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ABSTRACT

Recent advancements in viral hydrodynamics afford the calculation of the transport properties of particle suspensions from first principles,
namely, from the detailed particle shapes. For coronavirus suspensions, for example, the shape can be approximated by beading (i) the
spherical capsid and (ii) the radially protruding peplomers. The general rigid bead-rod theory allows us to assign Stokesian hydrodynamics
to each bead. Thus, viral hydrodynamics yields the suspension rotational diffusivity, but not without first arriving at a configuration for the
cationic peplomers. Prior work considered identical peplomers charged identically. However, a recent pioneering experiment uncovers
remarkable peplomer size and charge heterogeneities. In this work, we use energy minimization to arrange the spikes, charged heteroge-
neously to obtain the coronavirus spike configuration required for its viral hydrodynamics. For this, we use the measured charge heterogene-
ity. We consider 20 000 randomly generated possibilities for cationic peplomers with formal charges ranging from 30 to 55. We find the
configurations from energy minimization of all of these possibilities to be nearly spherically symmetric, all slightly oblate, and we report the
corresponding breadth of the dimensionless rotational diffusivity, the transport property around which coronavirus cell attachment revolves.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0140851

I. INTRODUCTION

As we deepen our understanding of the physical properties of the
coronavirus particle, so can we incorporate these new physics into its
viral hydrodynamics? Recent advancements in viral hydrodynamics
afford the calculation of the transport properties of particle suspen-
sions from first principles, namely, from the detailed particle shapes.1–5

For coronavirus suspensions, for example, the shape can be approxi-
mated by beading (i) the spherical capsid (Sec. VII of Ref. 1) and then
(ii) the radially protruding peplomers (Sec. VII of Refs. 1 and 2). The
general rigid bead-rod theory then allows us to proceed by assigning
Stokesian hydrodynamics to each bead (Refs. 6 and 7; EXAMPLE
16.7–1 of Ref. 8 or EXAMPLE 13.6–1 of Ref. 9). Table I classifies chro-
nologically prior literature on coronavirus hydrodynamics and defines
the novelty of this work. Although our work is motivated mainly by
curiosity, its many applications have not escaped our attention. Viral
hydrodynamics thus then yields the suspension rotational diffusivity,
but not without first arriving at a configuration for the cationic peplom-
ers [see Fig. 1(b) of Ref. 10] Prior work considered identical peplomers,
charged identically.1–3 However, recent pioneering experiment uncovers

remarkable heterogeneity of both peplomer size [see Fig. 1(a) of Ref. 10;
Introduction of Ref. 11] and charge [see Fig. 1(b) of Ref. 10] With per-
mission, we reproduce these seminal results in Fig. 1. By size heteroge-
neity, we mean that the molecular weights of the peplomer protein
trimers vary, and specifically, from Fig. 1, we learn that

450 � Mp � 700: (1)

By charge heterogeneity, we mean that the formal charges of the
peplomer cations vary, and specifically, from Fig. 1 we learn that

30 � Q � 55; (2)

where Q is the integer-valued with mean value �Q ¼ 42:29 electron
units. Tables II and III, respectively, define our dimensional and
dimensionless symbols. In this paper, exploiting the general rigid
bead-rod theory, we carry these pioneering experiments to the implied
distribution of rotational diffusivities. The peplomer count on a coro-
navirus particle, Np, matters. For the special cases of identical peplom-
ers, charged identically, Fig. 12 of Ref. 1 and Fig. 5 of Ref. 2 give the
dimensionless rotational diffusivities for 10 � Np � 100. In this work,
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we use energy minimization12,13 for spreading the spikes, charged het-
erogeneously to obtain the coronavirus spike configuration required
for its viral hydrodynamics. For this, we use the measured charge het-
erogeneity [Fig. 1(b) of Ref. 10]. We consider 20 000 randomly gener-
ated possibilities for cationic peplomers with formal charges ranging
from 30 to 55. By random generation, we mean that we randomize the
formal charge of each of the Np ¼ 74 peplomers over the measured
range. We rely on our previous literature review (see Table X of Ref. 1)
to choose Np ¼ 74. Calculations of the rotational diffusivity of corona-
virus suspensions initially excluded interferences of Stokes flow veloc-
ity fields between nearby peplomers.1–3 More recently, the method for
incorporating hydrodynamic interactions was advanced (Sec. III of
Ref. 15) and used (Sec. V of Refs. 15 and 16) and even applied to coro-
navirus suspensions.17 However, in this work, we neglect hydrody-
namic interactions for formal charge distribution of coronavirus
peplomer protein trimers, leaving this detail for another day. Our
work here is about the heterogeneity of formal charge from one
peplomer to another, which is separate from the local charge distribu-
tion over the surface of an individual peplomeric cation, which has
been simulated (see Fig. 2 of Ref. 18) but not measured. These beauti-
ful distributions are averaged over many peplomers and are thus silent
on peplomer-to-peplomer heterogeneity. The heterogeneity of this
local charge distribution is yet to be discovered. Our formulation of

