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Abstract: Nuclear magnetic resonance (NMR)-based metabolomics, which comprehensively mea-
sures metabolites in biological systems and investigates their response to various perturbations,
is widely used in research to identify biomarkers and investigate the pathogenesis of underlying
diseases. However, further applications of high-field superconducting NMR for medical purposes
and field research are restricted by its high cost and low accessibility. In this study, we applied a
low-field, benchtop NMR spectrometer (60 MHz) employing a permanent magnet to characterize
the alterations in the metabolic profile of fecal extracts obtained from dextran sodium sulfate (DSS)-
induced ulcerative colitis model mice and compared them with the data acquired from high-field
NMR (800 MHz). Nineteen metabolites were assigned to the 60 MHz 1H NMR spectra. Non-targeted
multivariate analysis successfully discriminated the DSS-induced group from the healthy control
group and showed high comparability with high-field NMR. In addition, the concentration of ac-
etate, identified as a metabolite with characteristic behavior, could be accurately quantified using a
generalized Lorentzian curve fitting method based on the 60 MHz NMR spectra.

Keywords: benchtop NMR; metabolomics; DSS-induced mice; feces

1. Introduction

Metabolomics targets the comprehensive measurement of large numbers of metabo-
lites that are the downstream products of genes, transcripts, and protein functions. It can
provide insight into the biological phenotype by identifying the fluctuations of metabolites
in response to drugs, the environment, and genetic modulations [1]. Thus, metabolomics
studies have been widely applied to identify key biomarkers and investigate the pathogen-
esis of various human diseases [2], including cardiovascular, liver, respiratory, neurological,
gut diseases and cancer [3–8].

Along with mass spectroscopy, high-field NMR spectrometry based on supercon-
ducting magnets has been one of the most routinely used techniques for metabolomics
studies, owing to its inherent advantages of being non-destructive, requiring a short anal-
ysis time and less sample preparation [9]. Generally, 600 MHz NMR spectrometers are
considered the “recommended” instrument, which balances the field strength, resolution,
and cost [10,11]. In addition, magnets with higher field strengths, such as 700 MHz and
800 MHz instruments, have been used to achieve better sensitivity and signal resolution.
However, the applications of NMR-based metabolomics for medical purposes, including
diagnosis, prognosis, and tracing of the recovery process, are restricted and far from routine
utilization because of their low accessibility. In particular, superconducting magnets with
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higher field strengths result in the constantly increasing size and cost of NMR spectrometers.
In addition to the substantial investment in equipment, specific facilities, cryogenic fluid
maintenance, and well-trained technical staff are essential, thus limiting their accessibility
in field applications [12].

The recently developed cryogen-free, low-field benchtop NMR spectrometer employ-
ing compact permanent magnets may solve these problems and represent a new approach
for metabolomics studies, benefiting from its small size and low running cost. In the past,
the permanent magnets were produced in small sizes at the expense of field homogeneity
and could only be used to measure relaxation times and diffusion coefficients, known as
NMR relaxometry or time-domain NMR. With the miniaturization of permanent mag-
nets and advancements in modern electronics, low-field benchtop NMR technology has
achieved significantly improved sensitivity and spectral quality [13]. Furthermore, it has
enabled the adoption of common NMR methodologies such as solvent suppression, which
is an essential issue for NMR measurement of biological samples that contain water-based
solvents [14,15].

Previous studies have reported the applicability of benchtop NMR in food science,
organic chemistry, and material science [16–19]. In metabolomics, the metabolic signature
of type 2 diabetes has been profiled using urine samples with high reproducibility [20–22].
Moreover, tuberculosis in both humans and bovines was detected and differentiated by
benchtop NMR-acquired metabolomic fingerprinting using urine and plasma [23,24]. Nev-
ertheless, it should be noted that the feasibility of benchtop NMR for metabolomics studies
has not been universally verified, as the existing reports are few, and the shortcomings of
low sensitivity and low resolution need to be solved.

In this study, we investigated the potential application of benchtop NMR for fecal
metabolomics, which has been increasingly studied using superconducting high-field NMR,
as the profiling of fecal metabolome provides a functional readout of gut microbial activity
and a variety of diseases, such as inflammatory bowel diseases (IBD) [25].

IBD, mainly comprised of Crohn’s disease and ulcerative colitis, is characterized by
chronic recurring inflammation in the gastrointestinal tract [26]. It has been estimated that
more than 6.8 million individuals were affected by IBD globally by 2017, and the number
of prevalent cases is rising [27]. To elucidate the underlying pathogenesis of human IBD
and identify potential therapeutic targets, rodent models have been developed, such as the
chemically induced dextran sodium sulfate (DSS) colitis model and genetically modified
Interleukin 10 knock-out (IL-10 −/−) mice [28,29]. Although the etiology of IBD is not fully
understood, there is a consensus that loss of homeostasis in the gut microbiota and host
immune system plays an important role in the pathogenesis of IBD, where microbiota-
derived metabolites act as key factors in host-microbe interactions [30–32]. Indeed, high-
field NMR-based metabolomics studies have detected variations in the metabolic profiles
of feces, urine, plasma, serum, and mucosal biopsies of IBD patients as well as animal
models [33–38].

