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Abstract

Conservation planning and decision-making rely on evaluations of biodiversity

status and threats that are based upon species' distribution estimates. However,

gaps exist regarding automated tools to delineate species' current ranges from

distribution estimates and use those estimates to calculate both species- and

community-level biodiversity metrics. Here, we introduce changeRangeR, an R

package that facilitates workflows to reproducibly transform estimates of spe-

cies' distributions into metrics relevant for conservation. For example, by com-

bining predictions from species distribution models (SDMs) with other maps of

environmental data (e.g., suitable forest cover), researchers can characterize

the proportion of a species' range that is under protection, metrics used under

the IUCN Criteria A and B guidelines (Area of Occupancy and Extent of

Occurrence), and other more general metrics such as taxonomic and phyloge-

netic diversity and endemism. Further, changeRangeR facilitates temporal

comparisons among biodiversity metrics to inform efforts toward complemen-

tarity and consideration of future scenarios in conservation decisions.

changeRangeR also provides tools to determine the effects of modeling deci-

sions through sensitivity tests. Transparent and repeatable workflows for calcu-

lating biodiversity change metrics from SDMs such as those provided by
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changeRangeR are essential to inform conservation decision-making efforts

and represent key extensions for SDM methodology and associated metadata

documentation.
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1 | INTRODUCTION

Reliable estimates of species' current ranges, as well as their
recent and forecasted future trends, are essential to inform a
wide range of biogeographical studies, and especially appli-
cations for conserving biodiversity (Whittaker et al., 2005)
and related decision-making (Araújo et al., 2019). Species'
geographic distributions are a well-defined Essential Biodi-
versity Variable (EBV; GEO, 2015; Pereira et al., 2013),
which can be quantified through species distribution models
(SDMs) and post-processed to better refine estimates of a
species' current range (Merow et al., 2022). Species distribu-
tion estimates can potentially inform conservation status
compilations, such as the Red List of Threatened Species,
following assessment processes defined by the International
Union for the Conservation of Nature (IUCN, 2022). How-
ever, the ability to transform a species' current estimated dis-
tribution into standardized conservation metrics in a
transparent and repeatable way remains an outstanding
issue in conservation biology (Anderson, 2022; IUCN, 2022;
Kass, Meenan, et al., 2021).

In combination with expert information regarding
range extents (Mainali et al., 2020), modeled species'
range estimates (e.g., SDMs) provide several advantages
for measuring biodiversity over expert-range maps, which
are generally static and unable to be reproduced or trans-
ferred to other time periods or geographic extents. SDMs
with high-quality data and following best practices
(Araújo et al., 2019) generate distribution estimates that
can provide fine-scale spatial information to support con-
servation planning (Di Febbraro et al., 2018). Further,
SDMs can be transferred not only to unsampled areas but
also to new time slices, allowing for calculations of trends
in species' ranges (Veloz et al., 2012). SDM range predic-
tions can be refined with other data (e.g., forest cover;
Gavrutenko et al., 2021) or land conservation maps
(e.g., protected or at-risk areas) to estimate recent frag-
mentation or habitat loss and determine estimates of the
species' current range. Specifically, IUCN's Criteria A and
B (2022) help advise practitioners of threats based on geo-
graphic ranges and their change through time (see
Box 1). They employ two alternative metrics to measure a
species' geographic range, extent of occurrence (EOO),

and area of occupancy (AOO), which conservation practi-
tioners can use to inform threat assessments, identify
areas for priority assessment, and guide field surveys. The
newly proposed area of habitat (AOH) adds to these by
refining IUCN range maps using ancillary land-cover and

BOX 1 Summary of terminology pertaining
to IUCN species extinction risk assessment
criteria A and B as defined in Guidelines for
Using the IUCN Red List Categories and
Criteria (2022)

IUCN Criterion A pertains to population
size reduction as measured through (a) direct
observations, (b) taxon- appropriate indices of
abundance, (c) declines in EOO, AOO (defined
below), or habitat quality, (d) exploitation levels,
or (e) the negative impacts of biotic interactors.

IUCN Criterion B pertains to geographic
ranges, with the aim of identifying species with
restricted distributions that are at least any two
of (a) severely fragmented, (b) known from few
locations, or (c) undergoing continuing decline
or showing extreme fluctuations. Species' ranges
are measured using either EOO or AOO.