the general rigid bead-rod theory is limited to axisymmetric viruses.
By axisymmetry, we mean that both the virus particle and its moment
of inertia ellipsoid have at least one axis of symmetry (Refs. 19 and 20,
Chap. 13 of Ref. 9, and Chap. 16 of Ref. 8). Furthermore, if the virus
particle structure is axisymmetric, at least two of its principal moments
of inertia equate at any angle from the molecular axis. Since the coro-
navirus particle structure is axisymmetric, so will its moment of inertia
ellipsoid. Our usage of axisymmetric is not to be confused with the
common geometric meaning of continuous rotational symmetry about
an axis. In the tradition of the transport sciences, we define the rota-
tory diffusivity as (see Footnote 2 of p. 62 of Ref. 8)

Drot �
2kT
f
; (3)

which, for any axisymmetric macromolecule, from the general rigid
bead-rod theory, gives

Drot �
12L2

�Dr
; (4)

which has the dimensions of diffusivity and is four times the transla-
tional diffusivity

Drot � 4Dtr (5)

or

TABLE I. Literature on coronavirus hydrodynamics. Legend: A—with hydrodynamic interactions and Q—cationic charge.

Method
Peplomer
population

Hydrodynamic
interactions

Capsid
shape

Peplomer
shape (beads)

Peplomer charge
Referencedistribution

10Analytical � Np � Uniform1Spherical100 1
Analytical Np ¼ Uniform3Spherical74 2
Analytical Np ¼ Uniform1Ellipsoidal74 3
Molecular dynamics Np ¼ 26 A� 0: Uniform1Spherical1 5
Analytical Np ¼ 074 :09 � A � 0: Uniform1Spherical11 17
Analytical Np ¼ This workNonuniform1Spherical74

FIG. 1. Measured size [panel (a)] and charge [panel (b)] heterogeneities of coronavirus peplomer protein trimers (blue curves). Reprinted with permission from Fig. 1 of Miller
et al., J. Am. Chem. Soc. 143(10), 3959–3966 (2021). Copyright 2021 American Chemical Society.
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Dr ¼
�

3L2
Dtr : (6)

In this paper, we depart from the said transport tradition of using the
rotatory diffusivity, Drot, and frame our results in terms of the rota-
tional diffusivities, Dr, of coronavirus particles.

II. METHOD

In the general rigid bead-rod theory, we construct macromole-
cules from sets of beads whose positions, relative to one another, are
fixed. The macromolecular bead-rod models of our coronavirus par-
ticles are suspended in a Newtonian solvent. In this work, we neglect
interactions of the solvent velocity fields, be they between nearest
beads21,22 or nearest macromolecules. With the general rigid bead-rod
theory, we thus locate beads to sculpt an approximation of the corona-
virus particle shapes. In this way, using the general rigid bead-rod the-
ory, we can model any virus macromolecular architecture (see Fig. 9 of
Ref. 7). For the general rigid bead-rod theory, Hassager arrived at gen-
eral equation of the shear relaxation function [Eq. (48) of Ref. 19]:

GðsÞ
nkT

¼ dðsÞ
kT

2gs
n
þ fL2a

� �
þ be�s=k (7)

TABLE II. Dimensional variables. Legend: M—mass, L—length, and t—time.

