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Abstract
Motivation: Biological function in protein complexes emerges from more than just the sum of their parts: molecules interact in a range of differ-
ent sub-complexes and transfer signals/information around internal pathways. Modern proteomic techniques are excellent at producing a
parts-list for such complexes, but more detailed analysis demands a network approach linking the molecules together and analysing the emer-
gent architectural properties. Methods developed for the analysis of networks in social sciences have proven very useful for splitting biological
networks into communities leading to the discovery of sub-complexes enriched with molecules associated with specific diseases or molecular
functions that are not apparent from the constituent components alone.

Results: Here, we present the Bioconductor package BioNAR, which supports step-by-step analysis of biological/biomedical networks with the
aim of quantifying and ranking each of the network’s vertices based on network topology and clustering. Examples demonstrate that while
BioNAR is not restricted to proteomic networks, it can predict a protein’s impact within multiple complexes, and enables estimation of the co-
occurrence of metadata, i.e. diseases and functions across the network, identifying the clusters whose components are likely to share common
function and mechanisms.

Availability and implementation: The package is available from Bioconductor release 3.17: https://bioconductor.org/packages/release/bioc/
html/BioNAR.html.

1 Introduction

Biotechnology has made rapid advances in recent years with
massive steps forward in both the sensitivity and throughput
of methods to analyse biological samples across multiple lev-
els. Arguably, the best-known examples are based on data
from high-throughput DNA and RNA sequencing, but there
are an increasing number of reports using proteomics, metab-
olomics, and connectomics data. Much of our understanding
of the biological processes that underpin our health and well-
being is limited to isolated analyses of small sets of compo-
nents. Integration of these into network models can facilitate
identification of key functional interactions, pathways, and
complexes that are required for normal function and that,
when perturbed, lead to disease.

Communication, or information transfer, between the com-
ponents of a network is a common feature across biological
scales. Therefore, it is not entirely surprising that methods
designed to analyse information flow or communication in so-
cial networks have proven to be well suited for the analysis of
biological networks in general and proteomic networks in
particular (Ma and Zeng 2003, Wunderlich and Mirny 2006,
Li et al. 2011).

Proteomic data are typically represented via static undi-
rected protein–protein interaction (PPI) networks, where ver-
tices represent the proteins obtained from mass-spectrometry
experiments and edges represent the structural protein inter-
actions connecting them. From a PPI network one can extract
many statistical measures of the network’s topology and its
fundamental properties and use these to gain insight and
make predictions about the underlying data (Vidal et al.
2011, Bánky et al. 2013). For example, ‘scale-free’ (Barabási
and Albert 1999) properties and small world paths found in
many biological networks are widely used to identify ‘hub’
molecules, which often encode disease related proteins (Vidal
et al. 2011).

Protein networks can be large (1000 s of proteins) and con-
tain the components of multiple known signalling pathways
all joined together by other proteins whose role in the net-
work is poorly understood. Therefore, it is useful to divide
PPI networks into communities (or clusters) based on their
connecting architecture, under the assumption that shared
network topology (interconnectedness) may correlate with
shared function (or dysfunction) (Zhu et al. 2007, Fernandez
et al. 2009, Klemmer et al. 2009). To obtain this, functional
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and disease over-representation of clusters can be calculated
to reveal the clusters that are significantly enriched for specific
annotations. This kind of analysis, e.g. was used to help link
together the molecular pathways in the synapse, which under-
pin healthy neuronal function, as well as synaptic diseases
(Pocklington et al. 2006a).

Many stand-alone software tools have been developed to
address the basic steps required for the analytical steps de-
scribed above. For example, Cytoscape (Shannon et al. 2003)
supports interactive reconstruction and visual representation
of molecular networks, clustering, and estimation of the main
centrality measures. Various other tools exist for functional
enrichment analysis based on the GO, KEGG (Kanehisa and
Goto 2000), and Reactome (Gillespie et al. 2022) ontologies
(Maere et al. 2005, Subramanian et al. 2005, Eden et al.
2009, Sherman et al. 2022). The igraph package in R sup-
ports building a network, estimating centrality measures and
several types of clustering (Gabor and Tamas 2006).

What is missing is a platform that enables a robust pipeline
approach to be deployed at scale. To achieve this within the
Bioconductor environment, we developed BioNAR. It pro-
vides a topologically based network analysis pipeline, en-
abling users to load networks generated and/or annotated
using their lab’s own metadata, thus making the tool as
widely applicable and flexible as possible. The pipeline ap-
proach facilitates iterative analytical designs and stochastic
sampling for enhanced statistical robustness.