Extent of occurrence (EOO) represents the
geographic area currently occupied by a taxon. It
is measured by the shortest continuous perimeter
encompassing all of the “known, inferred, or pro-
jected sites of present occurrence of a taxon,
excluding cases of vagrancy” (IUCN, 2022).

Area of occupancy (AOO) is a more conser-
vative subset of EOO that identifies areas of suit-
able habitat currently occupied by a taxon. It is
measured as the summed area of 2 km�2 km
pixels that capture all of the areas where the spe-
cies is known or very likely to occur.
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remote-sensing data based on species' known habitat and
elevational limits (Brooks et al., 2019).

In addition to those from single species, range esti-
mates from multiple species can be combined to calculate
assemblage-level macroecological and conservation met-
rics. For example, overlaying species' ranges can be used
to estimate maps of potential species richness and ende-
mism (Calabrese et al., 2014; Zurell, Zimmermann,
et al., 2020). The benefits and disadvantages of using
binary range estimates (whether expert-drawn or post-
processed SDM-derived) for macroecological applications
have been well documented (Graham & Hijmans, 2006).
Several additional metrics can be assessed when com-
bined with phylogenetic data: phylogenetic diversity can
elucidate the spatial distribution of evolutionary history
(Kembel et al., 2010), while phylogenetic endemism
determines the relative spatial restriction of evolutionary
history in an area (Rosauer et al., 2009).

Several R packages already exist for calculating biodiver-
sity metrics such as IUCN's range metrics EOO and AOO
(e.g., ConR; Dauby et al., 2017, RED; Cardoso, 2017, species-
geocodeR; Töpel et al., 2016; rCAT; Moat & Bachman, 2020;
See Table 1), but their workflows operate only on occur-
rence datasets, precluding estimates of these metrics based
on SDMs. Additionally, existing tools lack functionalities to
harness remotely sensed data (e.g., satellite imagery) that
provide high-resolution information that can be included to
improve further insights—including trends over time—for
Red Listing and other biodiversity measurements (Duncan
et al., 2021). We built the package changeRangeR to address
the need for reproducible quantification of biodiversity met-
rics from both occurrence datasets and species' range esti-
mates, to enable related analyses at both the species and
community levels, and to include easy integration of
remotely sensed information within a single workflow.
Additionally, changeRangeR helps researchers report on
methodological uncertainty and temporal trends in range
estimates. It can also incorporate relevant multispecies
metrics.

Specifically, changeRangeR allows users to report current
species- and community-level metrics estimates by integrat-
ing species' range estimates (rasters) and selective masking.
Additionally, changeRangeR provides a workflow for users to
calculate several aspects of trends over time inmetrics related
to species' geographic distributions, for example, the change
in the area of a species' distribution or the change in percent-
age of forest within a species' range over time. Users can also
make comparisons with calculations made from occurrence
localities only. The package also allows users to assess the
sensitivity of range estimates to differences in methodological
choices (e.g., the threshold used to make a continuous SDM

prediction into a binary range estimate). changeRangeR is
designed to be an independent R package and provides a
workflow to perform comprehensive spatial and temporal
range map refinements and evaluations. changeRangeR can
receive as input binary maps that estimate species' realized
current distributions, such as continuous suitability predic-
tions, AOH maps, expert-drawn maps, or post-processed
SDM outputs from the R package maskRangeR (Merow
et al., 2022). This workflow can facilitate the measurement of
biodiversity conservation metrics made using range maps
and enables both single and multiple species analyses. The
following sections outline how changeRangeR fills gaps for
assessing range characterizations that build upon rangemaps
for quantifying species- and community-level biodiversity
metrics associatedwith the geographic range.

2 | PACKAGE DESCRIPTION

changeRangeR meets the needs of researchers and
conservation practitioners in four main ways. First,
changeRangeR allows users to calculate metrics relevant to
conservation evaluations by assessing the proximity and
overlap of species' ranges with geographic features such as
land cover or sensitivity to climatic change. Second, using
any form of occurrence estimate, users can help assess spe-
cies' risk levels using IUCN's criterion B guidelines regarding
geographic ranges. Third, changeRangeR provides calcula-
tions relating to temporal trends in species ranges and com-
munities for proactive planning that can also be useful
information for IUCN's criterion A. Finally, changeRangeR
helps users adhere to model metadata and reporting stan-
dards through recording of modeling decisions and outputs.

