood around �μ, which is inconsistent with the experi-
mental observation that even after hours and days, there was a
stable and diverse set of different spine sizes12,17. Adopting a set
of different values of constant �μ for the different spines while
keeping a high value of θ allows the recovery of this phenomenon
but inevitably locks the spines each into their stable size and
prevents them from changing from one size to the other.
Therefore, to avoid these pitfalls, we introduce a drift �μ that is (i)
unique to each spine and (ii) time-dependent. Thus we avoid both
the global stable size as well as the local stable size. The simplest
implementation of this principle is the introduction of a
“negative-momentum” term, obtained by setting �μ ¼ Vi�1

Viþ1 ¼ Vi þ θ ðVi�1 � ViÞ þ ηi ð9Þ
This non-Markovian process contains a bounce-back mechanism
that induces the spines that have grown in the previous step to
have a higher probability of shrinking in the next one.
Importantly, this effect vanishes at longer timescales. We
implement this model by setting θ to achieve the experimentally
observed correlation. The results of the simulations can overcome
two of the three issues illustrated above: the population mean
remains stable over time (Supplementary Fig. 4d, inset), and the
oscillatory behavior reappears in agreement with the experi-
mental observations (Supplementary Fig. 4e). However, the
additive Gaussian term is still responsible for an improper tail-
fattening and, ultimately, for an improper symmetrization of the
spine size distribution. This fact and the observation that the
different spine sizes exhibit different noise profiles (see Fig. 1h)
show that more complicated noise-generating models are
required to model activity-independent plasticity.

The log-normal model. In probability theory and statistics, the
log-normal distribution is a continuous probability distribution of
a random variable whose logarithm is normally distributed. That
is, if the random variable X is log-normally distributed, then
Y ¼ lnðXÞ is normally distributed. The log-normal distribution is
parameterized by the mean, μ, and standard deviation, σ, of the
underlying normal distribution. The probability density function
of the log-normal distribution is given by

pðxÞ ¼ 1

xσ
ffiffiffiffiffi
2π

p e �ðlnðxÞ�μÞ2
2σ2

� �
ð10Þ

where x is the value of the log-normally distributed variable. As
we will be modeling data that can take negative values (the spines
can shrink) and the standard log-normal is only defined for

positive values, x > 0, we also need one additional parameter to
characterize our distribution: the shift parameter. This parameter
shifts the distribution so that x > δ where δ can be positive (shifted
to the right) or negative (shifted to the left). The probability
distribution is then

pðxÞ ¼ 1

ðx � δÞσ ffiffiffiffiffi
2π

p exp �ðlnðx � δÞ � μÞ2
2σ2

� �
ð11Þ

Given access to the entire population of spine size changes, the
parameters that define the log-normal distribution can be found
by transforming the sample means and standard deviations (μs
and σs) of the spine size changes as follows:

μlog ¼ log
ðμs þ δ̂Þ2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

σ2s þ ðμs þ δ̂Þ2
q

0
B@

1
CA ð12Þ

σ log ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
log

σs
ðμs þ δ̂Þ

 !2

þ 1

 !vuut ð13Þ

where we have introduced the positive term δ̂, which shifts the
sample mean towards positive values. The choice of δ̂ is relatively
trivial as long as all the values of the dataset are positive after the
shift. This ensures that μlog is also positive, thus avoiding the log-
normal distribution transformation accumulating values around
x= 0. Once the parameters of the log-normal have been esti-
mated, the model uses the log-normal distribution to generate the
subsequent time points. This model then takes the form

Viþ1 ¼ Vi þ Lognormalðμlog ; σ log ;�δ̂Þ ð14Þ
which mirrors the form of the original Gaussian model. Here, we
include the �δ̂ to map our log-normal back to the original range
of values that we observe in the data. We emphasize here that the
change Vi− Vi−1 for each individual spine is log-normal but that
the population change, i.e., the collection of all changes should
still be normally distributed (c.f. Fig. 1e). By the central limit
theorem and the assumption that the activity-independent plas-
ticity of the spines is independent of each other, we will obtain
this Gaussian nature as long as we have sufficiently many spines.

Incorporating longer timescales in our model. We briefly
comment on the concept of “stability” used in this study. We
recognize that our experimental timescale of tens of minutes is
insufficient to definitely state that we are observing the popula-
tion “steady-state.” Indeed, the effects that lead to population
changes could occur on timescales that far exceed our experi-
mental timeline. Therefore, when we use the term “stable,” we
refer to the short-term effects rather than the possible longer
relaxation times of the population dynamics.

Our experimental paradigm was limited to ~1 h. Therefore, the
temporal components of our model are on this scale. Never-
theless, we can augment our model to study longer timescales and
answer questions such as: is the shift to a “stable” distribution
after stimulation truly stable over a long time horizon, or is there
a possible decay that we cannot observe due to our shorter time
paradigm?

We observed that altering only the long-term stochastic
component of the log-normal OU model led to the shift to the
new distribution and then decay back to the baseline (see Fig. 4e).
We saw the stable post-stimulation size distribution only when
the drift term was also increased. If we define the pre-stimulation
drift term as ~μpre and the post-stimulation drift as ~μpost , then we
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enacted the drift change as

~μpost ¼ ~μpre þ Δμ ð15Þ
where Δμ is the increase in the mean of the distribution due
to the stimulation. Here ~μpost is a constant quantity; thus,
the distribution will not change after settling on the stable
distribution due to the stimulation. This would be a reasonable
assumption for the timescales observed in the 15 spine stimula-
tion (Fig. 3). However, longer timescales or a different number of
stimulation events may not exhibit this stable behavior. Instead,
we see a decay back to the baseline for the seven-spine experiment
(see Supplementary Fig. 6). In the model, we can account for this
decay back to the original distribution by introducing a time-
dependent ~μpost as follows

~μpostðtÞ ¼ ~μpre þ Δμe�
t
τ ð16Þ

where τ can be considered to be the relaxation time back to the
pre-stimulation baseline after a stimulation event. We hypothe-
size that τ is related to the number of stimulations and is much
larger than the timescales we considered in this experiment.

Reporting summary. Further information on research design is
available in the Nature Portfolio Reporting Summary linked to
this article.

Data availability
Experimental data sets included in the manuscript to generate the figures can be found in
the following public github repository https://github.com/meggl23/SpontaneousSpines
with https://doi.org/10.5281/zenodo.8183975. A part of the original data in this paper has
previously been analyzed in a separate preprint to derive a model for multi-spine
stimulation59.

Code availability
Experimental code to generate the figures in this plot can be found at the github
repository https://github.com/meggl23/SpontaneousSpines with https://doi.org/10.5281/
zenodo.818397560. The code used to generate the spine metrics from the images can be
found at https://github.com/meggl23/MultiSpinePlasticity with https://doi.org/10.5281/
zenodo.769190157.
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