BioNAR supports a range of network analysis functions and
integrates with several existing R packages to maximize its utility
(Supplementary Table S1). Full list of dependencies can be found
on the Bioconductor page (https://bioconductor.org/packages/3.
16/bioc/html/BioNAR.html). Importantly, BioNAR fills key
methodological gaps to allow for the interrogation of biomedical
networks from functional and disease perspectives. We provide
methods for identification of ‘bridging’ proteins—those that can
participate in multiple communities simultaneously and play an
important role in signal propagation across the network
(Nepusz et al. 2008). Another important feature, not imple-
mented elsewhere, is the estimation of the topological overlap
for different annotations. It was recently demonstrated that
within a large-scale molecular network, the location of each sub-
network (module) of disease associated genes correlates with its
pathobiological relationship to other disease sub-networks, e.g.
diseases with overlapping modules showed significant similari-
ties at the level of gene co-expression patterns, clinical pheno-
type, and comorbidity (Menche et al. 2015). Conversely,
diseases residing in separated network neighbourhoods appear
to be more phenotypically distinct. We implemented overlap/
separation estimation in BioNAR, making it applicable not only
for diseases, but for any annotation pair of interest.

As our previous and ongoing work is related to the synaptic
proteome, we illustrate the package functionality with two
publicly available synaptic networks (first and second case
studies). However, BioNAR is not limited to synaptic or even
proteomic networks and can be applied to any biological net-
work, e.g. patient network, gene–disease (third case study), or
disease–disease interactions with any customized annotation.

2 Results

2.1 Implementation

We developed the Bioconductor package, BioNAR, to
support the analysis of biological networks based around a

high-level pipeline presented in Fig. 1. We describe each of
these key functions below (also see the package vignette here:
https://www.bioconductor.org/packages/devel/bioc/vignettes/
BioNAR/inst/doc/BioNAR_overview.html).

2.1.1 Step 1. Creating a network instance
BioNAR implements networks as R data frames, where each
row corresponds to a vertex interactor pair and where each
vertex has a unique vertex_ID. Alternatively, a network can
be imported from standard graph file formats including gml,
using the igraph’s package built-in functionality. BioNAR
also allows network import for specific synaptic protein set/
synaptic compartments/brain region directly from the
Synaptome.db package (Sorokina et al. 2022). An example of
this is shown for the presynaptic case study 2. For construct-
ing the protein interaction networks described here, we used
the NCBI Gene Entrez ID as a unique vertex_ID for each
node/protein.

2.1.2 Step 2. Adding annotation to the vertices
Once a network is constructed, vertices are typically annotated
with categorical or continuous metadata. Annotations are han-
dled in a three-column data frame format, where the first col-
umn contains the annotation term ID, the second the annotation
term name, and the third column the vertex_ID (Entrez ID in
our case). All annotation terms for the same vertex_ID are col-
lected and stored as a semicolon-separated string in the vertex
annotation. BioNAR is designed to assign the results of any ver-
tex calculation as a new vertex attribute, which allows interme-
diate results to be stored directly within the network. This
supports reproducibility as many algorithms used in network
analysis have a stochastic component, so each invocation can
create a range of slightly different results.

BioNAR supports automatic annotation of the proteomic
networks with NCBI gene names, GO annotations, and gene–
disease association values, but can also be used for any anno-
tation data the user would be interested in, such as gene
expression values, pathway membership data and so on.
Examples of adding custom annotation are presented in
Case 2. For further analysis, annotation strings are converted
into semicolon-separated lists to be stored as vertex
attributes.

2.1.3 Step 3. Estimating network vertex properties and
underlaying structure
The BioNAR package directly supports calculation of the fol-
lowing network vertex centrality measures, many of which
are implemented in igraph (Gabor and Tamas 2006): degree
(DEG), betweenness (BET), clustering coefficient (CC), semi-
local centrality (SL), mean shortest path (mnSP), page rank
(PR), and standard deviation of the shortest path (sdSP) (see
igraph manual for details). Vertex centrality values can be
added as vertex attributes (calcCentrality) or returned as an R
matrix (makeCentralityMatrix), depending on user prefer-
ence. Any other numerical characteristics, calculated for verti-
ces and represented in a matrix form, can also be stored as a
vertex attribute (applyMatrixToGraph).