2.1 | Range protections and threats

As species' ranges shift in response to environmental
changes, the importance of geographic features such as parks
or deforested areas will increase, resulting in strong land-
scape implications for species' ranges (Krauss et al., 2014).
The ratioOverlap function calculates the geographic overlap
between a species' range and geographic features of interest.

2.1.1 | Range proportion

Using ratioOverlap, users can calculate the proportion of
overlap between a species' range with categorical features
(e.g., shapefiles) such as land-cover classes, habitat types,
ecoregions, political borders (country, state/province, etc.),
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protected areas (e.g., national parks), or any user-defined
and georeferenced categorical spatial vector layer. For exam-
ple, users can calculate the proportion of a species' total
range that falls within different types of protected areas, such
as national parks, national wildlife refuges, and local parks.
The species' range map should be any binary range estimate
(e.g., expert-refinedmodel, AOO, binary SDM, etc.).

2.1.2 | Range correlation

Users may also use ratioOverlap to assess the proportion
of overlap between a species' range map (binary values)
and a continuous environmental layer separated into
quantiles. By default, the function will determine the pro-
portion of overlap that is within the first (<25%), second

TABLE 1 Comparison of changeRangeR's features with those of other software packages for calculating biodiversity metrics such as

IUCN's range metrics EOO and AOO (adapted from Chang, 2022)

Software tools

changeRangeR's features RedConRrCATspeciesgeocodeR

Range proportion

Calculates the proportion of species range binary map overlap with
categorical features (e.g., shapefiles), or any user-defined
georeferenced categorical spatial vector layer.

Estimates current species- and community-level metrics by
integrating SDMs and selective masking

Range correlation

Assesses the proportion of overlap between a species' range map
(binary values) and a continuous environmental layer broken into
quantiles, or user-specified values (i.e., values between 0 and 1)

Returns the average Pearson correlation coefficient between the
species' range and a continuous layer.

Multispecies estimates

Calculations relating to trends in species' and communities' ranges
over time

Compares ordinal raster values (e.g., species richness) with regions
of interest and returns proportions of the raster that fall within
and outside of these regions

Calculates phylogenetic endemism by dividing each branch length
of a phylogenetic tree by the total range area of the species that
descend from that branch, then summing

Extent of occurrence (EOO) calculation

MCP around the occurrence localities

MCP around modeled continuous range estimates thresholded
using a range of user-defined values

Adheres to model metadata and reporting standards through
logging of modeling decisions and outputs

Area of occupancy (AOO)

Calculates area of occupied cells (2 km width/height) based on
species occurrence data

Calculates area of occupied cells (2 km width/height) based on
binary grid of species' range

Other Biodiversity Evaluations

Calculates metrics relevant to conservation evaluations by assessing
species' geographic ranges' proximity and overlap with geographic
features such as land cover and sensitivity to climatic changes

Provides statistics relevant for monitoring biodiversity at the
community level
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(25%–50%), third (51%–75%), and fourth (>75%) quartiles,
respectively. The option for user-specified values (i.e., values
between 0 and 1) is also available. In addition, the function
will return the average Pearson correlation coefficient
between the species' range and the continuous layer. Exam-
ples of environmental layers for calculating overlap with
species' range maps are the Humboldt's Human Footprint
Indices (Correa Ayram et al., 2018) and hunting pressure
level datasets (Deith & Brodie, 2020).

2.2 | Inputs to assess species' threatened
status

changeRangeR also provides metrics needed to assess
species' threatened status using IUCN's criterion B guide-
lines regarding geographic range. Specifically, the pack-
age can calculate estimates of EOO, AOO, and sensitivity
to threshold decisions. Recommendations of the relevant
IUCN Species Survival Commission Red List Authority
should be consulted when contributing EOO or AOO
measurements (IUCN, 2022).