SymbolUnitName

tAngular frequency �1 x
MLAugmented energy functional 2=t2 Ê
M/tBead friction coefficient f
M/LtComplex viscosity g�

TDielectric permittivity 4I2=ML3 �

tElement for Kronecker delta �1 dðsÞ
MLKinetic molecular energy per molecule 2=t2 kT

LLength of the spike of each peplomer ‘

MMass m
eMean value of charge distribution �Q

Minus the imaginary part of the
complex viscosity

M/Lt g00

Molecular weights of the peplomer
protein trimers

M/mol Mp

LNearest bead center-to-center distance L
1Number of dumbbells per unit volume =L n
ePoint charge Q

M/LtReal part of the complex viscosity g0

M/LRelaxation modulus G(s)
tRelaxation time of rigid dumbbell k0
tRelaxation time of solution k
tRotational diffusivity �1 Dr

LRotatory diffusivity 2=t Drot

tShear rate amplitude �1 _c0

M/LtSolvent viscosity gs
tTime difference s � t � t0

MLTotal electrostatic energy 2=t2 E
LTranslational diffusivity 2=t Dtr

M/LtViscosity, zero-shear g0
M/LZero-shear first normal stress difference w1;0

TABLE III. Dimensionless variables and groups.

SymbolName

Amplitude, mean value, and variance A;l;r2

of normal distribution
Aspect ratio c/a
Capsid-sphere c

Coefficient in Eqs. (19) and (20) a
Coefficient in Eqs. (19) and (20) b
Coefficient in Eqs. (19) and (20) �

Augmented Lagrangian Ê
Charge qi
Electrostatic energy ~E
Wales’s electrostatic energy Ew
Electrostatic energy relative to Wales’s energy F
Deborah number, oscillatory shear De � kx
Principal moment of inertia I1; I2; I3
Normal distribution f
Probability distribution function pdf
Sphere on which peplomers lie s

Total number of beads N
Total number of peplomers Np

Weissenberg number Wi � k_c0

TABLE IV. Parameters of the normal distribution of different quantities.

Quantity x FigureEquation
Parameters of the normal distribution f ¼ Ae�ðx�lÞ2=2r2

A l r

Q Eq. Fig. 3(2) 3.525141.5860.1153
log ðF �minFÞ Eq. Fig. 5(b)(31) 0.6082 � 0.64236.3755
I1 Fig. 7 0.1310158.223.0800
I2 0.1007158.563.9447
I3 0.1304158.913.0926
k=k0 Eq. Fig. 11(11) 0.26693.16441.5296
k0Dr Eq. Fig. 12(16) 9:1324� 105 5:2670� 10�4 4:4882� 10�7
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with

a � 10I1 þ 5I3 � 6ðI1 � I3Þ2

30
; (8)

b � 3
5

1� I3
I1

� �2

; (9)

� � 6
I1
; (10)

and

k
k0
¼ 2I1 ¼

12
�
; (11)

where I1, I2, and I3 are the dimensionless principal moment of intertia
(see Tables III and IV of Ref. 23). For axisymmetric macromolecules,
I1 ¼ I2. And the respective definitions for oblate and prolate for such
molecules are

I3 � I1 (12)

and

I3 � I1; (13)

which we will use below. From the general rigid bead-rod theory (Figs.
3 and 17 of Refs. 7 and 24), we learn that all axisymmetric macromole-
cules lie on either the upper (oblate) or lower (prolate) branches of the
ða�; bÞ plane [Eqs. (23) and (22) of Ref. 7, respectively, from Eq. (21)
of Ref. 7]

a2b2 þ 2ðb� 9Þa�
3

þ b2 � 33bþ 81
9

¼ 0: (14)

We use Eqs. (3)–(13) in Ref. 7 to compute the rotational diffusivity
(see Footnote 2 of p. 62 of Ref. 8):

Dr �
1
6k

(15)

or [Eq. (23) of Ref. 1]:

k0Dr ¼
�

72
; (16)

which we will use to arrive at our results below.