As a demonstration experiment of metabolome analysis using benchtop NMR on fecal
samples, we conducted a study using a mouse model of DSS-induced colitis, the most
widely used model of IBD. We applied both conventional high-field superconducting NMR
systems and low-field benchtop NMR to identify and characterize the metabolic profiles of
fecal samples from healthy and DSS-induced mice and compared the obtained data. To
the best of our knowledge, this is the first study in the field to examine the potential of
benchtop NMR for measuring fecal samples.

2. Experimental Design
2.1. Animals and Sample Collection

The animal experiments were approved by the Institutional Animal Care and Use
Committee of the National University Corporation at Hokkaido University and were carried
out in accordance with the Hokkaido University Regulations of Animal Experimentation.
Six male C57BL/6JJcl mice aged 11 weeks were purchased from CLEA Japan (Tokyo, Japan)
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and propagated at Hokkaido University. Mice were randomly divided into two groups:
the control group and the DSS-induced group (n = 3 per group). All mice were housed in
different cages for 7 days and cage bedding was changed daily to avoid contamination.
The same diet was given to all mice, while 3.5% DSS (molecular weight = 5–1400 kDa) was
added to the drinking water of mice in the DSS group to induce colitis. The mice were fasted
at the end of day 6 and sacrificed on day 7. Body weight was measured daily, and the fecal
samples were collected at 8 a.m. each day, then frozen at −80 ◦C. After sample collection,
the fecal samples were lyophilized and pulverized, and approximately 500–800 mg of
feces powder was obtained and stored at −30 ◦C until the NMR measurement. Colonic
tissue was harvested, fixed, sliced, and stained with hematoxylin and eosin (H&E) for
histological analysis.

2.2. Fecal Sample Processing and 1H NMR Measurement

For the mouse fecal samples collected from day 0 to day 5 (n = 36), approximately
250–300 mg powdered feces were weighed and mixed with a 1:4 (w/v) ratio of phosphate
buffer (50 mM sodium phosphate, pH 7.4) containing 0.004% sodium azide (NaN3) and
10% D2O (99.9 atom % D) with 0.5 mM 3-(trimethylsilyl) propionic-2,2,3,3-d4 acid (TSP)
and 1 mM formate as internal standards. The mixture was shaken for 15 min, followed by
centrifugation at 15,000 rpm for 10 min at 4 ◦C. The supernatant was collected afterward,
and ultrafiltration was conducted overnight using a 5 kDa cut-off centrifugal filter (HMT,
Yamagata, Japan) at 9100× g and 4 ◦C. Then, 550 µL of the filtrate was transferred to a
5.0 mm NMR tube for both high-field and low-field NMR measurements. In addition, one
concentrated sample was prepared with 1000 mg of feces powder from a healthy mouse
and extracted with a 1:10 (w/v) ratio of ultrapure water. After extraction and centrifugation,
the supernatant was processed for lyophilization, and the obtained powder was mixed
with 550 µL of phosphate buffer containing 0.5 mM TSP.

Low-field NMR measurements were conducted using a Magritek Spinsolve 60 MHz
NMR spectrometer (Magritek, Wellington, New Zealand), which is equipped with a 20-slot
autosampler carousel without cooling and combined with a Spinsolve Ultra system for
high magnetic-field homogeneity and solvent suppression performance. The samples were
placed at room temperature (298 K) before measurement. All 1D 1H NMR spectra were
acquired using a 1D PRESAT pulse sequence with a SAT power (dB) of −65 and SAT period
of 3 s for efficient water suppression and a minimal level of loss of signal intensity. The other
measurement parameters were as follows: 128 scans, sweep width of 81 ppm, time-domain
size of 32,768, acquisition time of 3.2 s, and a repetition time of 7 s (acquisition + relaxation).
The temperature of the magnet was controlled at 299.65 K. In addition, QuickShim was
performed at the interval of each measurement using a standard shim sample containing
5% H2O and 95% D2O.

For high-field NMR measurements, 1H NMR spectra were recorded on a Bruker
AVANCE Neo 800 MHz spectrometer (Bruker Biospin, Rheinstetten, Germany) equipped
with a 5 mm TCI (N) H&F cryoprobe with a Z-gradient at 298 K and an autosampler (Sam-
pleJet). To maintain the same measurement parameters as the benchtop NMR spectroscopy,
a simple presaturation pulse sequence (zgpr) was applied to all samples with 128 scans,
sweep width of 12 ppm, time domain size of 65,536, acquisition time of 3.4 s, relaxation
time of 3.6 s and mixing time of 100 ms. In addition, a 1D noesy pulse sequence with water
presaturation (noesypr1d) was also applied for quantitative analysis with an acquisition
time of 3.4 s and relaxation time of 1.6 s for quantitative targeted analysis.