2.2.1 | EOO–IUCN's extent of occurrence

IUCN's EOO calculation is defined as the area contained
within the shortest imaginary, continuous boundary
drawn to encompass all the regions currently occupied by
a taxon, excluding vagrant localities (e.g., those that do
not represent the species' core habitat area; Section 4.9,
IUCN, 2022). This measure is intended to include discon-
tinuities or disjunctions within the overall distribution of
a taxon (e.g., large areas of unsuitable conditions, in con-
trast, see AOO, below, IUCN, 2022). EOO is typically
measured by drawing a minimum convex polygon (MCP,
also called convex hull) around current localities and
may exclude large areas that are actually occupied by the
species but remain unsampled (Joppa et al., 2016;
Figure 1). Alternatively, a convex hull around a thre-
sholded SDM prediction that predicts suitability for
unsampled areas can be a better approach for data-poor
species (Kass, Meenan, et al., 2021; Syfert et al., 2014).
Such an estimate should be processed to exclude areas
beyond likely dispersal barriers and those the species is
unlikely to occupy due to unfavorable biotic conditions,
and it should still include all species' presence localities
in keeping with the definition of EOO (IUCN, 2022).

changeRangeR allows users to calculate EOO via two
options. The first option uses the mcp function to define
the EOO by drawing an MCP around the occurrence
localities, while the second option, mcpSDM, emulates
the methodology described by Syfert et al. (2014): it draws

an MCP around modeled continuous range estimates that
are thresholded using a range of user-defined values,
then finds which of these MCPs is most similar to the
original MCP delineated around the occurrence localities,
resulting in an EOO estimate that takes into account pre-
dictions for unsampled areas. An important caveat is that
thresholds greater than the minimum suitability across
all occurrence localities will result in some occurrences
being excluded from the EOO, which does not match the
definition from IUCN (IUCN, 2022).

2.2.2 | AOO–IUCN's area of occupancy
upper bound

Users can calculate the total area of 2 km�2 km grid cells
to determine bounds of IUCN's area of occupancy
(AOO). AOO is intended to represent only areas that are
likely to be presently occupied, inferred through habitat
information or predicted via modeling, and thus is meant
to exclude unsuitable or unoccupied habitat patches
(IUCN, 2022). To ensure consistency and comparability
of results in IUCN assessments, for most applications
AOO should be calculated at a reference scale with grids
of 2 km�2 km (a cell area of 4 km2). In changeRangeR,
users can calculate AOO one of two ways: using occur-
rence localities as a lower-bound estimate, or alterna-
tively using a binary range estimate derived from a
distribution model or an area of habitat map as an upper-
bound estimate—the latter should ideally be processed to
exclude areas that do not currently offer habitat for the
species (Figure 1). Lower-bound estimates of a species'
range show the minimum area that the species most
likely inhabits, whereas upper-bound estimates are more
likely to include more of the current range but may over-
predict it. For accurate areal calculations appropriate for
IUCN measurements, users need to use grids that are
defined in a projected coordinate system, ideally one that
uses an equal area projection, which best preserves area
relationships and has units in meters instead of degrees
(IUCN, 2021).

The function AOOarea calculates AOO based on
either grid cells containing occurrence records (lower
bound) or a binary range estimate (upper bound). The
lowest estimate of AOO is defined as the total area of
2 km � 2 km grid cells that contain occurrence records.
Lower-bound estimates like this are strongly affected by
sampling biases that can result in the omission of large,
unsampled areas that may be part of the species' current
range (Anderson, 2022). An alternative is to estimate a
higher bound of AOO based on a gridded binary range
estimate from an SDM. Upper bounds for AOO can
include unsampled grid cells predicted as suitable by the
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SDM and are therefore more robust to sampling bias,
though they also have more uncertainty as they include
model predictions. If the function AOOarea is supplied
with a different spatial resolution, it will resample the
grid to a 2 km � 2 km resolution before calculating the
area (the input raster must be projected in meters). Users
are advised to assess the sensitivity of several thresholds
used to create the binary map by calculating areas based
on different thresholds (also see IUCN, 2022, which
describes an approach to calculate AOO first at the highest
resolution possible and then upscale successively to deter-
mine the scaling correction). Examples include different
suitability thresholds for an SDM prediction or different
levels of current forest cover (Figure 2). As estimates of

AOO, by definition, must include all grid cells that contain
occurrence records that still represent extant populations
(IUCN, 2022), some higher thresholds that exclude such
grid cells would be inappropriate for calculating AOO
(Kass, Meenan, et al., 2021).