III. OSCILLATORY SHEAR FLOW

In this paper, we focus on small-amplitude oscillatory shear flow
(SAOS). For this flow field, for the molecular definition of small ampli-
tude, the general rigid bead-rod theory yields [Eq. (32) of Ref. 7]

k_c0 � 1

�
ffiffiffi
2
p ; (17)

whose left side is the macromolecular Weissenberg number. The poly-
mer contributions to the complex viscosity25,26

g� � g0 � ig00 (18)

are [Eqs. (40) and (41) of Ref. 7]

g0 � gs
g� gs

¼ a�
2b
þ 1

� ��1 a�
2b
þ 1

1þ ðkxÞ2
� �

(19)

and
g00

g� gs
¼ a�

2b
þ 1

� ��1 1

1þ ðkxÞ2
; (20)

where kx is the Deborah number. Equations (19) and (20) each cap-
ture non-Newtonian behavior: (i) Eq. (19) captures the descent of
g0ðxÞ and (ii) Eq. (20) captures the ascent of g00ðxÞ from the origin. In
this paper, we plot the real and minus the imaginary parts of the shear
stress responses to small-amplitude oscillatory shear flow as functions
of frequency, following Ferry (Secs. 2.A.4.–2.A.6. of Ref. 27) or Bird
et al. (Sec. 4.4 of Ref. 28) As x! 0, for the polymer contribution to
the zero-shear viscosity, we get

g0 � gs
nkTk

¼ a�
2
þ b ¼ b

a�
2b
þ 1

� �
(21)

and for the zero-shear first normal stress difference coefficient

w1;0

kðg0 � gsÞ
¼ 2

a�
2b
þ 1

� ��1
: (22)

For future reference, we denote a normal distribution of a quantity x by

f ¼ Ae�
ðx�lÞ2
2r2 ; (23)

where A, l, and r2 are, respectively, the amplitude, mean value, and
variance of x.

IV. PEPLOMER CONFIGURATIONAL HETEROGENEITY
A. Kinematics

Let Np be the number of peplomers attached to the capsid-sphere
c of radius rc. Let ‘ be the length of the spike of each peplomer
attached normal to c at the point of contact on c. Therefore, each
peplomer must lie on a sphere s of radius rs ¼ rc þ ‘, as shown in
Fig. 2. Denoting the position vector of ith bead by rsri, the dimension-
less position vector ri must obey Np scalar equations

jrij2 ¼ 1; i ¼ 1;…;Np (24)

so that in a dimensionless setting, the peplomer bead centers lie on a
sphere of unit radius.

B. Energetics

Let �Qqi be the charge on ith bead, where �Q ¼ 42:29 electron
unit is the mean value of the experimentally measured heterogeneous
distribution of the charges on the peplomers by Miler et al.,14 as shown
in Figs. 1(b) and 3. Interestingly, the charge distribution follows a nor-
mal distribution, parameters of which are provided in Table IV. Here,
qi denotes the dimensionless charge on i th peplomer. The total elec-
trostatic energy of such Np peplomers, constrained to a sphere s of
radius rs, is given by

E ¼
�Q2

4pers

XNp

i¼1

X
j<i

qiqj
jri � rjj

; (25)

where � is the dielectric permittivity. We use the quantity
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�Q2

4pers
; (26)

which is the electrostatic energy between two point charges with
charge �Q and rs distance apart, as the energy scale, and define the
dimensionless total electrostatic energy of Np peplomers by

~E ¼ 4persE
�Q2 ¼

XNp

i¼1

Xj<i
j¼1

qiqj
jri � rjj

; (27)

where ri; i ¼ 1;…;Np are the dimensionless position vectors of the
peplomers bead centers. We will use Eq. (27) in Sec. IVC to determine
configurations minimizing the dimensionless electrostatic energy ~E .