2.3. Data Analysis

All free induction decays (FIDs) measured by both 60 MHz and 800 MHz spectrometers
were multiplied with an exponential line broadening function (sexp) of 0.2 Hz prior to
Fourier transformation. Then the obtained 1H NMR spectra were manually corrected for
phase and baseline distortion, and the chemical shift was referenced to TSP at δ = 0.0 ppm
using Delta 5.3 (JEOL, Tokyo, Japan). The spectra were normalized to the peak area of
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the TSP using Chenomx Processor 8.5 (Chenomx, Edmonton, Canada). The binning sheet
was then exported using the total area of the spectral line of 0~10 ppm with a binning
value of 0.04 and excluded regions of residual water area (δ = 4.5~5.0 ppm) using the
Chenomx Profiler 8.5. For non-targeted multivariate analysis, the data matrix of binning
based on the 60 MHz and 800 MHz spectra was imported into SIMCA 15.0 (Umetrics, Umeå,
Sweden), followed by Pareto scaling. Principal component analysis (PCA), an unsupervised
method, was applied to visualize the clustering and separation within the dataset on
the score plots, and the loading plots showed the corresponding contribution of each
binning to these distributions. Next, orthogonal partial least squares discriminant analysis
(OPLS-DA), a supervised pattern recognition approach, was performed to strengthen
the discriminant ability of the model and identify the significant variables contributing
to the separation. The quality of the prediction models was assessed by the R2X, R2Y,
and Q2 values, which describe the goodness of fit in the X (R2X) and Y (R2Y) variables
and predictability, respectively [33]. In addition, the identification and quantitation of
metabolites were implemented by the Chenomx Profiler 8.5 based on the Chenomx 800 MHz
Database, using noesypr1d program-measured data. Subsequently, the concentrations
of the metabolites were unit variance (UV)-scaled, followed by PCA and OPLS-DA. In
addition, quantitation of the selected metabolite based on 60 MHz data was performed
using three strategies: (1) TSP-normalized integration method by manual selection of
certain chemical shift region on Mnova 14.2 (Mestrelab Research, Santiago de Compostela,
Spain) and defined as “INT (Region) method”; (2) using Mnova 14.2, the “Generalized
Lorentzian” (GL) peak shape was fitted to the spectral line with manual modification of
the Lorentzian and Gaussian parameters, followed by TSP-normalized integration for the
GL peak and defined as “curve fitting (Mnova)”; (3) the standard solution was used as a
spectral reference to create and optimize the in-house 60 MHz library in Chenomx Spin
Simulator, then the peak shape was pre-defined by the signal of TSP, followed by curve
fitting to minimize the subtraction line based on the in-house prepared database using the
Chenomx Profiler and defined as “curve fitting (Chenomx) method”.

Statistical analyses were performed using GraphPad Prism 8 (GraphPad Software,
San Diego, CA, USA). Student’s t-test and one-way ANOVA with Tukey’s post hoc test were
used to compare the concentrations between the groups and the accuracy of quantification
using different methods, respectively. Statistical significance was set at p < 0.05.

3. Results
3.1. Histological Assessment

The DSS-induced colitis model was successfully constructed, as indicated by the
significantly decreased body weight between days 5 and 6, as well as a shorter length of the
large intestine (Figure S1A,B). In addition, H&E staining of the colon sections demonstrated
epithelial erosion and ulceration, loss of goblet cells and mucus layer, and immune cell
infiltration after 7 days of induction (Figure S1C), indicating severe colon inflammation in
the DSS-induced mice.