To enable comparison of an observed network’s vertex cen-
trality values to those of an equivalently sized randomized
graph, we enabled three randomization models including
G(n, p) Erdos–Renyi model (Erd}os and Rényi 1959),
Barabási–Albert model (Barabási and Albert 1999), and the
derivation of a new randomized graph from a given graph by
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iteratively and randomly adding/removing edges. To examine
a network for underlying structure (i.e. not a random net-
work), one can test a network’s degree distribution for evi-
dence of scale-free structure and compare it to an equivalent
randomized network model. For this, we used the R
PoweRlaw package (version 0.50.0) (Gillespie 2015), which
uses a goodness-of-fit approach to estimate the lower bound
and the scaling parameter of the discrete power-law distribu-
tion for the optimal description of the graph degree
distribution.

For proteomic networks where we also have multi-
condition gene expression data, scale-free structure can also
be tested by using the expression data to perform a perturba-
tion analysis on the network to measure network entropy
(Teschendorff et al. 2015), which corresponds to a degree of
randomness in the local pattern information flux around sin-
gle genes. This kind of analysis is most useful for comparing a
control relative to a perturbed network (e.g. wild-type versus
cancer, untreated versus treated), where vertices with low en-
tropy rate appear to be the most important players in disease
propagation. However, for the assessment of scale-free struc-
ture, we do not actually require gene expression data as it is
based solely on the network topology. BioNAR follows the
procedure described in Teschendorff et al. (2015): all vertexes
are artificially assigned a uniform weight then sequentially
perturbed with the global entropy rate (SR) after each pro-
tein’s perturbation being calculated and plotted against the
log of the protein’s degree. In the case of scale-free or approxi-
mate scale-free topology, a bi-modal, bi-phasic behaviour is
observed (Teschendorff et al. 2015) (see Case 2).

2.1.4 Step 4. Clustering
BioNAR supports a non-exhaustive set of commonly used
clustering algorithms. These are modularity-maximization-

based algorithms, including the popular agglomerative ‘Fast-
Greedy Community’ algorithm (fc) (Clauset et al. 2004), pro-
cess driven agglomerative random walk algorithm ‘Walktrap’
(wt) (Pons and Latapy 2006), and coupled Potts/Simulated
Annealing algorithm ‘SpinGlass’ (sg) (Reichardt and
Bornholdt 2006, Traag and Bruggeman 2009), the divisive
spectral-based ‘Leading-Eigenvector’ (lec) (Newman 2006)
and fine-tuning (Spectral) (McLean et al. 2016) algorithms,
and the hierarchical agglomerative ‘Louvain’ algorithm (lou-
vain) (Blondel et al. 2008). We also include a non-modularity
information-theory-based algorithm ‘InfoMAP’ (infomap)
(Rosvall and Bergstrom 2008, Rosvall et al. 2009).

All algorithm implementations, apart from Spectral, were
imported from R’s igraph package (Gabor and Tamas 2006).
The Spectral algorithm (McLean et al. 2016) was written in Cþþ
and wrapped in R within a satellite CRAN package rSpectral
(https://cran.r-project.org/web/packages/rSpectral/index.html),
linked to BioNAR (more details in Supplementary Methods).

Depending on the purpose of the study all clustering algo-
rithms can be applied to the network under investigation si-
multaneously, with each algorithm’s community membership
stored as a vertex attribute. The user also has the option to se-
lect specific clustering algorithms to run over their network,
since running all clustering algorithms over the large network
is likely to be resource intensive.

A common phenomenon when applying Modularity-based
clustering algorithms over networks of a large size, is to end
with large, or ‘super’, communities which masks network sub-
structure. In this situation, we provide the user the facility to re-
cluster these large/super communities in a hierarchical manner,
applying the same, or potentially a differing, clustering algo-
rithm at each iteration (using the BioNAR recluster function).

To compare the usefulness of different clustering algorithms
on a network, a summary matrix can be created, consisting

Figure 1. Network analysis pipeline implemented in BioNAR package. Although the process is often interactive, the general flow starts with graph

creation and proceeds as illustrated on the left. Each of the steps indicated corresponds to the analysis steps described in Section 2. Colours correspond

to the respective processing stages (left).
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of: the maximum Modularity obtained (mod), the number of
detected communities (C), the number of singlet communities
(Cn1), the number of communities with size �100 (Cn100),
the fraction of edges lying between communities (mu), the size
of the smallest community (Min. C) and the largest commu-
nity (Max. C), the average (Mean C), median (Median C),
first quartile (first Qu. C), and third quartile (third Qu. C) of
community size (Table 1).