2.3 | Range trends through time

Given the appropriate temporal data, changeRangeR can
leverage EOO and AOO predictions through time to cal-
culate IUCN Red List criteria pertaining to population
and range size reduction. Predictions of range changes
over time have varying levels of associated uncertainty,

FIGURE 1 Bassaricyon neblina is a

small, arboreal, carnivoran mammal

found in the Andean cloud forests of

Ecuador and Colombia. The map shows

the extent of occurrence (EOO) resulting

from a minimum convex polygon

surrounding all occurrence records (red

polygon) and the EOO resulting from a

minimum convex polygon surrounding

the binary SDM prediction (black

polygon) following Gerstner et al. (2018).

The upper-bound estimate of the area of

occupancy (AOO; light brown areas) is

defined as the area of this binary SDM

prediction, resampled to the

2 km � 2 km resolution suitable for

IUCN Red List assessments. The inset

map shows an example lower-bound

AOO represented as 2 km � 2 km red

pixels calculated from occurrence

localities.
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yet they represent a data-driven methodology for fore-
casting a species' conservation status. Climatic and land-
cover information from different time periods can be
combined with range information to determine trends in
several biodiversity metrics including continuing decline,
extreme fluctuations, and proximity to important land-
scape features (e.g., protected areas). Calculating these
trends allows researchers to predict how species may
respond to current and future environmental changes.

Users can also calculate the overlap between SDMs and
projected environmental variables through time. The func-
tion futureOverlap assesses the overlap of future binary
range projections from SDMs with future environmental
vector layers for the same time periods (e.g., annual forest
cover). For example, a user can project an SDM to several
future decades (2021–2040, 2041–2060 from the CMIP6 cli-
mate projections) and compare the overlap with projected
deforestation available for those decades (for example,
through 2050 using Clark Lab's Land Change Model; Clark
Labs, 2009).

The function envChange determines how the area of
a binary range estimate for the present can change due to
the dynamics of an environmental variable that changes
through time. This is especially useful for short-term esti-
mates where climate change projections are either una-
vailable or not expected to shift the range within the time
period. For example, monitoring how a current species'
range is affected by changes to forest cover over time
could help to identify trends and zones for implementing
regional conservation actions (Figure 2). With this func-
tion, users supply a time series of relevant environmental
rasters, an appropriate suitability threshold, and a binary
range estimate in a matching coordinate reference system

projection. Users can then decide how the range estimate
is thresholded, with options for upper (e.g., maximum
forest cover), lower (e.g., minimum human footprint),
neither (e.g., environmental rasters are already binary),
or both (e.g., two values that define a temperature range).
Users can also determine the relationship between the
range estimate and environmental variables with the
Pearson correlation coefficient.

2.4 | Community statistics

Community-level metrics can aid conservation planning
and decision-making by providing information on species'
representativeness and complementarity across conserva-
tion areas (e.g. Astudillo-Scalia & Albuquerque, 2020).
These indicators can reflect different dimensions of biolog-
ical diversity such as species richness, spatial and temporal
turnover, endemism, and phylogenetic diversity (e.g. see
Guisan & Rahbek, 2011; Varzinczak et al., 2020). The com-
plementarity function specifically compares ordinal raster
values (e.g., species richness) with regions of interest and
returns proportions of the raster that fall within and out-
side of these regions.

Areas with many endemic species represent unique
combinations of phylogeny and geography (Varzinczak
et al., 2020) and are important targets for conservation
efforts. Such areas may be left out of conservation priori-
ties because of a lack of data or methods available to calcu-
late information about them (Rosauer et al., 2009). We
provide the function speciesEndemism for calculating an
estimate of species endemism using a rasterStack of binary
range estimates. This function calculates endemism as the

FIGURE 2 Area of occupancy (AOO) can be calculated from an SDM prediction. The sensitivity of thresholds used to create a binary

modeled range estimate from a continuous one can be assessed. AOO calculated from these SDMs is affected by the threshold used (left

panel; darker colors representing a more constrained distribution as the forest threshold increases) and the area becomes reduced as the

threshold increases (center panel). The calculated area is also affected by the year of the forest cover data used to apply the forest threshold

to the SDM, allowing a comparison of area change over time (right panel).
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number of species in a given area divided by the total area
in which those species are found (this is also referred to as
“range rarity”; Roberts et al., 2002). Phylogenetic ende-
mism, computed based on species' phylogenies and spatial
range data (Rosauer et al., 2009), is a measure of areas
with phylogenetically distinct and geographically range-
restricted species that can help identify potentially impor-
tant conservation areas. The calc_PE function calculates
phylogenetic endemism by dividing each branch length of
a phylogenetic tree by the total range area of the species
that descend from that branch, then summing.