3.2. NMR Spectra of Mouse Feces Acquired on 60 MHz and 800 MHz and
Metabolites Assignment

Figure 1 shows representative 1H NMR spectra of the same highly concentrated fecal
sample from healthy C57BL/6JJcl mice measured by both 60 MHz and 800 MHz NMR
spectrometers, which represent the best conditions for fecal sample extraction to identify as
many compounds as possible. Then, forty-one metabolites were identified in the 800 MHz
spectrum based on the Chenomx database and referring to the published literature [39,40].
Despite the low sensitivity of low-field NMR, the same 128 scans used in the 800 MHz NMR
system were sufficient to detect the peaks of metabolites in the sample with a good signal-
to-noise ratio. Although low-field NMR has problems with signal overlap owing to its
low resolution, metabolites with prominently higher concentrations (e.g., singlet resonance
derived from acetate at 1.92 ppm), less complex signal patterns (e.g., doublet resonance
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derived from alanine at 1.48 ppm), and isolated regions (e.g., multiplet resonance derived
from tyrosine at 6.95 ppm) were identified without ambiguity. It is worth noting that for a
given compound, J-coupling and peak-integrated intensity are independent of magnetic
field strength, resulting in different peak positions due to signal splitting in high-field and
low-field NMR spectra, and thus different overall spectral patterns (see the example of a
pure alanine and isoleucine sample in Figure S2). We finally succeeded in the assignment
of 19 metabolites (annotation no.1–19) to the 60 MHz spectra by referring to the assignment
of 800 MHz spectra and their corresponding J values, including amino acids, short-chain
fatty acids (SCFAs), creatine, formate, glucose, glycerol and lactate. However, the branched-
chain amino acids (BCAAs), propionate and butyrate located at 0.7~1.1 ppm could not be
clearly distinguished in the 60 MHz NMR spectra owing to the high degree of congestion,
although the concentrations of these metabolites were considered relatively high.
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Figure 1. 1H NMR spectra of the same mouse feces obtained by 60 MHz (blue) and 800 MHz (black)
spectroscopy. The vertical axis of the 60 MHz spectrum was expanded to make the peaks easier to
recognize, so the intensities of the peaks from the same compound in the two spectra were different.
Annotation: 1. Acetate; 2. Alanine; 3. Aspartate; 4. Butyrate; 5. Creatine; 6. Formate; 7. Glucose;
8. Glutamate; 9. Glycerol; 10. Glycine; 11. Isoleucine; 12. Leucine; 13. Lactate; 14. Methionine;
15. Phenylalanine; 16. Propionate; 17. Threonine; 18. Tyrosine; 19. Valine; 20. 5-Aminopentanoate;
21. Arabinose; 22. Taurine; 23. Xylose. The other metabolites include: 2-Hydroxyisovalerate;
3-Hydroxybutyrate; 3-Methyl-2-oxovalerate; 4-Hydroxybenzoate; Choline; Dimethylamine; Ethanol;
Fucose; Fumarate; Galactose; Glutamine; Isobutyrate; Isovalerate; Methanol; Nicotinate; Sarcosine;
Trimethylamine; and UMP.

3.3. Multivariate Analysis Characterized Metabolomic Profiling of Mouse Feces Acquired on
60 MHz and 800 MHz NMR Spectrometers

To determine whether the metabolomics analysis based on 60 MHz NMR spectra was
performed effectively to discriminate between the control group and DSS-induced group,
and provided comparable results with 800 MHz, multivariate analysis was performed for
both 60 MHz and 800 MHz NMR spectra. When PCA was conducted on data from days 0
to 5 acquired at 60 MHz (Figure S3A; PC1 = 36.4%, PC2 = 23.5%), the DSS-induced group
on days 3–5 showed a cluster separated from the others, whereas the DSS-induced group
on days 0–2 was mixed with the control group. The PCA score plot based on 800 MHz
spectral data (Figure S3C; PC1 = 40.5%, PC2 = 23.6%) also showed a similar separation
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tendency to that of 60 MHz. Then, PCA was performed on the data excluding days 0–2 to
characterize the spectral changes caused by the development of DSS-induced colitis and to
facilitate a comparison of the 60 MHz and 800 MHz results.

In the 60 MHz data from days 2 to 5 (Figure 2A; PC1 = 35.5%, PC2 = 25.7%), the shift
and separation of the DSS-induced group from the control group became obvious, as it is
notable that the separation of the two groups started on day 2 and completely separated
from day 3 along PC1. According to the PCA loading plot (Figure 2B), the 1.9 ppm signal
contributed positively and predominantly to PC1, suggesting higher concentrations in
the DSS-induced group. On the contrary, 0.9~1.0 ppm and 3.4~3.9 ppm showed negative
contributions. Importantly, the PCA based on 800 MHz data (Figure 2C; PC1 = 49.3%,
PC2 = 16.2%) also showed a shift in the metabolic signature of DSS-induced mice on the
score plot, as well as the positive contribution of 1.9 ppm and negative contribution of
0.9~1.0 ppm and 3.4~3.9 ppm (Figure 2D). In addition, it can be noticed that positive
contribution of 3.26 and 3.42 ppm and negative contribution of 3.22 and 3.38 ppm to PC1
were demonstrated only in the PCA loading plot based on 800 MHz.
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Figure 2. (A) PCA score plot of mouse feces in the control group (blue) and DSS group (red) from day
2 to day 5, acquired on the 60 MHz NMR spectrometer, PC1 = 35.5%, PC2 = 25.7%; (B) loading plot of
(A); (C) PCA score plot of mouse feces in the control group (blue) and DSS group (red) from day 2 to
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(C). The depth of the color in the score plots increased as the cultivation time progressed. R2X[1] and
R2X[2] represent the first principal component and the second principal component, respectively.