To test the robustness of communities found by a clustering
algorithm, a consensus matrix is built by randomly selecting a
proportion (by default 80%) of the network vertices and re-
running the clustering algorithm (by default set to 500 times).
The functionality provided in the R package clusterCons
(Simpson et al. 2010) then sums up the elements of the con-
sensus matrix found in the same cluster and divides this by
the total number of entries in the matrix, providing commu-
nity robustness values in a range from zero, indicating low
confidence in the community existing, to one, indicating high
confidence in the cluster existing.

The BioNAR package provides functionality to visualize a
network’s community structure with our implementation of
cluster-driven layout, which is suitable for even the largest
network (i.e. tens of thousands of vertices and millions of
edges). This layout splits the network into clusters, lays out
each cluster individually, and then combines individual lay-
outs with the igraph function merge_coords, so that each dis-
tinct community is shown independently and painted in a
unique colour.

To allow comparison of networks with different structures,
we also implement a normalized modularity measure (Parter
et al. 2007, Takemoto and Borjigin 2011, Takemoto 2012,
2013) (see package documentation for more detail https://bio
conductor.org/packages/3.16/bioc/manuals/BioNAR/man/BioNAR.
pdf).

2.1.5 Step 5. Bridgeness and identifying ‘influential’ vertices
The clustering algorithms we used in Step 5 place each vertex
into a single cluster, which in many cases is an oversimplifica-
tion. In the context of proteomic networks, we know that
proteins are often present in multiple copies, in multiple sub-
complexes sometimes serving very different biological func-
tions. The ‘bridgeness’ metric measures the probability that a
vertex belongs to more than one community at the same time.
Thus, estimating the bridgeness allows each protein in the net-
work to be ranked according to its predicted importance for

propagating signals through the network based on architec-
ture alone.

Bridgeness can be estimated from the consensus matrix cal-
culated in Step 4, taking values between 0—implying a vertex
clearly belongs in a single community, and 1—implying a ver-
tex forms a ‘global bridge’ across every community with the
same strength (Nepusz et al. 2008, Nepusz et al. 2012).

Bridgeness becomes especially informative when combined
with other vertex centrality measures, e.g. semi-local central-
ity, which considers the nearest and next to the nearest vertex
neighbours. It also lies between 0 and 1 indicating whether
the vertex is likely to have local influence.

Plotting bridgeness against semi-local centrality, allows us
to categorize the local and global influence of each vertex
within a network given only the network structure (see Case
study 2). BioNAR supports the comparison of bridgeness
against any vertex centrality measure (or any normalized nu-
meric vertex value) of the user’s choice, e.g. against Page
Rank.

2.1.6 Step 6. Studying the overlap or separation of annotation
pairs
Given two annotations that are distributed across a network,
a common query is to find the points of intersection where the
two annotation sets overlap (or segregate). To support such
queries, we implemented the algorithm from Menche et al.
(2015), which tests if the observed mean shortest paths be-
tween two distinct annotation sets, superimposed on a net-
work, is significant compared to a randomly annotated
network (see also Supplementary Methods).

This method is often applied to disease annotations al-
though any similar type of annotation will work. The
BioNAR command calcDiseasePairs calculates the observed
overlap between two annotation sets on a network, and com-
pares this to a single instance of the network with annotations
randomly permuted; this is useful for a quick estimate of how
likely the overlap is simply a random occurrence.

To calculate the significance of observed overlaps (or sepa-
rations) the observed annotation pairs on the network the
command runPermDisease should be used. This compares the
overlap against multiple permutations of the network (where
the user can define the number of permutations). Executing
this command, which may take time depending on the num-
ber of permutations chosen, generates a results table

Table 1. Clustering summary for the MASC network.a

N mod C Min.MuCn100Cn1 C First Qu. C Median C Mean C 3rd Qu. C Max. C

2987.7694320.292700130.4419101RWMod
2216.2512.62157.7530.38620080.4393101lec
2564.813210.418703210.3922101wt
232012.6212.5530.30890080.4842101fc
21117.7696520.361800130.4753101infomap
2319.514.43178.550.32930070.4698101louvain
2114.7510.18.54.2520.333300100.4822101sgG1
118.56.73365.520.471500150.4424101sgG2

843.4833210.638202290.3217101sgG5
15107.7697410.426801130.4495101spectral

a Shown are the maximum modularity obtained (mod), the number of detected communities (C), the number of singlet communities (Cn1), the number of
communities with size �100 (Cn100), the fraction of edges lying between communities (mu), the size of the smallest community (Min. C) and the largest
community (Max. C), the average (Mean C), median (Median C), first quartile (first Qu. C), and third quartile (third Qu. C) of community size. Three
instances for SGg (1,2,5) in Table 1 correspond to one ‘SpinGlass’ (sg) in Section 2.1.4 and are designed to test the clustering with predefined number of
clusters.
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containing the overlap of each annotation pair with P-value,
P adjusted by Bonferroni test, and q-value.