C. Equilibrium equations

We have assumed that beads are endowed with strictly positive
charges �Qqi; i ¼ 1;…;Np. Therefore, the beads repel each other and
would prefer to distribute themselves as far as possible from each other
to minimize the dimensionless electrostatic energy ~E , defined in
Eq. (27). Using a constrained minimization approach, we find an equi-
librium distribution that locally minimizes the energy in Eq. (27) while
satisfying kinematic constraint in Eq. (24), for given dimensionless
charges qi, i ¼ 1;…;Np and number Np of peplomers. The following
are the details of the constrained minimization approach. We define
the augmented energy functional by

Ê ¼
XNp

i¼1

Xj<i
j¼1

qiqj
jri � rjj

� qijrij2
0
@

1
A; (28)

where qi, i ¼ 1;…;Np, are the dimensionless Lagrange multipliers
required to enforce the kinematic constraints in Eq. (24). We obtain
the Euler–Lagrange equations by differentiating Eq. (28) with the
dimensionless position vectors ri; i ¼ 1;…;Np, and equating the
resulting expressions to 0,

�qi
XNp

j¼1;j 6¼i

qjðri � rjÞ
2jri � rjj3

� qiri ¼ 0; i ¼ 1;…;Np: (29)

In the Euler–Lagrange equation [Eq. (29)], the first term on the left-
hand side is the total dimensionless electrostatic force exerted on the
ith bead by all the remaining beads. For an equilibrium, this electro-
static force is balanced by the second term in Eq. (29), �qiri, which is
the dimensionless reactive force between the capsid and ith bead
required to satisfy Eq. (24), that is, to maintain contact of that bead
with the capsid. Therefore, the term �qri; i ¼ 1;…;Np, in Eq. (29) is
a measure of the interaction between the capsid and i the bead.
Notably, if all the peplomer beads are positively charged, they will
repel each other. Therefore, for equilibrium, the electrostatic interac-
tion between the peplomer beads and the capsid must be attractive to
counter the repulsive forces between the beads. In this respect, we fol-
low Refs. 12 and 29, wherein a Lagrange multiplier is used to represent
the adhesive reaction between a semiflexible polymer and a rigid
spherical substrate.30 as well used Lagrange multipliers to describe the
adhesive reaction between a generalized surface and confined semiflex-
ible polymers. Another example of this approach appears in the work
of Ref. 31, who introduced a Lagrange multiplier to predict adhesive
reactions.

For each value of i in the vector equation [Eq. (29)], there are
three scalar equations. Thus, Eq. (29) yields 3Np scalar equations. We
solve a total of 4Np equations, 3Np equilibrium equations in Eq. (29),
and Np constraints in Eq. (24), simultaneously to determine 4Np

unknowns, 3Np scalar components of Np position vectors in ri, and Np

in scalar Lagrange multipliers qi, i ¼ 1; 2;…;Np. We use the
Levenberg–Marquardt Algorithm from the fsolve package of MATLAB
to solve the system of equations with 10�16 error tolerance to

FIG. 2. Coronavirus capsid sphere c of radius rc beaded with gray spheres and a
peplomer represented with red bead and black stick of length ‘ attached to c are
shown. The peplomer bead lies on a sphere s of radius rs ¼ rc þ ‘. While con-
sidering electrostatic interaction, we assume that the white spheres are chargeless
and a peplomer is endowed with a point charge, concentrated to the center of the
red sphere.

FIG. 3. Probability distribution function pdf of coronavirus peplomer protein trimers
for which 30 � Q � 55, abstracted from measurements of Fig. 1(b). Probability-
charge colors in spectral order, with the highest probability formal charge of Q¼ 42
in green, with red–orange–yellow for 30 � Q � 42, and blue–indigo–violet for
42 < Q � 55. Data fit well with a normal distribution f, as shown with the solid
black curve. See Eq. (23) and Table IV for the definition and parameters of f.
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determine the energy minimizing configuration for given values of
�Qqi; i ¼ 1;…;Np charges.