Subsequently, OPLS-DA was used to examine the discriminant ability and improve the
interpretability of the model acquired at 60 MHz. All data were integrated into two groups
(control and DSS-induction), and information on cultivation time was eliminated prior to
constructing the OPLS-DA model. Figure 3A shows the OPLS-DA score plot of mouse
feces on days 2–5 in the control and DSS-induced groups. The R2X, R2Y, and Q2 values of
this model were 0.698, 0.992, and 0.927, respectively, suggesting a statistical significance for
the separation of the two groups. The discriminators of the two groups were summarized
by combining the OPLS coefficient plot (S-line, Figure 3B) and the Variable Importance
for the Projection (VIP) plot, in which the VIP values were larger than 1. According to
Figure 3B, the DSS-induced group had a higher intensity at 1.9 ppm, 2.22 ppm, 2.38 ppm,
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and 3.26~3.34 ppm; and a lower intensity at 0.9~0.98 ppm, 1.42~1.5 ppm, 1.74~1.82 ppm,
2.7~2.78 ppm, 3.54~3.62 ppm, and 4.22~4.42 ppm. Interpreting these signal contributions on
the basis of metabolite assignment in the 60 MHz spectra (Figure 1) suggested that concen-
trations of butyrate (0.9~0.98 ppm), propionate (0.9~0.98 ppm), isoleucine (0.9~0.98 ppm),
valine (0.9~0.98 ppm), leucine (0.9~0.98 ppm; 1.74~1.82 ppm), alanine (1.42~1.5 ppm), as-
partate (2.7~2.78 ppm), glycerol (3.54~3.62 ppm) and threonine (4.22~4.42 ppm) were likely
decreased in the DSS-induced group compared to the control group. On the other hand,
the concentrations of acetate (1.9 ppm), succinate (2.38 ppm), and glucose (3.26~3.34 ppm)
were likely increased by DSS treatment. For comparison, the OPLS-DA score plot and OPLS
coefficients based on the binning of 800 MHz NMR spectra (Figure S4) showed similar
results to the 60 MHz data. However, differences in some points were observed in the
800 MHz S-line data (Figure S4B). An increased intensity of taurine (3.26, 3.42 ppm), which
could not be isolated or identified at 60 MHz, was observed. In addition, the 800 MHz data
gave the opposite contribution of propionate (1.06 ppm) and glucose (3.22, 3.38, 3.46 ppm)
to that of 60 MHz, which was likely due to overlap with the other signals. Adjusting
binning values did not essentially change the results. Furthermore, these alterations in
metabolites were verified by quantitative targeted analysis based on the 800 MHz platform
(Figure S5).

3.4. Potential of 60 MHz Benchtop NMR for Quantitative Analysis

A higher intensity of 1.9 ppm, which was assigned to the resonance of acetate, has
been characterized as the most important feature in the NMR spectra acquired from the
fecal samples of DSS-induced mice. The high concentration of the acetate compared to
other metabolites and its singlet peak made it easily observable. Thus, we expected to
quantify the concentration of acetate as a key biomarker in our model to discriminate
between the two groups and substantiate the potential of 60 MHz benchtop NMR for
further quantification of metabolites.

First, a series of sodium acetate pure samples (concentration = 2–20 mM) were prepared
and measured by both 60 MHz and 800 NMR spectrometers three times to obtain the
calibration curves (Figure S6). The calibration curve was prepared using three methods:
(1) INT (Region): simple TSP-normalized integration of a chemical shift region; (2) Curve
fitting (Mnova): TSP-normalized integration for the “Generalized Lorentzian” (GL) shaped
peak; and (3) Curve fitting (Chenomx): curve fitting using in-house prepared 60 MHz
database or the Chenomx built-in 800 MHz database. It was confirmed that all methods
showed good linearity and reproducibility (r2 > 0.999) at both 60 MHz and 800 MHz.

Subsequently, the concentrations of acetate in mouse fecal samples based on 60 MHz
and 800 MHz spectra were quantified using these methods and compared with the quan-
tification result using the 800 MHz Chenomx database, which is considered as the reference
in the present study (Tables S1 and S2). Additionally, paired differences were calculated,
followed by the mean, standard deviation, standard error, 95% confidence interval (CI) of
the differences and mean absolute error (MAE) (Table S3) to examine the accuracy and
reproducibility of 60 MHz data based on each method, and then summarized by absolute
percentage error (Figure 4). In the case of quantification of 800 MHz spectra, all methods
showed good reproducibility, suggesting that the systematic error was small between
each method (Table S2). However, the simple INT (Region) method for 60 MHz showed
a larger difference from the reference concentration, with an MAE of 0.751 mM. In con-
trast, quantification using curve fitting (Mnova and Chenomx) demonstrated lower MAE
(0.316 and 0.484 mM, respectively) and a narrow 95% CI of difference (−0.096–0.191 and
−0.395–−0.016 mM, respectively). No significant difference was detected between the
two curve fitting methods, although the curve fitting (Mnova) showed a relatively lower
MAE value.