2.1.7 Step 7. Enrichment analysis
Over-representation analysis (ORA) is a common approach
to identify annotation terms that are significantly over- or
under-represented in a given set of vertices compared to a
random distribution.

In biological networks GeneOntology terms and Pathway
names are amongst the most frequently used. ORA differs
from Gene Set Enrichment Analysis as the latter use numerical
values associated with genes, such as expression value, while
the former relies on null hypothesis tests, such as the hyper-
geometric test statistics. The most commonly used Gene
Ontology analysis can be performed with dedicated
Bioconductor tools, such as clusterProfiler (Wu et al. 2021).
To keep the package as general purpose as possible and avoid
ties to any annotation source, we used the Bioconductor pack-
age fgsea (Korotkevich et al. 2021) to implement ORA func-
tionality on top of arbitrary string vertex annotation and
vertex grouping, obtained e.g. by clustering. We represent the
results of ORA as a R data frame, with rows representing the
group of vertices and columns the P-value enrichment values
for set of annotations terms under study. We also provide

P-value, Benjamini–Hochberg-adjusted P-value, size of over-
lap, and list of vertices that contribute to the annotation term.

2.2 Case studies

The following three case studies illustrate how the BioNAR
functionalities can be used for the networks of different size
and origin.

2.2.1 MASC network
The first test case chosen is a previously studied NMDA re-
ceptor complex known as the MASC network (Pocklington
et al. 2006b). This is a relatively small PPI network, represent-
ing a protein complex surrounding the mammalian NMDA
receptors and consists of 101 proteins with 246 interactions
(Pocklington et al. 2006b). It is a good example of the type of
network that would come from a typical pull-down experi-
ment. The original MASC study provided an analysis of the
organization and underlying functionality of the modularized
MASC complex, and was clustered using the Random Walk
algorithm (Newman and Girvan 2004) as shown in Table 1
(RWMod) and the top centre of Fig. 2. The analyses used in
the original study predated most of the tools listed here and
were achieved using almost entirely manually curated datasets
and bespoke code developed for the specific study. Using
BioNAR, we replicated the cluster analysis using our set of

Figure 2. Clustering results for Case Study 1 (MASC network) for six algorithms. The colour code corresponds to the protein functional families described

in Pocklington et al. (2006a) as follows: red—channels and receptors, light green—cell adhesion and cytoskeleton, dark green—synaptic vesicles/protein

transport, light blue—G-proteins and modulators, purple—MAGUKs/adaptors/scaffolds, and maroon—kinases. Highlighted are only the clusters with

significant enrichment (P-value <.05, p.adj).
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algorithms and visualized the results using Gephi (www.
gephi.org). The clustering summary is presented in Table 1,
which demonstrates that all algorithms give similar clustering
structure with 8–13 communities, composed of an average of
5–10 proteins each.

We performed ORA to test if the obtained community
structures (clusters) have meaningful enrichment for func-
tional annotation terms, using the functional protein family
annotations from the original paper (Pocklington et al.
2006b). As can be seen from Fig. 2, all clustering algorithms
split the network into similar functional units. With all con-
sidered algorithms, we find two persistent clusters, containing
proteins associated with: (i) synaptic vesicles/protein trans-
port, containing 2–5 proteins of six possible family members,
and (ii) kinases, containing 4–7 from 18 family proteins. In
addition, the following families appear enriched in the clusters
produced by the majority of algorithms, e.g. (i) channels and
receptors, containing 5–6 proteins of eight family members
(RWMod, Louvain, fc, infomap, and sgG2 algorithms), (ii)
cell adhesion and cytoskeleton, containing 3–7 proteins from
the respective family (spectral, lec, wt, fc, infomap, and
sgG1), (iii) G-proteins and modulators, containing 3–5 from
17 possible proteins (spectral, infomap, sgG2, and sgG5), and
(iv) MAGUKs/adaptors/scaffolds (3–5 from 12 family pro-
teins, identified by wt, infomap, sgG1, and sgG2). The P-
value and p.adj values for the respective algorithms can be
found in Supplementary Table S2. In terms of over-
representation, the highest level of significant enrichment is
observed in the clustering produced by the infomap

algorithm, which provides the split into six distinct signifi-
cantly enriched functional communities (Fig. 2 and
Supplementary Table S2).