2.5 | Modeling metadata and reporting
standards

Accurate recording and reporting of analytical decision-
making are of critical importance, especially for science-
backed policy. The R package rangeModelMetadata
(rmms; Merow et al., 2019) defines an rmm R object
representing metadata that can be populated with model-
ing decisions and results related to SDMs. This facilitates
reproducibility of outputs and enables an easily accessible
assessment of model quality. To further increase trans-
parency, we made a custom function to document analyt-
ical steps in changeRangeR and the resulting outputs of
post-processed SDMs. The buildRMM function catalogs
inputs and results of other changeRangeR functions, add-
ing this information to either a pre-existing rmm object,
or creating a new one if not supplied.

3 | PACKAGE DEVELOPMENT
AND TESTING

changeRangeR was developed in partnership between
the American Museum of Natural History's Center for
Biodiversity and Conservation and user-consultation
workshops by The Colombia Biodiversity Observation
Network (BON), hosted by the Alexander von Humboldt
Biological Resources Research Institute (<http://www.
humboldt.org.co/en>). In particular, we consulted closely
with developers and users of the Colombia BON applica-
tion BioModelos (<http://biomodelos.humboldt.org.co/
en>), a system for vetting and hosting species' distribu-
tion estimates (Vel�asquez-Tibat�a et al., 2019). This soft-
ware benefited greatly from the involvement of these
conservation practitioner end users at the design stage
and through iterative beta-testing of software compo-
nents during the development process. Our engagement
with end users helped us create a product that was
deemed effective for the needs of a global audience of
stakeholders and users.

4 | CONCLUSIONS

Transparent and repeatable workflows for SDMs and
associated biodiversity change metrics are essential to
inform evidence-based conservation decision-making
such as Red List assessments and conservation offsets
(Moilanen et al., 2020). They even have potential to
inform new proposed workflows for the IUCN Green
Status of Species, which measures the success of a spe-
cies conservation plan and the potential for recovery
(Grace et al., 2021). Because of this, uncertainty related
to SDMs should be better communicated to decision
makers in a meaningful and informative way (Costa
et al., 2018).

changeRangeR allows users to measure several
biodiversity metrics for species and communities and
report on temporal range trends and maps. It facilitates
the inclusion of biodiversity metrics such as species
richness alongside other considerations such as comple-
mentarity in conservation decisions (Astudillo-Scalia &
Albuquerque, 2020; Varzinczak et al., 2020). Further,
this package gives users the tools to determine the effects
of their analytical decisions through sensitivity tests. SDM
post-processing toolboxes such as changeRangeR are an
important step for measuring and monitoring biodiversity
and represent key extensions for SDM methodology and
associated documentation and metadata protocols such
as ODMAP (Fitzpatrick et al., 2021; Zurell, Franklin,
et al., 2020).

changeRangeR can work in tandem with other SDM
software by sharing inputs and outputs. The package is
designed to receive inputs from another recent package,
maskRangeR (Merow et al., 2022), which provides cur-
rent species range estimates using remotely sensed data
and expert knowledge. Both packages are specifically
designed to be included as new modules in Wallace, an
R-based interactive platform and workflow for repro-
ducible modeling of species niches and distributions
(Kass et al., 2018; Kass, et al. In Press); however, they
can also be effectively used independently from Wallace
to provide users with flexible tools to measure biodiver-
sity indicators. Wallace's workflow includes other R
packages designed to help users follow best practices for
SDMs, including ENMeval (Kass, Muscarella,
et al., 2021) for tuning model complexity and rmms for
model metadata generation (Merow et al., 2019).

The translation of research outputs into effective
policy-making can be bolstered by strengthening the col-
laborative ties between taxonomic experts, modeling
experts, and policy makers to progress the transition of
science into policy (Urbina-Cardona et al., 2019). These
metrics must also be considered alongside other policy
recommendations such as sociopolitical acceptability and
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economic feasibility to result in effective and sustainable
conservation impacts (Brown, 2017).
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