The concentration of acetate quantified by the curve fitting (Mnova) method using
60 MHz spectra in the control mice and DSS-induced mice at each time point is depicted in
Figure 5. As shown in Figure 5, the DSS-induced group had a higher level of acetate than
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the control group from days 3 to 5, and the concentration of acetate in the DSS-induced
group was significantly higher at day 5, which was consistent with 800 MHz data using the
curve fitting (Chenomx) method (Figure S7).
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The color is associated with the significance of variables in classifying the groups as shown on the
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Figure 4. Box plot of the percentage error between the concentration of acetate quantified by each
method and the reference (the concentration quantified by curve fitting method based on the original
800 MHz Chenomx database). INT (Region): TSP-normalized integration method by manual selection
of chemical shift region; Curve fitting (Mnova): the “Generalized Lorentzian” (GL) peak shape
was fitted to the spectral line and modified, followed by TSP-normalized integration for the GL
peak using the Mnova; Curve fitting (Chenomx): the peak shape was pre-defined by the signal
of TSP, followed by manual fitting by referring to the in-house prepared 60 MHz database or the
Chenomx built-in 800 MHz database. The upper and lower whiskers represent the 90th and 10th
percentile, respectively. One-way ANOVA with Tukey’s post hoc test was used for the comparison.
****: p < 0.0001, **: p < 0.01, ns: not significant.
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4. Discussion

NMR spectrometry with an operating frequency of 600 MHz or higher has been one
of the most frequently used research techniques applied for non-targeted and targeted
metabolomic analyses or their combinations to screen key biomarkers underlying the
pathogenesis of diseases such as IBD [33,41]. However, further applications of NMR-based
metabolomics for point-of-care diagnosis and monitoring are restricted by their large size,
high cost, and operational difficulties [21]. In this study, for the first time, we performed a
low-field, benchtop NMR-based metabolomic analysis of fecal samples to characterize the
modified metabolic profile of DSS-induced colitis model mice compared to healthy mice.

For the concentrated fecal extracts of healthy mice, we identified 19 metabolites
in the 60 MHz NMR spectra despite signal boarding and overlapping, presenting an
attractive result that the benchtop NMR platform would provide informative metabolomics
data. These assigned metabolites included amino acids (e.g., branched-chain amino acids,
alanine, and tyrosine), SCFAs (acetate, propionate, and butyrate), creatine, formate, glucose,
glycerol, and lactate. More importantly, non-targeted multivariate analyses including PCA
and OPLS-DA illustrated the separation of the DSS-induced group and the control group
from day 2 to day 5, indicating the discriminant ability and feasibility of benchtop NMR for
metabolomics studies of inflammatory bowel diseases. These results are highly comparable
to the metabolic signature profiled by the high-field NMR platform, which is consistent
with previous urinary metabolomics studies [21,24]. Notably, the alteration of the metabolic
profile of DSS-treated mice (from day 2) occurred earlier than the onset of significant
weight loss resulting from stool bleeding, wasting and diarrhea, which are considered
the primary clinical symptoms of IBD pathogenesis in both experimental animal models
and humans [42–44]. Compared with the current standard diagnosis based on endoscopic,
histological, and radiologic techniques [33,35], the low-field, benchtop NMR might be
a potential tool for noninvasive early diagnosis of IBD. Furthermore, the metabolomics
data of mouse feces were acquired without complex sample processing, thus enabling
quick and easy measurement of various samples, which may shorten the duration between
detection and diagnosis at point-of-care sites [24]. Similarly, in the field of food processing
and quality control, research to simplify the preparation of samples for measurement
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is indispensable [14,16]. However, it is essential to verify its feasibility through large-
scale human studies using several samples in the future considering the variability and
individual difference of human beings, and the protocol of sample processing needs to
be validated and standardized. Furthermore, to facilitate such studies with even more
samples, one of the issues may be to promote the introduction of autosamplers that can
handle more samples, equipped with cooling systems in benchtop NMR.