We compared the performance of different clustering algo-
rithms by estimating Newman’s Reduced Mutual Information
index (Newman et al. 2020), which enables pairwise compari-
son of classifications of the same sets of objects (we used
clustAnalytics package, https://CRAN.R-project.org/pack
age=clustAnalytics). Infomap, Louvain, fc, sgG1, and sgG2
algorithms split the network in similar way to the original
clustering, while lec, spectral and, especially, wt give more di-
vergent results (Fig. 2, bottom).

2.2.2 Presynaptic network
A scale up, in both size and complexity, from the MASC net-
work in Study 1 is the study of an entire subcellular compart-
ment’s PPI network that integrates data from multiple
experiments. For that we constructed a proteome network for
the entire presynaptic compartment using the R package
Synaptome.db (Sorokina et al. 2022): 2304 vertices were
extracted from published studies of this compartment, which
were combined with PPIs from Synaptome.db to obtain a
Largest Connected Component containing 1780 vertices con-
nected by 6620 edges.

First, we examined the network for underlying structure by
testing the network’s degree distribution against the random-
ized network model and found evidence of scale-free structure
(alpha exponent to a power-law distribution of 2.6 was calcu-
lated using the PowerLaw function, Fig. 3B). Supporting

Figure 3. Presynaptic network, analysis results. (A) Clustering results from applying the Louvain algorithm, with clusters (cl) assigned a unique colour. (B)

Power-law fit—shown the log–log plot of the CDF of presynaptic PPI network degree distribution [P(k)], versus its degree (k), with the best fitting power-

law distribution to the network data highlighted in red. (C) Entropy plot for the presynaptic network. Each protein was perturbed through over-expression

(red) and under-expression (green), with the global graph entropy rate (SR) after each protein perturbation being plotted against the log of the protein’s

degree. (D) Bridgeness results shown for Louvain algorithm, highlighted are the genes most frequently found in presynaptic compartment. (E) Disease–

disease overlap for presynaptic compartment, red dotted line shows the confidence cut-off (q-val <0.05). Abbreviations: Alzheimer disease (AD), Bipolar

disorder (BP), Autistic spectral disorder (ASD), Epilepsy (Epi), Parkinson disease (PD), Schizophrenia (SCH), Frontotemporal dementia (FTD), Intellectual

Disability (ID), Huntington disease (HD), Multiple sclerosis (MS). (F) Cluster 1 in details with highlighted proteins associated with AD and PD.
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evidence for scale-free structure was obtained by performing
a perturbation analysis on the network (Fig. 3C). As in
Teschendorff et al. (2015), proteins were set to initial values
of 2 with perturbed values of 14 when modelling activity and
set to initial values of 16 with perturbed values of 14 when
modelling inactivity. We observed a bi-modal response be-
tween gene over-expression and degree, and opposing bi-
phasic response relative to over/under-expression between
global graph entropy rate and degree, typical for the scale-free
topology.

To detect community structure in the presynaptic PPI net-
work, we used a set of nine clustering algorithms implemented
in BioNAR. A summary of the clustering results from each al-
gorithm applied to the presynaptic network is presented in
Supplementary Table S3. Each algorithm produces different
communities. For illustration purposes, we selected clustering
results produced using the ‘Louvain’ algorithm, which gives a
reasonably small number of functionally enriched communi-
ties (14), one of the highest modularity values (0.469), no sin-
gletons, and communities distributed in size from 18 (the
smallest) to 284 (the largest) vertices (Fig. 3A) for further
analysis.

From a core set of five clustering algorithms including info-
map, Spectral, sgG1, Louvain, and fc algorithms
(Supplementary Table S4), we identified 324 (324/1780
�18%) potential bridging proteins (Bridgeness value �0.5)
within the presynaptic PPI network; 15 of these were identi-
fied by all five clustering algorithms (15/323, 4%), 109 by
three or more (109/323, 33%). Bridging proteins were found
distributed through the entire network, and included
STXBP1, ACTN1, CDH1, APP, VCP, PTPRF CAMK2A, and
CAMK2B; many of these proteins are understood to be im-
portant in forming cytoplasmic scaffolds that organize and
connect the synaptic vesicle with the presynaptic membrane
or are involved in multiple signalling cascades (Chua et al.
2010).