Our model, which has a spherical core, amounts to a modified
version of the Thompson problem,32 wherein one seeks to find a state
that distributes Np electrons over a unit sphere as evenly as possible,
with minimum electrostatic energy. Wales et al.33,34 solved this prob-
lem for identically charged particles by minimizing the dimensionless
energy functional

Ew ¼
XNp

i¼1

Xj<i
j¼1

1
jri � rjj

(30)

providing solutions for a large set of values of Np, where
ri; i ¼ 1;…;Np, are the dimensionless position vectors of unit point
charges on a unit sphere. By contrast, our energy minimization solves
the problem for particles not charged identically (i th peplomer has qi
dimensionless charge). Our energy expression [Eq. (27)] recovers the
energy expression [Eq. (30)] of Wales et al.33,34 for qi ¼ 1,
i ¼ 1;…;Np, and thus, we recover the Thompson solution (energy
minimization over a spherical surface about which much has been
written10) as it should (see Sec. VII of Ref. 7) As far as we know, we
are the first to perform an energy minimization of heterogeneously
charged particles over the surface of a sphere.

To investigate the effect of heterogeneous charge distribution on
the total electrostatic energy relative to identically charged beads stud-
ied by Wales et al.,33,34 we define a dimensionless electrostatic energy

F ¼ E
Ew
� 1 ¼

XNp

i¼1

Xj<i
j¼1

qiqj
Ewjri � rjj

� 1; (31)

where ~E and Ew are defined in Eqs. (27) and (30), respectively. In this
work, we restrict our attention to Np ¼ 74, for which Wales et al.33,34

calculated Ew ¼ 2387:07.

V. RESULTS

Since Q is integer-valued, we next abstract from Fig. 1 the formal
charge distribution line spectrum of coronavirus peplomer protein
trimers. We give this in Fig. 3, from which we glean Eq. (2), as we
must. Whereas Fig. 3 and its companion [Eq. (2)] tell us the charge
heterogeneity, these are silent on how these peplomer charges will
arrange themselves over the coronavirus surface. In this work, we
examine 20 000 possible arrangements of number Np ¼ 74 of peplom-
ers, which we call states. For a given state, we randomly draw
�Qqi; i ¼ 1;…;Np, charges from the discrete, integer-valued bin of
charges in the interval 30 � Q � 55 with probability as per experi-
mental measurement,14 as shown in Fig. 3. Next, we follow the energy
minimization method of Sec. IVC to determine the minimum energy
configuration of that state. We repeat the process of randomly drawing
�Qqi; i ¼ 1;…;Np, charges from the discrete, integer-valued bin
20 000 times and determine the energy minimizing configuration of
each state. Figure 4 illustrates one such energy-minimized state, with
color coding for the formal charges. Although considering a larger
number of states than 20 000 will give us a more comprehensive
understanding of the effect of charge heterogeneity, we restrict our
attention to 20 000 states due to computational cost limitations. We
expect that the practically chosen number of states is large enough to
derive meaningful conclusions.

Dimensionless electrostatic energy F, defined in Eq. (31), of the
20 000 reasonable states is provided in Fig. 5(a). The red horizontal
line in the figure corresponds to F¼ 0 at which, using Eq. (31), the
dimensionless electrostatic energy ~E , defined in Eq. (27), of our hetero-
geneously charged system is equal to the dimensionless electrostatic
energy Ew, defined in (30) of a identically charged system with unit
charge for Np ¼ 74. We find 687 states with E < Ew. Moreover, we
find that the energy of states shown in Fig. 5(a) follows a log –normal
distribution, as shown in the histogram in Fig. 5(b). Sorting on these
minimum energies, E, we construct Fig. 6, which inflect at about the
10 000 state. The lowest value of F (vertical intercept of Fig. 6), defined
in Eq. (31), is F ¼ �4:2625� 10�4. We next calculate the dimension-
less moments of inertia tensor of each state, from which we calculate
the dimensionless principal moment of inertia I1, I2, and I3. We
arrange those quantities into the three histograms of Fig. 7, from
which we learn that

157:63 � I1 � I2 � I3 � 159:44; (32)

and thus, I1 	 I2 	 I3. That is, every state is nearly axisymmetric.
Figure 8 maps all of the energy-minimized arrangements onto ða� �
3; bÞ plane. For a spherical geometry, a� ¼ 3 and for oblate and pro-
late geometries, respectively, a� > 3 and a� < 3. Since in Fig. 8,
a� > 3, all of our 20 000 heterogeneously charged coronavirus states
are slightly oblate. Figures 9 and 10 illustrate the diversity of rheologi-
cal behaviors among our 20 000 coronavirus states. From Fig. 9, we
learn that the highest energy states give the most significant departures
from Newtonian behavior for the real part of the complex viscosity

g0 � gs
g0 � gs

< 1: (33)