The alteration of metabolites derived from both 60 MHz and 800 MHz NMR measure-
ments demonstrated elevated levels of acetate and succinate in the feces of DSS-treated mice.
In contrast, they were also characterized by lower concentrations of butyrate, branched-
chain amino acids, alanine, aspartate, threonine, and glycerol. In IBD patients and colitis
model mice, metabolomics and metagenomics studies have reported dysbiosis of the
gastrointestinal microbiota and microbial metabolism [45–47]. SCFAs, mainly acetate,
propionate and butyrate, are carboxylic acids produced by the microbial fermentation of
polysaccharides. SCFAs are important metabolites in maintaining intestinal homeostasis,
strengthening gut barrier function, supplying energy for colonic epithelial cells, and acting
as signaling molecules [48]. In particular, it has been documented that the abundance
of SCFA-producing bacteria such as the genera Roseburia and Faecalibacterium, as well as
the concentration of SCFAs, especially butyrate, were reduced in fecal samples of IBD
patients [35,44,49–51]. This is consistent with the reduction in butyrate levels observed in
the DSS-treated group in our experiment. Remarkably, our study showed a predominantly
increased amount of acetate in DSS-induced mice compared to that in the control. It has
been suggested that only ~5% of SCFAs produced by bacteria remain in feces, and alter-
ations in transit, absorption and utilization might lead to different directions of change
in the content of SCFAs [32]. Thus, the significantly increased concentration of acetate
in DSS-treated mouse feces may be attributed to the defective uptake of energy by the
colonic epithelium. In addition, elevated concentrations of BCAAs, alanine, and lysine in
the feces of IBD patients have been reported by Marchesi et al. and Bjerrum et al. [35,52].
Correspondingly, the change in the metabolic profile of colonic tissues was characterized
by lower levels of these amino acids [37,53], indicating malabsorption under inflamma-
tory conditions [54]. However, metabolomic research using mouse models might lead to
diverse fluctuations, and the tendency was dependent on each study [41,55]. Therefore,
the relatively lower levels of amino acids in DSS mouse feces are likely due to decreases
in dietary protein degradation or amino acid biosynthesis caused by reduced bacterial
populations [55]. Moreover, succinate, a tricarboxylic acid cycle intermediate, acts as an
important pro-inflammatory signal in the host [32], and a previous study demonstrated an
increased level of succinate in DSS-induced mice [41].

The signal overlapping problems caused by adjacent chemical shifts appear to be
the main limitation for the identification and quantification of metabolites in biological
samples using low-field, benchtop NMR, and particular attention should be paid when
analyzing and interpreting metabolic profiles, as suggested by previous studies [14,22].
Some compounds have significantly different signal patterns in low-field and high-field
NMR spectra due to the effect of J-coupling splitting. Although it is expected that such
differences can be reduced by spectral binning, they will inevitably affect the analysis.
Indeed, multivariate analyses of 60 MHz data of mouse feces showed misleading infor-
mation about alterations of propionate, glucose, and taurine, suggesting the limitation of
60 MHz NMR when interpreting the change in metabolic profile in the crowded region
at 0.9~1.1 ppm and 3–4 ppm. For example, the resonance of the -CH3 group of propi-
onate (t, δ = 1.05 ppm) has a J value of 7.70 Hz, the range of this peak area will occupy
3 × 7.70 Hz/800 Hz = 0.029 ppm when measured by 800 MHz, while the occupied region
would be 3 × 7.70 Hz/60 Hz = 0.385 ppm when measured by a 60 MHz NMR spectrometer.
Correspondingly, the -Cγ2H3 methyl groups of valine (d, δ = 1.03 ppm) and isoleucine
(d, δ = 1.00 ppm) have a J value of 7.05 Hz that would envelop 0.235 ppm. Such signal
broadening would lead to an inevitable overlapping problem, and the increased level of
propionate would be covered by a decrease in BCAAs. Likewise, the decreased intensity
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of glucose (δ = 3.22, 3.38, 3.46 ppm) was obscured by elevated concentrations of taurine
(δ = 3.26, 3.42 ppm), which was difficult to identify in the 60 MHz spectra.

The performance of benchtop NMR for quantitative analysis has been demonstrated in
previous studies, where the concentration of glucose, a common marker of type 2 diabetes,
was quantified using the α-glucose anomer C1-H signal at 5.2 ppm in urine samples [21,22].
In this study, we attempted to quantify the concentration of acetic acid in mouse fecal
samples by low-field benchtop NMR spectroscopy using three quantitative methods. Quan-
tification using simple integral intensities of the 60 MHz spectra resulted in a fairly large
error due to signal overlap, which was greatly reduced by curve fitting methods. In
addition, the quantitative results of this study showed a slightly smaller error trend for
the Mnova software than for the Chenomx software, which is commonly used for NMR
metabolome analysis, although the difference was not significant. This may be because
more fitting parameters of the generalized Lorentzian were adjusted in the curve fitting
by Mnova in this study. In addition, it has been suggested that the concentrations of
compounds with simple resonance patterns, such as acetate, alanine, BCAAs, lactate, citrate
and succinate, are suitable for quantitative analyses [14]. However, the spectra of fecal
samples suffer from severe overlapping and spectral background effects. As a result, it re-
mains challenging to quantify metabolites other than acetate in fecal samples using simple
integration or curve fitting methods, which appears to be a limitation of our study.