We checked whether any bridging proteins were annotated
with one or more of the more common synaptopathies, specif-
ically: Alzheimer disease (AD), Bipolar disorder (BP/BD),
Autism spectrum disorder (ASD), Epilepsy (Epi), Parkinson
disease (PD), Schizophrenia (SCH), Frontotemporal dementia
(FTD), and Intellectual disability (ID). Of the 324 proteins,
169 (169/324�51%, P¼ 8.56E-05) were annotated with at
least one disease. Of 15 proteins bridging proteins found in
all five clustering algorithms, 10 (10/15 �67%) were found
associated with at least one synaptic disease given in our set
(Supplementary Table S4). The plot of bridgeness, using the
Louvain clustering algorithm, against semi-Local centrality is
shown in Fig. 3D. We highlight the 19 bridging proteins
found most frequently in the presynaptic compartment [found
in over 15 presynaptic studies (Sorokina et al. 2022)]. Among
these, six have high bridgeness values, thus likely have a
global influence over the network: HSPA8 (AD, PD, SCH),
ACTB (PD, SCH), TUBB (FTD, SCH), STXBP1(AD, PD,
FTD, SCH, ID), NSF (PD), and TUBA1A (SCH).
Additionally, we highlighted CDH1, as it has both high values
for bridgeness and semi-local centrality and is associated with
ID. High local centrality values were also observed for GRB2,
HRAS, and NRAS, which are recognized as local hubs partici-
pating in many signalling cascades (also known as ‘party
hubs’).

Many neurological disorders are co-morbid and share simi-
larities in clinical phenotype. To test whether common

synaptic molecular mechanisms might underpin these disease
similarities, we performed disease separation analysis for the
disease annotation sets mentioned above (Fig. 3E, more detail
in Supplementary Methods). The pair showing the most over-
lap was BD-SCH (q.val¼ 1.19E-09), followed by AD-PD
(q.val¼ 1.64E-05), AD-SCH (q.val¼ 4.12E-04), and BP-ASD
(q.val¼ 7.2E-04) (Supplementary Table S5), which are al-
ready known for their comorbidity. Distribution analysis of
disease-associated proteins over the network combined with
ORA showed that the majority of diseases, for instance, AD,
PD, Epi, ASD, SCH, ID, and even BP are over-represented in
Cluster 1.

To test whether specific synaptic functions were associated
with clusters, we annotated our network with the SynGo
(Koopmans et al. 2019) (release 20210225) and
schizophrenia-annotations (SHAnno) (Lips et al. 2012), and
performed ORA. The full cluster over-representation results
are presented in Supplementary Table S6, but briefly, we
found Cluster 1 over-represented with ‘structural constituent
of post-synaptic density’ (p.adj¼ 5.18E-06), ‘regulation of
post-synaptic neurotransmitter receptor activity’
(p.adj¼ 7.27E-03), and ‘excitability’ (p.adj¼7.64E-4) terms,
which may indicate that Cluster 1 is enriched with
membrane-associated proteins, the majority of which have
been annotated elsewhere as being both pre- and post-
synaptic. The co-occurrence of enrichment for specific synap-
tic functions and disease associations in the network clusters
points to shared molecular mechanisms.

2.2.3 Human disease network
In 2007, Barabasi and colleagues curated and published a
Human ‘diseasome’ network along with an analysis of two of
its natural projections: Human Disease Network (HDN) and
Disease Gene Network (DGN) (Goh et al. 2007). The disea-
some was built by collecting and annotating relationships be-
tween known human diseases, and disease-causing gene
mutations. The diseasome is a bipartite network as it only
contains the edges between two vertex types, i.e. ‘disease’ and
‘gene’ vertices. Projections of a bipartite network result in
mono-type graphs, where a pair of vertices are connected if,
and only if, that pair was connected to the same, but opposite,
typed vertex in the original bipartite network. Therefore, the
HDN graph contains disease vertices and connections be-
tween them if both diseases are linked by mutations in the
same gene, while the DGN graph contains only gene vertices,
which are connected only if both genes are associated with
the same disease. We have reconstructed all three networks
from the Supplementary Material in Goh et al. (2007) pro-
ducing networks with largest connected components contain-
ing �46% (diseasome), 40% (HDN), and 50% (DGN) of all
possible vertices, respectively.