Likewise, from Fig. 10, we learn that the highest energy states give the
largest departures from Newtonian behavior for minus the imaginary
part of the complex viscosity:

FIG. 4. Minimum energy configuration of one charge state of a coronavirus particle
of Np ¼ 74 and Nc ¼ 256. Bead colors in spectral order, with the highest probability
formal charge of Q¼ 42 in green, with red–orange–yellow for 30 � Q < 42, and
blue–indigo–violet for 42 < Q � 55. The peplomer rods do not generally align with
the bead centers of the beaded capsid.
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g00

g0 � gs
> 1: (34)

We next use Eq. (11) to arrive at the heterogeneity of the relaxation
times following on from the pioneering charge heterogeneity experi-
ments of panel b) of Fig. 1 to get Fig. 11. From this figure, we learn
that the measured formal charge distribution of Eq. (2), through the
lens of the general rigid bead-rod theory, implies that the coronavirus
relaxation time varies in the interval

315:26 � k
k0
� 317:04: (35)

Using Eq. (16), we next construct Fig. 12. From this figure, we learn
that the measured formal charge distribution of Eq. (2), through the
lens of the general rigid bead-rod theory, implies the coronavirus
dimensionless rotational diffusivity distribution of

5:257� 10�4 � k0Dr � 5:287� 10�4: (36)

Equations (35) and (36) are the main results of this work. Recall
that the rotational diffusivity is the transport property around which
coronavirus cell attachment revolves. From Eq. (36), we learn that
through its heterogeneity of peplomer formal charges [Eq. (2)], even if
all capsids are spherical, and all of these with Np ¼ 74, the coronavirus
attacks with a distribution of rotational diffusivities. We find Fig. 12 to
be intrinsically beautiful.

VI. CONCLUSION

We began this paper by distinguishing two forms of higher energy
coronavirus peplomer arrangement arising for fixed peplomer popula-
tion: (i) those caused by the heterogeneity of charge from one peplomer
to the next and (ii) those caused by local energy minima at a uniform

FIG. 5. (a) Dimensionless electrostatic energy F, defined in (31), of 20 000 equilibrium states. The red line shows the energy level for uniform charge distribution. We find 687
equilibrium states with energy lower than that level. (b) Probability distribution function pdf vs log ðF � minFÞ of the states shown in (a). Data fit well with a normal distribution
f, defined in (31), shown with the blue curve. See Table IV for parameters of f.

FIG. 6. Sorted dimensionless electrostatic energy F, defined in (31), of 20 000
states for formal charge distribution of coronavirus peplomer protein trimers of
Fig. 3 ðNp ¼ 74Þ.

FIG. 7. Probability distribution function pdf of the dimensionless principal moment
of inertia I1, I2, and I3 of 20 000 equilibrium states. We find that
157:63 � I1 � I2 � I3 � 159:44, and thus, every state is nearly axisymmetric.
Normal distribution f, defined in Eq. (23), fits well for each of those quantities, as
shown with blue, brown, and green colors. See Table IV for parameters of f.
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charge (less probable than the lowest energy configuration33,34). In this
paper, we focused on the former romanette because this charge het-
erogeneity has been recently observed and quantified experimentally
(Fig. 1. of Ref. 14 reprinted as Fig. 1). For the romanette (i), we have
examined the lowest energy (and thus the most probable) configura-
tion for each of 20 000 random charge arrangements (see one of
these in Fig. 4). By contrast, romanette (ii) would involve examining
lower probability arrangements (higher energy and local energy
minima) arising for any fixed charge arrangement (be it with or
without33,34 charge heterogeneity). Romanettes (i) and (ii) yield
multiplicities of relaxation time, thus multiplicities of coronavirus
transport properties. We leave the intriguing problem of the relaxa-
tion time distribution implied by romanette (ii) for another day. In
this paper, we calculate the transport properties of coronavirus sus-
pensions from the first principles, namely, from the detailed particle
shapes. For this, we approximated the shape by beading (i) the
spherical capsid and then (ii) the radially protruding peplomers (see