The limitation from the aspect of identification and quantification of benchtop NMR
would be broken out with the progress of both hardware and methodologies of data
analysis. For example, stronger permanent magnets have been applied in a novel Spin-
Solve 90 MHz NMR spectrometer (Magritek). In addition, with the increasing accessibility
of massive NMR datasets and the development of algorithms, deep learning methods
such as image recognition and image labeling neural networks have shown their po-
tential for fast processing and prediction of the spectra and deconvolution of the peak
overlap [56,57]. Furthermore, field-invariant methods based on the quantum mechanical
properties of spin systems have been attempted to enhance the quantitative analysis of
benchtop NMR [19,58,59].

In summary, we presented the potential applications of low-field benchtop NMR for
the rapid diagnosis of IBD using a DSS-induced mouse model. The metabolic profile char-
acterized by 60 MHz data showed good comparability with the 800 MHz data. In addition,
although it demonstrated high reproducibility for the quantification of metabolites, it was
difficult to carry out a detailed quantitative analysis. Therefore, further exploration of
analytical methods, such as machine learning, is needed to deal with the shortcomings of
benchtop NMR and realize the application of this technique in the metabolomics field. This
pilot study was the first step in a series of possible future studies, including diagnostics
using human feces with benchtop NMR.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/metabo13050611/s1, Figure S1: (A) Body weight; (B) the length
of large intestine and small intestine; (C) hematoxylin–eosin (H&E) staining of colon section collected
from control mice (upper) and DSS-induced mice (down) at day 7. Scale bars: 50 µm; Figure S2:
1H NMR spectra of pure alanine and isoleucine sample obtained by 60 MHz and 800 MHz spec-
troscopy, respectively. Chemical shift of 0.5–2.5 ppm was shown. Note that the vertical axis of the
60 MHz spectra was expanded to facilitate peak recognition, and direct peak area comparison was
not possible; Figure S3: (A) PCA score plot of mice feces of control group (blue) and DSS group (red)
from day 0 to day 5 acquired on a 60 MHz NMR spectrometer, PC1 = 36.4%, PC2 = 23.5%; (B) loading
plot of Figure S2A; (C) PCA score plot of mice feces of control group (blue) and DSS group (red) from
day 0 to day 5 acquired on a 800 MHz NMR spectrometer, PC1 = 40.5%, PC2 = 23.6%; (D) loading plot
of Figure S2C. The depth of the color in the score plots increased as the cultivation time progressed.
The R2X[1] and R2X[2] represent the first and second principal component, respectively; Figure S4:
(A) OPLS-DA score plot of mice feces of control group (blue) and DSS group (red) from day 2 to day 5,
acquired on an 800 MHz NMR spectrometer; (B) OPLS coefficient plot (S-line) of Figure S3A. The
top end with the positive value illustrates the increased relative intensity of bins with DSS treatment,
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while the negative value represent the decreased relative intensity in the DSS group. The color is
associated with the significance of variables in separating the groups as shown on the right side of
the plot, where the absolute value of the correlation coefficients was shown; Figure S5: (A) OPLS-DA
score plot of concentration of metabolites quantified by Chenomx Profiler in mice feces of control
group (blue) and DSS group (red) from day 2 to day 5 acquired on an 800 MHz NMR spectrometer;
(B) loading plot of Figure S4A; Figure S6: Calibration curve of acetate standard sample measured
by a 60 MHz (A) and 800 MHz (B) spectrometer. The concentration of acetate was quantified by
three methods. INT (Region): TSP-normalized integration method by manual selection of chemical
shift region; Curve fitting (Mnova): the “Generalized Lorentzian” (GL) peak shape was fitted to the
spectral line and modified, followed by TSP-normalized integration for the GL peak using the Mnova;
Curve fitting (Chenomx): the peak shape was pre-defined by the signal of TSP, followed by manual
fitting by referring to the in-house prepared 60 MHz database or the Chenomx built-in 800 MHz
database; Figure S7: The concentration of acetate in mouse fecal samples quantified by 800 MHz
spectra using the “Curve fitting (Chenomx)” method. Welch’s unequal variances t-test was used for
the comparison. *: p < 0.05; Table S1: Comparison of three quantification methods for the concen-
tration of acetate (mM) on 60 MHz NMR spectra; Table S2: Comparison of integration methods for
quantifying the concentration of acetate (mM) on 800 MHz NMR spectra; Table S3: Paired differences
of each method for quantifying the concentration of acetate (mM) in the mouse fecal samples based
on 60 MHz NMR spectra with the routine method (800 MHz curve fitting using Chenomx).
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