When we randomly permuted connections in the original
diseasome bipartite network and compared the size of the
Largest Connected Component (LCC) in all three networks,
we found each to be significantly smaller (P-value <.002)
compared to that in the unperturbed networks (see Fig. 4A).
It was discussed in Goh et al. (2007) that the small size of the
LCC was probably caused by preferential attachment of genes
within the same disorder class.

Here, we focussed on the analysis of DGN (Fig. 4D).
Unlike the networks in the other case studies, analysed in this
article, the DGN network does not show a scale-free distribu-
tion (Supplementary Fig. S1).
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The degree distribution for the DGN network only follows
a power-law at the extreme high-degree tail (Supplementary
Fig. S1). This can be attributed to the DGN’s construction
since we project an incomplete bipartite disease–gene network

onto gene nodes. The low-degree genes in such a network re-
sult from our sparse knowledge about ‘less studied’ diseases,
while the well-studied diseases, such as cancers, with high
coverage in genes, lead to high degree and well-established

Figure 4. DGN analysis performed with BioNAR. (A) Distribution of connected component sizes in DGN. Red columns correspond to component sizes in

the original network, while green to randomly perturbed networks. Vertical line on the graph corresponds to the size of the giant component of the original

DGN it includes 50.8% of nodes. Like in the original Barabasi paper its size (903) is significantly lower (P-value<10–3) than the average size of the giant

component (10886 21) in the set of rewired networks. (B) Degree distribution of genes annotated with different disorder classes. It can be seen that

high-degree genes come almost exclusively from the disorder class Cancer. A further disorder class ‘Grey’, which also contains high-degree genes, is

associated with many disorders (Goh et al. 2007). (C) Number of observed interactions between genes annotated by the same disorder type (vertical line)

and distribution of the expected numbers from randomized network. (D) The largest connected component of DGN. Nodes are coloured according to the

disorder class.
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connectivity of vertices (Fig. 4B), which reflects a power-law-
like behaviour over this degree range.

Similar to Goh et al. (2007), we compared the inferred
interactions between genes in the DGN to experimentally ob-
served ones. While Goh et al. (2007) used a manually curated
PPI network for the DGN, we extracted a PPI from published
synaptic proteome data available via the synaptome.db
Bioconductor package (Sorokina et al. 2022) by filtering out
vertices from the ‘neuroPPI’ network, which were not found
in the DGN. We calculated the number of disease module
interactions as the number of PPI edges found between genes
annotated to the disorder class given in DGN (Fig. 4C). We
observed a smaller number of disease module interactions
(119), than that found in Goh et al. (2007) (290) (which is
not surprising given we are focussing on just synaptic interac-
tions), but this was still significantly larger than expected by
chance (19 6 9.1) (Fig. 4C), indicating that the proteins
encoded by genes associated with the same disease are highly
likely to physically interact.

Thus, we reproduced a major part of the (Goh et al. 2007)
analysis on the human diseasome in the context of a network
derived from primary synaptic data within BioNAR frame-
work, which demonstrates how integration of these different
Bioconductor packages in BioNAR can enable deeper under-
standing of the biological system at hand.

The code and datasets for three cases are available from
https://github.com/lptolik/BioNAR_paper_supplementary and
https://datashare.ed.ac.uk/handle/10283/4793.

3 Conclusion

BioNAR provides an analytical pipeline for biological net-
works, including network import and annotation, estimating
scale-freeness and a range of centrality measures, and provid-
ing nine different clustering algorithms. It is further extended
with methods to estimate network entropy and normalized
modularity that can be used to compare networks with differ-
ent structures. The implementation of bridgeness can be used
to estimate the likely importance nodes may have in propaga-
tion of signals between different communities. Annotation en-
richment features can be used to identify co-occurrence of
annotation pairs (typically disease) within a network. Beyond
this, the package also allows users to estimate clustering ro-
bustness through cross-validation against a selection of ran-
domized network structures.

BioNAR could be extended to improve support for high
performance compute clusters for analysis of very large net-
works; integration with graphical databases, such as Neo4J
for more efficient storage, retrieval and querying of networks,
and the use of network embeddings, which is a highly active
area of research in the AI community. Future releases of
BioNAR will also see the inclusion of probabilistic network
algorithms based on Bayesian inference to utilize both vertex
and edge metadata, including a probabilistic clustering algo-
rithm built from Stochastic Block Models and belief propaga-
tion. BioNAR provides researchers with a useful network
analysis ‘toolkit’, integrating many network analysis tasks
commonly used by the bioinformatics community.
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