gray and colored beads of Fig. 4, respectively). Following the general
rigid bead-rod theory, we assigned Stokesian hydrodynamics to
each bead position. Our work, called viral hydrodynamics, thus then
yields the suspension rotational diffusivity equation [Eq. (36)], but
not without first arriving at a configuration for the cationic peplom-
ers. From the general rigid bead-rod theory, we learn that the trans-
port properties depend upon the macromolecular moments of
inertia. By transport properties, we mean the rotational diffusivity,
the relaxation time [Eq. (11)] upon which the rotational diffusivity
depends, and the complex viscosity equations [Eqs. (18)–(20)]. In
this work, we considered 20 000 randomly generated possibilities for
cationic peplomer arrangements with formal charges ranging from
30 to 55 [Eq. (2)]. We find the configurations from energy minimi-
zation of all of these possibilities to be nearly spherically symmetric
(Figs. 7 and 8), all slightly oblate, and we report the corresponding

FIG. 8. Configurations for formal charge distribution of coronavirus peplomer pro-
tein trimers of Fig. 3 mapped onto ða� � 3; bÞ plane for number Np ¼ 74 of
peplomers using Eqs. (8)–(10). Since a� > 3, all states are oblates.

FIG. 9. Log–log plot of the shifted real part of the complex viscosity function using
Eq. (19) for each configuration from the formal charge distribution of coronavirus
peplomer protein trimers of Fig. 3 with Np ¼ 74. The bottom curve is the lowest
energy (global minimum), with 20 000 higher energy states falling successively
above this bottom curve.

FIG. 10. Log–log plot of minus the imaginary part of the complex viscosity function
using Eq. (20) for each configuration from the formal charge distribution of coronavi-
rus peplomer protein trimers of Fig. 3 with Np ¼ 74. The bottom curve is the lowest
energy (global minimum), with 20 000 higher energy states stacking successively
above this bottom curve.

FIG. 11. Probability distribution function pdf of Coronavirus dimensionless relaxa-
tion time using Eq. (11) (315:26 � k=k0 � 317:04) for heterogeneously charged
peplomer population of Np ¼ 74 with formal charge range 30 � Q � 55 abstracted
from the formal charge distribution of coronavirus peplomer protein trimers of Fig. 3
(20 000 states). Solid curve denotes a normal distribution fit f. See Eq. (23) and
Table IV for the definition and parameters of f.
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breadth of the dimensionless relaxation time distribution in Fig. 11
and Eq. (35) and rotational diffusivity in Fig. 12 and Eq. (36), the
transport property around which coronavirus cell attachment
revolves. In this paper, exploiting the general rigid bead-rod theory,
we carried the pioneering experiments on peplomer formal charge
heterogeneity through to what this implies about the rotational dif-
fusivity, and specifically about its heterogeneity. From Fig. 12 and
Eq. (36), we learn that the coronavirus attacks with a distribution of
rotational diffusivities. In this paper, we have neglected the interfer-
ences of velocity profiles of nearby peplomers.17 We call these inter-
ferences hydrodynamic interactions. We leave the exploration of
how formal charge distribution of coronavirus peplomer protein
trimers is affected by hydrodynamic interactions for future work.
We would account for such hydrodynamic interactions following
the method of Sec. II of Ref. 10 with A � L=2d 	 1=10 [Eq. (8) of
Ref. 10]. Our work is silent about the charge distribution over the
surfaces of individual peplomers, recently quantified by molecular
dynamics simulation (see Fig. 2. of Ref. 18). We leave this intriguing
task for the future. Docking coronavirus with a receptor site requires
not just one but two adjacent peplomers to align and attach. For this
probability, see Eq. (1) of Ref. 1. This has yet to be calculated for
peplomers charged identically, and our work is silent on how this
probability would be affected by the recently measured peplomer
formal charge heterogeneity. We leave this daunting task for another
day.
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